A REMARK ON MINIMAL FOLIATIONS OF LIE GROUPS

Ву

Shin-ichi NAGAMINE

1. Statement of the result.

Let G be a 3-dimensional Lie group, \mathfrak{g} its Lie algebra of left invariant vector fields and \langle , \rangle a left invariant metric on G. A 1 or 2-dimensional subalgebra \mathfrak{l} of \mathfrak{g} gives rise to a foliated riemannian manifold $(G, \langle , \rangle, \mathfrak{F}(\mathfrak{l}))$ (cf. [2]). Then we have the following

THEOREM. Suppose that G is simply connected and nonunimodular. If $(G, \langle , \rangle, \mathfrak{F}(\mathfrak{l}))$ is a minimal foliation and the metric \langle , \rangle is bundle like, then, independent of the dimension of \mathfrak{l}, G is isomorphic to a semidirect product $S \times_{\tau} \mathbf{R}$ and $S(\subset G)$ is of negative constant Gaussian curvature. Here $S = \{ \begin{pmatrix} a & \xi \\ 0 & 1/a \end{pmatrix}; a > 0, \xi \in \mathbf{R} \}$, \mathbf{R} the additive group of real numbers and τ a homomorphism of \mathbf{R} into the group of automorphism of S.

REMARK 1. If dim l=2 (resp. dim l=1) in the above theorem, S (resp. R) is the leaf through the identity of G.

REMARK 2. Suppose that G is unimodular and $(G, \langle , \rangle, \mathfrak{F}(\mathfrak{l}))$ is a minimal foliation with bundle like metric \langle , \rangle , then all leaves are flat (cf. [1]).

2. Definitions.

Let (M, g, \mathcal{F}) be an *n*-dimensional foliated riemannian manifold, that is, an *n*-dimensional riemannian manifold M with a riemannian metric g admitting a foliation \mathcal{F} . The foliation \mathcal{F} is given by an integrable subbundle E of the tangent bundle of M. The maximal connected integral submanifolds of E are called leaves. (M, g, \mathcal{F}) is called minimal if all leaves are minimal submanifolds of M, and the metric g is called bundle like metric with respect to \mathcal{F} if for each point $x \in M$ there exists a neighborhood U of x, a (n-p)-dimensional $(p=\operatorname{rank} E)$ riemannian manifold (V, \bar{g}) and a riemannian submersion φ : $(U, g \upharpoonright U) \rightarrow (V, \bar{g})$ such that

Received January 14, 1985.

 $\varphi^{-1}(y)$ is an intersection of U and some leaf.

Let G be an n-dimensional connected Lie group and g the Lie algebra of left invariant vector fields on G. Taking a left invariant metric \langle , \rangle on G and a p-dimensional subalgebra I, we have in a natural manner a foliated riemannian manifold $(G, \langle , \rangle, \mathcal{F}(\mathfrak{l}))$. Let $\{e_1, \dots, e_n\}$ be an orthonormal basis for g with $e_i \in \mathfrak{l} \ (i=1, \dots, p)$. If we denote by C_{ij}^k the structure constants of g with respect to this basis: $[e_i, e_j] = \sum_{k=1}^n C_{ij}^k e_k$, then the metric \langle , \rangle is bundle like with respect to $\mathcal{F}(\mathfrak{l})$ if and only if

(2.1)
$$C_{ij}^k + C_{ik}^j = 0, \quad 1 \le i \le p, \quad p+1 \le j, \quad k \le n,$$

and $(G, \langle , \rangle, \mathcal{F}(\mathfrak{l}))$ is minimal if and only if

(2.2)
$$\sum_{i=1}^{p} C_{ji}^{i} = 0, \quad p+1 \leq j \leq n$$

Let q, m be Lie algebras, σ a representation of m in q such that $\sigma(Y)$ is a derivation of q for all $Y \in \mathfrak{m}$. For X, $X' \in \mathfrak{q}$ and Y, $Y' \in \mathfrak{m}$, let

$$[(X, Y), (X', Y')] = ([X, X'] + \sigma(Y)X' - \sigma(Y')X, [Y, Y']).$$

It is then verified that this converts the vector space $q \times \mathfrak{m}$ into a Lie algebra. We denote it by $q \times_{\sigma} \mathfrak{m}$ and call it the semidirect product of \mathfrak{q} with \mathfrak{m} relative to σ . Let A and B be connected Lie groups and let $\tau(b \rightarrow \tau_b)$ be a homomorphism of B into the group of automorphism of A. We assume that the map $(a, b) \rightarrow$ $\tau_b(a)$ is of class C^{∞} from $A \times B$ into A. For $a_1, a_2 \in A$ and $b_1, b_2 \in B$, let (a_1, b_1) $(a_2, b_2) = (a_1 \tau_{b_1}(a_2), b_1 b_2)$. Then this converts the set $A \times B$ into a Lie group. We denote this Lie group by $A \times_{\tau} B$ and call it the semidirect product of A with Brelative to τ .

3. Proof of Theorem

We consider first the case of dim l=2. Let $\{e_1, e_2, e_3\}$ be an orthonormal basis for \mathfrak{g} with respect to \langle , \rangle such that \mathfrak{l} is generated by e_2 and e_3 . By (2.1) and (2.2) we see that the bundle-likeness of the metric and the minimality of the foliation implies the following relation.

(3.1)
$$[e_1, e_2] = se_2 + Ae_3$$
$$[e_1, e_3] = Be_2 - se_3$$
$$[e_2, e_3] = ae_2 + be_3,$$

where a, b, A, B, s are constants. Now we recall that a connected Lie group is called unimodular if the linear transformation ad(X) has trace zero for every X in the associated Lie algebra. Since G is nonunimodular we see that $[e_2, e_3] \neq 0$,

318

and from the Jacobi identity it follows that $[e_1, [e_2, e_3]]=0$, that is,

$$(3.2) as+bB=0, aA-bs=0.$$

Without loss of generality we may assume that $b \neq 0$. Then, putting $E_1 = e_1$, $E_2 = (1/b)e_2$, $E_3 = [e_2, e_3]$, we have from (3.2)

(3.3)
$$\begin{bmatrix} E_1, E_2 \end{bmatrix} = k E_3 \ (k = A/b^2) \\ \begin{bmatrix} E_1, E_3 \end{bmatrix} = 0, \quad \begin{bmatrix} E_2, E_3 \end{bmatrix} = E_3$$

Let q and m denote the Lie algebras of S and **R** respectively. Choose a basis $\{X, Y\}$ for q so that [X, Y]=Y, and let $\{Z\}$ be a basis for m. For the representation σ of m in q defined by $\sigma(Z)=\mathrm{ad}(-kY)$ we construct the semidirect product $q \times_{\sigma} m$. Then X'=(X, 0), Y'=(Y, 0) and Z'=(0, Z) form a basis for $q \times_{\sigma} m$ and satisfy [Z', X']=kY', [Z', Y']=0, [X', Y']=Y', which implies together with (3.3) that g and $q \times_{\sigma} m$ are isomorphic. Now define the homomorphism τ of **R** into the group of automorphism of S by $\tau_t(g)=a_tga_t^{-1}$, $g \in S$, where $a_t=\exp t(-kY)$. Since G and $S \times_{\tau} R$ are simply connected and their Lie algebras are isomorphic, G is isomorphic to $S \times_{\tau} R$.

Let ∇ denote the riemannian connection associated with \langle , \rangle , then it holds that for every X, Y, $Z \in \mathfrak{g}$

$$(3.4) 2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle - \langle [Y, Z], X \rangle.$$

Let L denote the connected Lie subgroup of G with Lie algebra \mathfrak{l} . If we denote by $\overline{\nabla}$ the induced connection on L and by \overline{R} its curvature tensor, then we have by (3.4)

$$\begin{aligned} \overline{\nabla}_{e_2} e_2 &= -ae_3, \quad \overline{\nabla}_{e_3} e_3 &= eb_2, \\ \overline{\nabla}_{e_3} e_2 &= -be_3, \quad \overline{\nabla}_{e_2} e_3 &= ae_2, \end{aligned}$$

and therefore

$$\langle \overline{R}(e_2, e_3)e_3, e_2 \rangle = - \langle \overline{\nabla}_{e_2}e_2, \overline{\nabla}_{e_3}e_3 \rangle + \langle \overline{\nabla}_{e_2}e_3, \overline{\nabla}_{e_3}e_2 \rangle - a \langle \overline{\nabla}_{e_2}e_3, e_2 \rangle - b \langle \overline{\nabla}_{e_3}e_3, e_2 \rangle \\ = -a^2 - b^2.$$

This shows that the Gaussian curvature of L with respect to the induced connection equals $-|[e_2, e_3]|^2 < 0$.

Finally, in the case of dim l=1, if $\{e_1, e_2, e_3\}$ is an orthonormal basis for g with $e_1 \in I$, then from (2.1), (2.2) it follows that for some constant A

$$[e_1, e_2] = Ae_3, \quad [e_1, e_3] = -Ae_2.$$

So, putting $[e_2, e_3] = ce_1 + ae_2 + be_3$ and taking account of the nonunimodularity we have

 $a^2+b^2\neq 0$, $0=[e_1, [e_2, e_3]]=-bAe_2+aAe_3$,

Shin-ichi NAGAMINE

which implies that A=0 and e_1 belongs to the center of g. Consequently, e_1 is parallel and c=0. Hence the bracket relation between e_1 , e_2 and e_3 is given by (3.1) with s=A=B=0. Therefore the preceeding argument applies also in this case. Actually we have $G=S\times \mathbf{R}$ (direct product), and this is also a riemannian product and S is of negative constant Gaussian curvature. Now the proof is completed.

The author would like to express his thanks to the referee for his kind suggestion.

References

- Milnor, J., Curvature of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329.
- [2] Takagi, R. and Yorozu, S., Minimal foliations of Lie groups, Tôhoku Math. J. vol. 36, no. 4 (1984), 541-554.

Department of Liberal Arts Kanazawa Institute of Technology Nonoichi-machi, 921 Japan