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ANTILOCALITY AND ONE-SIDED ANTILOCALITY

FOR STABLE GENERATORS ON THE LINE

By

Yasushi Ishikawa

1. Introduction.

Let X be an open domain in Rn. Consider a linear operator A: QfiX^O'iX),

where C°°{X)is the class of infinitely differentiablefunctions on X and C?(X) is

the set of functions of C°°(X)which have compact support in X. We say A is

antilocal if supp/Usupp A/=X for every /eQ°(X) such that /^0. Equivalently,

if /=.4/=0 in an open subset of X, then /=0 in X.

Antilocalitywas firstlyproved by Reeh-Schlieder [7] for the operator {mzI―A)in,

where J denotes the Laplacian. Subsequently it was extended by Goodman-Segal

[1],Masuda [6] and Murata [3] for (m2l-jy, teC＼Z. Recently it was extended to

the complex powers (z-powers) of ellipticdiffetentialoperators with analytic co-

efficientsof order in such that mz$2Z by Liess [2].

In this paper we study the following operators:

(･) aP,q(D)f(x)=
^Jf(x

+ y)-f(x))[plRM+qU+(y)l-^-,

where p^O, q^O, p+q=l, 0<≪<l and lR±(y)= l or 0 according as yeR± or not.

Here R+ = (0, +00) and R-=(―oo,0). These operators appear as generators of

stable processes on the line with index a in probability theory. So we call them

stable generators. In case p=q it is known that the stable generator with index

a is a/2-power of the constant multiple of ―J, and therefore it is antilocal by

the result mentioned above. However, in case pi=q, the stable generator is not a

fractional power of ―J. Especially, in case p=0, q=l, thisis completely asym-

metric. Indeed, the trajectory of stable process with index a moves only to the

right only in case q=l. Therefore it would not be expected that the antilocality

holds for this case, and so we introduce the one-sided antilocalityas follows:

Definition. An operator T':Q'(R1)->C°°(R1)is antilocal to the right {to the

left),if f=0 in U+R+ (resp./=0 in U+B.) for every feCfiR1) such thatf=Tf=0

in U, where U is an open subset in R1 and U+R± = {x+ysRl ;x£U,yeR±}. T is
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simply called antilocalif T is antilocal both to the right and to the left.

In case that T is antilocal to the right (to the left) and is not antilocal,T is

called one-sided antilocalto the right (to the left).

Our result is:

Theorem. // both p and q are positive, then ap,q{D) is antilocal. If q=l (p = Y),

then ap,q(D) is one-sided antilocal to the right (resp. to the left).

As mentioned above, these operators have a probabilitisticmeaning. However

our proof of Theorem heavily depends on the theory of analytic pseudodifferential

operators and is carried out without using probability theory.

In the following part of this paper, we will only treat the case q=l in case

p-q―Q for simplicity,since the result for the case p = ＼follows similarly by chang-

ing p and q and the signature. And so we say simply one-sided antilocalin place

of one-sided antilocal to the right.

The author expresses his hearty thanks to Professor M. Kanda for his kind

advices and encouragements. He is also grateful to the referee who communicated

to him invaluable comments in profound perspective.

2. Preliminaries I.

In this section we introduce some terminologies and prove a lemma which

follows from the Paley-Wiener-Schwartz theorem. For a suitablefunction / on Rl

we denote the Fourier transform of / by / or W- That is

The celebrated Paley-Wiener-Schwartz theorem states that

The Paley-Wiener-Schwartz theorem. Let / be a temperate distributionon Rl.

Then the following two conditions are equivalent;

a) supp/c(―oo, 0] (resp. [0,+00))

b) There exists G(C) which is holomorphic in {ImC>0}

(resp. in {ImC<0}) and satisfies

G(Q=O(e6lcl) in {ImC^e} (resp. in {ImC^-s})

for any s>0 and such that

/(0=G(e+iO) (resp. Gtf-iO)).

We next note that the operator ar,.n(D)may be written as



where

Antilocality and one-sided antilocality

Op, *(D)f(x)=%~l[ap,
≪(£)/(£)](*)

<W£)=-
rg-a)

a

7ra

IT -i(q-p)sgn(£) sin ―

3

See Feller [4] page 541.

Probabilists call ap,q($) the exponent of the stable process of index a but we

use the term "symbol" of the operator ap,q(D) following the terminology of

pseudodifferential operators.

The restriction a^,,,!≪,,+≪>)of ap,q to (0, +oo) has an analytic continuation to C＼

(―oo,0], which we denote by ap,q(Q. Choosing the branch from the upper half

plane of ap,q(Q, we extend the domain of ap,q(Q to the negative real axis. We

denote it by aio(£). We also choose the branch from the lower half plane on the

negative real axis and denote it by <Xp,q(g).

Put

Then we have

rg-a)

a

rg-a)

a

COS

That is

Tea
~2―Kq-p) sin

xa ..
~2―<?-i>)sm

r＼ f (o,+oo),

e±ia%-$y, £ (-oo,0)

aUD)f(x)=%->[aUOfm(x) fcCZiR1).

Lemma 1. For every function f of C (Rl) with supp/c(―oo, 0] (resp. supp/c

[0, +oo)), we have

Kp,lD)f(x)=0 for x>Qf {resp. dp,q(D)f(x)=0 for x<0).

Proof. We only prove the firststatement, since the second follows similarly.

We firstnote that dp,q(Q is holomorphic in {ImC>0}. Let G?(Q be as in the

Paley-Wiener-Schwartz theorem for the given /. Since the order a in C of ap~,q(C

io ≪afmr>c<-nnp if fniinwc ttinf

aUQG(Q=O(ecM) on {ImC^e}

for any e>0. Thus the statement of the lemma follows directlyby the same

Q.E.D.

Lemma 2. For every f£Q?(Rl), there exists a function G±= Gf which is holo-

■winr-hhiritt.<Tm V<?01 aurh. that
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GHx - *0)=ap, q(D)f(x) - a$,q(D)f(x).

Proof. Since

[i*_(fl/(e){- /Xl-a) // na ..
A,

. na＼
-^ ^ cos-^-+z(<?-/>)sin-r-)

- (cos f-Kq-p) sin -f )e±-)} ＼5＼'](x)

it follows that

MaP,≪(D)-alq(D))f](t)=O for £>0, and so

supp ^[(W^-al.^))/]^, +00).

Now we have only to apply the Paley-Wiener-Schwartz theorem. Q. E. D.

Remark. In case q=l, G+ isidenticallyzero. This fact reflects the one-sided

antilocalityfor ao,,(D). See Lemma 3.

3. Preliminaires II.

In this section we prepare some results on analytic pseudodifferential operators

especially in connection with singular spectrum. Subsequently we give a lemmc

which plays a key role in proving our theorem. For details confer with Kanekc

[5] and its references.

A distribution (more generally a hyperfunction) u is said to be micro-analytic ai

(x°,―igdxoo) (resp. (x°,i$dxoo))1 denoted by (x°,―igdxoo)$S.S.u (resp. (x°,igdxoo)^

S. S. u), where S.S.u denotes the singular spectrum of u, if u admits the analytic

continuation into the half space {zeCjRe <―if, z>>0} (resp. {2 C; Re <i?,2>>0};

near the point x°eR1.

The following theorem plays a key role in the proof of our result.

Theorem (Kashiwara-Kawai cf. Kaneko [5]).

Let u{x) be a distribution {more generally a hyper function) defined on a neigh-

borhood of OeiS1 with suppwc[0, +oo). // u is micro-analytic at (Q,idxoo) or (0.

―idxco), then u vanishes on a neighborhood of 0.

We next give a brief explanation of some notations to quote two theorems.

For an open cone TcI^YlO} and e>0, <5>0, we put

r.,a={C C;ReCer>ia>3,|ImCI<e|Rea}.

Let SP(D (F denotes an open cone in i^MO}) be the set of all functions a(£)e
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C°°CT)such that for every open cone F'mF there are e>0, 8>0, and c>0 for

which a(g) extends to an analytic function on T',5 which satisfies ＼a(%)＼^c(l+ ＼C,＼y

on r:.t.

The elements of S^iF) will be called analytic symbols with constant coefficients

of order p denned on F.

We denote by SF"(F) the set of all formal sums 2X(f), a^S'-KH, with the

property below;

for every cone F'mF there are e>0, <5>0, c>0 and ^4>0 such that every

afc(f) can be extended as an analytic function on F'c,sand satisfies

＼ak(Q＼^cAkk＼a+K＼y-k on TU

For 2≪y, ZbjtSF'(F), we write E≪y~2^ in SF*(F) if for every open cone

F'^F there exist e>0, <5>0, c>0 and A>0 such that

＼Uaj(Q-bAQ)＼^cAssKi+＼i:＼y-s on rSiS
j<s

for every integer s>0.

Let S?0(Rl)be the class of classicalpseudodifferential operators with constant

coefficientsof order p. of type (1,0), that is the set of all functions a(g)£C°(JRl)

such that for every ;>0 there exists C,->0 for which a(£)satisfies

mcjx+wY-j inR＼

By S^R^F) we denote the space of symbols asS^R1) such that the restriction

a($)to r belongs to S"(r＼

Next two theorems are important in the proof.

Theorem (M. Sato [8], L. Hormander [9]).

Consider asS^iR^F) and suppose there exists b^S^iF) such that the restriction

(also denoted by a) of a to F satisfies ab~l in SF°(F) and further (x°,ig°dxoo)$S. S.

a(D)f for some £°gF. Then

(x＼iedxoo)$$. S. f.

Theorem (Analytic pseudolocal property, cf. Liess [2]).

For a£S"{R＼ T), if (x°,i£°dxoo)$S. S. f, then (x°,i?dxoo)$S. S. a(D)f for (x°, f°)e

UxF, where U is a domain.

Now we return to our operators ap,q(D)and dp,q(D)introduced in §1 and in §2

respectively. Let <w(£)be a function of C't.R1) which is identically one for large

IfI (e.g. IfI^1/4) and vanishes near zero. For a suitable analytic symbol a(%),we
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define a pseudodifferential operator a'(D) by

a'(D)f(x)= ^[^)a(eAmx)-

We note that both ap,,(fM£) and (&≪(£)<≫(£)belong to S°(JR＼12+)nS"(/21,J2-).

Remark. Consider a(D)/ and a'(D)f defined as above. Then we have

S. S. a(D)fd(x°,ipdxoo) <£=>S.S. a'(D)f3(x°,i^dxoo)

for (x＼?)qR1xS°.

Combining the Theorem (Analytic pseudolocal property) with the above, we

see that ap<q(D)f is real analytic in R＼suppf for every fzCfiR1).

Indeed, since a(£)(l―≪(£))is a symbol with constant coefficientsof compaci

support,

a(D)f-a'(D)f=%-l[a(t;)a-o>mfm

is an entire function. Thus the firstassertion follows directly.

For the proof of the second, note that

(R1 X R±)n S.S.(&,(D)/cS. S.f,

since a>($)ap,J£)is in Sa(R＼R-). That is S.S.aJ,.≪(D)/cS.S.f. So it now follows

that

S.S.ap,g(D)cS.S.f.

Since the analytic singular support of u (A-sing supp u for short) is the projection

to R1 of S.S.uc^xfS*0, we have

A-sing suppap,9(D)/cA-sing supp/csupp/.

This shows that the second assertion holds.

Lemma 3. Let f be in C^R1). Suppose that Bf]s＼ippf(z[x0,+00) for some

open neighborhood B of x°in R1. Suppose further that there are s>0 and a real

analytic function h in {＼x―a?°[<e}such that

h = ap,q(D)f in (x°-e,x°).

Then

j;0$supp/.

In case q^=l and only in this case the same conclusion holds even if we replace

supp/cSDO0, +00) with supp/c( ―00,x°]f＼Band h=ap,q(D)f in (x°―e,x°)with

h=ap,q(D)f in (x°,x°+e)respectively.
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Proof. We may assume that s>0 is sufficiently small so that {＼x―x°＼<e}cB

We write /=/i+/2 with fuf2GC"(Ei), such that fx is concentrated near x° anc

such that the support of /2 avoids x°. In view of the remark, we see that ap,q(D)f-

is real analytic near x°,so that the hypothesis of / is also satisfied for fu Anc

so we assume f―fx.

Put

≪*(*)= U(x)(ap, q(D)f(x) - a$,q(D)f(x) - h(x)).

Then u* is in C°°({＼x―x°＼<s}).Applying Lemma 1 to /and using the assumptior

of this lemma, we obtain

suppw+c{a;^a;0} and that supp u~C.{xl^x0}.

On the other hand, Lemma 2 together with the fact that h is real analytic

near x° tells us that

S. S. u* f](BxR1)=S. S.(ap,q(D)f-atq(D)fn(BxE1)^0, idxoo),

where (x°,idx<x>)=(x°,ildxoo). Hence by the Kashiwara-Kawai theorem we have

S. S.(ap,q(D)f-alq(D)f)$(x°, -idxoo) ,

So we have

S. S. ft-^Xap.^-aU^mM*0, -idxoo).

Define

^(OslajeXo,.^)-^,^))-1,

in case 0<^<l. Note that ap,q(^)―ap,q($)=0 in case q―l and so we do not define

i?+(|) and define only 2?-(£). Obviously

Since <o(.^)(ap,^)-a$,^0)) Sa(R1, R-) and i?±(f) S-a(i2_), it follows from the regulality

theorem of M. Sato-L. Hormander that

S.S.f$(*°, -idxoo).

Applying the Kashiwara-Kawai theorem again, it follows that / must vanish near

x＼ Q.E.D.

4. Proof of the Theorem.

Let / be in C^R1) and U be a bounded open subsetin R＼ We put Y=R1 in

case p-q>0 and Y―R+ in case q―l. It is sufficientto show that

(4.1) If /^0 in U+Y for each connected open UczRl＼snppf,
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then

(4.2) s＼ippap<q(D)fz>U.

Indeed, if f=ap,q(D)f=O in an open set Uo then it is easily seen that /=0 in Uo

+ Yby (4.2).

Assume (4.1) holds. Let us choose the connected component T of (U+Y)＼

supp/with contains U. Clearly U+Y=T+Y and T^U+Y.

Noting that aP,q(D)f is real analytic in T by the remark in §3, there is no

accumulation point of zero's of ap,q(D)f in T. In fact, if such a point exists,

&p,q(D)/=0 in T (hence in T) and therefore Tod (supp/) must be empty by

Lemma 3 in case p-g>0. Incase q―l, if such an accumulated point exists, there

is no right endpoint of T by the same reason. Hence T= U+ Y and this contra-

dicts to the assumption (4.1).

Hence it follows that

supp ap,q{D)fZ)T^>U.

The following example shows that a0,i(D) is not antilocal:

Let / be a function in C (Rl) such that

jl, *6(-3,-2),

10, a? (-oo,-4)U(-1,+00).

Let Uhe (-1/2,1/2). Noting

Oo.i(7≫/(a0s(
*~(f(x+y)-f{x))

0

dy

Q. E. D.

＼y＼1+a '

we see that both / and ao,i(D)fvanish in U, whereas /^0 in R1.
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