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ON ARONSZAJN TREES WITH A NON-SOUSLIN BASE

By

Masazumi HANAZAWA

§1. Introduction.

A tree is a partially ordered set (T, <¢) with the property that for every
element x&T, i={yeT: y<rx} is well-ordered by <7. The order type of %
is then an ordinal, which is called the height of x, Af(x). When a subset of a
tree is totally ordered by <y, it is called a chain. When a subset of a tree has
no comparable elements, it is called an antichain. We deal with only w;-trees
which have cardinality @,, whose a-th level Toe={xsT: ht(x)=a} is countable
for every countable ordinal «, and which have additionally certain minor pro-
perties. An w,-tree T is said to be non-Souslin if every uncountable subset of
T contains an uncountable antichain. A non-Souslin tree has clearly no uncoun-
table chain and nevertheless for every countable ordinal «, the a-th level T, is
non-empty. This notion was introduced in Baumgartner [1]. The first example
of a non-Souslin tree is the special Aronszajn tree which was given by Aronszajn
(see Kurepa [5]). A special Aronszajn tree is characterized by @-embeddability
that means the existence of an order preserving function f: T—¢. An R-
(a fortiori, @-) embeddable tree is always non-Souslin. Other examples of non-
Souslin trees are found in Baumgartner (11, Hanazawa [2], [3] and Shelah [6].
Except for only one, the properties characterizing them are given as modifica-
tions of R-embeddability. The exception is the one given in [3], which has a
non-Souslin base of cardinality w,. A non-Souslin base is a family F of uncoun-
table antichains satisfying that whenever S is an uncountable subset of the tree
T, there is an element A of F such that for every c A, there is yeS satisfy-
ing x=<ry. Notice that a non-Souslin tree has always a non-Souslin base of
cardinality 2v1. We call a tree with a non-Souslin base of cardinality less than
221 an NSB-tree.

In this paper we discuss about NSB-trees, mainly to show that the property
NSB is independent of R-embeddability. We first observe (in theorem 1) that
under the standard set theory ZFC alone, even the existence of NSB-trees can
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not be proved. We use the axiom of constructibility V=L. It is shown in [3]
that if V=L, there is an NSB-tree which is even not R-embeddable. On the
other hand, if V=L, there is a Q- (a fortiori, R-) embeddable tree which is never-
theless not NSB (Theorem 2). The existence of such a tree may be one of rare
examples which can be proved from {* but can not be proved from O*, where
O+ and O* are Jensen’s combinatorial principles, which are consequences of
V=1L. Finally we remark that if V=L, there is also a Q-embeddable NSB-tree.
Hence property NSB is independent of and compatible with the property of
being special Aronszajn under V=L.

§2. Definitions and results.

We write T instead of (T, <r) and < instead of <r. We refer the reader
to [3] for the concepts undefined here.

DEFINITION 1. Let F be a family of uncountable antichains of an w;-tree T.
Fis an NS-base if and only if for every uncountable subset S of T, there exists
an element A of F such that

Ve ATyeSx=sy).
DermITION 2. T is called a £-NSB tree if it has an NS-base of cardinality «.

REMARK 1. A non-Souslin tree is trivially a 2°-NSB tree and vice versa.
Note that there always exists a non-Souslin tree because a special Aronszajn tree

is non-Souslin.

DEFINITION 3. 7T is called an NSB tree if it has an NS-base of cardinality
less than 2¢1,

REMARK 2. There is no «-NSB tree. (Suppose {4,.:n&w} were an NS-base.
Take a<w,; so that for every ncw, |A.NT | a|=2. Take xeT, arbitrarily.
Then the set S={yeT: x=<y} gives a contradiction.)

Let MA stand for Martin’s axiom as usual (see Kunen [4, p.54]).

THEOREM 1. (MA) If £<2¢, there is no k-NSB iree.

COROLLARY L.1. (MA+1CH) There is no NSB tree. Because MA+T1CH
implies 20=2"1

COROLLARY 1.2. The existence of an NSB-tree can not be proved in ZFC
alone. (cf. Remark 1)
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REMARK 3 ([3]). (&) There is an NSB tree which is not R-embeddable.
THEOREM 2. (OF)  There is a special Aronszajn tree which is not NSB.

COROLLARY 2.1. Q-embeddability (a fortiori, R-embeddability) does not imply
property NSB even under V=1L.

QUESTION 2.2. Can Theorem 2 be proved under ZFC alone (or even under
ZECHO*)?

THEOREM 3. () There is a special Aronzajn tree which is also NSB.

Similarly an R-embeddable, not Q-embeddable, NSB tree can be obtained
under ¢. On the other hand, by combining the trees given by Theorem 2 and
Baumgartner [1], we can obtain (1) an R-embeddable, not Q-embeddable, not -
NSB tree, and (2) a not R-embeddable, not NSB, non-Souslin tree, under O,

§3. Proofs.

3.1, Proof of Theorem 1. Assume MA and x<2°. To the contrary, sup-
pose T is a x-NSB tree. As described in Remark 2, r is not w, and so —JCH
is the case. Since MA+ICH implies that every Aronszajn tree is special
(Baumgartner, see Kunen [4, p. 917), T must be special. Take a function f:T—Q
satisfying that for any x, yeT with x<y, f(x)<f(y). Let {A.: @<k} be a
&-NS base of T. Define a poset P by the following:

P={{X,Y>: (1) X and Y are disjoint finite subsets of T, (2)if yeY then
hi(y)>w, and (3) for every weT, if there are x€X and ye¥ satisfying w<x
and f(y)=f(w), then we X},

(X, YO =LX,, YV iff Xi2X, and Y,27,.

Note that if x€X and yeV where <X, Y><P, then y£x. First we show that
P satisfies c.c.c. Suppose S is an uncountable subset of P. By the 4-system
lemma (see Kunen [4, p. 497), there is an uncountable subset S’= ({Xe, Yoo : E<wy}
of S such that there is a finite set X* satisfying XeNX,=X* for all & p<aw,
with &7, and further such that there is Y* satisfying YenY,=Y*for all §, 5
with £#7. Then take an uncountable subset {{X., V¢>: €I} of S’ such that
for all &, pel, f[X]=f[X,] and FIY A=f[Y,]. We can easily take two pairs
X, Y and (X,,Y >, € pel, such that X.NY,=0 and X,NY.=0. Then
clearly (X, UX,, YUY ,> is in P. This shows that P satisfies c.c.c. Now put

D,={(X,Y>eP: Ax=X(ht(x)>a)} .
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Then D, is dense in P for each a<w, For, suppose that (X, Y &P and a<o..
As Y is finite and T, is infinite, there is z& T, such that NweT)Yw>zoweEY).
Take x so that x>z and Af(x)>a and put X'=XU{xjulveT: w<x & f(w)e
FIYT. Then {X’, Y>&P and (X, Yy=<¢X,Y>. Thus D, is dense. Next put

Eﬂ: {(X, YyeP: YﬂAﬁ?-“@} .

Es is also dense in P for each f<x. For, suppose (X, Y)&P and f<k. Take
ae ANXURUT | (@+1), where £={z&T:2z<x for some x=X}. Put X'=
XU {ZEX: f(2)=f(a)}. Then (X, YU{a}> is in P. (It suffices to show X'M
(Y\U{a})=9. Suppose z=X'\X. Then z=X. Hence z#a and z&Y.) Eg is thus
dense. Therefore, by MA+"1CH, there exists a {D,: a<w,}\U{Ez: f<x}-generic
subset G of P. Now put S=U{X:3VX, V>eG}. Clearly S is an uncountable
subset of T and for each B<x there is an element y=Ag such that for any
x&S, y£x. This contradicts that {A,: o<k} is an NS-base, q.e.d.

2.2. Proof of Theorem 2. The principle {* asserts the existence of a
Ot-sequence S, : a<w;> which satisfies:

(1) S. is a countable family of subsets of «,

(2) for each ACuw;, there is a cub (closed unbounded) CCw,,
such that for every a=C, ANaeS, and CNaeS,.

LEMMA 2.1. Let {Sa.: a<w,y be a $Y-sequence.  Put

Then for each subset ACw,; and for each cub CCw, there is a cub C'SC such
that YasC' (ANaeSE and C'NaeS)).

PRrOOF. By the property of O+-sequence, there is cub CoC e, such that VaeC,
(ANaeS, and CoNaeS,). By the same reason, for some cub C,.Cw, VYael,
(CNCyNaeS, & CinaeS,). Then YaeCNCNC, (ANae St & CNCNCiNae
S, g.e.d.

LEMMA 2.2 Let <S,: a<aw)d be a Ot-sequence and [Pe: E<w,} be a partition
of w,. Then the following holds:

(*y for each subset ACw, satisfying V<o, (VANP:| Zw)
and for each cub CCwy, there is a cub C'<C such that

YaeC’ (Af‘\:\’_'}'PEES,t and C’'NaeSY).

ProOF. By the assumption, AN Uz, P is (at most) countable for every a <.
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Hence Co={a<w;: AN Uec  Ps=ANa} is cub (the proof is routine, cf. Kunen
[4, p,78 or p.79]). By the previous lemma, for some cub C.cCNCy, YaesC,
(ANaeSt & CinaeSE). The desired conclusion follows immediately from this.

COROLLARY 2.2.1. Let |Z|=w, and {Zs: E<w> a partion of Z. Then there
is a sequence {U,: a<w;> such that
(1) U, is a countable set of pairs <s, ¢) of a countable subset sEUecuZe and
a set ¢ closed in a, and
(2) whenever a set ACZ satisfies VE<w,| ANZ¢| Zw, then for each cub CCw;,
there is a cub C'SC such that

VaeC ((ANY Zy, CNeyel.).

PROOF. Fix a one-to-one onto function z: Z—w; Let (S,:a<wy bea O
sequence. Put U,={{x '[sINUscaZs, ¢>: s, cESE, ¢ is closed in «}. By the
lemma, this satisfies the required conditions, q.e.d.

REMARK. We may assume without loss of generality the sequence U,: a<
w,> satisfies the following:

(3) every <s, c>elU, satisfies that for every B<c, <sMUcsZs, enprels.
Because, if the element (s, ¢)eU, does not have this property, we may remove
it from U,.

CONVENTION. Put 7=\.c0,%0, where ‘o= {f: [:a—w}. T is a tree (not
an w-tree) by defining x<y by xCy for x, ye 7. In the rest of this paper,
an w-tree means always a subtree T of 7 such that T is w-tree in the usual
sense and an initial segment of 7. When f is a function: a—$(T | @), where
a=<w,, then for each f=ea, fII8 stands for {<¢, FENT T B> < B}, a function
from B to P(T | B). Hence if T is an w;-tree and f: a—B(T 1 @) then for each
B<a, fIB={KE, fFONT T B>: <P}

LEMMA 2.3. There is a sequence {{%: a<w,> such that
€Y} + s a countable set of pairs {f, ¢> of a function f: a—P(T [ @) and a
set ¢ closed in «
(2) if {f, c>elk, then for every fec, B, eNBreOE,
(3) if a function F:w,—B(T) satisfies the condition that Y& <w, Ya <o, | fEN
T! a|Zw, then for each cub set C,
there is a cub set C'<SC such that

Yas( ((Flla, CNay>ell).
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PrOOF. A function F: @,—B(T) can be identified by one-to-one manner with
Fr={a, x> acwo, & F(a)} SoxXT. {(a+DXT I (a+D\axXT ! a): a<w} is
a partition of ;X T. |w, X T|=w, since O+ implies CH.  So the assertion follows
directly from Corollary 2.2.1 and the remark after it, g.e.d.

We fix this sequence {(%: a<w,y in this section. For a technical reason,
we assume without loss of generality that (¢, @>e{f and Q=@ if @ is a
successor ordinal.

To show the theorem, we construct T and e¢: T—@ such that

(1) T is an w,-tree, and

(2) if x<y in T then e(x)<e(y) in Q.

Besides, for each {f, c>e{f, we give X(f, ¢)ET, (not T | «) such that

Q) Bec & x€X(f, 0)2Ty<x (yeX(SFIIB, cNP)

(in other words, every element of X(f, ¢) is an extension of some elements of
X(fI18, enp) if B=o),
(4) Vé<a Ayesf(E) Yx>y (x&X(f, ¢)
(i.e., every &-th subset f(E)CT '« has an element which has no extensions in
X(f, o),
B) X(f, 0@, i fSaxXR(T 1) and Vo' ecU{a} Yé<a' Vi<a’ Ty = f(EIN
T 1a" (hiy)>B).

CrLAaIM. Such a tree T is Q-embeddable and not NSB.

Proor. T is clearly Q-embeddable by e. To show T&NSB, let {A:: E<w,}
be any family of uncountable antichains of 7. Put
A=, A E<wi},

and
C=la:V¥é<a¥B<adyeT | a(ys A: and hi(y)> P} .

Then C is cub in w,. By Lemma 2.3, there is a cub C'ZC such that

Vas(C' {Alta, C'Nad>elt.
Put
X=U{X(Alla, C'Na): a=C'}.
Then by (5) X is uncountable and Vé<w, dyeA: YxeX(y£x). (For, let {<w,.
Let & be the least ordinal satisfying £€<a=C’. Then by (4) there is ye ANT [ @
such that for no x, y<xeX(Alla, C'Na). Such y satisfies Vx=X(y£x) by
(3).) This means {A¢: £<w,} is not an NS-base, g.e.d.
Now we define T, e [ T, and X(f, ¢)& T, by induction on «. At each stage
a, we make the following hold together with the above conditions (1)-(5):
6) if xeT |« and e(x)<ge=Q, then there is y=T, such that x<y and
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e(y)=g,

7 if X(f, O#@, fecUil}, ye X115, cuUP), and e(y)<gEQ, then there
is x&eX(f, ¢) such that x>y and e(x)=gq.

(1) If a=0, put T,={0}, e(®=0, and X(@, 0)={@}.

() If a=p+1, put Tgo={x"(n>: x€Tp & ncw} and e(x<(n))=e(x)-+gn,
where x(n)> stands for x\J{<{B, nd} and {g,: n€w} is a list of Q™.

() Suppose Lim(«),

(M.1) For each x&T | @ and for each g Q with e(x)<g, we define t.(x, Q)&

“w(=1T,) as follows:

Take a sequence ¢y==e(x)<g;<g.< -+ —q With ¢,€Q, n€w, and a sequence
ay=ht(x)<a,<ay< - — . Construct a sequence x,=x<x;<x,< -+ With x,&
T | «, by induction on nEw so that e(x,)=g, and hi(x,)=a, This is possible
by induction hypothesis (6). Put #,(x, ¢9)=\Urcwxa-

(I.2) For each pair {f, ¢k, we define X(f, 6)ET., as follows:

There are three cases to consider.

CasE 1. fCaxXPB(T ), Va'eculalVé<a’ V< yefENT 1o’ (hi(y)
>B), and ¢ is bounded in a. In this case, put y=the maximum element of ¢ {0}.
Let (&, :i€w) be an w-type enumeration of the elements of a\y. Fix arbitrarily
a sequence a,=7 <a;<a,< - —a. Take y,&T | « so that ht(y,)>7 and yo< f(€o),
and take v.+1€ f(€,) s0 that Al(y.4)>ht(y.)\Ja,. This is possible by the as-
sumption. Now, by the assumption and the induction hypothesis B), XU 117, ey
is not empty. For each x= X(f[1y, ¢Ny) and for each ¢=Q with ¢g>e(x), define
uolx,q, f, )T, as follows:

Take a sequence go=e(x)<q,<¢,< --- —¢ from Q. Put x,=x. For n>0, take
X5 80 that x> %1, AH(X)=ht(2), X # Vs, and e(X2)=¢an OT ¢ans1- This is pos-
sible by induction hypthesis (6). Put ua(x,q, f, )=Usewxn and X(f, )=
{ualx, g, f, ) x€ X117, ¢N7), e(x)<qeQ}.

CASE 2. The same as Case 1 but ¢ is unbounded in @. In this case we first
fix a sequence ao< a;< --- —a such that a,€¢, n€w. Note that X(fIlas, cNax)
=0 for each new. For each x and ¢ such that x& X(f!la,, cNay,) and e(x)<
geQ, take a sequence go=e(x)<(q;<(g< - —¢. Put x,=x, and for k>0, take
12 E X (1 asn, ¢MNApsn) 50 that e(x,)=@gssn and x,>x, ;. This is possible by
induction hypothesis (7). Put u.(x, q, f, ¢)=\Unewx, and X(f, o)={ud(x, q, f, ¢):
€ Unea X (g, cNay), e(x)<gsQ}.

CasE 3. Otherwise. Put X(f, o)=@.
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(Ir.3) Now, we set
To={talx, @) x€T M a, e(x)<qeQ} NI (XS, ©): {f, >,

et (x, @)=q, and elu.(x,gq, f, c)=q.

Thus Ty, e[ Te, and X(f, ¢) for {f, c>eOf are defined. We must check
that they have the required properties. But it needs only calculation. We only
show (4) and leave the rest to the reader. Let (f, o>t To show (4), sup-
pose £<a. Suppose that X(f, c) has been defined in Case 1 and recall the
terminologies used there. If &=y, then £=¢, for some n. Then Vor1 Ef(ER)=
F(&). But every element u,(x, q, f, €)=Unewx, of X(f, ¢) is not an extension
Of ypey, beCAUSE Yus 1 # X s <<ua(x, g, [, ¢) and At(y,11)=hi(x+1) by the definition.
If £§<7, note that {fI1y, eNyy=<Of. By induction hypothesis, we can find ye
(fI17) (§) which has no extension inX(/ 1!y, ¢cN\y). Since every element of
X(f, ¢) is an extension of some element of X(f [y, ¢N\y) by the definition, such
v has no extension in X(f, ¢). Next, suppose that X(f, ¢) has been defined in
Case 2. Then &<a, for some n. Note that a,cc and X(f|lan, cNa,)+ 3.
The rest is similar to the one in the case £<y of the ahove. If X(f, ¢) has been
defined in Case 3, it is trivial, g.e.d.

3.3. Proof of Theorem 3. We refer the reader to Convention in the pre-
vious section for the definition of 7 and for the meaning of the concept of w,-
tree. Assume <». Then there is a sequence (,: a<w,> such that

(1) Oa is a countable subset of T | a,

(2) if ACT satisfies |ANT | a| <o, then the set {w: ANT [ a=<,} is sta-

tionary in ;.

The purpose is to define an w;-tree T and a Q-embedding ¢: T—Q so that
{A(x, @): x&T, g=Q*} forms an NS-base, where A(x, ¢) stands for {y T : x <y,
e(y)=q}. We define T, and e | T, by induction on a. At each stage «, we
ensure the following:

M) xelTla & e(x)<gIyeT(x<y & ely)=q).

(1) T,={0} and e(p)=0.

(D) Tgu={x"n>: x=Ty, n€w} and e(x " nd)=e(x)+qn,
where {g,: n€w) is a list of Q*.

(I) Suppose Lim(a). For every pair of xe7T ! a and g=Q with e(x)<q, we
define f,(x, ¢). First define x, as follows: If O, is an initial segment
of T [ o and there is yeT | a such that x<y, e(y)<q, and y & Oy, then
put x,=such y. Otherwise put x,=x. Fix a sequence g,=e(x,)<q,<¢s

-

< -+ —g and a sequence a,=ht(x,)<a;<a,< - —a. Take inductively
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xp SO that x> x4y, hi(xp)=ay, and e(xp)=g¢s Put to(x, )=UsrcuXs
and T.={ta(x, q): x€T l @, e(x)<q} and e(t.(x, ¢)=q.

Finally we put T=\U<u, T« Wwhich is clearly @-embedded by e. To show
that T is NSB, we prove that {A(x, ¢): x€T, e(x)<g¢} is an NS-base. Let S be
an uncountable subset of 7. Put I={yeT:3AxS(y=<x)}. Put C={a: Lim(a),
YgeQVxeT la@y(x<y & e(y)=¢ & y&)=3 such y in T | @)}, which is cub
in w,, Take a=C such that INT [ a=<,. Since S is uncountable, T.MNI#.
Take x,q so that t,(x, 9)T.NI. Recall x, used in the definition of t.(x, g).
Since x,<t4(x, q), xo is also in I, and so x,&€INT [ a=<,. By the choice of x,,
it must hold that VyeT ale(y)<qg & x<y>yeINT [ a). Hence every yeT
satisfying x <y and e(y)<g¢ belongs to I, because a=C. Therefore A(x, (e(x)+
=8 g.e.d
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