
TSUKUBA J. MATH.

Vol. 14 No. 2 (1990), 405―411

THE JORDAN-HOLDER CHAIN CONDITION AND

ANNIHILATORS IN FINITE LATTICES

By

Juhani Nieminen

Abstract The Jordan-Holder chain conditionis characterizedby

means of prime annihilatorsin finitelattices. The intersection

property of prime annihilatorsis considered.

1. Introduction and basic concepts

Ideals play a very important role in the analysis of lattices. Mandelker

introduced in [6] the notion of the (relative)annihilator: this concept generalizes

the notion of ideal as well as that of relative pseudocomplement. Mandelker

characterized the distributivityand modularity of a lattice by means of an-

nihilators,and later on, annihilators were used for obtaining other characteriza-

tions in lattices,see e.g. [2] and [7]. All these characterizations used the

relative pseudocomplement aspect of annihilators, and the firstpaper, where

the ideal aspect of annihilators was used, was [3], where the modularity of

finitelatticesis characterized by means of prime annihilators. This paper con-

tinues the line of [3], and shows how one can replace ideals by annihilatiors

in finitelattices in order to obtain new results on semimodularity and the

Jordan-Holder chain condition.

In this paper we consider finitelatticesonly. Let L be a lattice. The set

<a, b}={x＼xAa^b＼ is an annihilator of L, and its dual <a, b}d={x＼ xV a^b}

is a dual annihilator. One can easily show [3] that <a, b)=(.a, aAb}, and

dually, that <c, /><*=<c, c＼Zf}d. If a^b, then xAa<b for every xei, and

thus <a, b}=L. If 1 is the gratest element of L, then <1, a>=(a] = {x| x^a}.

An annihilator {a, b}=£L is called prime, if

<a, 6>U<6, a}d ―L and <a, a/＼byr＼(aAb, a}d = 0 .

One can show that in a distributivelattice every prime annihilator is a prime

ideal and vice versa [3]. It should be emphasised that the primeness of <g, b}

depends upon the elements a and b rather than the set <a, b}: in a three-
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element chain 0<a<l, we have <l, 0>={0}=<a, 0> while <a, 0> is prime but

<1, 0> is not.

As usually, an element a covers an element b, in symbols a^-b, if a>b

and if a^c^b implies either a=c or b~c. Note that if an annihilator <a, b}

is prime in a lattice L, then a^b by [31.

2. The Jordan-Holder chain condition

Let L be a finitelattice and GL the undirected Hasse diagram graph of L.

The length of a shortest a―b path in the graph GL is the distance d(a, b)

between the elements a and b in L. In graph theory, a shortest path is

frequently called a geodesic. The set [a, blg is called a geodetic annihilator,

briefly a g-annihilator,if fa, 6＼ = {x|6 is on an x ―a geodesic in GL, x^>a if

a>fr, and x<£a if g<&}. A g-annihilator [a, b~＼gis called prime if

[a, b~}g＼J[b,alg = L and [a, b~＼gr＼[b,a^g = 0 .

In finite distributivelattices the two annihilator concepts have a connection as

shown in

Theorem 1. Let L be a finite distributive lattice. Then the equality fa, b~]g

= <fl, byr＼(a, byd holds for every pair a, b^L.

Proof. Let xge[_g,b] :=<a, b}r＼<a,b>d={z＼zAa^b}r＼{z＼z＼/a'^b} = {z＼zA

a^bf^z＼/a＼. Thus aAx^Lb^aVx. Because L is distributive,one u―v geodesic

goes through uAv and another through uVv for any pair u, veL, and hence

some x ―a geodesic goes through xAa. The relation xAa^b implies that

xAa^xAb^x, and further that xAa^aAb^b. Now, the part xAb ―xAa ―

bAa of an x ―a geodesic through xAa can be substituted by an xAb―bAa

geodesic through the element (xAb)y{bAa)=bA{x＼/a)=b. Thus an x ―a

geodesic also goes through the element b, and, consequently, xefc, b~＼gand

＼_a,b＼d＼a, b~]g. Let xef'a, b~＼e,whence b is on some a ―x geodesic in GL.

The well known results on medians in finite distributivelattices[1] imply now

that xAa^b^xVa, and thus ＼a,b~＼gCL＼_a,b＼. Accordingly, [a, b~＼g―la, b＼,

and the theorem follows.

The following theorem characterizes the Jordan-Holder chain condition.

Theorem 2. Let L be a finitelattice. The lattice L satisfiesthe Jordan-

Holder chain conditionif and only if the condition (i) below holds:

( i ) A g-annihilator fa, b~]eis prime if and only if a>-b or b>-a.
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Proof. Let L satisfy the Jordan-Holder chain condition. The cycle

{a0, au ■■･,an} of a graph G is a collection of elements (points) of G such

that (a0, Qi), (alt a2), ･･･,(an-u an) are edges in G and a^ay for z, /=0, ･■■,

n, i^j, with the exception aQ~an. A cycle is even, if the number n of edges

on the cycle is even. In the latter part of this proof we use the fact that the

cycles of a graph are ordered by set inclusion. One can show that all cycles

in the graph GL of a finite lattice L satisfying the Jordan-Holder chain condi-

tion are even (the converse does not hold). Now let a>fr. If there is an

element c such that c£＼a, b~＼g＼J＼b,a~＼g,then either 1) or 2) or 3) holds, where:

1) d(a, c)=d{b, c); 2) a<c and b is on an a ― c geodesic; 3) c<b and a is on

a b―c geodesic. If 1) holds, then the edge (a, b) and the c―a and c―b

geodesies constitute an odd cycle (or they contain an odd cycle as a proper

subset); a contradiction. In the case 2) there are two b―c chains of unequal

lengths, which is absurd; a similar contradiction is obtained in the case 3).

Hence [a, b~＼gU[b,a]g = L. If c<E[a, blgr＼^b, a＼g, then some c―b geodesic

goes through a and some c―a geodesic through b, and thus we have the

equations d(c, b)―i+d(a, c) and d(c, a)=l+d(b, c). These two equations imply

that 2=0, which is absurd. Hence [a, b~＼gn[b, a]g = 0, and thus the g-an-

nihilator [a, blg is prime in L.

Let [a, b~]gbe a prime g-annihilator. If neither a covers b nor b covers a,

there is at least one element c on a b―a geodesic, c^a, b. Clearly c£＼a, b~]g

and c£＼b, a]g, whence [a,b~＼g cannot be prime; a contradiction. Thus d^-b

or by~a, and the first part of the proof follows.

Let, conversely, [a, b~＼gbe prime if and only if a^-b or b^-a. If there is

an odd cycle in GL, there is also an odd minimal cycle, and let us consider it.

Select a and b from this cycle (a>-6), and because it is odd and minimal, there

is an element c such that d(c, a)=d{c, b). This implies c<£.[a,b~＼gand c£

＼b,a~＼g,whence the g-annihilator [a, b~]gis not prime although a^-b; a con-

tradiction. Hence every cycle in GL is even. Assume now that p and q, p>q,

are two elements of L with two maximal p―q chains C(p, q) and C'(p, q) of

unequal lengths. We may certainly choose the pair p, q minimal such that for

all other pairs u, v with u>v and d{u, v)<d(p, q), any two maximal u―v

chains are of equal lengths. Let C(p, q) be the longer chain, and choose the

elements a and b from C(p, q) such that a―q and b^-a. Now, p should belong

to [b, a~＼gby the distance condition, but because p>b, p£＼b, a＼g. The mini-

mality of p and q and the distance condition imply now that p<£[a, b~]g,and

thus [b, a~＼gis not prime although by-a ; a contradiction. Hence every pair of

maximal p―q chains are of the same length, and the validity of the Jordan-
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Holder chain condition in L follows.

The end of the firstpart of the proof shows that the condition a^-b or

by-a is necessary for the primeness of ＼a,b~＼gin a finitelattice.

The Jordan-Holder chain condition implies an interesting intersection property

given in

Theorem 3. In a finitelattice L satisfying the Jordan-Holder chain condi-

tion, every g-annihilator is an intersectionof prime g-annihilators.

Proof. Let L be a finite lattice satisfying the Jordan-Holder chain condi-

tion, ＼b,a~＼ga given g-annihilator and c an element, c<£＼b,a~＼g. If we can

show the existence of a prime g-annihilator [e, f~＼gsuch that [b, a~]g(Z＼e,f~＼e

and c$.＼e, f~＼g,then the asserted intersection property follows. Note that the

intersection of any two £-annihilators in L need not be an g-annihilator. If

dy-b or by=-a holds, then [b, a~＼gis the desired prime ^-annihilator by Theorem

2. Hence we assume now that every a―b geodesic of GL contains elements

distinct from a and b, and let one a―b geodesic be a = a0, au a2, ■■■, an=b,

where Gj>-Gi+1 or ai+iy~ai for i=0, 1, ･･■, n ―1. Assume that c^.[ai+i, ai~]gfor

some i, O^z^n ―1. If t^[b, a~＼g,then a lies on a t―b geodesic which also

goes through at and ai+1. Then some t―ai+l geodesic goes through aif and

thus t&[ai+1, dilg. Accordingly, ＼b,a~＼gCL＼ai+i,ai~＼g,and so r^t+i^ o-i＼is the

desired prime ^--annihilator. Assume now that c(E[ai+1> a{＼g for all i, 0^2^

n ―1, and let d(c, b)=d{c, an). Because c^＼an, an-ilg, the point an-i is on a

c―an geodesic, and thus d(c, an)^d{c, an_1)+l. Similarly we see that

d(c, an-i)>d(c, an_2)+l, d(c, an-2)>d(c, an_3)+l, ･･･, d{c, a1)^<i(c, ao)+L By

combining these results we obtain d(c, b)―d{c, an)^d{c, ao)+n = d(c, a)-rn,

which implies that c^lb, a~＼e.This is absurd, and hence c^＼ai+1, di~＼for some

i, 0<i<n ―l, and the theorem follows.

3. Weak semimodularity

In the following we examine the effect of substituting annihilators by g-

annihilators: The set of ideals which are g-annihilatorsis not sufficientlydense

in a finite lattice satisfying the Jordan-Holder chain condition, but it is dense

enough in finitesemimordular lattices and the condition of semimodularity can

be weakened, as will be shown.

We firstshow a connection between ideals and p--annihilators.

Theorem 4. In a finite lattice L satisfying the Jordan-Holder chain condition,
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every ideal is a g-annihilator.

Proof. Let / be an ideal, and because L is finite, /=(a] for some aeL.

We prove that [1, a＼g={a~＼. If x^a, then xefl, a~＼ebecause of the Jordan-

Holder chain condition. Thus (a]c["l, a~＼g. Assume now that [1, a~＼gcontains

an element x£(a~＼. Then the x―1 geodesic through a consists of the follow-

ing pieces of chains: x = s0＼s1/'s2＼---/'sn_1＼sn(or x = So/ls1＼s2/'---/tsn-1＼sn),

where sn<a. Let t be an element such that sn-i^t^-sn. Now, t<jta, because

if t^a, a minimum length t―1 path is the chain from t to 1, and then the

point sn is not on the x ―1 geodesic, which is absurd. There are now two

sn ―1 chains: one through t and another through a, both of which are of the

same length because of the Jordan-Holder chain condition. But this contradicts

the assumption that a t―1 geodesic goes through the elements sn and a, and

hence [1, a~＼gc(a~].Accordingly, [1, o.~＼g=(a],and the theorem follows.

A finite lattice L is weakly semimodular if, when aAb-<^a, b then either

a, b-^ayb or the conditions (l)-(3) below hold:

(1) all maximal aAb―aVb chains are of the same length;

(2) if aAb<c<a＼/b and aA.fr<c, then every e>c satisfies the relation

aAb<e£aVb;

(3) if aAb<c^e<aVb, then there are at least two elements h, k, aAb<

h, k<a＼Jb, covering c.

The definiton of the weak semimodularity shows that every semimodular

lattice is weakly semimodular. A lattice L with the chains 0-<^a-<^g-<(l; 0-<^

a^/z-<l; 0-<&<j≪<1 and 0-<£h</-<1 is weakly semimodular but not semimodular.

The next theorem gives a connection between weak semimodularity and the

Jordan-Holder chain condition.

Thforem 5. A finiteweakly semimodular latticeL satisfiesthe Jordan-Holder

chain condition.

Proof. Let C ―{a0, ･■■, an＼,O=ao-^<Zi-<^a2^ ―<^an―1, be a maximal chain

of length n in L. We prove that any other 0―1 chain is also of length n by

induction on n (cf. the proof of [4, Theorem IV. 2.1]). If n ―＼, then the

theorem holds obviously, and so we assume that the theorem holds for all

lengths Kn. Let C' = {b0, bu ･･･, bm}, Q―bo~K.b1-<^----<ibm―l,be another maximal

0―1 chain in L. If ai=bu then the induction assumption implies the equality

n=m. If a^bi, then let C" be a maximal chain in [fliV^O of length k.

Because of the weak semimodularity (0=aiAbr<ai, 60, the length of the ax―

ax＼Jbxchain is t^l as well as the length of the bx―ax＼/bichain. The lengths



410 Juhani Nieminen

of the maximal chains in [aO are equal by the induction assumption, and thus

n ―l ―k+t. Similarly we see that m―l ―k+t, and accordingly, n―m. This

completes the proof.

If L is a lattice of two disjoint0―1 chains 0^ai≪<a2<"-<an<l and 0-<

bi-Kbi-^'-'^bn-Kl, n~^3,there is no ideal /, which is prime as a g-annihilator,

separating the ideal I=(a{] and the point a2. Clearly, this lattice L satisfies

the Jordan-Holder chain condition, and thus a stronger structural condition is

needed for this kind of separation. The next theorem shows that weak semi-

modularitv is sufficient.

Theorem 6. In a finite weakly seminodular lattice L, there is for any ideal

I and any element u£I an ideal J, which is prime as a g-annihilator,separating

T and u.

Proof. Let / be an ideal in the weakly semimodular lattice L not con-

taining the element u, and let {b~＼be an ideal containing / and maximal with

respect to not containing u. The maximality of (b~]implies that b^uVb, and

further, that uVb is the only element covering b. Indeed, if there is an element

ci^uyb, b^c, then c and uVb have two disjoint maximal lower bounds, namely

b and q^u, which is absurd. Because weak semimodularity implies the Jordan-

Holder chain condition and because b^uVb, the g-annihilator ＼uVb, b~＼gis prime

by Theorem 2. Obviously, (b~＼(Z＼u＼/b,b~＼g,and thus it remains to show that

[uVb, b~＼gd(b']. Assume that ＼u＼/b,b~＼Bcontains an element x£(b~]. Then the

x―b＼Ju geodesic through b consists of the following pieces of chains: x=so＼

Si/1S2＼"-/'sn_i＼sn(or x = so/"s1＼s2/l---/'sn-i＼Sn), where sn^b. Let t be an

element such that sn-i^t^sn. Obviously, t<P>, and because t is on the x―bVu

geodesic, t&[bVu, b~＼g.Let sn=Co-<Cr<<:2-<----<cm=& be a b―sn chain. Now,

Co-=＼Ci,t. If Ci, t-^CiVt, we continue by considering the elements c2, dVty-Ci.

If cu t-^CiVt, then by weak semimodularity there is an integer p such that

cp^Ci＼Zt=c2＼/t=---―Cp＼/'t. Moreover, there are elements tu t2,･･･, tp such that

t―t1-<Cjt2^---~<Sv^scp＼/t=c1＼/t. In this case we continue by considering the

elements cpVt, cv+ly-cp. In both cases, the essential thing is that the c0―cxV£

chains (one through cx and another through 0 are of the same length. When

Ci-Kc2,tVc1, we have two cases: c2,t＼/c1-<(t＼/c1＼/c2―tWc2 or c2,t＼/c1-j^t＼/c2,

where the latter case needs the same special rules of weak semimodularity as

the case of clt t-^Ci＼/t above. Similarly, when Cp-<cp+1, tVcp, we have two

cases: cp+1, t＼ycp-<^t＼'cp＼/Cp+1―t＼/cp+1or cp+ut＼/cPiCJ:＼/cp+l, where the latter

case needs the special rules of weak semimodularity. We can continue the
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process of joining t to the elements of the chain c0,clf･･･, cm and obtain another

chain t,t＼'cut＼Zc2,･■■, tVcm, where two consecutive elements may coincide but

where the lengths of the co―cm and t―t＼/cm chains are equal. Because t<^b―

cm, we have t＼/cm>b.

If t＼Jcn―b＼'u,then the t―b＼Ju geodesic does not contain b, whence t£

[u＼Zb,b~＼g;a contradiction. Thus ＼b＼fu,b~＼gCL{b~]in this case, and we are

done. The another possible case is tVcm>b＼'u. Let t＼fcrbean element such

that t＼'Cr>Cr and t＼ycr―---tycm-1-=tVcm. By the assumption, b＼/u<t＼/cm,

and thus r^m―l. Because cr-^cr+i, t＼/cr,the element tVcm is reached from

cr+i and t＼/crby the special rules of weak semimodularity. Now, cr<b-<^b＼/

u<t'VcT, and then, by (3), b has at least two covering elements, which is

absurd, because b＼/u was the only element covering b. Hence the case b＼Ju<

t'Vcm is impossible, and the theorem follows.

There are two interesting open problems we have not been able to solve:

1) Does the intersection property of Theorem 3 imply the Jordan-Holder

chain condition? and

2) does the separation property of Theorem 6 imply weak semimodularity?
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