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THE JORDAN-HOLDER CHAIN CONDITION AND
ANNIHILATORS IN FINITE LATTICES

By

Juhani NIEMINEN

Abstract The Jordan-Holder chain condition is characterized by
means of prime annihilators in finite lattices. The intersection
property of prime annihilators is considered.

1. Intreduction and basic concepts

Ideals play a very important role in the analysis of lattices. Mandelker
introduced in [6] the notion of the (relative) annihilator: this concept generalizes
the notion of ideal as well as that of relative pseudocomplement. Mandelker
characterized the distributivity and modularity of a lattice by means of an-
nihilators, and later on, annihilators were used for obtaining other characteriza-
tions in lattices, see e.g. [2] and [7]. All these characterizations used the
relative pseudocomplement aspect of annihilators, and the first paper, where
the ideal aspect of annihilators was used, was [3], where the modularity of
finite lattices is characterized by means of prime annihilators. This paper con-
tinues the line of [3], and shows how one can replace ideals by annihilatiors
in finite lattices in order to obtain new results on semimodularity and the
Jordan-Holder chain condition.

In this paper we consider finite lattices only. Let L be a lattice. The set
{a, bp={x|xNa=<b} is an annihilator of L, and its dual <a, bps={x|xV a=b}
is a dual annihilator. One can easily show [3] that <a, bp=<a, aAb), and
dually, that <{c¢, frs=<c, c\Vfrs. If a<b, then xANa<b for every x=L, and
thus <a, b=L. If 1 is the gratest element of L, then <1, ad=(a]l={x|x<a}.
An annihilator <a, b+ L is called prime, if

{a, b)Y\ Kb, ays=L and <a, aAb)N{aNb, ade=@ .

One can show that in a distributive lattice every prime annihilator is a prime
ideal and vice versa [3]. It should be emphasised that the primeness of <a, b)>
depends upon the elements ¢ and b rather than the set <q, b>: in a three-
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element chain 0<a<1, we have <1, 0>={0}=<a, 0> while <{a, 0> is prime but
<1, 0> is not.

As usually, an element a covers an element b, in symbols a>>b, if a>b
and if a=c=b implies either a=c or b=c. Note that if an annihilator <{a, b}
is prime in a lattice L, then a)>b by [3].

2. The Jordan-Holder chain condition

Let L be a finite lattice and G, the undirected Hasse diagram graph of L.
The length of a shortest a—b path in the graph G; is the distance d(a, b)
between the elements ¢ and b in L. In graph theory, a shortest path is
frequently called a geodesic. The set [a, b1, is called a geodetic annihilator,
briefly a g-annihilator, if [a, b1,={x|b is on an x—a geodesic in Gz, x%a if
a>b, and x<a if a<b}. A g-annihilator [a, b1, is called prime if

[a, b1,Ulb, al,=L and [a, b1,N[b, al,=@.

In finite distributive lattices the two annihilator concepts have a connection as
shown in

THEOREM 1. Let L be a finite distributive lattice. Then the equality Ta, b,
=<a, bpN<a, b)Y, holds for every pair a, b= L.

PRrROOF. Let x<|a, b]:=<a, bpN<a, bpg={z|zAasbiN{z|zVa=bl={z|zA
a<b<zVa}. Thus aAx<b<eae\Vx. Because L is distributive, one x—v geodesic
goes through uAv and another through u\/v for any pair u, veL, and hence
some x-—a geodesic goes through xAa. The relation x Aa<b implies that
xANa<xAb<Zx, and further that x Aa<aAb<b. Now, the part xAb—xNa—
bAa of an x—a geodesic through xAa can be substituted by an xAb—bAa
geodesic through the element (x AbL)V(A@)=bA(xVa)=b. Thus an x—a
geodesic also goes through the element b, and, consequently, x<[a, b1, and
la, blCla, b],. Let x<[a,bl,, whence b is on some a—x geodesic in Gy .
The well known results on medians in finite distributive lattices [1] imply now
that x Aa<b<xVa, and thus [a, b1,C|a, b]. Accordingly, [a, bl,=la, b],
and the theorem follows.

The following theorem characterizes the Jordan-Hoélder chain condition.

THEOREM 2. Let L be a finite lattice. The lattice L satisfies the Jordan-
Holder chain condition if and only if the condition (i) below holds:
(i) A g-annihilator Ta, b, is prime if and only if a>>b or b>-a.
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Proor. Let L satisfy the Jordan-Holder chain condition. The cycle
{as, a1, -+, an} of a graph G is a collection of elements (points) of G such
that (a, ay), (@i, @s), -+, (@n-1, @) are edges in G and a;#a; for 7, j=0, -,
n, 1#j, with the exception a,=a,. A cycle is even, if the number n of edges
on the cycle is even. In the latter part of this proof we use the fact that the
cycles of a graph are ordered by set inclusion. One can show that all cycles
in the graph G, of a finite lattice L satisfying the Jordan-Hélder chain condi-
tion are even (the converse does not hold). Now let a>>b. If there is an
element ¢ such that c&[a, b1, Ufb, al,, then either 1) or 2) or 3) holds, where:
1) d(a, ¢)=d(b, ¢); 2) a<<c and b is on an a—c geodesic; 3) c<b and a is on
a b—c geodesic. If 1) holds, then the edge (a, b) and the c—a and c—b
geodesics constitute an odd cycle (or they contain an odd cycle as a proper
subset); a contradiction. In the case 2) there are two b—c¢ chains of unequal
lengths, which is absurd; a similar contradiction is obtained in the case 3).
Hence [a, b1,Ufb, al,=L. If c=[a, b1,1Tb, al,, then some c—b geodesic
goes through @ and some c—a geodesic through b, and thus we have the
equations d(c, b)=1+d(a, ¢) and d(c, a)=1+4d(b, ¢). These two equations imply
that 2=0, which is absurd. Hence [a, b1,N[b, a],=@, and thus the g-an-
nihilator [a, b1, is prime in L.

Let ['a, b}, be a prime g-annihilator. If neither a covers b nor b covers g,
there is at least one element ¢ on a b—a geodesic, c+#a, b. Clearly c¢&la, b,
and c&[b, al,, whence [a, b], cannot be prime; a contradiction. Thus a>-b
or b>-a, and the first part of the proof follows.

Let, conversely, [a, b], be prime if and only if ¢>>b or b>-a. If there is
an odd cycle in Gz, there is also an odd minimal cycle, and let us consider it.
Select @ and b from this cycle (a>>b), and because it is odd and minimal, there
is an element ¢ such that d(c, a)=d(c, b). This implies cé[a, b, and c¢&
[b, a],, whence the g-annihilator [a, b], is not prime although a>-b; a con-
tradiction. Hence every cycle in G is even. Assume now that p and ¢, p>g,
are two elements of L with two maximal p—q chains C(p, ¢) and C’(p, ¢q) of
unequal lengths. We may certainly choose the pair p, ¢ minimal such that for
all other pairs u, v with u>v and d(u, v)<d(p, ¢), any two maximal u—v
chains are of equal lengths. Let C(p, ¢) be the longer chain, and choose the
elements a¢ and b from C(p, ¢) such that a=¢ and b>>a. Now, p should belong
to [b, al, by the distance condition, but because p>b, p&lb, al,. The mini-
mality of p and ¢ and the distance condition imply now that péfa, b],, and
thus [b, a1, is not prime although b>-a; a contradiction. Hence every pair of
maximal p—¢q chains are of the same length, and the validity of the Jordan-
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Holder chain condition in L follows.

The end of the first part of the proof shows that the condition a>b or
b>-a is necessary for the primeness of [a, b1, in a finite lattice.

The Jordan-Holder chain condition implies an interesting intersection property
given in

THEOREM 3. In a finite lattice L satisfying the Jordan-Holder chain condi-
tion, every g-anmihilator is an intersection of prime g-annihilators.

PRrRoOOF. Let L be a finite lattice satisfying the Jordan-Holder chain condi-
tion, [b, al, a given g-annihilator and ¢ an element, ¢&[b, a],. If we can
show the existence of a prime g-annihilator [e, 7, such that b, a7,CTle, f1,
and c&fle, f1,, then the asserted intersection property follows. Note that the
intersection of any two g-annihilators in L need not be an g-annihilator. If
a>-b or b>>a holds, then [b, a1, is the desired prime g-annihilator by Theorem
2. Hence we assume now that every a—b geodesic of G, contains elements
distinct from a and b, and let one a—b geodesic be a=a,, a;, as, -, ar=b,
where a;>>a;4, or a;+>-a; for =0, 1, ---, n—1. Assume that c&[ a4, a1, for
some ¢, 0=/<n—1. If t&[b, al,, then a lies on a t—b geodesic which also
goes through a; and a,,;,. Then some t—a;,, geodesic goes through a;, and
thus t&Tas4, ail,. Accordingly, [b, a1,C[as4, ail,, and s0 [a;4, a;] is the
desired prime g-annihilator. Assume now that c¢&[a;4y, a1, for all 7, 0<i<
n—1, and let d(c, b)=d(c, a,). Because c=[a,, a,-,1,, the point a,-, is on a
c—a, geodesic, and thus d(c, a,)=d(c, an-,)+1. Similarly we see that
d(¢, an-1)Zd(c, an-2)+1, dc, @n-s)2d(c, an-s)+1, -, d(c, a) 2 d(c, ar)+1. By
combining these results we obtain d(c, b)=d(c, a,)=d(c, a)+n=d(c, a)+n,
which implies that ¢=Tlb, a7,. This is absurd, and hence c&[a;.y, a;] for some
7, 0</<n—1, and the theorem follows.

3. Weak semimodularity

In the following we examine the effect of substituting annihilators by g-
annihilators: The set of ideals which are g-annihilators is not sufficiently dense
in a finite lattice satisfying the Jordan-Holder chain condition, but it is dense
enough in finite semimordular lattices and the condition of semimodularity can
be weakened, as will be shown.

We first show a connection between ideals and g-annihilators.

THEOREM 4. In a finite lattice L satisfying the Jordan-Hélder chain condition,
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every ideal is a g-annthilator.

PrOOF. Let I be an ideal, and because L is finite, I=(e] for some a= L.
We prove that [1, al,=(a]. If x<a, then x<[1, a7, because of the Jordan-
Holder chain condition. Thus (e]JC[1, al,. Assume now that [1, a’], contains
an element x&(a]. Then the x—1 geodesic through a consists of the follow-
ing pieces of chains: x=s,\,8;,7Ss " Sn-1\$z (OF X=38,,78:\\S2,”**Sn-1\iSn)s
where s,<a. Let ¢ be an element such that s,.,=f>s,. Now, t<£a, because
if #=a, a minimum length {—1 path is the chain from ¢ to 1, and then the
point s, is not on the x—1 geodesic, which is absurd. There are now two
sp—1 chains: one through ¢ and another through a, both of which are of the
same length because of the Jordan-Holder chain condition. But this contradicts
the assumption that a t—1 geodesic goes through the elements s, and a, and
hence [1, a7,C(a]. Accordingly, 1, al,=(a], and the theorem follows.

A finite lattice L is weakly semimodular if, when aAb<a,b then either
a, b<a‘/b or the conditions (1)-(3) below hold:

(1) all maximal a Ab—a\/b chains are of the same length;

(2) if anb<c<aVb and aAb<c, then every e>c satisfies the relation
aNb<eZaVb;

(3) if aAb<c<e<laVb, then there are at least two elements h, k, aAb<
h, k<a\b, covering c.

The definiton of the weak semimodularity shows that every semimodular
lattice is weakly semimodular. A lattice L with the chains 0<a<{g<1; 0<<
a<<h<1; 0<b<i<1 and 0<b<j<1 is weakly semimodular but not semimodular.
The next theorem gives a connection between weak semimodularity and the
Jordan-Holder chain condition.

THFOREM 5. A finite weakly semimodular lattice L satisfies the Jordan-Hilder
chain condition.

PrOOF. Let C={a,, -+, a.}, 0=a,<a,<a,< - <a,=1, be a maximal chain
of length n in L. We prove that any other 0—1 chain is also of length »n by
induction on #n (cf. the proof of [4, Theorem IV. 2.1]). If n=1, then the
theorem holds obviously, and so we assume that the theorem holds for all
lengths [<n. Let C'={b,, by, -+, ba}, 0=0,<b,<---<b=1, be another maximal
0—1 chain in L. If a,=b,, then the induction assumption implies the equality
n=m. If a,#0b;,, then let C” be a maximal chain in [a,\vb;) of length k.
Because of the weak semimodularity (0=a,Ab,<{a,, b,), the length of the a,—
a,VVb, chain is t=1 as well as the length of the b,—a,\V/b, chain. The lengths
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of the maximal chains in [a,) are equal by the induction assumption, and thus
n—1=Fk+¢. Similarly we see that m—1=*Fk-t, and accordingly, n=wm. This
completes the proof.

If L is a lattice of two disjoint 0—1 chains 0<a;<a,<-<a,<1 and 0<
b <b,<-+<b,<1, n 23, there is no ideal J, which is prime as a g-annihilator,
separating the ideal /=(a,] and the point a,. Clearly, this lattice I satisfies
the Jordan-Holder chain condition, and thus a stronger structural condition is
needed for this kind of separation. The next theorem shows that weak semi-
modularity is sufficient.

THEOREM 6. In a finite weakly seminodular lattice L, there is for any ideal
I and any element u&I an ideal [, which is prime as a g-annihilator, separating
I and u.

PROOF. Let I be an ideal in the weakly semimodular lattice L not con-
taining the element u, and let (] be an ideal containing / and maximal with
respect to not containing u. The maximality of (b] implies that b<{u\/b, and
further, that u\/b is the only element covering b. Indeed, if there is an element
c#+uVb, b<c, then ¢ and u\/b have two disjoint maximal lower bounds, namely
b and gzu, which is absurd. Because weak semimodularity implies the Jordan-
Holder chain condition and because b<{u\/b, the g-annihilator [u\/b, b1, is prime
by Theorem 2. Obviously, (b]JC[uVb, bl,, and thus it remains to show that
[uvb, b1,C(b]. Assume that [u\/b, b], contains an element x¢(b]. Then the
x—bVu geodesic through b consists of the following pieces of chains: x=s,\,
S8\ S a1 N\Sg (OF x=350,75,\\S5, "+ Sn-1\iSn), Where s,<b. Let ¢ be an
element such that s,-,=1<(s,. Obviously, t<b, and because ¢ is on the x—b\Vu
geodesic, tS[bVu, b],. Let s,=c¢<c;<c,<-<cn=b be a b—s, chain. Now,
c<lci, b If ¢y, t<<c,VVt, we continue by considering the elements ¢,, ¢:\Vi>c¢;.
If ¢y, t£c,VVt, then by weak semimodularity there is an integer p such that
cp<c;Vi=c,Vt=---=c,\/t. Moreover, there are elements ¢, t,, ---, ¢, such that
t=1<t,<--<tp,<LcpVt=c,Vt. In this case we continue by considering the
elements ¢, V{, cps1i-Cp. In both cases, the essential thing is that the ¢y—¢, V¢
chains (one through ¢, and another through ¢) are of the same length. When
c1=<cs, 1V 1, We have two cases: ¢, 1V, <EVe Vea=tVe, 0r ¢y, £\ 17t ¢y,
where the latter case needs the same special rules of weak semimodularity as
the case of ¢, t«c,VVt above. Similarly, when c¢,<cp.1, V¢, we have two
Cases: Cps1, IV Cp<EVepVeps1=t\VCps1 OF Cpy1, IV CpHKENV Cpy1, Where the latter
case needs the special rules of weak semimodularity. We can continue the
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process of joining ¢ to the elements of the chain ¢, ¢y, -+, ¢ and obtain another
chain¢, t\ey, tVe,, -+, 1V e, Where two consecutive elements may coincide but
where the lengths of the ¢,—c, and i—tVc, chains are equal. Because t< b=
cn, We have t\Vc,>b.

If tVem=bVu, then the t—b\Vu geodesic does not contain b, whence ¢&
[u\Vb, b],; a contradiction. Thus b\Vu, b],C(b] in this case, and we are
done. The another possible case is t\/¢n>b\Vu. Let t\V¢, be an element such
that Ve, ¢, and tVe,=tVen-1=tVcen. By the assumption, bV u<tVcm,
and thus r<m—1. Because ¢,<¢cr+1, 1Vc,, the element #\¢, is reached from
¢r+1 and V¢, by the special rules of weak semimodularity. Now, ¢, <b<bV
u<tVc., and then, by (3), b has at least two covering elements, which is
absurd, because b\/u was the only element covering b. Hence the case b\Vu<
tVen is impossible, and the theorem follows.

There are two interesting open problems we have not been able to solve:

1) Does the intersection property of Theorem 3 imply the Jordan-Hélder
chain condition? and

2) does the separation property of Theorem 6 imply weak semimodularity?
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