
TSUKUBA J. MATH.

Vol. 9 No. 1 (1985). 117―131

CERTAIN MINIMAL OR HOMOLOGICALLY VOLUME

MINIMIZING SUBMANIFOLDS IN COMPACT

SYMMETRIC SPACES

By

Hiroyuki Tasaki

1. Introduction.

In this paper we shall study minimal submanifolds in compact symmetric

spaces and homologically volume minimizing submanifolds in compact simple Lie

groups and quanternionic Kahler manifolds.

The firstsubject is studied by computing the second fundamental forms of

submanifolds. In Section 2 using the structure theorem of the first conjugate

loci of compact symmetric spaces (Takeuchi [5]) we compute the second funda-

mental form of a certain submanifold which is open and dense in the first con-

jugate locus of a compact symmetric space and prove the minimality of it.

Moreover we show that the submanifold has no geodesic point.

The second subject is studied by using the notion " calibration" introduced

by Harvey and Lawson [2]. This notion is used in Sections 3 and 4. The funda-

mental 2-form of a Kahler manifold is one of important examples of calibrations.

It satisfiesWirtinger's inequality, which can be stated as follows. Let M be a

Kahler manifold with fundamental 2-form o). Then

-^l^vol,

for l^^^dimc M and any oriented tangent 2&-plane £ on M. The equality holds

if and only if f is a complex plane with a suitable orientation. From the above

inequality it follows that a compact Kahler submanifold of a Kahler manifold is

homologically volume minimizing. Only closedness and the above inequality are

needed to prove this assertion.

Here we explain the notion of calibration. Let M be a Riemannian manifold

with a closed p-iorm. <fton M which satisfiesthe following inequality:

^If^vole
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for any oriented tangent ^-plane 6 on M. Such a form <j>is called a calibration.

Then any compact oriented />-dimensionalsubmanifold N in M with the property:

is homologically volume minimizing in M, that is,

vol(JV)^vol(N')

for any compact oriented ^-dimensional submanifold N' such that [Ar]= [7V/] in

the homology group HJM; R). In fact

vol(iV)=＼ voljv=＼ 0=＼ $^＼ voV = vol(AT).

The equality holds if and only if <p＼N,=volN,.Even if N is noncompact, a similai

argument shows that N is minimal and stable under variations of compact sup-

ports.

The purpose of Section 3 is to construct a calibrationof degree 3 on a com-

pact simple Lie group and to show that a 3-dimensional compact simple Lie sub-

group associated with the highest root is homologically volume minimizing and

that a certain submanifold which is open and dense in the firstconjugate locus

is stable under variations of compact supports. Note that the codimension of the

firstconjugate locus of a compact simple Lie group is equal to 3.

In Section 4 we shall prove a quaternionic version of Wirtinger's inequality,

that is, on a quaternionic Kahler manifold M with the fundamental 4-form Q

for any oriented tangent 4&-plane £ on M. The equality holds if and only if £is

a quaternionic plane with a suitable orientation. It follows from the result that

a compact quaternionic Kahler submanifold of a quaternionic Kahler manifold is

homologically volume minimizing. In particular,we obtain a stronger fact for the

quaternionic projective space, which is stated as Theorem 11.

2. The firstconjugate loci of compact symmetric spaces.

For a complete Rimannian manifold M and a point p in M, we denote by

FP(M) the firstconjugate locus of M with respect to p. This section is devoted

to constructing submanifolds Fp(M) and Fp{M) of a compact symmetric space M

which are open and dense in FP(M) and to verifying that F$>(M) is a minimal

submanifold in M and that Fp(M) has no geodesic point if the rank of M is greater

than 1.
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Let G be a compact connected Lie group and 0 an involutive automorphism

of G. Put

Ge={g£G;e(g) = g}.

For a closed subgroup K of G which lies between Ge and the identity component

of Ge, (G, K) is a symmetric pair. A bi-invariant Riemannian metric < , ) on G

naturally induces a G-invariant Riemannian metric on the homogeneous space M―

G/K, which is also denoted by < , >. Then M is a compact symmetric space with

respect to < , ). It is known that any compact symmetric space is constructed

in this way. From now on we assume that M is irreducible.

Let g and f be the Lie algebras of G and K respectively. The involutive

automorphism 6 of G induces an involutive automorphism of g, which is also

denoted by 6. Since K lies between Ge and the identity component of Gg,

t={X Q;0(X) = X}.

Put

m={XcQ;0(X)=-X}.

Since 0 is involutive, we have a direct sum decomposition of g:

(1) fl=!+m.

Take a maximal Abelian subspace a in m and a maximal Abelian subalgebra f in

q containing a, then the complexification ]° of f is a Cartan subalgebra of the

complexification qc of 8. The bi-invariant Riemannian metric < , > on G induces

an Ad (G)-invariant inner product < , > on g. For an element a f,put

8a={Xefl<7;[H, Xl=V~=l(a, H)X for each ffef}.

An element aef ―{0}is called a root if ga^={0}. Let A denote the set of all roots,

then we obtain a direct sum decomposition of qc:

For an element yea, we define a subspace 8r of Q°by

QT= {X QP;lH,X]=V^l<j,HyX for each Hea}

and put

J={r a-{0};g>{0}}.

Let H i―> /? denote the orthogonal projection from f to a, then

I-la ;a£A and a^O}.
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Choose lexicographic orderings > on f and a such that

aeJ, ≪>0=>a>0.

We denote by J+ and 1+ the sets of all positive roots in A and I respectively.

Put

fr=fn(ar+fl_r) mT=mn(flr+fl-r)

for j l+ and

io={Xet;[H,X]=O for each Hta}.

We have the following lemma. For proof of thislemma, see Section 3 of Chapter

VI in Helgason [3] or Lemma 1.1 in Takeuchi [5].

Lemma 1. The direct sum decomposition

are orthogonal. We can choose Saei and T"aem for each a£d+ with ai=O in such

a way that:

i) For each yGS+, {Sa;a j+, a ―j) and {Ta; a d+, a ―y＼are orthonormal bases

of fr and n＼rrespectively;

ii) For each a£j+ with a = j£S+ and each Hea, we have

[//,So]^<T,H>Ta, [H, Ta] = -(j, H)Sa,

Ad (exp H)S.=cos <r, H}Sa+sin <r,i7>Ta,

Ad (exp H)Ta= -sin <r,H>Sa+cos <r,^>Ta.

As M is irreducible, the root system I is irreducible and there exists a uni-

que highest root o in 2. Let r be the rank of M and {^i,･･■,yr}be the funda-

mental root svstem of I. Put

S={H£a;<d,H)=7r,<ri,H>^ for l^i^r},

S°={H a;(8,Hy=7:,(ri,Hy>0 for l^i^r],

Sl=
＼H

S°;<r,H>$―Z for some j£S+ with <r,<5>^0

Lemma 2. The first conjugate locus of M with respect to the origin o of M

is described as follows:

F0(M)=[JkExp(S).

The sets ＼Jk Exp (S°)and ＼Jk Exp (S1) are submanifolds of M and open and dense

kSK kGK
in F0{M).
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For the proof of this lemma, see Section 3 of Chapter VII in Helgason [3] or

Corollary 3 in Takeuchi [5]. Let F0°(M) denote the submanifold ＼J&Exp(S°) of

M. For any point p in M there is an element g in G such that go―P, so FP(M)

coincides with gF0(M). Therefore gF£(M) is open and dense in FP(M). We de-

note by Fp＼M) the submanifold gF≪{M) in M. By the definitionof F0°(M),gF%M)

is independent of the choice of g. When M is reducible, decomposing the orthog-

onal symmetric Lie algebra (fl,6) into a product of irreducible orthogonal symmetric

Lie algebras, we can define a submanifold Fp(M) of M which is open and dense

in FP(M). Through the decomposition of (8,0) we can reduce a proof of the fol-

lowing theorem to one in case M is irreducible. For details about the construction

of Fp＼M) in general case, see Section 1 in Takeuchi [5]. The definitionof FP(M)

is similar to FSLM).

Theorem 3. Let M be a compact symmetric space and p be a point in M.

Then F$(M) is a minimal submanifoldin M. If the rank of M is greater than 1,

then Fp(M) has no geodesicpoint.

Remark. It is well known that, if the rank of M is 1, FP(M) is a totally

geodesic submanifold in M.

Proof. As mentioned above,it may be assumed that M is irreducible.At

firstwe shallcompute the second fundamental form of the homogeneous submani-

fold KExp(FI) for each H in a. For each X in a, we definea vector fieldX* on

Mby

(2) v*_
d

Xx~~dt ≪=0

exp tX- x

for each x in M. Simple calculationsimply the following equations:

(3)

(4)

g*X* = (Ad(g)X)*,

a*(^ir*) = F(Adcff)^(Ad(g)Y)*

for geG and X, Feg, where V is the covariantderivativeof M. The equation(4)

followsfrom (3). For each Xgq, let Xm denote the component of X in m with

respect to the orthogonal direct sum decomposition(1). Identifyingm with the

tangent space T0(M) of M at the origino, we obtain

(5)

for Xem and Fc8. Because

(Pz>Y*)0=-tX,Y]m
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(^F*)0=lim
(exP(-o:))*r*ptx.0-~y*

t

= [X*, F*]o

= [A, Y ]m,

Note that (exp/X)* is the paralleltranslation along the geodesic exptX-o. The

tanerent SDace of KExr>(H) at Exn(H) is sriven as follows:

If Xclo, then

By Lemma 1

(6)

so

TE,p(m(KExp(H))=＼4r
dt

J_

dt t = 0

expOT-Exp(/0;X f)
t-0 J

exp£X-Exp(#)=O.

d_

dt
exp≪a-Exp(#)=-(exp#)*(sin<a,#>ra)

TExpCH)(KExp (#)) = {(exp H)*Ta ;≪e J+, <a, H}$kZ}r

=(exp#)* 2 nir-
r≪+ <r,H>m*z

For a, fieA, with <<r,/7>, <i8,H)$kZ,

(7) [(expF^^S^Jo

= [^Adcexpfl)-i5^Ad (exp i7)-1SV*]0

= [^(cos<a,fl>sa-Sin<a,fl>rtt)*(cos</3,/OS^-sin </3,H}T?)*]0

= sin (a, H) cos (frHXT^Sf,]

by Lemma 1, the above equations (4), (5), and FX*Y* = O at o for any X f and any

F 0. Identify the tangent space TEkPch)(.M) with m under the differential map

(expi^)* and let hH be the second fundamental form of i£Exp(77) at Exp(i/).

The equations (2), (6), and (7) yield

hB(Ta,T,)=cot^,H)[Tn,S,Y

for a, B£A+ with (a, II), </3,H}$nZ, where ･x is the component of ･ in ( 2 mr)

with respect to the orthogonal direct sum decomposition of m in Lemma 1,

Furthermore

hH(Ta, Ta)=-cot(a, II)a.

Hence the mean curvature vector m*y of KExv(H) at Exp(//) is given as follows:
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niH=- S cot(a,H}a.

In particular the mean curvature vector m^ is tangent to the submanifold Exp (a).

Now we shall prove that the mean curvature vector of i£Exp(S°) vanishes.

Let H be any element of S°. The isometry of M induced by the reflection of a

in the hyperplane {Xea; (8, X} = n} of a fixes the points o and Exp (77), and leaves

KExp(S°) invariant. Since S°is an open subset of {Xza ; <<S,X) ―n), mH is tangent

to S". Exp (a) is a totallygeodesic submanifold in M, so it follows from the de-

finitionof the mean curvature vector that the mean curvature vector of KExp (S°)

at Exp(H) vanishes for any H in S°. Therefore the mean curvature vector of

i£Exp(S°)at any point in it vanishes, that is, KExp(S°) is a minimal submanifold

in M.

Next we shall show that KExp(Sl) has no geodesic point,if the rank of M

is greater than 1. Let H be any element of S＼ Take a in J+ so that (a,H}$

^-Z and <<M>^0.

[(exp H)il(Fs*aS*)]0=sm (a, H} cos <a, H)[Ta, Sa]

by (7). The choice of a impies that sin (a, H} cos(a,H) J=O. [Ta,Sa]eRa+m2a

and the component of it in Ra does not vanish. Since the tangent space Texpch,

(KExp(S1)) is (expH)J{X£a:(8,X}=0}+ S mr), the second fundamental

form of KExp(Sv) at Exp(//) evaluated by ((S*)EXp(ff),(S?)ExP(/n) does not vanish.

Therefore Exp(H) is not a geodesic point of KExpiS1) for any HeS1 and KEx-p(Sl)

has no ceodesic ooint.

3. Compact simple Lie groups.

Let G be a connected compact simple Lie group with a bi-invariant Riemannian

metric < , ). In this section we shall use calibrations to show that a certain 3-

dimensional compact simple Lie subgroup d of G is homologically volume mini-

mizing in G and that the submanifold Fp(G) is stable under variations of compact

supports.

On G a calibration<j>of degree 3 will be constructed. Let g be the Lie al-

gebra of G and take a maximal Abelian subalgebra f of 8. Define the root system

A of flwith respect to f like as in Section 2. Let 8 be the highest root in A with

resoect to some ordering on f and uut

t(X,Y,Z) = -^<[X,YlZy

for X. Y. Z in a. Bv regarding an element of fl as a left-invariant vector field on



124 Hiroyuki Tasaki

G, <j>is a bi-invariant 3-form on G. In particular,<f>is a closed form. Later on

one will find that <j>is a calibrationon G. In a way similar to a proof of Lemma

1 in Section 2, we can prove the following lemma.

Lemma 4. There exist unit vectors E≪,Fa in % for each a£d.uin such a way

that:

i)

is an orthogonal direct sum decomposition of 9;

ii) [H,Ea] = (a,H)Fa, [H,Fa]=-<atH>Ea, [Ea,Fa] = a

for a£j+ and ZTef.

Set

fi^Rd+REt + RF,,

then 0iis a compact 3-dimensionalsimple Lie subalgebra of 0. Let d be the

analyticsubgroup of G corresponding to 8l It is known that d is simply con-

nected and isomorphic to SU(2). See the proof of Theorem 5.4 in Wolf [6]. We

introduce an orientationon 0i such that{d.Ez.FA is a nositivebasisof af.

Theorem 5. For each 3-dimensional oriented subs pace f in 9, the inequality

^l^volj

holds. The equality holds if and only if there is an element g in G such that

!=Ad(gr)fll

and that Ad (g): fli->-£is orientation preserving. In particular, 0 is a calibration

on G.

Proof. Since <f>is Ad(G)-invariant, we may assume that ?nf^{0}. Take a

positive basis {T,X, Y) of £ with Tcinf. Put

X=T0+ Zs≪Ea+ ZtaFa,

where roej and sa,t≪£R.By i) of Lemma 4,

＼X＼2=＼T0＼*+S |s≪|2+S l^l2-

Owing to the formulas in ii) of Lemma 4,

＼[T,X]|2= S sa<≪,T}Fn- Z ta(a,T)E≪

2
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= L ＼sa＼2]<a,T)＼*+Z ＼ta＼>＼<a,T)＼*

^ E(＼sa＼2+ ＼ta＼2)＼a＼z＼T＼2

^!^l2S(|5a|2+|^|2)|r|2

<iai2iri2izi2.

Hence

(8) ＼[T,X]＼^＼8＼＼T＼＼X＼.

The equality holds if and only if there is an a J+ with the properties that:

|a|= |3|, TsRa, XzREa + RFa.

Rv the ineniiaiitv(ft＼

Therefore

＼0(T,X,Y)＼= -~＼([T,XlYy＼

^＼T＼＼X＼＼Y＼.

If the equality holds, then there is a root aed+ so that

＼a＼= ＼8＼, TtRa, XzREa + RFa

and [T,X]IJY, <$>(T,X, Y)>0. Since X=saEa+taFa,

[T,X] = (a,T}(saFa-taEa).

Accordingly Y£REa+RFa and

e=Ra+REa + RFa,

<f>(a,Ea,Fa)=＼a＼>0,

so {a,Ea, Fa} is a positive basis of £.

Noting that 8 is the highest root and that la =＼5＼,we have

2</U>
<2

for any root /3eJ―{a,―a} and consequently

^4 =-1,0, on

for /3 J ―{a,―a}. According to Theorem 4.2 in Wolf [7], a is the highest root

for some lexicographic ordering. Take an element w of the Weyl group of G

with respect to f which transports the fundamental Weyl chamber with respect
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to the old ordering to the one with respect to the new ordering and an element

n of the normalizer of ＼in G such that Ad(w)|f = w. As Ad(n)d=a,

Ad(≫)fl!=£.

Ad (n): fii->? is orientation preserving, because this map is a Lie algebra iso-

morphism.

Theorem 6. Gx is a homologicallyvolume minimizing submanifold in G.

Proof. Take 6 as a calibrationon G. By Theorem 5,

0|Gl = volGl ,

so d is homologically volume minimizing in G

Remark. The author does not know whether some isometry of G transports

M to Gi for any compact oriented 3-dimensional submanifold M with [M] = [Gi]

in HS(M;R) and vol(M) = vol(Gi). In the quaternionic projective space Pn(H),

the problem is affermatively solved for P＼H) (l^k^n) in Section 4. See Theorem

11.

Theorem 7. For any point p in G, Fp(G) is minimal and stable under vari-

ations of compact supports.

Proof. We may assume that p―e. Choose an orientation of G and fix it.

As G is an oriented Riemannian manifold, we can consider the Hodge star operator

*. Let dim.G ―n. By the definitionof the Hodge star operator, *(j>is also a cali-

bration on G and for any 3-dimensional oriented plane f of g

0|.= VOle<=> *0|f±=VOlfx,

where an orientation of f1 is defined in such a way that: if {vuV2,v3} and {v4,･･･,

vn} are positive bases of f and f1 respectively, then {vu ■･-,vn}is a positive basis

of g.

Let r be the rank of G and {≪!,･■-,ar} be the fundamental root system of A.

Then

S°= {H^;(d,H)> = 27z,(auHy>0 for l^i^r}

and

Fe°(G)=exp Ad (G)S°.

As 0<<≪,//><2^ for a£d+-{8} and HeSP, the tangent space T^vH{F≪(G)) of Fe°(G)
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at exp H is given as follows:

TexpH(F°e(G))=(expH)J{X^;(d,X)=O} + E (REa + RFaj)

Therefore

*^l^(G)=VOlF0ce)

for a suitable orientation on Fe°(G)and so Fe°(G)is minimal and stable under vari-

ations of compact supports, because *<f>is a calibrationon G.

4. Quatentionie Kahler submanifold.

Kraines has introduced a closed 4-form Q on a quaternionic Kahler manifold

in [4], which is analogous to the fundamental 2-form on a Kahler manifold. This

section is devoted to showing that ―rrRkis a calibrationon a quaternionic Kahler

manifold for each k, which is applied to quaternionic Kahler submanifolds.

First of all we give definitionsof quaternionic Kahler manifolds and submani-

folds. Let H be the quaternionic divisionalgebra. The action of Sp(w)xSp(l) to

Hn is defined by

(A,z)x=Axz~1

for (A, z)£§p(n)xSp(l) and x£Hn. The action is isometric with respect to the

standard inner product < , > on Hn. The image of the homomorphism from

Sp(≪)xSp(l) to SO (IT1) is denoted by Sp(≪)Sp(l). A 4≪-dimensional connected

Riemannian manifold M is called a quaternionic Kahler manifold, if M has the

following property: There is a point x in M such that, through an identification

of TX{M) with Hn, the linear holonomy group of Mat x is contained in Sp(≪)Sp(l).

Under the situation, take a piecewise smooth curve r from x to y for any point

v in M and put

sy=PrSv(i)PT-1,

where PT is the paralleltranslationalong the curve r. Since Sp(l) is a normal

subgroup of Sp(≪)Sp(l), the definition of Sy is independent of the choice of r.

We call S={Sy}yeM a quaternionic structure on M. A connected submanifold N of

M is called a quaternionic Kdhler submanifold of M, if Ty(N) is invariant under

the action of Sy for each y in N. Since a quaternionic Kahler submanifold N of

M is totally geodesic (Alekseevskii [1]),iV is also a quaternionic Kahler manifold

with respect to the induced Riemannian metric.

Next we construct a closed 4-form on a quaternionic Kahler manifold due to

Kraines [4]. The 2-forms Qi, Qj, and QK on IP are defined by
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Qj(X, Y) = (Xi, Y > , Qj{X, Y) = (Xj, }

and

qk{x, Y)=(Xk,vy.

Kraines has proved that the 4-form

Q =
hQj

AQ, + OjA Qj + Qk A Ok)
o

on Hn is invariant under the action of Sp (n) Sp (1). So we can extend Q to a

parallel 4-form on a quaternionic Kahler manifold, which is also denoted by Q.

The 4-form Q is a closed form. We call Q the fundamental 4-form on a quater-

nionic Kahler manifold. The reason of the multiplicationby 1/6 in the definition

of Q is as follows. According to Wirtinger's inequality,

j&lU'^ VOl, ~J#|^vols,
±ffxU^voU

for any oriented 4-plane $ in Hn. Hence

The equality holds if and only if f is a Sp (l)-invariant plane and has an orienta-

tion such that {v,vi,vk, vj] is a positive basis of $ for nonzero *>£.

Now we shall show an inequality of Qm similar to the above inequality, which

is analogous to Wirtinger's inequality on a Kahler manifold.

Theorem 8. Let M be a An-dimensional quaternionic Kdhler manifold with

quaternionic structure S and fundamental A-form Q, then,

m＼

for each oriented tangent Am-plane £ on M and l^m^n. The equality holds

if and only if $ is an S-invariant plane with such an orientation that {vu vd, Vik,

Vij, ･ ･･, vm, vmi, vmk, vmj) is a positive basis of f for some vx,･■･, vm in f. In parti-

cular, ―t-Q is a calibration on M.
ml

Proof. It is sufficientto prove the inequality of Qm on Hn. Define the action

of Sp(l) on the space /l4TO(iP)of real 4m-forms on Hn by

(z*0YXi, ■■■,Xim)=0(Xlz,･ --,Xtmz)

for zeSp(l),0 Aim(Hn), and Xu ■･･,XimeHa. Let
C

be the invariant measure
Jsofn
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on Sp(l) with ＼ 1 = 1 and consider the form
Jsp(l)

JzeSpm

The form Qi is invariant under the action of Sp(w) and the action of Sp(l) com-

mutes with the one of Sp(≪), so ＼ is Sp (ra)-invariant. By the definitionof ＼,＼

is Sp (l)-invariant. Therefore ＼ is Sp (≪)Sp (l)-invariant. Since the space of

Sp (n) Sp (l)-invariant 4m-forms on Hn is generated by Qm, there is a real number

c such that

W=cQn.

We estimate the form ＼. For Xu -'-,Xim£Hn,

W(Xu-",Xim)=[ QT(XlZ>-<-,Ximz)

so by Wirtinger's inequality

W(Xu---,Xim)＼^[ ＼QT(Xlz,-'-,Ximz)＼

^(2m)＼[ ＼X,z＼･ ･ ･ ＼Ximz＼

^(2m)l＼X1＼---＼X4m＼.

Hence for any oriented 4w-plane f in IP

r|e^(2m)!volf

and the equality holds if and only if £zis invariant under the right multiplication

by i and has a suitable orientation for any 2 Sp(l). In order to simplify the

condition we prepare the following lemma.

Lemma 9. Let V be a km-dimensional real vector subspace of Hn. Then the

following conditions are equivalent.

i) V is Sp (l)-invariant.

ii) Vz is U(l)-invariantfor each zeSp(l), where U(l) = {x R + Ri;＼x＼= l}.

Proof. It is obvious that i) implies ii). So assume Vz^ V for some zo£

Sp(l). Since £7(1)is a maximal torus of Sp(l), there exists Zi Sp(l) such that

z2=zrlzoZi U(l). Then Vzxzt^Vzx. Thus the lemma is proved.

According to the lemma,

W＼e= (2m)＼voU
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if and only if f is Sp(l)-invariant and has a positive basis {vuVii,Vik,Vij, ―-,vm,

vmi,vmk,vmj] for some vu ･･･, vm in f. When the above equality holds for |,

(2w)!vole = ci3M|f

= cm! volj.

Xhprpfnrp

Cm=i
ml f

(2m)! JzeSp(1)

(2m)!

ml

and the theorem has been proved.

Theorem 10. Let M be a quaternionicKdhler manifold and N be a 4m-

dimensionalquaternionicKdhler submanifold of M. If N is compact,then

vo＼(N)^vol(Nf)

for any compact oriented4m-dimensional submanifold N' such that [iV]= [iV] in

the homology group H4m(M; R). The equalityholds if and onlyif N' is also a

quaternionicKdhler submanifold of M. If N is noncompact, N is stable under

variationsof compact supports.

Proof. Take ―r-Qm as a calibrationon M. The theorem follows from the
ml

explanation of calibrationsin Introduction and Theorem 8.

Now we show a theorem on Pn(H) stronger than Theorem 10.

Theorem 11. Let N be a Am-dimensional orientedcompact submanifold of

Pn(H) such that[N] = [Pm(H)] in Him(M;R). Then

vol(Pm(H))^Yol(N)

and the equalityholdsif and onlyif N is congruent with Pm(H) in Pn(H).

Proof. If

vo＼(Pm(H)) = vo＼(N),

then N is a quaternionic Kahler submanifold. As mentioned above N is a totally

geodesic submanifold. Without loss of generality we may assume that Nf]Pm(H)

i=4>. Take x£NnPm(H). Since TX(N) and Tx(Pm(H)) are S^-invariant, there is

and isometry g of P＼H) such that g*Tx(N) = Tx(Pm(H)). Both of AT and Pm(H)

are totallygeodesic, so gN=Pm(H).

Remark. Pn~＼H) is the firstconjugate locus of Pn(H). So the firstconjugate
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locus of Pn(H) is homologically volume minimizing. But similar facts for other

quaternionic symmetric spaces, which are classified by Wolf [6],does not hold.

In fact, the codimension of the firstconjugate locus of another quaternionic sym-

mAft*ir>crapp ic nr＼fonual frvA
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Added in proof. The problem for a compact simple Lie group remarked below

Theorem 6 has been affermatively solved by Ohnita and the author in the forth-

coming paper entitled "Uniqueness of certain 3-dimensional homologically volume

minimizing submanifolds in comnact simnle Lie crrouns."


