ON ARONSZAJN TREES WITH A NON-SOUSLIN BASE

By
Masazumi Hanazawa

§1. Introduction.

A tree is a partially ordered set $\left(T,<_{T}\right)$ with the property that for every element $x \in T, \hat{x}=\left\{y \in T: y<_{T} x\right\}$ is well-ordered by $<_{T}$. The order type of \hat{x} is then an ordinal, which is called the height of $x, h t(x)$. When a subset of a tree is totally ordered by $<_{T}$, it is called a chain. When a subset of a tree has no comparable elements, it is called an antichain. We deal with only ω_{1}-trees which have cardinality ω_{1}, whose α-th level $T_{\alpha}=\{x \in T: h t(x)=\alpha\}$ is countable for every countable ordinal α, and which have additionally certain minor properties. An ω_{1}-tree T is said to be non-Souslin if every uncountable subset of T contains an uncountable antichain. A non-Souslin tree has clearly no uncountable chain and nevertheless for every countable ordinal α, the α-th level T_{α} is non-empty. This notion was introduced in Baumgartner [1]. The first example of a non-Souslin tree is the special Aronszajn tree which was given by Aronszajn (see Kurepa [5]). A special Aronszajn tree is characterized by Q-embeddability that means the existence of an order preserving function $f: T \rightarrow Q$. An R (a fortiori, $Q-$) embeddable tree is always non-Souslin. Other examples of nonSouslin trees are found in Baumgartner [1], Hanazawa [2], [3] and Shelah [6]. Except for only one, the properties characterizing them are given as modifications of R-embeddability. The exception is the one given in [3], which has a non-Souslin base of cardinality ω_{1}. A non-Souslin base is a family F of uncountable antichains satisfying that whenever S is an uncountable subset of the tree T, there is an element A of F such that for every $x \in A$, there is $y \in S$ satisfying $x \leqq_{r y} y$. Notice that a non-Souslin tree has always a non-Souslin base of cardinality $2^{\omega_{1}}$. We call a tree with a non-Souslin base of cardinality less than $2^{\omega_{1}}$ an NSB-tree.

In this paper we discuss about NSB-trees, mainly to show that the property NSB is independent of R-embeddability. We first observe (in theorem 1) that under the standard set theory ZFC alone, even the existence of NSB-trees can

[^0]not be proved. We use the axiom of constructibility $V=L$. It is shown in [3] that if $V=L$, there is an NSB-tree which is even not R-embeddable. On the other hand, if $V=L$, there is a Q - (a fortiori, R-) embeddable tree which is nevertheless not NSB (Theorem 2). The existence of such a tree may be one of rare examples which can be proved from \diamond^{+}but can not be proved from \diamond^{*}, where \diamond^{+}and \diamond^{*} are Jensen's combinatorial principles, which are consequences of $V=L$. Finally we remark that if $V=L$, there is also a Q-embeddable NSB-tree. Hence property NSB is independent of and compatible with the property of being special Aronszajn under $V=L$.

§ 2. Definitions and results.

We write T instead of $\left(T,<_{T}\right)$ and $<$ instead of $<_{T}$. We refer the reader to [3] for the concepts undefined here.

Definition 1. Let F be a family of uncountable antichains of an ω_{1}-tree T. F is an NS-base if and only if for every uncountable subset S of T, there exists an element A of F such that

$$
\forall x \in A \exists y \in S(x \leqq y)
$$

Definition 2. $\quad T$ is called a κ-NSB tree if it has an NS-base of cardinality κ.
REmARK 1. A non-Souslin tree is trivially a $2^{\omega_{1}}$-NSB tree and vice versa. Note that there always exists a non-Souslin tree because a special Aronszajn tree is non-Souslin.

Definition 3. T is called an NSB tree if it has an NS-base of cardinality less than $2^{\omega \omega_{1}}$.

Remark 2. There is no ω-NSB tree. (Suppose $\left\{A_{n}: n \in \omega\right\}$ were an NS-base. Take $\alpha<\omega_{1}$ so that for every $n \in \omega,\left|A_{n} \cap T\right| \alpha \mid \geqq 2$. Take $x \in T_{\alpha}$ arbitrarily. Then the set $S=\{y \in T: x \leqq y\}$ gives a contradiction.)

Let MA stand for Martin's axiom as usual (see Kunen [4, p. 54]).
Theorem 1. (MA) If $\kappa<2^{\omega}$, there is no κ-NSB tree.
Corollary 1.1. $(M A+7 C H)$ There is no NSB tree. Because $M A+7 C H$ implies $2^{\omega}=2^{\omega_{1}}$.

Corollary 1.2. The existence of an NSB-tree can not be proved in ZFC alone. (cf. Remark 1)

REmARK 3 ([3]). ($\gg)$ There is an NSB tree which is not R-embeddable.
Theorem 2. $\left(\diamond^{+}\right)$There is a special Aronszajn tree which is not NSB.
Corollary 2.1. Q-embeddability (a fortiori, R-embeddability) does not imply property $N S B$ even under $V=L$.

Question 2.2. Can Theorem 2 be proved under ZFC alone (or even under $\left.\mathrm{ZFC}+\diamond^{*}\right)$?

Theorem 3. (\diamond) There is a special Aronzajn tree which is also NSB.
Similarly an R-embeddable, not Q-embeddable, NSB tree can be obtained under \diamond. On the other hand, by combining the trees given by Theorem 2 and Baumgartner [1], we can obtain (1) an R-embeddable, not Q-embeddable, not NSB tree, and (2) a not R-embeddable, not NSB, non-Souslin tree, under \diamond^{+}.

§ 3. Proofs.

3.1. Proof of Theorem 1. Assume MA and $\kappa<2^{\omega}$. To the contrary, suppose T is a κ-NSB tree. As described in Remark 2, κ is not ω, and so ${ }^{7} 7 \mathrm{CH}$ is the case. Since MA +7 CH implies that every Aronszajn tree is special (Baumgartner, see Kunen [4, p. 91]), T must be special. Take a function $f: T \rightarrow Q$ satisfying that for any $x, y \in T$ with $x<y, f(x)<f(y)$. Let $\left\{A_{\alpha}: \alpha<\kappa\right\}$ be a κ-NS base of T. Define a poset P by the following:
$P=\{\langle X, Y\rangle:(1) X$ and Y are disjoint finite subsets of T, (2) if $y \in Y$ then $h t(y)>\omega$, and (3) for every $w \in T$, if there are $x \in X$ and $y \in Y$ satisfying $w<x$ and $f(y)=f(w)$, then $w \in X\}$,

$$
\left\langle X_{1}, Y_{1}\right\rangle \leqq\left\langle X_{2}, Y_{2}\right\rangle \quad \text { iff } \quad X_{1} \supseteq X_{2} \quad \text { and } \quad Y_{1} \supseteq Y_{2} .
$$

Note that if $x \in X$ and $y \in Y$ where $\langle X, Y\rangle \in P$, then $y \neq x$. First we show that P satisfies c.c.c. Suppose S is an uncountable subset of P. By the A-system lemma (see Kunen [4, p. 49]), there is an uncountable subset $S^{\prime}=\left\{\left\langle X_{\xi}, Y_{\xi}\right\rangle: \xi<\omega_{1}\right\}$ of S such that there is a finite set X^{*} satisfying $X_{\xi} \cap X_{\eta}=X^{*}$ for all $\xi, \eta<\omega_{1}$ with $\xi \neq \eta$, and further such that there is Y^{*} satisfying $Y_{\xi} \cap Y_{\eta}=Y^{*}$ for all ξ, η with $\xi \neq \eta$. Then take an uncountable subset $\left\{\left\langle X_{\xi}, Y_{\xi}\right\rangle: \xi \in I\right\}$ of S^{\prime} such that for all $\xi, \eta \in I, f\left[X_{\xi}\right]=f\left[X_{\eta}\right]$ and $f\left[Y_{\xi}\right]=f\left[Y_{\eta}\right]$. We can easily take two pairs $\left\langle X_{\xi}, Y_{\xi}\right\rangle$ and $\left\langle X_{\eta}, Y_{\eta}\right\rangle, \xi, \eta \in I$, such that $X_{\xi} \cap Y_{\eta}=\emptyset$ and $X_{\eta} \cap Y_{\xi}=\emptyset$. Then clearly $\left\langle X_{\xi} \cup X_{\eta}, Y_{\xi} \cup Y_{\eta}\right\rangle$ is in P. This shows that P satisfies c.c.c. Now put

$$
D_{\alpha}=\{\langle X, Y\rangle \in P: \exists x \in X(h t(x)>\alpha)\} .
$$

Then D_{α} is dense in P for each $\alpha<\omega_{1}$. For, suppose that $\langle X, Y\rangle \in P$ and $\alpha<\omega_{1}$. As Y is finite and T_{ω} is infinite, there is $z \in T_{\omega}$, such that $(\forall w \in T)(w>z \Rightarrow w \oplus Y)$. Take x so that $x>z$ and $h t(x)>\alpha$ and put $X^{\prime}=X \cup\{x\} \cup\{w \in T: w<x \& f(w) \in$ $f[Y]\}$. Then $\left\langle X^{\prime}, Y\right\rangle \in P$ and $\left\langle X^{\prime}, Y\right\rangle \leqq\langle X, Y\rangle$. Thus D_{α} is dense. Next put

$$
E_{\beta}=\left\{\langle X, Y\rangle \in P: Y \cap A_{\beta} \neq \emptyset\right\} .
$$

E_{β} is also dense in P for each $\beta<\kappa$. For, suppose $\langle X, Y\rangle \in P$ and $\beta<\kappa$. Take $a \in A_{\beta} \backslash(X \cup \hat{X} \cup T \upharpoonright(\omega+1))$, where $\hat{X}=\{z \in T: z<x$ for some $x \in X\}$. Put $X^{\prime}=$ $X \cup\{z \in \hat{X}: f(z)=f(a)\}$. Then $\left\langle X^{\prime}, Y \cup\{a\}\right\rangle$ is in P. (It suffices to show $X^{\prime} \cap$ $(Y \cup\{a\})=0$. Suppose $z \in X^{\prime} \backslash X$. Then $z \in \hat{X}$. Hence $z \neq a$ and $z \notin Y$.) E_{β} is thus dense. Therefore, by MA +7 CH , there exists a $\left\{D_{\alpha}: \alpha<\omega_{1}\right\} \cup\left\{E_{\beta}: \beta<\kappa\right\}$-generic subset G of P. Now put $S=\cup\{X: \exists Y\langle X, Y\rangle \in G\}$. Clearly S is an uncountable subset of T and for each $\beta<\kappa$ there is an element $y \in A_{\beta}$ such that for any $x \in S, y \equiv x$. This contradicts that $\left\{A_{\alpha}: \alpha<k\right\}$ is an NS-base, q.e.d.
3.2. Proof of Theorem 2. The principle \diamond^{+}asserts the existence of a \diamond^{+}-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ which satisfies:
(1) S_{α} is a countable family of subsets of α,
(2) for each $A \subset \omega_{1}$, there is a cub (closed unbounded) $C \subset \omega_{1}$, such that for every $\alpha \in C, A \cap \alpha \in S_{\alpha}$ and $C \cap \alpha \in S_{\alpha}$.

Lemma 2.1. Let $\left\langle S_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle\right.$ be a \diamond^{+}-sequence. Put

$$
S_{\alpha}^{+}=S_{\alpha} \cup\left\{U \cap V: U, V \in S_{\alpha}\right\}
$$

Then for each subset $A \subset \omega_{1}$ and for each cub $C \subset \omega_{1}$, there is a cub $C^{\prime} \sqsubseteq C$ such that $\forall \alpha \in C^{\prime}\left(A \cap \alpha \in S_{\alpha}^{+}\right.$and $\left.C^{\prime} \cap \alpha \in S_{\alpha}^{+}\right)$.

Proof. By the property of \diamond^{+}-sequence, there is cub $C_{0} \subset \omega_{1}$ such that $\forall \alpha \in C_{0}$ ($A \cap \alpha \in S_{\alpha}$ and $C_{0} \cap \alpha \in S_{\alpha}$). By the same reason, for some cub $C_{1} \subset \omega_{1}, \forall \alpha \in C_{1}$ $\left(C \cap C_{0} \cap \alpha \in S_{\alpha} \& C_{1} \cap \alpha \in S_{\alpha}\right)$. Then $\forall \alpha \in C \cap C_{0} \cap C_{1}\left(A \cap \alpha \in S_{\alpha}^{+} \& C \cap C_{0} \cap C_{1} \cap \alpha \in\right.$ S_{a}^{+}),
q. e.d.

Lemma 2.2 Let $\left\langle S_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle\right.$ be a \diamond^{+}-sequence and $\left\{P_{\xi}: \xi<\omega_{1}\right\}$ be a partition of ω_{1}. Then the following holds:
${ }^{(*)}$ for each subset $A \subset \omega_{1}$ satisfying $\forall \xi \in \omega_{1}\left(\left|A \cap P_{\xi}\right| \leqq \omega\right)$ and for each cub $C \subset \omega_{1}$, there is a cub $C^{\prime} \subseteq C$ such that

$$
\forall \alpha \in C^{\prime}\left(A \cap \bigcup_{\xi<\alpha} P_{\xi} \in S_{\alpha}^{+} \text {and } C^{\prime} \cap \alpha \in S_{\alpha}^{+}\right) .
$$

Proof. By the assumption, $A \cap \cup_{\hat{\xi}<\alpha} P_{\xi}$ is (at most) countable for every $\alpha<\omega_{1}$.

Hence $C_{0}=\left\{\alpha<\omega_{1}: A \cap \cup_{\xi<\alpha} P_{\xi}=A \cap \alpha\right\}$ is cub (the proof is routine, cf. Kunen [4, p, 78 or p. 79]). By the previous lemma, for some cub $C_{1} \subset C \cap C_{0}, \forall \alpha \in C_{1}$ ($A \cap \alpha \in S_{\alpha}^{+} \& C_{1} \cap \alpha \in S_{\alpha}^{+}$). The desired conclusion follows immediately from this.

Corollary 2.2.1. Let $|Z|=\omega_{1}$ and $\left\langle Z_{\xi}: \xi<\omega_{1}\right\rangle$ a partion of Z. Then there is a sequence $\left\langle U_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that
(1) U_{α} is a countable set of pairs $\langle s, c\rangle$ of a countable subset $s \subseteq \cup_{\varepsilon<\alpha} Z_{\hat{\varepsilon}}$ and a set c closed in α, and
(2) whenever a set $A \subset Z$ satisfies $\forall \xi<\omega_{1}\left|A \cap Z_{\xi}\right| \leqq \omega$, then for each cub $C \subset \omega_{1}$, there is a cub $C^{\prime} \sqsubseteq C$ such that

$$
\forall \alpha \in C^{\prime}\left(\left\langle A \cap \bigcup_{\xi<\alpha} Z_{\xi}, C^{\prime} \cap \alpha\right\rangle \in U_{\alpha}\right)
$$

Proor. Fix a one-to-one onto function $\pi: Z \rightarrow \omega_{1}$. Let $\left\langle S_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle\right.$ be a \diamond^{+} sequence. Put $U_{\alpha}=\left\{\left\langle\pi^{-1}[s] \cap \cup_{\xi<\alpha} Z_{\xi}, c\right\rangle: s, c \in S_{\alpha}^{+}, c\right.$ is closed in $\left.\alpha\right\}$. By the lemma, this satisfies the required conditions,
q.e.d.

Remark. We may assume without loss of generality the sequence $\left\langle U_{\alpha}: \alpha<\right.$ $\left.\omega_{1}\right\rangle$ satisfies the following:
(3) every $\langle s, c\rangle \in U_{\alpha}$ satisfies that for every $\beta \in c,\left\langle s \cap \cup_{\xi}\left\langle\beta Z_{\xi}, c \cap \beta\right\rangle \in U_{\beta}\right.$. Because, if the element $\langle s, c\rangle \in U_{\alpha}$ does not have this property, we may remove it from U_{α}.

Convention. Put $T=\bigcup_{\alpha<\omega_{1}}{ }^{\alpha} \omega$, where ${ }^{\alpha} \omega=\{f: f: \alpha \rightarrow \omega\}$. T is a tree (not an ω_{1}-tree) by defining $x<y$ by $x \subset y$ for $x, y \in T$. In the rest of this paper, an ω_{1}-tree means always a subtree T of T such that T is ω_{1}-tree in the usual sense and an initial segment of \mathbb{T}. When f is a function: $\alpha \rightarrow \mathfrak{P}(\boldsymbol{T} \upharpoonright \alpha)$, where $\alpha \leqq \omega_{1}$, then for each $\beta \leqq \alpha, f \upharpoonright \beta$ stands for $\{\langle\xi, f(\xi) \cap T \upharpoonright \beta\rangle: \xi<\beta\}$, a function from β to $\mathfrak{\beta}(T \upharpoonright \beta)$. Hence if T is an ω_{1}-tree and $f: \alpha \rightarrow \mathfrak{B}(T \upharpoonright \alpha)$ then for each $\beta<\alpha, f \upharpoonright \beta=\{\langle\xi, f(\xi) \cap T \upharpoonright \beta\rangle: \xi<\beta\}$.

Lemma 2.3. There is a sequence $\left\rangle_{\alpha}^{+}: \alpha<\omega_{1}\right\rangle$ such that
(1) \diamond_{α}^{+}is a countable set of pairs $\langle f, c\rangle$ of a function $f: \alpha \rightarrow \mathfrak{P}(\boldsymbol{T} \upharpoonright \alpha)$ and a set c closed in α,
(2) if $\langle f, c\rangle \in\left\rangle_{\alpha}^{+}\right.$, then for every $\beta \in c,\langle f \upharpoonright \uparrow \beta, c \cap \beta\rangle \in \diamond_{\beta}^{+}$,
(3) if a function F : $\omega_{1} \rightarrow \oiint(T)$ satisfies the condition that $\forall \xi<\omega_{1} \forall \alpha<\omega_{1} \mid f(\xi) \cap$ $T \upharpoonright \alpha \mid \leqq \omega$, then for each cub set C,
there is a cub set $C^{\prime} \cong C$ such that

$$
\forall \alpha \in C^{\prime}\left(\langle F|\left\lceil\alpha, C^{\prime} \cap \alpha\right\rangle \in \diamond_{\alpha}^{+}\right) .
$$

Proof．A function $F: \omega_{1} \rightarrow \mathfrak{P}(\boldsymbol{T})$ can be identified by one－to－one manner with $F^{*}=\left\{\langle\alpha, x\rangle: \alpha \in \omega_{1}, x \in F(\alpha)\right\} \subseteq \omega_{1} \times T . \quad\left\{((\alpha+1) \times T \upharpoonright(\alpha+1)) \backslash(\alpha \times T \upharpoonright \alpha): \alpha<\omega_{1}\right\}$ is a partition of $\omega_{1} \times T .\left|\omega_{1} \times T\right|=\omega_{1}$ since \diamond^{+}implies CH ．So the assertion follows directly from Corollary 2.2 .1 and the remark after it， q．e．d．
We fix this sequence $\left\rangle_{\alpha}^{+}: \alpha<\omega_{1}\right\rangle$ in this section．For a technical reason， we assume without loss of generality that $\langle\varnothing, \varnothing\rangle \in \nabla_{0}^{+}$and $\nabla_{\alpha}^{+}=\varnothing$ if α is a successor ordinal．

To show the theorem，we construct T and $e: T \rightarrow Q$ such that
（1）T is an ω_{1}－tree，and
（2）if $x<y$ in T then $e(x)<e(y)$ in Q ．
Besides，for each $\langle f, c\rangle \in \bigotimes_{\alpha}^{+}$，we give $X(f, c) \subseteq T_{\alpha}$（not $T \upharpoonright \alpha$ ）such that
（3）$\beta \in c \& x \in X(f, c) \Rightarrow \exists y<x \quad(y \in X(f \upharpoonright \beta, c \cap \beta))$
（in other words，every element of $X(f, c)$ is an extension of some elements of $X(f \upharpoonright \beta, c \cap \beta)$ if $\beta \in c)$ ，
（4）$\forall \xi<\alpha \exists y \in f(\xi) \forall x>y(x \in X(f, c))$
（i．e．，every ξ－th subset $f(\xi) \subset T \upharpoonright \alpha$ has an element which has no extensions in $X(f, c)$ ），
（5）$X(f, c) \neq \varnothing$ ，if $f \subseteq \alpha \times \Re(T \mid \alpha)$ and $\forall \alpha^{\prime} \in c \cup\{\alpha\} \quad \forall \xi<\alpha^{\prime} \forall \beta<\alpha^{\prime} \exists y \in f(\xi) \cap$ $T \upharpoonright \alpha^{\prime}(h t(y)>\beta)$.

Claim．Such a tree T is Q－embeddable and not NSB．
Proof．T is clearly Q－embeddable by e．To show $T \notin \operatorname{NSB}$ ，let $\left\{A_{\xi}: \xi<\omega_{1}\right\}$ be any family of uncountable antichains of T ．Put

$$
A=\left\{\left\langle\xi, A_{\xi}\right\rangle: \xi<\omega_{1}\right\},
$$

and

$$
C=\left\{\alpha: \forall \xi<\alpha \forall \beta<\alpha \exists y \in T \upharpoonright \alpha\left(y \in A_{\xi} \text { and } h t(y)>\beta\right)\right\} .
$$

Then C is cub in ω_{1} ．By Lemma 2．3，there is a cub $C^{\prime} \cong C$ such that

$$
\forall \alpha \in C^{\prime}\langle A|\left\lceil\alpha, C^{\prime} \cap \alpha\right\rangle \in \nabla_{\alpha}^{+} .
$$

Put

$$
X=\cup\left\{X\left(A \upharpoonright \mid \alpha, C^{\prime} \cap \alpha\right): \alpha \in C^{\prime}\right\}
$$

Then by（5）X is uncountable and $\forall \xi<\omega_{1} \exists y \in A_{\xi} \forall x \in X(y ⿻ ⿱ 一 ⺕ 丨 女 丨 i x)$ ．（For，let $\xi<\omega_{1}$ ． Let α be the least ordinal satisfying $\xi<\alpha \in C^{\prime}$ ．Then by（4）there is $y \in A_{\xi} \cap T \upharpoonright \alpha$ such that for no $x, y<x \in X\left(A \upharpoonright \uparrow \alpha, C^{\prime} \cap \alpha\right)$ ．Such y satisfies $\forall x \in X(y=$ 本 $x)$ by （3）．）This means $\left\{A_{\xi}: \xi<\omega_{1}\right\}$ is not an NS－base，

Now we define $T_{\alpha}, e \upharpoonright T_{\alpha}$ and $X(f, c) \subseteq T_{\alpha}$ by induction on α ．At each stage α ，we make the following hold together with the above conditions（1）－（5）：
（6）if $x \in T \upharpoonright \alpha$ and $e(x)<q \in Q$ ，then there is $y \in T_{\alpha}$ such that $x<y$ and
$e(y)=q$,
(7) if $X(f, c) \neq \varnothing, \beta \in c \cup\{0\}, y \in X(f \uparrow \beta, c \cup \beta)$, and $e(y)<q \in Q$, then there is $x \in X(f, c)$ such that $x>y$ and $e(x)=q$.
(I) If $\alpha=0$, put $T_{0}=\{\emptyset\}, e(\emptyset)=0$, and $X(\emptyset, \emptyset)=\{\varnothing\}$.
(II) If $\alpha=\beta+1$, put $T_{\beta+1}=\left\{x \frown\langle n\rangle: x \in T_{\beta} \& n \in \omega\right\}$ and $e(x \frown\langle n\rangle)=e(x)+q_{n}$, where $x-\langle n\rangle$ stands for $x \cup\{\langle\beta, n\rangle\}$ and $\left\{q_{n}: n \in \omega\right\}$ is a list of Q^{+}.
(III) Suppose $\operatorname{Lim}(\alpha)$,
(III.1) For each $x \in T \upharpoonright \alpha$ and for each $q \in Q$ with $e(x)<q$, we define $t_{\alpha}(x, q) \in$ ${ }^{\alpha} \omega\left(=T_{\alpha}\right)$ as follows:
Take a sequence $q_{0}=e(x)<q_{1}<q_{2}<\cdots \rightarrow q$ with $q_{n} \in Q, n \in \omega$, and a sequence $\alpha_{0}=h t(x)<\alpha_{1}<\alpha_{2}<\cdots \rightarrow \alpha$. Construct a sequence $x_{0}=x<x_{1}<x_{2}<\cdots$ with $x_{n} \in$ $T \upharpoonright \alpha$, by induction on $n \in \omega$ so that $e\left(x_{n}\right)=q_{n}$ and $h t\left(x_{n}\right)=\alpha_{n}$. This is possible by induction hypothesis (6). Put $t_{\alpha}(x, q)=\cup_{n \in \omega} x_{n}$.
(III.2) For each pair $\langle f, c\rangle \in \widehat{\diamond}_{\alpha}^{+}$, we define $X(f, c) \cong \boldsymbol{T}_{\alpha}$, as follows:

There are three cases to consider.
CASE 1. $f \subset \alpha \times \Re(T \upharpoonright \alpha), \forall \alpha^{\prime} \in c \cup\{\alpha\} \forall \xi<\alpha^{\prime} \forall \beta<\alpha^{\prime} \exists y \in f(\xi) \cap T \upharpoonright \alpha^{\prime}(h t(y)$ $>\beta$), and c is bounded in α. In this case, put $\gamma=$ the maximum element of $c \cup\{0\}$. Let $\left\langle\xi_{i}: i \in \omega\right\rangle$ be an ω-type enumeration of the elements of $\alpha \backslash \gamma$. Fix arbitrarily a sequence $\alpha_{0}=\gamma<\alpha_{1}<\alpha_{2}<\cdots \rightarrow \alpha$. Take $y_{0} \in T \upharpoonright \alpha$ so that $h t\left(y_{0}\right)>\gamma$ and $y_{0} \in f\left(\xi_{0}\right)$, and take $y_{n+1} \in f\left(\xi_{n}\right)$ so that $h t\left(y_{n+1}\right)>h t\left(y_{n}\right) \cup \alpha_{n}$. This is possible by the assumption. Now, by the assumption and the induction hypothesis (5), $X(f \upharpoonright i \gamma, c \cap \gamma)$ is not empty. For each $x \in X(f \upharpoonright\lceil\gamma, c \cap \gamma)$ and for each $q \in Q$ with $q>e(x)$, define $u_{\alpha}(x, q, f, c) \in \boldsymbol{T}_{\alpha}$ as follows:

Take a sequence $q_{0}=e(x)<q_{1}<q_{2}<\cdots \rightarrow q$ from Q. Put $x_{0}=x$. For $n>0$, take x_{n} so that $x_{n}>x_{n-1}, \operatorname{ht}\left(x_{n}\right)=h t\left(y_{n}\right), x_{n} \neq y_{n}$, and $e\left(x_{n}\right)=q_{2 n}$ or $q_{2 n+1}$. This is possible by induction hypthesis (6). Put $u_{\alpha}(x, q, f, c)=\bigcup_{n \in \omega} x_{n}$, and $X(f, c)=$ $\left\{u_{\alpha}(x, q, f, c): x \in X(f \upharpoonright \upharpoonright \gamma, c \cap \gamma), e(x)<q \in Q\right\}$.

CASE 2. The same as Case 1 but c is unbounded in α. In this case we first fix a sequence $\alpha_{0}<\alpha_{1}<\cdots \rightarrow \alpha$ such that $\alpha_{n} \in c, n \in \omega$. Note that $X\left(f \uparrow \uparrow \alpha_{n}, c \cap \alpha_{n}\right)$ $\neq \emptyset$ for each $n \in \omega$. For each x and q such that $x \in X\left(f \upharpoonright \mid \alpha_{n}, c \cap \alpha_{n}\right)$ and $e(x)<$ $q \in Q$, take a sequence $q_{0}=e(x)<q_{1}<q_{2}<\cdots \rightarrow q$. Put $x_{0}=x$, and for $k>0$, take $x_{k} \in X\left(f \uparrow \mid \alpha_{k+n}, c \cap \alpha_{k+n}\right)$ so that $e\left(x_{k}\right)=q_{k+n}$ and $x_{k}>x_{k-1}$. This is possible by induction hypothesis (7). Put $u_{\alpha}(x, q, f, c)=\cup_{n \in \omega} x_{n}$ and $X(f, c)=\left\{u_{a}(x, q, f, c)\right.$: $\left.x \in \cup_{n \in \omega} X\left(f \upharpoonright \mid \alpha_{n}, c \cap \alpha_{n}\right), e(x)<q \in Q\right\}$.

CASE 3. Otherwise. Put $X(f, c)=\varnothing$.
(III.3) Now, we set

$$
\begin{aligned}
& \left.T_{\alpha}=\left\{t_{\alpha}(x, q): x \in T \mid \alpha, e(x)<q \in Q\right\} \cup \cup\{X(f, c):\langle f, c\rangle \subseteq\rangle_{\alpha}^{+}\right\}, \\
& e\left(t_{\alpha}(x, q)\right)=q, \text { and } e\left(u_{\alpha}(x, q, f, c)\right)=q .
\end{aligned}
$$

Thus $T_{a}, e \upharpoonright T_{\alpha}$, and $X(f, c)$ for $\langle f, c\rangle \in \diamond_{\alpha}^{+}$are defined. We must check that they have the required properties. But it needs only calculation. We only show (4) and leave the rest to the reader. Let $\langle f, c\rangle \in \diamond_{\alpha}^{+}$. To show (4), suppose $\hat{\xi}<\alpha$. Suppose that $X(f, c)$ has been defined in Case 1 and recall the terminologies used there. If $\xi \geqq \gamma$, then $\xi=\xi_{n}$ for some n. Then $y_{n+1} \in f\left(\xi_{n}\right)=$ $f(\xi)$. But every element $u_{\alpha}(x, q, f, c)=\cup_{n \in \omega} x_{n}$ of $X(f, c)$ is not an extension of y_{n+1}, because $y_{n+1} \neq x_{n+1}<u_{\alpha}(x, q, f, c)$ and $h t\left(y_{n+1}\right)=h t\left(x_{n+1}\right)$ by the definition. If $\xi<\gamma$, note that $\langle f \upharpoonright \gamma \gamma, c \cap \gamma\rangle \in \widehat{\cup}_{+}$. By induction hypothesis, we can find $y \in$ $(f \upharpoonright \gamma)(\xi)$ which has no extension in $X(f \upharpoonright \uparrow \gamma, c \cap \gamma)$. Since every element of $X(f, c)$ is an extension of some element of $X(f \upharpoonright \upharpoonright \gamma, c \cap \gamma)$ by the definition, such y has no extension in $X(f, c)$. Next, suppose that $X(f, c)$ has been defined in Case 2. Then $\xi<\alpha_{n}$ for some n. Note that $\alpha_{n} \in c$ and $X\left(f \upharpoonright \alpha_{n}, c \cap \alpha_{n}\right) \neq \varnothing$. The rest is similar to the one in the case $\xi<\gamma$ of the above. If $X(f, c)$ has been defined in Case 3, it is trivial,
q.e.d.
3.3. Proof of Theorem 3. We refer the reader to Convention in the previous section for the definition of T and for the meaning of the concept of ω_{1} tree. Assume \rangle. Then there is a sequence $\left\rangle_{\alpha}: \alpha<\omega_{1}\right\rangle$ such that
(1) ∇_{α} is a countable subset of $T \upharpoonright \alpha$,
(2) if $A \subset T$ satisfies $|A \cap T \upharpoonright \alpha| \leqq \omega$, then the set $\left\{\alpha: A \cap T \upharpoonright \alpha=\diamond_{\alpha}\right\}$ is stationary in ω_{1}.
The purpose is to define an ω_{1}-tree T and a Q-embedding $e: T \rightarrow Q$ so that $\left\{A(x, q): x \in T, q \in Q^{+}\right\}$forms an NS-base, where $A(x, q)$ stands for $\{y \in T: x<y$, $e(y)=q$. We define T_{α} and $e \upharpoonright T_{\alpha}$ by induction on α. At each stage α, we ensure the following:
(*) $x \in T \upharpoonright \alpha \& e(x)<q \Rightarrow \exists y \in T_{\alpha}(x<y \quad \& e(y)=q)$.
(I) $T_{0}=\{0\}$ and $e(0)=0$.
(II) $T_{\beta+1}=\left\{x \frown\langle n\rangle: x \in T_{\beta}, n \in \omega\right\}$ and $e(x \frown\langle n\rangle)=e(x)+q_{n}$, where $\left\langle q_{n}: n \in \omega\right\rangle$ is a list of Q^{+}.
(III) Suppose $\operatorname{Lim}(\alpha)$. For every pair of $x \in T \upharpoonright \alpha$ and $q \in Q$ with $e(x)<q$, we define $t_{\alpha}(x, q)$. First define x_{0} as follows: If \diamond_{α} is an initial segment of $T \upharpoonright \alpha$ and there is $y \in T \upharpoonright \alpha$ such that $x<y, e(y)<q$, and $y \notin \diamond_{\alpha}$, then put $x_{0}=$ such y. Otherwise put $x_{0}=x$. Fix a sequence $q_{0}=e\left(x_{0}\right)<q_{1}<q_{2}$ $<\cdots \rightarrow q$ and a sequence $\alpha_{0}=h t\left(x_{0}\right)<\alpha_{1}<\alpha_{2}<\cdots \rightarrow \alpha$. Take inductively
x_{k} so that $x_{k}>x_{k-1}, h t\left(x_{k}\right)=\alpha_{k}$, and $e\left(x_{k}\right)=q_{k}$. Put $t_{\alpha}(x, q)=\cup_{k \in \omega} x_{k}$ and $T_{\alpha}=\left\{t_{\alpha}(x, q): x \in T \upharpoonright \alpha, e(x)<q\right\}$ and $e\left(t_{\alpha}(x, q)\right)=q$.
Finally we put $T=\cup_{\alpha<\omega_{1}} T_{\alpha}$, which is clearly Q-embedded by e. To show that T is NSB, we prove that $\{A(x, q): x \in T, e(x)<q\}$ is an NS-base. Let S be an uncountable subset of T. Put $I=\{y \in T: \exists x \in S(y \leqq x)\}$. Put $C=\{\alpha: \operatorname{Lim}(\alpha)$, $\forall q \in Q \forall x \in T \upharpoonright \alpha(\exists y(x<y \& e(y)=q \& y \notin I) \Rightarrow \exists$ such y in $T \upharpoonright \alpha)\}$, which is cub in ω_{1}. Take $\alpha \in C$ such that $I \cap T \upharpoonright \alpha=\diamond_{\alpha}$. Since S is uncountable, $T_{\alpha} \cap I \neq \emptyset$. Take x, q so that $t_{\alpha}(x, q) \in T_{\alpha} \cap I$. Recall x_{0} used in the definition of $t_{\alpha}(x, q)$. Since $x_{0}<t_{\alpha}(x, q), x_{0}$ is also in I, and so $x_{0} \in I \cap T \upharpoonright \alpha=\diamond_{\alpha}$. By the choice of x_{0}, it must hold that $\forall y \in T \upharpoonright \alpha(e(y)<q \& x<y \Rightarrow y \in I \cap T \upharpoonright \alpha)$. Hence every $y \in T$ satisfying $x<y$ and $e(y)<q$ belongs to I, because $\alpha \in C$. Therefore $A(x,(e(x)+$ $q) / 2) \cong I$, q.e.d.

References

[1] Baumgartner, J.E., Decompositions and embeddings of trees, Notices A. M.S. 17 (1970) 967.
[2] Hanazawa, M., On a classification of Aronszajn trees II, Tsukuba J. Math. 5 (1981) 117-132.
[3] Hanazawa, M., Various kinds of Aronszajn tree with no subtree of a different kind, Lecture Notes in Math. vol. 891, Springer-Verlag, (1981) 1-21.
[4] Kunen, K., Set Theory-An introduction to independence proofs, (North-Holland, Amsterdam, 1980).
[5] Kurepa, G., Ensembles linéaires et une classe de tableaux ramifiés (tableaux ramifiés de M. Aronszajn) Publ. Math. Univ. Belgrade, VI-VII (1937-1938) 129-160.
[6] Shelah, S., Free limits of forcing and more on Aronszajn trees, Israel J. Math. 38 (1981) 315-334.

Department of Mathematics
Faculty of Science
Saitama University
Urawa, 338 Japan

[^0]: Received February 3, 1982.
 This research was partially supported by Grant-in Aid for Scientific Research (No. 56340009), Ministry of Education.

