THE JORDAN-HÖLDER CHAIN CONDITION AND ANNIHILATORS IN FINITE LATTICES

By

Juhani NIEMINEN

Abstract The Jordan-Hölder chain condition is characterized by means of prime annihilators in finite lattices. The intersection property of prime annihilators is considered.

1. Introduction and basic concepts

Ideals play a very important role in the analysis of lattices. Mandelker introduced in [6] the notion of the (relative) annihilator: this concept generalizes the notion of ideal as well as that of relative pseudocomplement. Mandelker characterized the distributivity and modularity of a lattice by means of annihilators, and later on, annihilators were used for obtaining other characterizations in lattices, see e.g. [2] and [7]. All these characterizations used the relative pseudocomplement aspect of annihilators, and the first paper, where the ideal aspect of annihilators was used, was [3], where the modularity of finite lattices is characterized by means of prime annihilators. This paper continues the line of [3], and shows how one can replace ideals by annihilatiors in finite lattices in order to obtain new results on semimodularity and the Jordan-Hölder chain condition.

In this paper we consider finite lattices only. Let L be a lattice. The set $\langle a, b \rangle = \{x \mid x \land a \leq b\}$ is an annihilator of L, and its dual $\langle a, b \rangle_d = \{x \mid x \lor a \geq b\}$ is a dual annihilator. One can easily show [3] that $\langle a, b \rangle = \langle a, a \land b \rangle$, and dually, that $\langle c, f \rangle_d = \langle c, c \lor f \rangle_d$. If $a \leq b$, then $x \land a \leq b$ for every $x \in L$, and thus $\langle a, b \rangle = L$. If 1 is the gratest element of L, then $\langle 1, a \rangle = \langle a \rceil = \{x \mid x \leq a\}$. An annihilator $\langle a, b \rangle \neq L$ is called prime, if

 $\langle a, b \rangle \cup \langle b, a \rangle_d = L$ and $\langle a, a \wedge b \rangle \cap \langle a \wedge b, a \rangle_d = \emptyset$.

One can show that in a distributive lattice every prime annihilator is a prime ideal and vice versa [3]. It should be emphasised that the primeness of $\langle a, b \rangle$ depends upon the elements a and b rather than the set $\langle a, b \rangle$: in a three-

Received October 19, 1987. Revised October 9, 1989.

element chain 0 < a < 1, we have $\langle 1, 0 \rangle = \{0\} = \langle a, 0 \rangle$ while $\langle a, 0 \rangle$ is prime but $\langle 1, 0 \rangle$ is not.

As usually, an element a covers an element b, in symbols a > b, if a > band if $a \ge c \ge b$ implies either a = c or b = c. Note that if an annihilator $\langle a, b \rangle$ is prime in a lattice L, then a > b by [3].

2. The Jordan-Hölder chain condition

Let L be a finite lattice and G_L the undirected Hasse diagram graph of L. The length of a shortest a-b path in the graph G_L is the distance d(a, b) between the elements a and b in L. In graph theory, a shortest path is frequently called a geodesic. The set $[a, b]_g$ is called a geodetic annihilator, briefly a g-annihilator, if $[a, b]_g = \{x \mid b \text{ is on an } x-a \text{ geodesic in } G_L, x \not> a \text{ if } a > b$, and x < a if a < b}. A g-annihilator $[a, b]_g$ is called prime if

$$[a, b]_g \cup [b, a]_g = L$$
 and $[a, b]_g \cap [b, a]_g = \emptyset$.

In finite distributive lattices the two annihilator concepts have a connection as shown in

THEOREM 1. Let L be a finite distributive lattice. Then the equality $\lceil a, b \rceil_g = \langle a, b \rangle \cap \langle a, b \rangle_a$ holds for every pair $a, b \in L$.

PROOF. Let $x \in [a, b] := \langle a, b \rangle \cap \langle a, b \rangle_a = \{z | z \land a \leq b\} \cap \{z | z \lor a \geq b\} = \{z | z \land a \leq b \leq z \lor a\}$. Thus $a \land x \leq b \leq a \lor x$. Because *L* is distributive, one u - v geodesic goes through $u \land v$ and another through $u \lor v$ for any pair $u, v \in L$, and hence some x - a geodesic goes through $x \land a$. The relation $x \land a \leq b$ implies that $x \land a \leq x \land b \leq x$, and further that $x \land a \leq a \land b \leq b$. Now, the part $x \land b - x \land a - b \land a$ of an x - a geodesic through $x \land a$ can be substituted by an $x \land b - b \land a$ geodesic also goes through the element $(x \land b) \lor (b \land a) = b \land (x \lor a) = b$. Thus an x - a geodesic also goes through the element b, and, consequently, $x \in [a, b]_g$ and $\lfloor a, b \rfloor \subset [a, b]_g$. Let $x \in [a, b]_g$, whence b is on some a - x geodesic in G_L . The well known results on medians in finite distributive lattices [1] imply now that $x \land a \leq b \leq x \lor a$, and thus $[a, b]_g \subset [a, b]$. Accordingly, $[a, b]_g = [a, b]$, and the theorem follows.

The following theorem characterizes the Jordan-Hölder chain condition.

THEOREM 2. Let L be a finite lattice. The lattice L satisfies the Jordan-Hölder chain condition if and only if the condition (i) below holds:

(i) A g-annihilator $[a, b]_g$ is prime if and only if a > b or b > a.

406

PROOF. Let L satisfy the Jordan-Hölder chain condition. The cycle $\{a_0, a_1, \dots, a_n\}$ of a graph G is a collection of elements (points) of G such that (a_0, a_1) , (a_1, a_2) , \cdots , (a_{n-1}, a_n) are edges in G and $a_i \neq a_j$ for $i, j=0, \cdots$, $n, i \neq j$, with the exception $a_0 = a_n$. A cycle is even, if the number n of edges on the cycle is even. In the latter part of this proof we use the fact that the cycles of a graph are ordered by set inclusion. One can show that all cycles in the graph G_L of a finite lattice L satisfying the Jordan-Hölder chain condition are even (the converse does not hold). Now let a > b. If there is an element c such that $c \notin [a, b]_g \cup [b, a]_g$, then either 1) or 2) or 3) holds, where: 1) d(a, c)=d(b, c); 2) a < c and b is on an a-c geodesic; 3) c < b and a is on a b-c geodesic. If 1) holds, then the edge (a, b) and the c-a and c-bgeodesics constitute an odd cycle (or they contain an odd cycle as a proper subset); a contradiction. In the case 2) there are two b-c chains of unequal lengths, which is absurd; a similar contradiction is obtained in the case 3). Hence $[a, b]_g \cup [b, a]_g = L$. If $c \in [a, b]_g \cap [b, a]_g$, then some c-b geodesic goes through a and some c-a geodesic through b, and thus we have the equations d(c, b) = 1 + d(a, c) and d(c, a) = 1 + d(b, c). These two equations imply Hence $[a, b]_g \cap [b, a]_g = \emptyset$, and thus the g-anthat 2=0, which is absurd. nihilator $\lceil a, b \rceil_g$ is prime in L.

Let $[a, b]_g$ be a prime g-annihilator. If neither a covers b nor b covers a, there is at least one element c on a b-a geodesic, $c \neq a, b$. Clearly $c \notin [a, b]_g$ and $c \notin [b, a]_g$, whence $[a, b]_g$ cannot be prime; a contradiction. Thus a > bor b > a, and the first part of the proof follows.

Let, conversely, $[a, b]_g$ be prime if and only if a > b or b > a. If there is an odd cycle in G_L , there is also an odd minimal cycle, and let us consider it. Select a and b from this cycle (a > b), and because it is odd and minimal, there is an element c such that d(c, a) = d(c, b). This implies $c \notin [a, b]_g$ and $c \notin [b, a]_g$, whence the g-annihilator $[a, b]_g$ is not prime although a > b; a contradiction. Hence every cycle in G_L is even. Assume now that p and q, p > q, are two elements of L with two maximal p-q chains C(p,q) and C'(p,q) of unequal lengths. We may certainly choose the pair p, q minimal such that for all other pairs u, v with u > v and d(u, v) < d(p, q), any two maximal u-vchains are of equal lengths. Let C(p,q) be the longer chain, and choose the elements a and b from C(p,q) such that a=q and b > a. Now, p should belong to $[b, a]_g$ by the distance condition, but because $p > b, p \notin [b, a]_g$. The minimality of p and q and the distance condition imply now that $p \notin [a, b]_g$, and thus $[b, a]_g$ is not prime although b > a; a contradiction. Hence every pair of maximal p-q chains are of the same length, and the validity of the JordanHölder chain condition in L follows.

The end of the first part of the proof shows that the condition a > b or b > a is necessary for the primeness of $[a, b]_g$ in a finite lattice.

The Jordan-Hölder chain condition implies an interesting intersection property given in

THEOREM 3. In a finite lattice L satisfying the Jordan-Hölder chain condition, every g-annihilator is an intersection of prime g-annihilators.

PROOF. Let L be a finite lattice satisfying the Jordan-Hölder chain condition, $[b, a]_g$ a given g-annihilator and c an element, $c \notin [b, a]_g$. If we can show the existence of a prime g-annihilator $[e, f]_g$ such that $[b, a]_g \subset [e, f]_g$ and $c \notin \lceil e, f \rceil_g$, then the asserted intersection property follows. Note that the intersection of any two g-annihilators in L need not be an g-annihilator. If a > b or b > a holds, then $[b, a]_g$ is the desired prime g-annihilator by Theorem 2. Hence we assume now that every a-b geodesic of G_L contains elements distinct from a and b, and let one a-b geodesic be $a=a_0, a_1, a_2, \cdots, a_n=b$, where $a_i > a_{i+1}$ or $a_{i+1} > a_i$ for $i=0, 1, \dots, n-1$. Assume that $c \notin \lceil a_{i+1}, a_i \rceil_g$ for some $i, 0 \leq i \leq n-1$. If $t \in \lceil b, a \rceil_g$, then a lies on a t-b geodesic which also goes through a_i and a_{i+1} . Then some $t-a_{i+1}$ geodesic goes through a_i , and thus $t \in \lceil a_{i+1}, a_i \rceil_g$. Accordingly, $\lceil b, a \rceil_g \subset \lceil a_{i+1}, a_i \rceil_g$, and so $\lceil a_{i+1}, a_i \rceil$ is the desired prime g-annihilator. Assume now that $c \in [a_{i+1}, a_i]_g$ for all $i, 0 \leq i \leq j$ n-1, and let $d(c, b) = d(c, a_n)$. Because $c \in [a_n, a_{n-1}]_g$, the point a_{n-1} is on a $c-a_n$ geodesic, and thus $d(c, a_n) \ge d(c, a_{n-1}) + 1$. Similarly we see that $d(c, a_{n-1}) \ge d(c, a_{n-2}) + 1, \ d(c, a_{n-2}) \ge d(c, a_{n-3}) + 1, \ \cdots, \ d(c, a_1) \ge d(c, a_0) + 1.$ By combining these results we obtain $d(c, b) = d(c, a_n) \ge d(c, a_0) + n = d(c, a) + n$, which implies that $c \in \lceil b, a \rceil_g$. This is absurd, and hence $c \notin \lceil a_{i+1}, a_i \rceil$ for some i, $0 \leq i \leq n-1$, and the theorem follows.

3. Weak semimodularity

In the following we examine the effect of substituting annihilators by g-annihilators: The set of ideals which are g-annihilators is not sufficiently dense in a finite lattice satisfying the Jordan-Hölder chain condition, but it is dense enough in finite semimordular lattices and the condition of semimodularity can be weakened, as will be shown.

We first show a connection between ideals and g-annihilators.

THEOREM 4. In a finite lattice L satisfying the Jordan-Hölder chain condition,

408

every ideal is a g-annihilator.

PROOF. Let *I* be an ideal, and because *L* is finite, I=(a] for some $a \in L$. We prove that $[1, a]_g=(a]$. If $x \leq a$, then $x \in [1, a]_g$ because of the Jordan-Hölder chain condition. Thus $(a] \subset [1, a]_g$. Assume now that $[1, a]_g$ contains an element $x \notin (a]$. Then the x-1 geodesic through *a* consists of the following pieces of chains: $x=s_0 \ s_1 \ s_2 \ \cdots \ s_{n-1} \ s_n$ (or $x=s_0 \ s_1 \ s_2 \ \cdots \ s_{n-1} \ s_n$), where $s_n \leq a$. Let *t* be an element such that $s_{n-1} \geq t > s_n$. Now, $t \not < a$, because if $t \leq a$, a minimum length t-1 path is the chain from *t* to 1, and then the point s_n is not on the x-1 geodesic, which is absurd. There are now two s_n-1 chains: one through *t* and another through *a*, both of which are of the same length because of the Jordan-Hölder chain condition. But this contradicts the assumption that a t-1 geodesic goes through the elements s_n and *a*, and hence $[1, a]_g \subset (a]$. Accordingly, $[1, a]_g=(a]$, and the theorem follows.

A finite lattice L is weakly semimodular if, when $a \wedge b \prec a, b$ then either $a, b \prec a \lor b$ or the conditions (1)-(3) below hold:

(1) all maximal $a \wedge b - a \vee b$ chains are of the same length;

(2) if $a \wedge b < c < a \lor b$ and $a \wedge b < c$, then every e > c satisfies the relation $a \wedge b < e \le a \lor b$;

(3) if $a \wedge b < c < e < a \lor b$, then there are at least two elements h, k, $a \wedge b < h$, $k < a \lor b$, covering c.

The definiton of the weak semimodularity shows that every semimodular lattice is weakly semimodular. A lattice L with the chains 0 < a < g < 1; 0 < a < h < 1; 0 < b < i < 1 and 0 < b < j < 1 is weakly semimodular but not semimodular. The next theorem gives a connection between weak semimodularity and the Jordan-Hölder chain condition.

THFOREM 5. A finite weakly semimodular lattice L satisfies the Jordan-Hölder chain condition.

PROOF. Let $C = \{a_0, \dots, a_n\}, 0 = a_0 \prec a_1 \prec a_2 \prec \dots \prec a_n = 1$, be a maximal chain of length *n* in *L*. We prove that any other 0-1 chain is also of length *n* by induction on *n* (cf. the proof of [4, Theorem IV. 2.1]). If *n*=1, then the theorem holds obviously, and so we assume that the theorem holds for all lengths $l \lt n$. Let $C' = \{b_0, b_1, \dots, b_m\}, 0 = b_0 \prec b_1 \prec \dots \prec b_m = 1$, be another maximal 0-1 chain in *L*. If $a_1 = b_1$, then the induction assumption implies the equality n=m. If $a_1 \neq b_1$, then let C'' be a maximal chain in $[a_1 \lor b_1)$ of length *k*. Because of the weak semimodularity $(0 = a_1 \land b_1 \prec a_1, b_1)$, the length of the $a_1 - a_1 \lor b_1$ chain is $t \ge 1$ as well as the length of the $b_1 - a_1 \lor b_1$ chain. The lengths of the maximal chains in $[a_1)$ are equal by the induction assumption, and thus n-1=k+t. Similarly we see that m-1=k+t, and accordingly, n=m. This completes the proof.

If L is a lattice of two disjoint 0-1 chains $0 < a_1 < a_2 < \cdots < a_n < 1$ and $0 < b_1 < b_2 < \cdots < b_n < 1$, $n \ge 3$, there is no ideal J, which is prime as a g-annihilator, separating the ideal $I=(a_1]$ and the point a_2 . Clearly, this lattice L satisfies the Jordan-Hölder chain condition, and thus a stronger structural condition is needed for this kind of separation. The next theorem shows that weak semi-modularity is sufficient.

THEOREM 6. In a finite weakly seminodular lattice L, there is for any ideal I and any element $u \notin I$ an ideal J, which is prime as a g-annihilator, separating I and u.

PROOF. Let I be an ideal in the weakly semimodular lattice L not containing the element u, and let (b] be an ideal containing I and maximal with respect to not containing u. The maximality of (b] implies that $b \prec u \lor b$, and further, that $u \lor b$ is the only element covering b. Indeed, if there is an element $c \neq u \lor b$, $b \lt c$, then c and $u \lor b$ have two disjoint maximal lower bounds, namely b and $q \ge u$, which is absurd. Because weak semimodularity implies the Jordan-Hölder chain condition and because $b \lt u \lor b$, the g-annihilator $\lceil u \lor b, b \rceil_g$ is prime by Theorem 2. Obviously, $(b] \subset [u \lor b, b]_g$, and thus it remains to show that $\lceil u \lor b, b \rceil_g \subset (b]$. Assume that $\lceil u \lor b, b \rceil_g$ contains an element $x \notin (b]$. Then the $x-b \lor u$ geodesic through b consists of the following pieces of chains: $x=s_0 \lor$ $s_1 \nearrow s_2 \searrow \cdots \nearrow s_{n-1} \searrow s_n$ (or $x = s_0 \nearrow s_1 \searrow s_2 \nearrow \cdots \nearrow s_{n-1} \searrow s_n$), where $s_n \le b$. Let t be an element such that $s_{n-1} \ge t \prec s_n$. Obviously, $t \not\prec b$, and because t is on the $x - b \lor u$ geodesic, $t \in [b \lor u, b]_g$. Let $s_n = c_0 \lt c_1 \lt c_2 \lt \cdots \lt c_m = b$ be a $b - s_n$ chain. Now, $c_0 \prec c_1$, t. If $c_1, t \prec c_1 \lor t$, we continue by considering the elements $c_2, c_1 \lor t \succ c_1$. If $c_1, t \not\prec c_1 \lor t$, then by weak semimodularity there is an integer p such that $c_p \prec c_1 \lor t = c_2 \lor t = \cdots = c_p \lor t$. Moreover, there are elements t_1, t_2, \cdots, t_p such that $t=t_1 \prec t_2 \prec \cdots \prec t_p \prec c_p \lor t=c_1 \lor t$. In this case we continue by considering the elements $c_p \lor t$, $c_{p+1} \succ c_p$. In both cases, the essential thing is that the $c_0 - c_1 \lor t$ chains (one through c_1 and another through t) are of the same length. When $c_1 \prec c_2, t \lor c_1$, we have two cases: $c_2, t \lor c_1 \prec t \lor c_1 \lor c_2 = t \lor c_2$ or $c_2, t \lor c_1 \prec t \lor c_2$, where the latter case needs the same special rules of weak semimodularity as the case of $c_1, t \not\prec c_1 \lor t$ above. Similarly, when $c_p \prec c_{p+1}, t \lor c_p$, we have two cases: c_{p+1} , $t \lor c_p \prec t \lor c_p \lor c_{p+1} = t \lor c_{p+1}$ or c_{p+1} , $t \lor c_p \prec t \lor c_{p+1}$, where the latter case needs the special rules of weak semimodularity. We can continue the

process of joining t to the elements of the chain c_0, c_1, \dots, c_m and obtain another chain $t, t \vee c_1, t \vee c_2, \dots, t \vee c_m$, where two consecutive elements may coincide but where the lengths of the c_0-c_m and $t-t \vee c_m$ chains are equal. Because $t \not< b = c_m$, we have $t \vee c_m > b$.

If $t \lor c_m = b \lor u$, then the $t - b \lor u$ geodesic does not contain b, whence $t \notin [u \lor b, b]_g$; a contradiction. Thus $[b \lor u, b]_g \subset (b]$ in this case, and we are done. The another possible case is $t \lor c_m > b \lor u$. Let $t \lor c_r$ be an element such that $t \lor c_r \succ c_r$ and $t \lor c_r = \cdots t \lor c_{m-1} = t \lor c_m$. By the assumption, $b \lor u < t \lor c_m$, and thus $r \le m-1$. Because $c_r < c_{r+1}, t \lor c_r$, the element $t \lor c_m$ is reached from c_{r+1} and $t \lor c_r$ by the special rules of weak semimodularity. Now, $c_r < b < b \lor u < t \lor c_r$, and then, by (3), b has at least two covering elements, which is absurd, because $b \lor u$ was the only element covering b. Hence the case $b \lor u < t \lor c_m$ is impossible, and the theorem follows.

There are two interesting open problems we have not been able to solve:

1) Does the intersection property of Theorem 3 imply the Jordan-Hölder chain condition? and

2) does the separation property of Theorem 6 imply weak semimodularity?

Acknowledgement. The author would like to thank the referee for her/his valuable comments and suggestions.

References

- [1] Bandelt, H. and Hedlikova, J., Median algebras, Discrete Math. 45 (1983), 1-30.
- [2] Cornish, W.H., Normal lattices, J. Australian Math. Soc. 14 (1972), 200-215.
- [3] Davey, B. and Nieminen, J., Annihilators in modular lattices, Algebra Universalis 22 (1986), 154-158.
- [4] Grätzer, G., General lattice theory, Birkhäuser Verlag, Basel und Stuttgart, 1978.
- [5] Kinugawa, S. and Hashimoto, J., On relative maximal ideals in lattices, Proc. Japan Acad. 42 (1966), 1-4.
- [6] Mandelker, M., Relative annihilators in lattices, Duke Math. J. 37 (1970), 377-386.
- [7] Shum, K.P., Chan, M.W., Lai, C.K. and So, K.Y., Characterizations for prime semilattices, Can. J. Math. 37 (1985), 1059-1073.

Department of Mathematics Faculty of Technology University of Oulu 90570 Oulu, Finland