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§1. Introduction.

In [3] Chapter 4, Thurston constructed a hyperbolic structure of figure eight

knot complement by glueing together the faces of two ideal 3-simplexes which

are in 3-diniensional Poincare model of hyperbolic geometry. In this paper we

shall show by illustrationthat this construction can also be applied to other knot

complements and even to more general 3-manifolds whose Heegaad diagrams are

given.

In §1, we shall define the notion of nice triangulations of 3-manifolds. This

definitionis made entirely under the category of combinatorial topology, irrespec-

tive of geometric structure. The Nice Triangulation Theorem which asserts that

every compact 3-manifold with boundary has a nice triangulation,shows that this

notion is quite general.
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In §2, we shallillustrate,for 52-knot,how to construct a nice triangulation

of the complement of a given knot, and then how Thurston's method to construct

hyperbolic structure in [3] Chapter 4 can be applied to the nice triangulation ob-

tained thus.

In §3, we shall give the results for some other knots (6,,62,63) by the same

method as above.

In §4, we shall illustratehow to construct a nice triangulation from a given

Heegaad diagram which does not necessarily give a knot complement.

In §5, we shall give other examples of the construction of nice triangulations

with 2- or 3-simplexes and of hyperbolic structures.

In §6, we shall give a method to construct the (non-commutative) representa-

tions of the fundamental group r^{M) into PSL(2, C), from a given nice triangula-

tion of M. It would be interesting that non-commutative relators of the presenta-

tion of 7Ti(M) turns to the corresponding algebraic equations of commutative field

C, and any non-trivialsolution of these equations corresponds to an equivalence

class of the representations.

In §7, we shall give other types of special concrete construction of a hyper-

bolic closed manifold and hyperbolic manifolds with totally geodesic boundary.

In §8, we shall give a rigorous proof of The Nice Triangulation Theoreir

stated in §1, although the method illustratedin §4 already gives a sketch of the

nrnnf nf thf tlipnrpm

§1. The nice triangulations.

Let K={AUA2, ･･-,dn} be a set of disjoint 3-simplexes. Suppose that one of

the ways of glueing pairwise the An faces of these n simplexes is specified. This

means, (i) 2n pairs of the faces to be glued together are specified,and (ii)for

each of these pairs, a correspondence between the vertices of the two faces is

specified. (This correspondence induces a linear glueing map between the two

faces.) We call the K with this specificationa nice complex.

Now let M'iK) be the topologicalspace obtained from K by glueing pairwise

the faces of the 3-simplexes by the specified way. Set theoretically,M'(K) is

obtained from the disjointunion A―JitlJ2U--- ＼jAnby taking the quotient space

A = A/ = , where = is the equivalence relationinduced by the glueing map. More-

over, the topologicalstructure of A is given by:

UqA is open <=> p~l(U)QA is open,

where p is the natural map from A onto A. M'(K) is obviously compact.

Next let F be the set of those points in M'(K) which are the images of the

＼7-prfirpQnf A. A*. ... /f_ P is a finifpspf T.pf
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M(K) = M'(K)~r,

and

M(K) = M'(K) ―[a small regular neighborhood of f].

M(/f) is an open subset of M'(K) and M(K) is a closed (and hence compact)

subset of M'{K).

We firstobserve the condition for M(K) to be a 3-manifold. By the natural

map p: A-+A, the interiors of J-s are mapped homeomorphically. The faces of

J-s are glued together pairwise. So A―[1-skelton] is a 3-manifold. So we have

only to consider the images of the edges of J!s.

Fig. 1.

Let A be an edge of one of the 3-simplexes. Suppose that A is the inter-

section of two adjacent faces a[ and a2. Now a2 is glued to a face a'2,and let A

be that edge of a'2which corresponds to A by the glueing. Let cr3 be another

face which contains 4. a3 is glued to a face a[, and so on. Since the number of

the 3-simplexes of K is finite,there is an m such that the edge lm is the inter-

section of the faces am and au and ax is glued to a[ so that lm corresponds to A.

(We assume that m is chosen to be the smallest possible.) Now let At and Bx

be the vertices of A, and let A2 and B2 be the vertices of 4 such that Ax core-

sponds to A2 and Bi corresponds to Z?2 by the glueing of a2 and a'2.Similarly, Ai

and Bi (2= 1,2,･■-,m) are denned. (See Figure 1.)

Now there are two possibilities:By the glueing of at and a[,

(i) Am corresponds to Ax and Bm corresponds to Bu

(ii) Am corresponds to Bi and Bm corresponds to Ax.

If the case (ii)happens (for some edge A), then M(K) fails to be a 3-manifold.

For, the glueing map induces a series of linear maps between l'ts:

"l
*2 *3 *4 *m-i . rm .

11 >It >l-i >･Li *■･･ >lm *"*J?

and the composition a=nm°nm-i°-■■°nzoKlis a linear map of A onto itself which

is orientation-reversing(since a maps Ax to Bx and Bx to Ax). So the middle point

C of A does not have a neighborhood homeomorphic to R＼ Next suppose thai
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the case(ii)does not happen arround any edge and hence the case (i) always

happens, then the topologicalstructurearround any edge Is as shown on Figure

2 and hence each interiorpoint of the edge has a neighborhood homeomorphic to

R*. So M(K) is a 3-manifold.

Fig.2.

We call this combinatorial condition for K that the case (i) always happens,

the local orientabilitycondition. Thus M{K) is a 3-manifold if and only if K

satisfiesthe local orientabilitycondition.

Next we consider the condition for M(K) to be orientable. We callthe follow-

ing condition for K the orientabilitycondition: Each of Ji, J2,■･-,Jn is oriented

and each glueing map between the faces is orientation-reversing. Since the glue-

ing map is determined by the correspondence between the vertices of the faces,

this condition is also combinatorial. It is not hard to see that the orientability

condition implies the local orientability condition. So, if K satisfiesthe orien-

tabilitycondition, then M{K) is a manifold and it is easy to see that M(K) is

orientable. The orientability condition is not a necessary condition for M{K) to

be orientable. However, if K satisfiesthe local orientability condition and M(K)

is orientable, then by changing the orientation of some of du 4*, ･･･, J , we can

assume that K satisfiesthe orientabilitycondition.

Hereafter we only consider the nice complexes which satisfiesthe local orient-

abilitycondition. Then, M(K) is obviously a compact 3-manifold with boundary

and M(K) is homeomorphic to the interior of M(K).

Let M be a 3-manifold and K be a nice complex. We say that K is a nice

triangulation of M if M is homeomorphic either to M(K) or to M{K). For the

existence of a nice triangulation of a 3-manifold, we have the following theorem,

the proof of which will be carried out in §8.
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[Nice TriangulationTheorem]. Every compact 3-manifoldwith boundary

a nice triangulation.

4b

has

Remark. The nice triangulationsof a given 3-manifold are not unique. There

are infinitelymany nice triangulationsof a given compact 3-manifold with boundary.

Example 1. (Thurston) The complement of figure eight knot has the follow-

ing nice triangulation:

12 11 12

Fig. 3.

Example 2. A nice triangulation of the 3-disk:

5 6

10

Fig. 4.

Example 3. A nice triangulation of the solid torus (or the complement of

the trivialknot):

9 8 5 6

Fig. 5.

Example 4. A nice triangulation of the trefoilknot complement
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9 4

Fig. 6.

5

§2. The nice trianguiation and hyperbolic structure of 52-knot complement.

The following method to construct hyperbolic structures is useful: Given a

compact 3-manifold with toral boundary, firstconstruct its nice trianguiation and

then construct its hyperbolic structure by the method described in Chapter 4 of

Thurston's Lecture Note [3]. Probably this method would be applicable for every

hyperbolizable 3-manifold with (or even without) toral boundary.

In this and the next sections we shall illustratehow to construct a nice tri-

anguiation of a given manifold practically and how to construct a hyperbolic

structure from it. We have deviced two practical methods to construct a nice

trianguiation of a given 3-manifold: One is applicable for knot (or link) comple-

ments and the other is applicable for all compact 3-manifolds with boundary whose

Heegaard diagrams are given. In this section we shallillustratethe former me-

thod with 52-knot complement as an example, and in the next section we shall

illustrate the latter method with a rather simple example.

Now 52-knot is illustratedin the Figure 7.

Fig. 7

In general, given a regular projection of a knot, we can span the following

(mutually dual) two surfaces A, B with this knot as boundary, illustratedin the

Figure 8A and 8B. (These surfaces may be orientable or not, incompressible or

or not. This does not matter.)
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Fig. 8A. Fig. 8B.
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If we span these two surfaces at the same time, some intersection arises naturally.

Removing redundant intersection we find that the intersection consists of several

segments, one segment near each crossing point of the projection, as shown in

the Figure 9 and arround each crossing point, the two surfaces intersect as shown

in the Figure 10, where / and k are parts of the knot and Figure 10 shows this

side of /. (The same also for the other side of /.)

v_
/.

- - -i-I---Intersection

Fig. 9.

Intersection

Surface

Surface B

Fig. 10.

Now we see that these two surfaces A and B divide Ss into two domains D"

(which is over the surfaces)and D~(which is under the surfaces).D+ and D~

are obviously open 3-disks. The boundary of these 3-disksare consideredas 2-

spheres with some identificationof points.

B
＼

＼

'D＼ X'D *＼

9D+ (D+ is over this paper)

Fig. 11A.

E.

l 'yc.j
9D (D is under this paper)

Fig. 11B.
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The fragments of the knot are denoted by the dotted arcs. (Since we are con-

sideringthe knot complement, the knot is not there.) We contract these dotted

arcs to points on dDv and dD~. Then we obtain the charts on dD+ and 8D~

illustratedin the Figure 12.

dD +

Fig. 12

an-

In Figure 12, the points AD indicates that the dotted arc AD in Figure 11 is

contracted to this point. In order to simplify the chart we relabel the points as

follows: AD=DA = 1, BC = CB=2, FA = AF=3, ED=DA = 4, HE = EH =5, FG^GF

= 6, GJ=JG = 7, FII=rH=S, IB=BI=9, C/=/C=10. Then we obtain the Figure

13.

Fig. 13.

Here we remark that the graph of the Figure 13 is just the projection of the

given knot to the plane. This fact is true for any alternating knot. For non-

alternating knots, the graph becomes different from the projection of the knot.

But it does not matter.

Returning to the case of 52-knot, we easily see from our construction that the

52-knot complement is homeomorphic to the result of glueing the faces of the

graphs drawn on 3D+ and dD' as in the Figure 13 so that the points with the

same label coincide.

Next step is to delete " 2-gons", (see Figure 14.) which obstruct to get tri-

angulations of the 3-disks.
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Fig. 14.
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The process of the deletion of a 2-gon is to thin it gradually until it becomes a

segment. (See Figure 14.) For most cases but not always, this process is possible

(without changing the glueing results up to homeomorphism). In order to observe

when it is possible,we firstcheck the identificationof edges. They splitinto five

groups +, =t=,-Kf,t> <■ (See Figure 15.)

7

3D

Fig. 15.

SET

Now consider for instance the following 2-gon in 3Z>+ in the Figure 16.

＼3/

vv

＼2/
2X10
/1O＼

Fig. 16.

The two edges of the 2-gon are not identified. It is not hard to see that the

process of the deletion of the 2-gon is possiblein this case. After the process

the edges + and 41 are identified and we have the following reduction of the

graph (Figure 17).



50

7

Moto-o Takaiiashi

Fig. 17

Moreover, for the left-hand-side 2-gon in. the lower part of the Figure 17, two

edges are not identified,so that the reduction is again possible. After the reduc-

tion -Hf and ^ are identified but $ and < are not identified. So the reduction

of the right-hand-side 2-gon in the lower part of the Figure 17 is also possible.

Thus we were able to delete all the 2-gons and we obtain the graphs of Figure 18.

3

7

9 3

9

5

7

Fig. 18.

In order to get the triangulation with as few 3-simplexes as possible, we firstglue

the faces with labeled verticles 3-5-7-9. Then we obtain a single 3-disk with the

graph of Figure 19 on the boundary.

8
10

Fig. 19.

Now we draw arcs connecting the labeled vertices 6 and 10 to obtain a tri-

angulation of the boundary of the 3-disk. This is shown in the Figure 20 with

relabeled vertices.
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Fig. 20.

From this triangulation of the boundary of the 3-disk, we can easily obtain a tri-

angulation of the whole 3-disk without adding new vertices. One way to obtain

such a triangulation is to view Figure 20 as a cone with the top vertex V and

three triangles(7-8-9), (10-11-12),(4-5-6) as the base. Finally we obtain a nice

trianerulationof 59knot coniDlement. (Figure 21.)

1
5

17 18

Fig.21.

Next we shall construct a hyperbolic structure of 52-knot complement from

this nice triangulation,using the method of Thurston [3]§4.

First of all we regard each of the 3-simplexes as an ideal 3-simplex (with

vertices at infinity)of the hyperbolic 3-space. According to[3],an ideal 3-simplex

is determined up to isometry by the dihedral angles a, /3,j{a+^-＼-j―n) as in the

Figure 22.

Fig. 22.

In other words it is determined by the similarity type of a triangle in Euclid-

ean olane. (Figure 23.)
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sin

a

Fig. 23.

a _ sin ft _

If we define the complex numbers a, j3, f by

b . sin 8, . .
5 = ―e%a ― ―.――(cos a +1 sin a),

c Kin r

P

then we have the identities

j§=

c

a
e^――.―-(cos B+i sin B)

sm a

a .

cos r + i sin 7-),

?=

5=

a =

V TTT

rsin

c

1-f

a

1

1

0

1_I
f

Fig. 24.

1

I

(0) 3 = 1-

a

1_

1 '

5j3f=―1 .

(Only two among these equations are independent.)

Moreover we have

a=arg≪, /3=arg/i, r= argf.

Thus the similarity type of a triangle is determined by any one of a, /3,f.

Now returning to the case of the nice triangulation of 52-knot complement we

let the dihedral angles of the three ideal 3-simplexes as in Figure 24, where <%+

j8t+ri=ff (i=l,2,3).

By the glueing identificationthe edges are divided into three groups +, rjr,^.

According to [31 Chapter 4, in order that these ideal sirnplexes make a hyperbolic
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structure by glueing, the following equations must be satisfied.

(0)f (the equations (0) with suffix i, (£-1,2,3).)

( + ) a^A^fl^l ,

(40 ≪lfl≪2f2≪3=l,

Under (0)i((f=l, 2,3), ( + ),(4O> ($) are not independent, beause the product of

these three equations is

i=2O2^2
,"J,202^2x2O2r;2―1

*lPl/lO2P2/2≪3P3/3―J-5

which is a consequence of (0)*, (£= 1,2,3). Thus we have only to consider ( + )

and (4:) besides (0)* (£=1,2,3). By (0)it (£=1,2,3), ( + ),(4=) are equivalent to

n=?xh, a)

df8= j8lj8!!, (2)

If we glue 3 ideal siraplexes which satisfy these equations together with

at + ^i + Yi ― TC,

0<ai,fii,Yi<7r,

we obtain a hyperbolic structure of 52-knot complement. But it is not necessarily

complete. As in [3], the completeness condition is obtained by the following de-

veloping man of the link of the vertex.

C D

Fig.25.

―> ―>
The completeness condition is AB=CD, that is, y^y^ ―X or

f≫=fs. (3)

We solve the simultaneous equations (0*){i―1,2,3),(1),(2),<(3) to obtain the

complete hyperbolic structure of 52-knot complement. First, from (1) and (3) we

have fs=fi. Thus,

fi=fs=f≫ (=f, say).
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Therefore, by (0)*(i=l,2,3) we have

al= d2 = as (= d, say),

~=̂ h = h (=& say).

Then, (2) becomes ≪= /J2. Since a = l-l//9, we have 1-1/j8 = j§2,or

^-18 + 1 = 0.

This cubic equation has one real root and two conjugate imaginary roots. We

cannot obtain a hyperbolic structure from the realroot. The conjugate imaginary

roots corresponds essentially the same hyperbolic structure. So we only consider

the case of the root with positiveimaginary part:

£= 0.66235898+0.56227951*".

Then,

tf= 0.12256117 + 0.74486177i,

f=0.78492015 +1.30714128?,

arg(dr)= ai = ff2= a8=80.656154°,

arg(j8)= j81= j82= /S8=40.328077°,

arg(f) = ri= r2= rs= 59.015770°.

If we glue the three 3-simplexes with these dihedral angles in the specifien way,

we finallyobtain the complete hyperbolic structure of 52-knot complement. The

developing map arround the cusp is illustratedin Figure 26.

Fig. 26.

Remark. There are some other known methds to obtain the complete hyper-

bolic structure of 52-knot complement.

1. By Thurston's general theorem (not yet published). See also Sullivan[41.)
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2. (Hyperbolic) Dehn surgery along one component of Whitehead link.

3. Riley's parabolic representation ([!]).

§3. The construction of hyperbolic structures of the complements of some

other knots.

In this section we present brieflythe same results as in the preceding section

for the three knots 6i, 62, 62.

1

11

Equations:

12 24

22

<*2 23 14

15

6i - knot

(Stevedores knot)

3

A nice triangulation of 61- knot complement

Fig. 27.

£lf2≪3&= 1,

a?j81a253j83a4f4 = l

The completeness condition: f1 = fi.

pi is a solution of the algebraic equation

#-$ + 3$-2Je1+l=0.

This equation has the following 4 roots:

0.10486618 ±1.5524918*,

0.395124 ±0.5068431*",

among which the desired (or excellent) solution is

& = 0.10486618 + 1.5524918*

^ = ^ = 33.8312°,

^=^ = 86.1353°,

ri = r, = 60.0335°,

a, = 13.1014°

7

8

aA
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/32= 26.1020°,

7-2= 140.7966°,

≪3==46.9328°,

/53= 52.3041°,

r8=80.7631°.

Developing map arround the cusp

Fig.28.

2. 62-knot complement.

24

22

29

28

a4

21

ec2

30 19

62- knot

20 26

20

A nice triangulation of 62- knot complement

Fig. 29.

<*3

27
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The completeness condition: /3i= ≪4.

The excellent solution: f,=-0.18607840 + 0.87464646*

ai = r4 = 36.406072°,

j81= a4=?41.583489°,

ri=^ = 102.01044°,

a2 = a8 4=60.426950°,

^=^8 = 32.802138°,

r2 = r8==86.770867°,

≪5=69.208256°,

j86=45.187378°,

r5 = 65.604367°,

Developing map arround the cusp

Fig. 30.

57
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3. 63-knot complement.

25

a,

31

≪4

27 19

32 36

Moto-o Takahashi

63- knot

20

≪2
21 24

35 20

A nice triangulation of 63- knot complement

Fig. 31.

Equations: a^]fiai^i^ = l,

arij82a8a4f5= 1,

fi?2?aa:6f5a6f6= l,

Pi?ia2f2f4a5fe = l,

h&sP≫na6^6 = l .

The completeness condition: J32=f6.

The excellent solution: at=0.15993610+1.2001426*.

a,=a2 = r6= i3e==82.460850o,

fl,= r2=a6 = a6=42.565249°,

22

≪3

19

≪6
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ri=i82=05 = r6 = 54.973901°,

≪3=iS3 = a4 =
/84=F70.052199o,

r3^r4 = 39.895602°.

Developing map arround the cusp

Fig. 32.
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§4. The construction of hyperbolic structures from Heegaad diagrams.

In this section we shall investigate a method of construction of hyperbolic

structure from a given Heegaad diagram of a 3-manifold.

Let V be a solid torus of genus 2. Let us consider the following loop / on

the boundary of V, illustratedin the Figure 33.

V

Fig. 33

We can exhibit this loop as a graph, as follows. That is, we firstcut Fas in

the Figure 34.

Fig. 34.
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Then we obtain a 3-disk Z)3 and a graph on 3D3, illustratedIn the Figure 35.

Fig. 35.

Let TV"be the 3-manifoki obtained from V by attaching a 2-handle along I.*'* <1N

is a torus. From the Figure 35 we see that

nr{N) = (a, b＼asbab-*ab= V> .

We shallconstruct a complete hyperbolic structure of N=N―dN with finitevolume.

First we shall find a nice triangulation of TV" as follows. Consider the dual

graph of the Figure 35. (See Figure 36.)

Fig. 36.

We think of this graph as drawn on dD3. If we glue the faces a+ and a~ so that

the edges with the same label coincide,and glue the faces b+ and b~ similarly,

and then delete all the vertices (denoted by ･ in the Figure 36), then we obtain

an open 3-rnanifold N'. Now we shall show that N' is homeomorphic to N.

The loop / is divided into 10 arcs in the graph of Figure 35. Corresponding

to these arcs, we devide the 2-handle to be attached to V into 10 " thickened

fans ". (See Figure 37.)

*5 This manifold was considered in [21.

Fig. 37
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If we glue these fans along the corresponding arcs of the graph of the Figure 35,

then we obtain the Figure 38.

Fig. 38.

In the Figure 39 the shaded area is those parts which are not glued and re-

main as the boundary.

Fig. 39

Each component of the shaded area can be contracted to one point. After the

contraction we obtain the graph of the Figure 36. This proves that N' and N

are homeomorphic. We construct a nice triangulation of N' and hence of N from

the graph of Figure 36. We wish to find the simplest possible one. For this, we

firstconstruct a triangulation of 3D3 by adding some edges to the graph of Figure

36 but without adding any vertices. The Figure 40 shows an example. Note

that the added edges are glued together pairwise by the glueing of the faces.
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Fig. 40.

Consider the part shown in the Figure 41.

/'■■

''

,34
/

Fig. 41.

If we span a 2-disk in D?J with the dotted curve as boundary and cut Ds along

it, then we obtain the thing shown in the leftmost of the Figure 42, and this can

be pushed down as shown in Figure 42.

10 10
7 ＼ 7

Fig. 42.

A similar process can be performed for the part shown in the Figure 43.

Fig. 43.

After these reductions the triangulation of dl)s and their glueing map become

as in the Figure 44.

Fig. 44
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From this we can finally obtain a nice triangulation with three 3-simplexes.

(Figure 45.)

19

A nice triangulation of N.

Fig. 45.

Now that we obtain a nice triangillationof N, we can construct a hyperbolic

structure of N by the same method as in §2, due to Thurston.

That is, we construe the three simplexes as ideal simplexes with dihedral

angles as shown in the Figure 46.

1 VI

Fig. 46.

n

Then we obtain the following equations:

( + ) a1f1a1f2^2f3 = l,

(if:) fl≪2f3≪2≪3f2≪3=l,

(£) ^^8 = 1,

or equivalently,

≪lfl―≪2≪3, (1)

fl≪2f2≪3f3=l, (2)

#/32i33= l. (3)

Since one of them is redundant we use (1) and (3). The completeness condition

is a2―as. Hence we have

Then (1) and (3) become

& = &, h-h
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a＼fi-a＼, (1)'

j8?/9f=l. (3)'

From (3)' we have /3i/?2=±l. However, in order to obtain a hyperbolic structure

we reguire a solution with

2argj8,+2arg/92 = 2;r,

arg |8,+argj82= 7r.

Thus we must have

/M*=-l. (4)

Remark. From a solution with ^,/32= l we can not obtain a hyperbolic struc-

ture but can obtain a representation of ki(N). (See §6.)

Now, from (4) we have

and

Moreover

Hence from (I)',we have

or

The excellent solution is

Thus

P2 =

1
_

p5.

≪2= l--g- = l + /31.

Pi

≪1 ―

1

(i_4-V I
＼ ft / i-

/3, = 106.33070°

n = 37.749030°

ax = 35.920271°

fl=

(5)

T-B

_ = (! + £).

pi

B＼+ 2B＼+81+^-1 = 0

&=-(). 29342445 ±1.0014412?.
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02=j93= 73.669301°,

az^a3 = 54.794786°,

rs= r8= 51.535914°.

We obtain a complete hyperbolic structure of N with the following developing

map arround the cusp.

Fig. 47

§5. Some more examples of the construction by the method of §4.

In this section we present ten more examples of the construction by the

method of §4. As in §3, we omit the process of construction. One example has

a nice triangulation with two 3-simplexes, just like the figure eight knot comple-

ment, but the glueing is different. These two manifolds are distinguished by the

firsthomology group.

Each of the other nine examples has a nice triangulation with three 3-simplexes.

Some of these examples have the same types of the ideal 3-simplexes and, in

particular,have the same volume.

In showing examples we only exhibit presentations of the fundamental groups

(with two generators and one relator)rather than Heegaad diagrams, because they

can easily be constructed from the presentations.

Example 1 ^(MOsKa, b＼aabab-2ab=l}

=z<Kc,d＼cd*c*dc*d>=l>.

(FUM^ZXZ,.)
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11

10

Moto-o Takabashi

12
1

Fig. 48.

ax = /S1 = ?-1= a8 = iS2 = r2 = 60o

volume=2.02988.

Fig. 49.

3

2

Remark. In contrast to this example, a presentation of the fundamental group

of the figure eight knot complement is

<a,b＼a-*bab-*ab=l).

Example 2.

10

ot＼

Kl{M2)^{a, b＼a-zb%ab-xab*=V).

(i7,(M2)sZxZ3.)

12 17
≪2

Fig. 50.

18 8
a*

7
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The completeness condition: a2=p3.

2al―8l―az+l=Q.

d2=0.6647418 + 0.4011273/.

ax=81.219632°,

fa=62.216354°,

Xi= 36.564014°,

a2=i8, = 31.108177°,

^2 = r,== 50.111455°,

r2 = a34,98.780368°,

volume 4=2.56897.

Example 3.

7

n

Fig. 51.

7r1(M3)S<≪, b＼a-2b2abab2=l)

=z<c, d＼c*dcd'cd=Y>.

(Hl(M3)^ZxZ5.)

16

n 18 6

Fig. 52.

The completeness condition: p2=a3

^1―^1 ―^2+2=0.

/32= 1.1027847+0.6654570?.

5

Ti
4

67
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Example 4.

10

d＼

Moto-G Takahashi

a,=62.216354°,

0,=81.219632°,

Tl= 36.564014°,

≪2= rg=50.111455°,

02=a, = 31.108177°,

r2==jS3=98.780368°,

volume=2.56897.

Fig. 53.

7r1(M4)s<≪, b＼a*bab-*ab=V)

(#,(M4)sZxZ6.)

13

12 14
<*2

Fig. 54.

7l≪2/3―-I->

atfla3―l,

≪ij8?j8iff.j3S=l.

The completeness condition: fi= ^s

8



Example 5.

10

<*1

On the Concrete Construction

a1 = r,= a, = r3 = 69.295189o

^^^=^ = 41.409622°,

p* = 27.885567°,

?-2= 110.704811°,

volume = 2.66675.

Fig. 55.

7r1(M5)s<≪, b＼absa2ba2b3 = l}

=z<c,d＼c*d°'cdicda = iy.

(#,(MB)sZ.)

16

12 17
≪2 18 3

Fig. 56.

The completeness condition: ai = s3.

a＼― a＼―1 = 0.

ff,=0.219447+0.914474".

a1=iS2 = a3=76.505819°,

^ = ^ = ^,=53.976723°,

r, = a2 = r3 = 49.517458°,

#3 1

69
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Example 6.

Moto-o Takahashi

volume = 2.9441.

Fig. 57.

jt,(M8)s<≪, b＼absa2b2a2b3= l)

^(c,d＼c*dscdcds = l>.

(^(M6)=Z.)

17

12 18

Fig. 58.

fiflfa= l ,

The completeness condition: #i=a3.

f}-2ff+ff-f,-l=0.

f
! =

0.293424+1.001441*.

r, = r,=73.669300°,

a. = a3 = 54.794785°,

15

≪3



Example 7

10

ax

On the Concrete Construction

^ = 0, = 51.535914°,

≪2= 35.920271°,

/32= 37.749030°,

7-2= 106.330699°,

volume = 2.78183.

Fig. 59.

n,(Mi)^(a, b＼a-4bab-2ab=l}

16

12 17 ≪2

Fig. 60.

^n
_<j

wo -＼alrlal = l,

f1alf3 = l .

The completeness condition: ai=a3

2≪?-df, + l = 0.

&l
l + V-7

4

18 8

ai = ri = as=r3=69.295189o

ft = r2= j98= 41.409622°,

7

≪3
9

71
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Example 8.

8

7

9

Moto-o Takahashi

az = 110.704911°,

fr=27.885567°,

volume = 2.66675.

Fig. 61

iT1(Ms)^(a, b＼a$ba2b~2a2b=iy.

(ff,(M8)sZxZ,.)

16

d.2

Fig. 62.

18 13

j8lfij88f2|8sf8=l,

The completeness condition: a2=a3.

#-# + 1=0.

&=0.662359+0.562280*.

ai = r2 = r8=59.015770°s

/3,=≪2 = a8=: 80.656154°,

^=^=^=40.828076°,

volume=2.82812.

15



Example 9.

10

<*1

On the Concrete Construction

Fig. 63.

13

Fig. 64.

aij8ia2f2i88= l.

The completeness condition: Piha^fzfz-

$-$ + 1 = 0.

& = 0.877439 + 0.744862*.

a, = 7^ = 08=80.656154°,

18,=a,=7-, = 59.015770°,

7l=^ = ff3= 40.328076° ,

volume=2.82812.

15 16 <*3

73
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Fig. 65.

Remark. This manifold M9 is not homeomorphic to the 52-knot complement.

But they have the same homolosv group and the same volume.

Example 10

10

tfl

^(MhOs-K^, b＼a3bab^ab=l)

12 17

16

ccz 18 4

Fig. 66.

The completeness condition: #j=≪3.

#-#-jB?-2ft-l=0.

ft = - 0.269448 + 0.919612/.

a, = 37.749030°,

j8!= 106.330700°,

ri = 35.920270°,

az = T3= 51.535914°,

/32= a3=73.669300°,

6
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r2 = 08 = 54.794786o

volume=2.78183.

Fig. 67

75

§6. Representations of ni(M).

In this section we shall explain how the representations to PSL(2, C) of the

fundamental group of a 3-manifold are constructed from its nice triangulation.

We shallillustrateit for the nice triangulation of 52-knot complement treated in

§2. There we derived a system of equations which gives a necessary condition

for the construction of hyperbolic structure:

( + ) ffljM2jS2j1= l,

(EJE) frfj&frorsjSNl,

(0), (*= 1,2,3)

k = V(l-ai) , fi= V0--k) . ≪i= l/(l-fi) ,

dfi= l-l//8t, j8i= l-l/fi, fi= l-ll&i,

di^ifi= -1 .

We claim that, to each solution

r=((a,, ft,f0,(≪2,̂ 2,f2),(as,j83,fs)) (^)

of the system of equations, there corresponds an equivalence class of representa-

tions of 7ri(M) to PSL(2, C), where M is the complement of 52-knot.

Let m^O, 1,00 be a complex number.

(i) If Im(w)>0, then we say that u determines a " positively oriented ideal

simplex ". Indeed, u determines the ideal simplex in the upper half space over

C (or in the projective model) illustratedin the Figure 68.
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Im(u) > 0

Fig. 68.

The volume of this simplex is of course positive finite. We denote it by v(u).

(ii) If Im(w) = 0 (i.e., usR), then we say that u determines a "flattened

ideal simplex ", as illustratedin Figure 69.

/ 0 1
u

/ /
0 u 1

/ /
u 0 1

/
＼ n＼

//

1 < u 0<u <1 u<0

Im(u) = 0

Fig. 69.

It is natural to think that the volume of this flattened simplex is 0. So we put

v(u)―0, in this case.

(iii) If Im(w)<0, then we say that u determines a "negatively oriented ideal

simplex ", as illustratedin Figure 70,

Fig. 70.

Im(u)< 0

The volume of this simplex is finite. However we think the volume to be nega-

tive, taking the minus sign to the real volume. Thus v(u)<0.

Putting (i), (ii), (iii) together, we say that ≪=£0,1,oo determines a " non-

degenerate ideal simplex ".

Remark. Obviously, v{u) is a continuous function from C― {0,1} to R. This
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can be extended to a continuous function from C or even from C＼J{oo}7 by putting

simply ≪(0)= m(1) = ≪(oo)= 0. Moreover, if u = x + yi(x,yeR), then f(x, y) = v(x + yi)

is a real function of 2 variables.

Now consider the nice triangulation of 52-knot complement constructed in §2.

If we glue the face (with the labelled vertices) 13-14-15, and then glue the face

16-17-18, we obtain a single polyhedron A illustrated in the Figure 71.

7

8

Polyhedron A

Fig. 71.

9

From this polyhedron A we obtain a 3-manifold M* homeomorphic to M, if

we glue the faces a+ and a~, br and b~, c＼and c~,d^ and d~,respectively so that

the vertices with the same label coincide and then remove the vertices. In M*

we take a base point O in the interior of A. Let A^ and A~ are points in the

faces a+ and a~, respectively, which coincide by the glueing of a+ and a~. Con-

sider an arc /+ connecting O and A+ and an arc /~connecting A' and O, in the

polyhedron. In M*, l+＼Jl~constitutes a closed loop a (with base point O). Simi-

larly, loops b, c, d are defined. We also denote by a, b, c, d the corresponding

elements of n^M*) or of rci(M). Then, it is not hard to see that n^M) is gener-

ated by a, b, c, d and has the following relators (arround the edges +, 4^ ^)-

(( + )) acd-1b-1d=l,

((+)) cd=l,

((=£)) a-1b~icab = l.

That is,

tti(M) = <≪,b, c,d＼acd-lb~id―cd=a-ib-lcab=l) .

Suppose that a solution r=((au Pi,fi),(a2, j82,f2),(as, &, fs)) of the equations un-

der consideration is given. Then

at,iB, fi=£0,1, 00 ,
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for if one of them is equal to 0, then the left-hand-side of ( + ) or (:£) or (£)

would become 0, and if ax―＼,for instance, then f,= 0 by (0),. Since each triple

(&u Pu f≪)satisfiesthe equations (0)*,it determines a non-degenerated simplex in

the hyperbolic 3-space as mentioned above. For i=l, 2,3, we obtain 3 non-

degenerated simplexes Au J2, J3. In the hyperbolic 3-space we glue the faces

13-14-15, and then the faces 16-17-18, in the following manner.

When a positively oriented simplex and a negatively oriented simplex are

glued together, we glue these so that both are on the same side of the glueing

surface. (See Figure 72.)

/ The shaded area is

＼the glueing surface

)

Fig.72.

When two positivelyoriented simplexes (or two negatively oriented simplexes)

are glued together,we glue these so that they are on the oppositeside of the

glueing surface,as usual. (See Figure 73.)

/ The shaded area is ＼

＼the glueing surface./

Fig.73.

It would be needless to explain how to glue a flattened simplex. Thus the topol-

ogical polyhedron A becomes a geometric polyhedron A*, which may contain con-

cave or crushed parts. Each face of A* is a geometric (hyperbolic) ideal triangle.

For instance a~ and a+ with the labelled vertices 1, 2, 3 are geometric ideal

triangles. Now there is a unique isometry A which maps or to a so that the

vertices with the same labels coincide. We correspond this A&I+(Hi)=FSL(2, C)

to the generator a of ^i(M). (P(H3) is the group of all orientation preserving

isometries of H'A onto itself.)

Similarly we correspond to b the isometry B which maps b~to b+ so that the

vertices with the same labels coincide. Similarly we correspond isometries C, D

to c, d respectively. This correspondence can be uniquely extended to a homo-

morphism of the free group generated by a, b, c, d to PSL(2, C). Then the
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necessary and sufficient condition for this homeomorphism to induce a horno-

morphism of tci(M) to PSL(2,C) is that following relations hold:

(((+ ))) ACD-lB~lD=I, (/: identity mapping)

(((40)) CD=1,

(((eje)))A~lB-lCAB=l,

corresponding to the relators((+ )),((40)> ((^)) of the presentation of n＼{M). But

it is not hard to see that these relationshold whenever ( + ),(40, (e£)hold. Thus

we could associate to each solution r a representation ^(M)―≫-PSL(2, C), up to

equivalence. (" Up to equivalence" is caused by the ambiguity of placing the

polyhedron A* in H3.)

§7. Miscellaneous examples of the construction of hyperbolic structures.

1. A concrete example of a hyperbolic structure of a closed 3-manifold.

Let / be a hyperbolic regular ideal dodecahedron, whose dihedral angles are

the right angle. We color the faces of / with four colors (say, red, blue, yellow

and green) in the manner of four color problem. Let Jt (i= l, ･･ -,8) be 8 copies

of /. We glue the faces of Ji (i=l, ･･ -,8) pairwise as follows:

(i) for red faces, we glue the corresponding points of Ji and Jj, where the

pair (i,j)is indicated as follows:

12 3 4

1111

5 6 7 8.

Similarly,

(ii) for blue faces, the pair (i,j) is as follows:

1

5

2 3 4

X

7 8.

(iii) for yellow faces, the pair (i,j) is as follows

1

5

2 3 4

6 7 8

(iv) for green faces, (i,j) is as follows:

1 2 3 4
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It is easy to observe that by this glueing we obtain a closed hyperbolic 3-

manifold Mx.

If we do not glue the 8 copies of one specified face of /, we obtain a hyper-

bolic 3-manifold M2 with a totally geodesic boundary surface of genus 2 (It is

obvious that M2 is connected).

2. Another example of hyperbolic 3-manifold with totallygeodesic boundary.

Consider the Heegaard diagram of Figure 74.

Fig. 74.

The manifold M with this diagram is obtained from genus 3 handlebody by

attaching a 2-handle along the loop determined by the diagram. dM is a genus

2 surface. A presentation of the fundamental group of M can be read from the

diagram:

^(M)S<a, b,c|≪2&-1c2ar1&V-1= l>.

As is §4, M is homeomorphic to the manifold obtained from the polyhedron P of

Figure 75 by glueing the faces as in the specified way.

Fig. 75.
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Thus M has a nice triangulationas shown in the Figure 76.

81

Fig. 76.

12 edges are allidentified after the glueing. M is homeomorphic to a mani-

fold obtained from the two polyhedra of Figure 77 by glueing hexagon-faces in

the specified way.

10

Fig. 77.

Now we invoke a theorem of hyperbolic plane geometry. First we define a

relation H(x,y) as follows: H(x,y) (x,yzR+) if and only if the following right-

angled hexagon is possiblein the hyperbolic plane.

H(x, y)

Fig. 78.

Theorem ＼/xeR+3lyeR+H(x,y).

Moreover y, as a function of x, is strictlydecreasing, varying from oo to 0.

Now choose aeR+ such that a regular triangle with sides of length a has

angles of 30°. Then we choose b such that H(a, b). Then we can construct a

polyhedron as illustratedin Figure 77.

Fig. 79.

H(a,b )
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The dihedral angle along an edge of length b is 30°and the dihedral angle along

an edge of length a is 90°. If we glue two such polyhedra as in the Figure 77

by isometries, obtain a desired hyperbolic structure. For the total angle along

the only one edge is 30°X 12=360°, and hence no singularity occurs along the

edge and also it is obvious that the boundary is totallygeodesic.

§8. Proof of the Nice Triangiiiation Theorem.

In this section we shall give a rigorous proof of the Nice Triangulation The-

orem stated in §1.

Suppose that a compact 3-manifold M with boundary is given. M has a

handle decomposition and hence is obtained from a handlebody by attaching some

2-handles along loops {k} on the boundary of the handlebody. If we cut the

handlebody by meridian disks, we obtain D3 with a graphic picture on dDs. This

graphic picture is called a Heegaard diagram of M. (Of course we assume that

the meridian loops and the loops {k} interest transversely in a finitenumber of

points.)

Moreover we can assume that the graph is connected and that each meridian

loop intersects {k) in at least 3 points. (We do not assume that the graph is

normal. So it may contain the part illustratedin the Figure 80. So it is easy to

obtain the graph which satisfiesthe above assumption.)

loop

Fig.80.

Now let m be a fixedmeridian loop (named the distinguishedloop) and P be

a fixedintersectionpointof m with {h}. We add redundant intersectionin m

arround P as in the Figure 81.

Fig. 81
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Now consider the dual graph D of this graph as in §4. The dual graph

exists because the Heegaard diagram is connected. In D, the face corresponding

to the distinguished loop contains the following part illustratedin the Figure 82.

Fig. 82.

As in §2 or§4, we can add edges consistent with glueing (without adding any

vertices) to obtain a triangulation of the S2, as shown in the Figure 83. Any 1-

gon or 2-gon does not occur.

Fig. 83.

Finally consider this as a cone with the vertex V. Then we obtain a nice tri-

angulation of Mas in §2 or §4. q.e.d.
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