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RELATIVE FREE ENERGY AND ITS APPLICATION

TO SPEED CHANCE MODEL

By

Makoto Mori and Masasi Kowada

§1. Introduction.

The purpose of this paper is to study a continuous spin system by introduc-

ing the relative free energy* which plays a role of the free energy in discrete

spin systems.

Although the usual free energy is a very important functional,it can be

available to only identically distributed 2-spin lattice systems. About such sys-

tems, refer to Holley [1], [2]. On the other hand, our relative free energy

enables us to deal with spin systems with state space not necessarily discrete

nor identically distributed. In Section 3, we consider a 1-dimensional lattice spin

system with continuous state space to show that the relative free energy does

not increase with time and especiallyit strictly decreases if the initial state is

not Gibbsian; this is one of the main results of this paper. From this fact,

moreover we conclude that the time evolution of any shift invariant non-Gibbsian

state converges to an equilibrium state. The precise definitions of the relative

free eners-v et al are erivenin Section 2.

§2. Definition of relative free energy.

Let Q* be a compact Hausdorff space with Second countability axiom, and

let .$* be its topological Borel field. We suppose that a probability measure v*

is given on (12*, .S*). We denote the two sided countable direct product of

copies of (Q*, <B*,v*) by {Q, B, v). Let Cn be the family of all (― n, n)-cylinder

sets i.e. the sets of the form {co^Q; coi^Et, z=0, ±1, ･･･,±n}, Ei<^$*, and we

denote by Bn the <r-algebra generated by Cn.

The restriction to <Bn of a probability measure pt on jS is denoted by [x(-n>.

Moreover the set of all probability measures on S{Bn) is denoted by £B(&n).

Received November 20, 1979. Revised November 28, 1980.

* In [5], Sulivan defined the relativefree energy which is similar to ours and obtained

the similar results. But his free energy depends on the special kind of invariant meas-

ure of the generator. Therefore it is hardly possible to deal with our model.
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Any measurable finitepartition£0of Q* induces a measurable finitepartition

$ of Q each atom of which has the form {co<^Q; wo&I}, /e£0 and we say that

£is induced by f0. The family of all measurable finite partitions of Q* is de-

noted by A and we identify the partition £0 of Q* and the partition $ of Q

which is induced by £0.

Definition 1. For u<=£Pand any finite measurable partitionf of Q, we put

ff-O.,&=%*!) log -gf

Hv(fi, V TJ$),
j=-n

where T is the shift transformation; (T<o)i=a)i+i. In (2.1),we take

0log 0=0

plog
1
0

f 0 if p=0

1
+≪d if />>0,

if they appear. Note that H%fi, £)2gO,since

The followingLemma 1 is a repetitionof usual

the proof.

and

Lemma 1. Let ^<rj. Then

h＼u, £)^h%u, tj)

for any <Je/f

)

(2.1)

(2.2)

(2.3)

0 (2.4)

(2.5)

(2.6)

(2.7)

^)= + oo, it is trivial

v(I)

fiU)

entropy calculus and we omit

Lemma 2. // ytis shift invariant, then

Proof. We need only to show that an=Hv{u,
n
V Tjt~) is subadditive, i. e.

n

flra+m^^re + flm- When there exists n such that Hv(u, V T

j = 0
n

to see it. When Hv(u, ＼J Tj$)<-＼-oo for any n, we get

7= 0
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Q>m ~TCLn U ra.+n

=2j≪(A>n ･■･r＼im+n+i) log
fi{hr＼ ･･･ r＼in)

v{hr＼ ■■■n/J

X

= ―SM/oH ･･･r＼Im +n +l) lOg

v(ln + ir＼ ■■■r＼Im+n + l)

Pt(hr＼ ･･･ r＼In)p.(In +ir＼ ■■■fVm+n + l)

^0, (2.8)
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where Ij= {ca^Q; (Dj^E), for some £e£0 and 2 is taken over allIo, ･･･,Im+n-i

Let U be a continuous function on !2*Xi2* and put

i=-n

Definition 2. For ≪eiP and fe/f, we put

/&(≪, £)=lim

1 [

(2.9)

＼
UMd^n＼aj)+H%ft, V Tty] . (2.10)

JO j=-n J

(2.11)

(2.12)

7i-°°2n + l

Then the relative free energy fn(u) of a with respect to U and v is defined by

/£(//)= sup/£(;/,£).

As can be easily seen, fuifi)―-^00 if P-in)is not absolutely continuous with

respect to v(n) for some n.

Lemma 3. // u is shift invariant, then

/fr(//)=j£/(<y0, d)1)dpt(a))+hv(pt)

where hv(u)= sup hv(u, ?).

Definition 3. We call hv(/u)a relative entropy of ft with respect to v.

§3. Speed Change Model.

In this section we consider a speed change model. A physical sketch of our

model is as follows;

i) each spin stays in a point with exponential holding time which depends

on the nearest neighbour spins,

ii) each spin changes its directionindependently with a transitionprobability p.

The process of a speed change model which we are going to deal with is a
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Markov process (Q, &, {Tt}) with the infinitesimal generator g defined by

<?/(aO=2C,(<y)f pirn, 0)[/(o>f)-/(ft))]dv*(^),

where Ci(a))=exp[_U(Q)i-1,<Oi)+ U(a>i,coi+i)land w＼^Q is defined by

{ <j> j=i {(p^Qt)

and p((ft,(p) satisfiesthe following four conditions:

i) L>p((p, 0)>/>O, <p,<j)^Q*,

r
ii) ＼ p((f), 0)dv*(0)=l for any 0ei2*

J " *

iii)
fdv*(0)U(^

^)/(^)dy*(0)=(/(0)dy*(^)

(3.1)

(3.2)

(3.3)

(3.4)

for any integrable function / on Q*.

iv) For any e>0 and any </>eJ2*,there exists a neighbourhood 0$ of cp such

that ＼p{(p,<f>)―p{(pr,<p)＼<e for any 0'eO^ and any <j)^Q*.

The existence of the Markov process with this generator comes from Ligget

[3].

Evidently, the definition domain of S includes 3=＼j3n, where 3n is the set
n

of all real valued bounded measurable functions which do not depend on the

coordinates a>i(|z|=n + l, n+2, ･･･)of co. Clearly the generater Q transforms 3n

into £Fn+1.

Let An, k ―{(ii,･･･, ik); ＼ix＼S n, U"2|^max{n, |zi|+l},---, |ffe[^max{n, |z"i|

+ 1, ･･･, |z*-i|+l}, and let

£f≫/(o>)=j[/#, coiMwWiaify-Ctiatiftatildvtty). (3.5)

We now define a 'dual operator' G*,k (k ―1, 2, ･･･) by

^*/(<w)=2^*c<ft) - S*U{)f{Q>), (3.6)

where /g^ and the summation is taken over (iu ･･･, ij)e4s.

The direct calculation gives us the following

for/, g<=3n.

(dy(6>)(^ft/(6>))^(tt>)=(dy(ew)/(fl))tf*≫^(6>)
(3.7)
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Let L1 be the space of the integrable functions with respect to v. Then the

the norm estimations of Qf and Q%.f―QVf are given by,

1) ||<7/||^2(2n+ l)A:||/|| (3.8)

2) ||i?*/||^2(2n+ l)iq/|| /e£Fn> (3.9)

where ||-||is the Z^-norm and K=L($up eUiXiy:>)2.

Lemma 4. For /e£F, put

exp(^)/(<w)=S
tk

k
= 0

k ＼
Skfifo)

Then the right term converges in the U-norm and we have

-―exp {tS)f{oj) |£=0= <?/(o>) a. e.

(3.10)

(3.11)

r
Proof. Remark that Ci(a))＼p(o)i,0)[/(<w^) ―/(">)]dv*(0) depends only on

(<y_n, ･･･,≪J for i―0, ±1, ･■･, ±(n ―1) and that it depends only on (co-n-u ･･･, wn)

for i― ―n and (<y_n, ･･･, o>n+1) for i=n. Appealing to this fact, we get

||exp(f<?)/||^||/|| exp[4/ft(2n + l+exp(4/ft))] (3.12)

for /g?b, As to (3.11) we have

Thus

n U=o k ! J

2

4 = 2

hk

―-Qkfk＼ J

U=o

<h
2

ft=o
JY$k(£2)f)

shf-f＼-gf =0

We shall define the time evolution ptt of /^e^P by

;ut(/)=//(exp (/<?)/), /eff,

which becomes a probability measure on ^.

Lemma 5. Suppose that ficn:>is absolutely continuous with respect to vcn:)for

any n. Then pt＼n)is also absolutely continuous with respect to v(")for any n and

£>0. Moreover,

d/4n)

dv<B)
= El(exv(t3*)p)n＼4nl, a.e. (3.13)
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(exp (*£*)/>),=

ptm)

k = 0

11
k＼

d≪cm)

dv(m) "

Proof. For fe.3n,

f/dvw£[(exp a<?*)/>),
IiSj

=
＼fdv(exv(t£*)p)n

k=o k I J

£ = 0
Uwf

= ＼dfiexp(t£)f

=rtf)

(3.14)

(3.15)

§4. Decreasing Property of relative free energy.

In this section, we show the decreasing property of free energy. As easily

seen by (3.4),v is an invariant measure when the potential U=0 (this is the case

when each spin moves independently). Thus itis natural to consider the relative

free energy with respect to v.

Theorem 1. The relativefree, energy fu([*t)is monotone decreasing in t for

any fie2*.

To show the above theorem, we employ an approximation technique.

Since the potential U is continuous, for any e>G, there exists a partition

<fe/f such that for any partition v>$,

O^U(xf y)-iniU(x', y')<e

x'eAy'<EB

＼p{x, d>)―p(x', (b)＼<s , for any cb^Q* and x'eA,

(4.1)

where A and B are atoms in r>including x and y, respectively. We define
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UJx, y)=iniU(x', y'), A, Bt=i), x^A, y&B.

y'(EB

Then it follows

(4.2)

7

fvun(fi)^fHfi)<fbv(fJt)+e for ail ju(=<p (4.3)

In order to prove the theorem, it is sufficientto prove the following lemma.

Lemma 6. For any partition C,>y (Q^A),

where K*=e2'm + e6m-＼l+2euL+2ee^).

Indeed from this lemma, it follows

and thisimplies the above theorem.

Proof of Lemma 6. For convenience we use the following notations. For

n
i4£ V Tjy],let At be the z-th projection of A, and we define

-71

UV{A)= S1 Uv(wit o>i+1) (4.4)
i=-n

where cot^Ai ＼i＼^n,

(note that the right terms of (4.4) and (4.5) do not depend on the choice of <y)

and let for BeTS, E=t?(A) be the set such that

Moreover we put for A, B^rj

p{A, B)=

Since

fu. (≪)=lim

1

B J=l

ji^i.

f
inf p{<J>, 0)dM<p)

JB<p<=A

E＼uv(A)tit(A)+fit(A)log^^1
n-~ 2n + l A

we shall evaluate the quantity for any partition L,^A (C>v)

^[W)M.W+^te*7§]}

=?(^,U)) (^>+>og^f)

(4.6)

(4.7)



8
Makoto Mori and Masasi Kowada

= 2(^2 <:*(<≪)j/K^,&)LXA(a)i)-XA(a>)ldv*(0)}

xlog^fe"'a)-?5?(L/'"c'(ffli/<a"^)d!'*(*i)

^dfttCM^pfat,
<f>)dv*{<i>))＼og^{-^eu^

n
where 2 means the summation over the sets A e V TjC, and

A -n

mation over the sets B^TVC

2 means

B
the sum-

Let AeCn be a set such that v(A)>0 and /ut(A)=O. Then it follows from

(3.10)that for sufficientlysmall /z>0.

and hence we get

dt

Vt+h(A) {;≪≪,*

{uv(A)ftt(A)+tit(A)
log

(4.8)

=lirnT^+,(4)logi^^c.,g0. (49)

Moreover, if there exists some i and B such that ftt(r?A)>0, then we can easily

show that -^-{uv(A)ftt(A)+fit(A) log-^r^}^-00- Noticing the above facts,

we get

if{^[mA)MA)+/JU)log^}

x＼ Ct(<o)dfit(a>)＼ p(a)u 0)dv*(0),

J A. J B
(4.19)

where we take 01og-^-=0, />logO――oo (p>0), and ―oo<^―oo, if they appear.

In the above summation the n-th term is bounded above;
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% b% 1Og fit{A)eu^MB)

x＼Cn(Q))dflt((t))
＼

p(0)n, 4>)&V*{<j>)

J J B

9

^KQ=Leem~1, (4.11)

where log+z=max{0, logx}. Similarly, we can show the (―n)-th term is also

bounded above.

As to the main term, we proceed as follows; putting

a＼*UE)=fit(kE)^^/MEt), (4.12)

we get

n-1s

t= -(n-l) 4 B JAJB

X log
t(Tf(A))eu*≪f<A≫v*(Ai)

ftt(A)eu*lA>v*(B)

n-i a (r?(A))
^ S J?Vt{A)(p{Ait B)+evo(B)) log^-L ;.V Q(A)a+ 2ee2£)

t = -(n-l)

n-l

o＼%(A)

re-1 (i)( B( A))

+ 6(271+ 1)^,, (4.13)

n
where 2+ (2~) means the summation over A^＼JT% and £e£ for which

―n

_(i)(-B( AX)

log ^ 7^/ ^0 ≪0), respectively, and

K1=eem~1(l+2e2sL+2eeu).

Moreover,

n(i) (TB( A＼＼
SS/*^)M, B)C＼{A) log

ai-＼ )?))

A b oti71y/＼)

/ _(i) (-B( A＼＼x
= ss^)/>(4 b)c＼{A)fI ^ij: )
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v*(B)

A B V-k(Ai)
-p(Ait B))C%A)

£Wftt(A)p(At, B)C%A)FJ^^])A + e*me , (4.14)

i^0(.r)=log+l-x^O

Combing (4.10),(4.11),(4.13),and (4.14),we set

_d
{^U^A)ftt{A) + ^fttU)＼og-^-}

where K*=K1-＼-enm,and hence

{ 2 U£A)fit(A)+ 2 A**04)log Jf^}

^{ZuUv{A)n(A)+^n{A) log -^

(4.15)

(4.16)

}+2K0t + e(2n + l)K*t. (4.17)

Deviding the both sides in (4.17) by 2n + l and taking lim we obtain

This completes the proof of the lemma 6.

Definition 4. We shall agree to say that a measure //621 is a Gibbsian

measure (with respect to v), if for any n the conditional measure p.(A ; a)k, ＼k ＼>n]

satisfies

p(A; o)k,＼k＼>n=l/Z(o)-n-i, con+i)

X [ g-^ +iWdy(n)((y ... ) (4J8)

where y4GCra and

Z{fo.n-x, o}n+l)=^e-un^&v^＼a)-n, ･■･, ^). (4.19)

As can be easily seen, p. is a Gibbsian measure if and only if fj,w is absolutely

continuous with respect to y(n) for any n and there exists a version pcn＼o))

= -^---(ftj) such that eUnC(0)pcn)(a))depends only on o)-n and o)n.

Lemma 7. // a is Gibbsian, then ut ―(J-(uo=u).
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Proof. Since Ci(<4)|Ocn)(<w1)=Ci(<w)/0cn)(a>)a. e. v for ＼i＼<n and for any ^e

Q*, we get

^/oCB)(o>)=0 a. e. v, for any n=l, 2, ･･･ (4.20)

Therefore

fit(A)=＼dvXApin~>= fji(A) for any A^Cn, n = l, 2, ･■･

This completes the proof

(4.21)

Theorem 2. Let p. be a shift invariant, non Gibbsian measure, then fvi.fit)

satisfies only one of the followings

i) fu(pt)= + °°for any t^O

ii) There exists to^O such that fui{*t)=Jro° for t<t0 and fui.pt) is strictly

monotone decreasing for t>t0, unless fitois Gibbsian.

Corollary. // the initialstate /j,is shiftinvariant, non-Gibbsian probability

measure with finite free energy, and the evolution [xt converges to a measure p.

in the weak topology, then p.is a Gibbsian measure.

Proof of Theorem 2. It is sufficientto show the decreasing property for

shiftinvariant non-Gibbsian measure p. with fu(fi)<°°.Thus we assume that

[iw has a density pw for any n. Then, since(i is not Gibbsian, we can find

nQ such that for any n^n0 there existi (＼i＼<n)and 8>0 for which

)s-a}>o

holds. Here, we may assume no―2ni―l for some positiveinteger nx

Let £m be a finitepartition of Q* such that

＼U(x0,yo)-U(xlt yi)＼<~

and

＼P(x0,$)-p(xu 4>)＼<―,

where A, Be$m, x0, xx^A, y0, yi^B and <fi<^Q*

'/TO Cm

Moreover, we let rf% be a partition defined by

Put

(4.22)

(4.23)

(4.24)

(4.25)
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m '

k+1

m

}

k=Q, 1, ･-･, m2-l

{a>;pino＼a>y^m}.

Put ^m=r?m)V)?m- Let rjm^A be a patitionwhich satisfies

v<noUU{A＼U{B;B<= V Tjr]m and BdA} ; 4 get?*}<m~2
n0

and for a partition y]^rjm, define the function (pt/v)m by

Then we get,

V v I v{l)

lim v
m-≫oo

{

≪

if o>e/e V Tjv
-n0

(£)m(to)-p<n°Ka>)

m)

(4.26)

(4.27)

(4.28)

(4.29)

Hence, combining the above fact and (4.22),we get for sufficientlylarge m and

any i (＼i＼<nQ)

-^o+a){(ft>_no, -,<yBo, 4);a)<=A<=y T*V A^B

such that

rf(i4)e

We now define

J=-n0 ＼ 0o,v(A) / Z)

(4.30)

2n_i / n<-i)(TB( A＼＼.
Fm, n(ftt)= ._Sn+iS fit(A) S j>(i4if B)Cj(i4)F.(-

ff≫)(^)

)

'
(4-31)

where 2 means the summation over A^ ＼J Tjv. By (4.30), it follows that

A j=-2

Fm.ni(ft)<-d'

for some <5'>0 and for sufficientlylarge m.

(4.32)

Appealing to the shift-invariance of /ut and the concavity of Fo, we have

and hence by (4.14) and the continuity of Fm,ni(fi)in pi,we get

(4.33)
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S Uv(A)ptt{A)+ S A£t(>l)log^^}

m

z m

and therefore for sufficientlysmall t>0,

{ 2 UvJA)Mt{A)+ 2 fit{A)log -^}

^{ 2 UvJA)fi(A)+ S M^) log ^^}

m

Then dividing the both terms by 2n+1+ l and taking lim, we

fuvjfjtt, y)^f#vJft, 7])-2-ni-*d't+
^K*t

get

(4.34)

(4.35)

(4.36)

13

Therefore it follows that

fb(pit)^fUv)-2-ni-*d't +
^(K*t

+ l). (4.37)

This completes the proof.

§5. Concluding remark.

We can show that the variational principle stillholds for the relative free

energy. Precisely this means that the equation

inffb(pt)=fUfi) (5.1)

/x<ES

has a unique solution /7eS, and it must be Gibbsian where S is the set of all

shift invariant probability measures on Q. This result will be shown in the

forcecoming paper.
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