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MINIMAL IMMERSION OF SURFACES IN QUATERNIONIC

PROJECTIVE SPACES

By

Ahmad Zandi

Abstract. For a minimal immersion of a surface in a quaternionic

Kahler manifold a concept of non-degeneracy is defined. Then using

a theorem on ellipticdifferentialsystems we show a non-degenerate

surface is in a sense generic, and around each point with possible

exception of an isolated set of degenerate points we can define a

smooth Darboux frame. The frame is continuous at a degenerate

point.

Next, by reducing the structure group we define a symmetric

sextic form of type (6,0) and we show in the case that ambient

space is HP71 thisform is a holomorphic (abelian) differential. The

last section is a brief note on the relation of our work to Glaze-

brook's twistor spaces for HP71.

Introduction.

In recent years the study of minimal immersions of oriented surfaces into

compact manifolds especially 5", CPn and HPn has attracted a lot of attention.

One basic idea originally due to H. Hopf is to define on the strface symmetric

differentials of type (1,0) by reducing the structure group. The minimality

condition is used next to prove they are holomorphic. The surfaces for which

these forms vanish form a class that in many cases can be constructed using

holomorphic or algebraic maps. For the case of Sn cf. Calabi [2], Chern [3],

Chern-Wolfson [4] and Bryant [1], also for CPn cf. Chern-Wolfson [4] and

Wolfson [9], For a different approach cf. Eells-Wood [6] in case of CF" and

Glazebrook [7], [8] for HP71.

In this paper we use the method of moving frames and the structure equa-

tions of quaternionic Kahler manifolds (cf. [10]) to study minimal immersions

of oriented surfaces in HPn. First we define a concept of non-degeneracy for

immersions of surfaces in quaternionic Kahler manifolds. Then we prove that

non-degenerate minimal immersions are in a sense generic. Finally as an in-
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variant of a minimal immersion in HP71, n>l, we define a sextic differential

form on the surface and show it is in fact a holomorphic (abelian) differential.

The last sectionis a brief note on the relation of our work to Glazebrook's and

his twistor spaces.

I would like to thank my advisor, Professor S. Kobayashi, for guidance.

§0. Notations and Conventions.

For basic definitionsand notations about the skew field of quaternions, cf.

Chevalley [5].

We recall that if q^H, where H is the skew field of quaternions, then

Q=q'+k*, q'.q'^C

In the same way for any A<bW<S>rH, where W is a real vector space.

A=A'+jA", A', A"^WRRC.

We use the above notation of prime and double prime throughout the paper,

which are called complex and quaternionic imaginary parts, respectively.

We also notice that if 6, cog A(T*M)RrH are of degree p, q respectively,

then

0Aa>=(-l)p≪d}A0.

Also the extension of the symmetric product is no longer symmetric but it satisfies

where 6, o> are as above.

We agree, unless otherwise stated, on the following range of indices:

l<i, j, - ^2

1<A, B, ■■■^N or 4n

3^r, s, ･･･̂ N or in

l^a, j8,･･･£n

3^Z, ft,■■■^n.

We also assume M is an oriented surface, X a Riemannian manifold and

/: M―>X is an immersion.

§1. Quaternionic Kahler Manifolds.

For more detail regarding this section cf. Zandi [10].

A quaternionic metric manifold X is a Riemannian manifold of dimension
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4n where the structure group can be reduced to Sp(n)-Sp(l)=Sp(n)xSp(l)/

CentercS0(4n). In other words around each point p^X there is a coframe

{@i, ･･･,0in} called admissible coframe such that the forms

a>≪= lR0≪+*(g)0B+a+/(g)02B+a + fc(g)0sB+≪ (1-1)

in T*X(&RH are defined up to qap<*ipqwhere (qap)<^Sp(n) and q^Sp{l).

Using the Sp(l) part of the structure group we can locally define three auto-

morphisms of TX, Flf F2, F3 which are called the standard automorphisms. In

more detail let {elt ■■･,ein) be a frame dual to an admissible coframe and let

F1{ea)= ―Un +a

F1(en+a)=ea
1 (1.2)

Fl＼02n+a)―03n+a

Similarly using multiplication by / and k on the right hand side of (oa,F2 and

F3 can be defined. Notice that {Fi, F2, Fs} is defined up to an element of SO (3).

Definition 1.1. Let Ibea quaternionic metric manifold. Let {a)a} and

{Fu F2, F3} be as above. X is called Kahler if there exist quaternionic forms

{(Das} and o) such that

d(oa = S o)ab A (Ob+0)

(1.3)

Equivalently X is quaternionic Kahler if there exist real forms {(pa) such that

(1.4)

<Ptj+<pji=O, J

where D is the Riemannian covariant derivative.

We call a)ap,(o the quaternionic connection forms of X and define the

quaternionic curvature forms as follows,

Qafi=d(!)ap―2>≪rA<yr/j)
(1.5)

Q=da)―Q)A<o. J

Remark 1.2. When n^2, X has constant scalerjfcurvature R and

Q=
R

2]<3aA<W≪
l6n(n+2) ≪

(1.6)
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Remak 1.3. Under change of quaternionic coframe

the connection and curvature forms change according to

o>ap=Hdqa7-qpr-{-^qar(i)rxqpx)

A―qcoq―qdq. J

QaB ― qayQrl<ipX

Q=qQq

I

(1.7)

(1.8)

(1.9)

Remark 1.4. For X―HPn which is of constant quaternionic sectional

curvature we have

Q=―J}a)aA(i)a
a

1

(1.10)

§2. General Theory of Minimal Immersions in Quaternionic Kahler

Manifolds.

Let /: M->X be an immersion of an oriented surface in a Riemannian mani-

fold X of dimension N. Let {eu ･■･, eN) be an orthonormal frame along M on

X, so that {eu e2} is an oriented orthonormal frame for M (tangent to M).

The dual coframe {d1, ･■■,dN] satisfies

f*6r=0 on M for 3£r£N,

and {/*0i, f*62＼ forms an oriented orthonormal coframe on M.

A frame (coframe) as above is called a Darboux frame (coframe) for /: M-+X.

Let {dAB} be the Levi-Civita connection forms of X with respect to a

Darboux coframe. Then the second fundamental forms Ur, 3<^r^N are defined

as follows:

2
nr= YjOi-dir =―1]6idri (symmetric product)

where by du dir we mean f*du f*dir but from now one we drop /* when

thereis no danger of confusion. We also put

{ hrij=hrji.

Hence
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Definition 2.1. Let /: M-+X be an immersion. / is minimal if the traces

of all the seronn" fnnrtampnf-ai forms vanish Tn ofheer words

r
=0, 3£r£N. (2.1)

It is well known that (p=61+id2 defines an integrable almost complex (hence

complex) structure on M by choosing (p to be a (1.0) form. Now we have the

･fnlin'wrinn"wVinep≫nrnrvfio rlpar

Proposition 2.2. Let f: M->X be a minimal immersion. Let {8U ■■■,6N)

be a Darboux coframe. Then

6 n+i 6 ri=Q mod (5 1

(2.2)
6rl ―idr2=0mod(p. J

Let /: M->Z be a minimal immersion where M is an oriented surface and

X a quaternionic Kahler manifold of real dimension 4n>4. Let ig! and let

{eu e2) be an orthonormal frame on M around x. It is clear that whether

{#1, e2} are quaternionic linearlyindependent as vectors of TX is independent of

the choice of the frame {eu e2}. Hence we can have the following definition:

Definition 2.3. x£M is a non-degenerate point or / is non-degenerate at

x if {eu e2] as above are quaternionic linearly independent as vectors of TXX.

We also need the following:

Definition 2.4. Let /: M->X be an immersion. Let igM. A quaternionic

coframe {ma} around /(x)gI is called a quaternionic Darboux coframe if

c3= ･･･―o)n=0 on M. (2.4)

Proposition 2.5. Let f: M-^X be an immersion. Then around each non-

degenerate xeM there exists a smooth quatermionic Darboux coframe.

Proof. Let iGMbea non-degenerate point and {eu ez} an orthonorma!

frame around x. Since {eu e2) is quaternionic linearly independent at x it is

linearlyindependent in a neighborhood of x. We complete {eu e2) to a quater-

nionic basis for TX and dualize to get a quaternionic Darboux coframe around

/(x)eZ.

When xeM is degenerate we have the following:

Theorem 2.6. Let f: M'―>X be a minimal immersion. Then f is degenerate

in a neighborhood of any non-isolateddegenerate point. Moreover around every
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isolated degenerate point there existsa continuously defined quaternionic Darboux

coframe.

Proof. Let {eu e2) be an oriented orthonormal frame around xgM. Let

{Fu F2, Fs] be a set of standard transformation of TX as in (1.2). It is clear

that x is a non-degenerate (degenerate) point if the dimension of the space

generated by {eu e2,Fp(et); l<i^2, l<p<L3} is eight (four). Let xeM be a

degenerate point and let

0=≪F1(el), e2y, <F2(6l),*2>,<Fs(e1),e2))^Rs,

where < ,> is the Riemannian inner product. Since v^O, by applying an element

of SO(3) if necessary we can change Fu F2, F3 so that v=(0, a, 0). Hence we

can assume <Fi(ei),e2>=0 and complete {eu e2} to a Riemannian orthonormal

frame {eA}, l^A^in, for X along M such that e2n+a―F1(ea),l^a^2n. Let

F2=uABe^eB. From <Fs(ei),e2>=0 we get Ui,2n+j=0, l<Li, j^2.

Consider now the following set of functions defined in a neighborhood U of X:

{uix, uU2n+x, u2x, u2,2n+x], 3^^^2n.

It is clear that these functions vanish simultaneously at a point of U if and only

if the point is degenerate. To keep things under control we list the formulas

we need.

{eA},l<A^4n, is a Darboux frame for /: M-*X such that

e2n+a=F1(ea),l^a^2n.

{8a},l^A<4n, is the Darboux coframe dual to {eA}.

<p=<Pi+id2 is a basisfor the space of (1,0)-form on M

<FM, F2>=0

Fz=uABdAReB, uAB^0(4n).

uAb+uba=O.

Let {dAB} be the Levi-Civita connection forms. Then

DeA=^dABReB ＼

Oab+Oba=O,
I

where D is the covariant derivative.

Since /: M―>X is minimal, from Prop. 2.2 we have

dri―z"0r?=Omod<p. 3<r<4n.

(2.4)

(2.5)

(2.6)
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Since X is quaternionicKahler from (1.4)we have

DF2=(p21F1Jr(p2zF3.

We differentiateF2=uABdA(g)eB to get

DFi=5}(duAB+ucBOcA+uAcOcB)0A<8>eB=<piiF1+y>2,F!

Let

F^PAB0A<^eB
Thpn

Lab ― -T2n + a.2n + b― U

-<a,2n+& ―"aft

*2n + a,b― Oab-

429

(2.7)

(2.8)

(2.9)

(2.10)

Since FS=F2F1, we have

Fs = uAcPcB0AReB. (2.11)

Substituting (2.10) and (2.11) into (2.8) we obtain

d,UAB+ UCB0cA+ UACdCB ―<P2lPAB+ (p2-iUAcPcB･ (2.12)

Using (2.12) and (2.6) we get for 3^, p^n,

dux = ＼_H(jO1zdxlt+ 0xp)ult+*5Xsp2idxp+ 0 x,2n+lx)u2n+ll~]mod <p 1

where ux = ulX―iu2x and u2n+x = uu2n+x ―iu2>2n+x.

Since the above system satisfies the conditions of Thm. in section 4 in

Chern [3] we obtain that {ux, u2n+x}, 3^/J^2n, either identically vanish in a

neighborhood of x or they have an isolated zero at x. In other words / is

either degenerate in a neighborhood of x or x is an isolated degenerate point.

This completes the firstpart of the theorem.

To complete the proof we consider a smooth map on a neighborhood U of

an isolated degenerate point xgM,

F:U-{x}―>Gr(8; TX),

where Gr(8; TX) is the Grassman bundle of 8-planes in TX. From (2) in sec-

tion 4 of Chern [3] F can be extended continuously to U, so that F(x) would

be contained in TXM. Therefore in a neighborhood of x we can continuously

choose a quaternionic basis {ea}, l^a^n, for TX so that eu e2^F{y), y^U.

The dual auaternionic coframe sives a desired Darboux coframe.

Definition 2.7. A minimal immersion f:M->X is degenerate if it is

degenerate at everv xgM
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Remark 2.8. From Thm. 2.6.we observe thatif / is not degeneratethen

the set of degenerate pointsare isolated. From now on we assume / is non-

degenerate.

§3. Reduucton of the Structure Group.

We recall from §1, our convention on the range of indices. Let M be an

oriented connected surface, X a quaternionic Kahler manifold and /: M-+X a

non-degenerate [Remark (2.8)] minimal immersion. Let <p be a (1,0)-form on M

such that ds2M=<p(p.

Let xsMbe a non-degenerate point. From Prop. (2.5), there exists a

quaternionic Darboux coframe {o)a} around x. Hence,

f*(D1 = S1(f + t1(p

f*a)z=s2<pJrt2<p

f*<ox=0

(3.1)

From now on we drop /* unless there is danger of confusion.

Notice that {o)a} is defined up to

&a=qat&&
＼

(3 ^

(q≪p)eSp(n), qXi=qiX=Q, q<=Sp(X).]

We proceed to reduce the structure group even further.

The Riemannian metric on X is defined by

ds2=aii-(OiJr･■･-fcDn-ft)n.

Since a>;t=O on M, the induced metric on M, dsu―ipip satisfiesthe following

relation:

w ]_･(!)i-＼-a)2･0)%^=<p(f>. (3.3)

Substituting (3.1)in (3.3) we obtain

|s1l2+ls2|2+U1|2-hU2l2 = l]
(3.4)

(S^ + Ssfj)'^.
J

From the firstequation in (3.4) we obseve that (Si,s2),(tu h)^H cannot both be

the 0 vector. If necessary we can multiply a)a'sby / on the right to make

(Si,s2)9^(0,0). Therefore there exists a smooth family of matrices Q(x)^Sp(2)

such that

Q^s,. s,l= Ts. 01 where s,gC.

Let QTfi, U~]= tLh, hi- Put Q ―iffij). We change <wlfa>2 by C? to get
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d>i Syip+hip , Si

a>2 ― ti(p

431

(3.5)

From the second equation in (3.4)we see that(i1)'= 0. Hence fi=/?, where

?iGC. Now once more we transform &x,w2 by the matrix

ri 01

LO q＼

where q{x) is chosen smoothly so that qt^C. This can be done sincexgM

is non-degenerate and thus ?2=£0. Therefore we now have a quaternionic

Darboux coframe as follows:

(O1= S(p+ jt(p

o)z=jo<pt(p s, t, a, t^C. (3.6)

In the above normalization we actually made o―O, but we write it as above to

preserve symmetry. Notice that now the non-degeneracy condition at xeAfis

simply

st+af^O. (3.7)

At this point we check how much the structure group has been reduced.

Let Q=(qij)<^Sp(2), q^Sp(l) be such that <bi= J]qij(Djq f°r3= 1, 2 are in the

normal form (3.6). Since multiplication on the right by q preserves the normal

form (3.6) including the non-generacy condition (3.7), we only have to consider

the change induced by Q. Writing the equations out and using the non-

degeneracy condition (3.7) we easily get

Q = (Qij) -

c

U=

.a a

11 Jdli]
, an, a12, a,2u a-zz^C and

(321 O22J

2121
e£/(2).

7

(3.8)

To see how the complex valued functions s, v, a, t in (3.6) are changed when

(Oi's are changed by the reduced structure group (3.8), we calculate the effect

of change on the matrix

s= (3.9)

Let q(EH, ＼q＼ 1. Write q=q'+jq" and define
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9
=S£/(2). (3.10)

Then S changes according to

S=USV, (3.11)

where U is defined in (3.8).

Now since S is non-degenerate [(3.7)]its firstcolumn is a non-zero vector.

Hence by choosing U properly and smoothly, we can make it to be J[s,0], s^C.

Hence, S can be recuced to

Moreover by simple calculation we can make r(x)=0 (at one point). Hence (3.6)

and (3.7) are reduced to

(3.12)

s, z, t(EC, st^O, r(*)=0, P = s+j't, ＼p＼2+＼t＼2= l. -

These last reductions are not geometrically significant,but they simplify the

calculations.

§4. Minimality Condition.

Following the notations and normalizations of the previous section we let

^i=<o1p+tw2

<J>2=zi(Dl―a)2p ■ (4.1)

Notice that

n

a = l

n

s

a = l

(Oa-O)a (4.2)

Thus if we put

Then {6A),l^A^in, form an orientedorthonormal Riemannian coframe. More-

over sincerestrictedto M we have
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(4.3)

{dA} is a Darboux coframe for /: M-+X.

Now we differentiate(pa's, evaluate them at x and use the fact that 0a=O

a>l, <p"=0. Throughout we use the structure equation (1.3).

First we differentiateihx to get

d<pi= d(3ix･s―g>!A dp + dt Ao>2+t(oz

=(a)nAQ)i+Q)12A(O2+a}1A<o)s―a)1Adp-＼-dtA(oi

+t(o)21A ft>i+o)22A (o2+o)% A (o)

=(Q)n/＼s<p+<OizAt$ + s<pA<o)s ―s<pAdp + dtAi<p

+t(syA(D12+t<pAa)22+G>At(p).

Let

Si=＼s＼2Q)n-＼-tQ)t )
(4.4)

S2=＼t＼2Q)22―sdp+ SQ)S J

Since <p'i=Q on M, we put d<p'[=Q in the above calculations to get

(Sf{-st(o['z)A<p-((S'£-st)a)['2)A<p=0.

Hence by Cartan's lemma we obtain

S'l-sia>['2=a<p+p$ )
(4.5)

S'i-sta)'{2=-p<p+r<p J

Next we differentiate<p2. Similar calculations as above and separating the

complex parts of quaternionic forms we obtain

sRi-iR'^a'a + P'y )
(4.6)

and

(4.7)
-tRZ+tW^P'y+fip, J

where Rx and R2 are defined by

Rl=di+i(oll―(oi )
(4.8)

R2=dp―a)22S+S(o. J

Finally differentiatingd>x=0 gives
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0)xiS=a(p-＼-b(p

<ox?t=b<p+C(p, a, b, c<bH.

1

(4.9)

Using the minimality of the immersion, from (2.2) and uniqueness of the

Riemannian connection forms, we conclude that /3,/5',$" and b in (4.5),(4.6),

(4.7) and (4.9) all vanish. Therefore after substituting for Slt 52, i?i and Rz

from (4.4) and (4.8) into (4.5),(4.6) and (4.7) we obtain

Is12<i+'foi" - s?<2=0 mod <p

Ur^'a+sdr+s2^ ―sf<wl'2=0mod^

s(d?+ton―to)')―i(ds―so)z2+ sa)')=0mod(p

a)[z=―mod(p

s(t(o[＼―t<o")+sz<o'i2=0mod y>

―f(dr―s^'g+saj^+^^Omod^

^1 = 0^, ax^H

0)22 Cup, CX(E.H.

(4.10)

From the fifthand sixth equations of (4.10) we get respectively

loi"―scd'iz=tay'nmod <p

so)―t(i)'i2-＼-dv= so)22mod (p.

Substituting these into the firstand second equations of (4.10) respectively, we

nht-fiin

I s 12<i + ＼t12(o'A =<o[＼=0 mod <p

I ^ 12ft>22+ I s 12ft>22=ft>22 = 0 mod ^.

Hence these and the fourth equation of (4.10) give

a>n=Omod(p

(B'22= 0 mod <p

(1)21= ― a}'12=0 mod w

(4.11)

§5. Construction of the Sextic Form on M.

We recall from (3.1) and (3.8) that the structure group Sp{n)-Sp(l) has been

reduced to the subgroup consisting of A-q, where A=(qap), l^a, fi<n, satisfies

Qxi=Qtx=O and Q―qih 1^/, j<2 is as in (3.8).

Now under this reduced group we calculate the effect of change of quater-

nionic coframe (oa to &a―qaBO)Bq, on the forms given in (4.11). From the equa-
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tion for the change of connection forms (1.8) we have

<0ap = dqar-qpT-＼-qar<i)rxqpx.

Thus from the above we obtain

435

tiii= dq1i-qn + dqi2-qi2+qnO)nqn+Qi2(D2iqn+qu(Oi2.qi2+qiza)22q22- (5.1)

&22=dq21-q21 + dq22-q22+q2i<i)uq2i+q22(i>2iq2i+q2i(t)12q22+q22G)22q22. (5.2)

a>2i= dq2i'q1i + dq22-qi2+q2i(Ouqn+q22<02iq~u+q2iG>i2qi2+q22<i>22(!iz. (5.3)

From (3.8) we have q1i= a11, ^22=a22, q^―ja^, <?2i=/a2i. Therefore we

observe that the first two terms in (5.1) and (5.2) are complex and the first two

terms in (5.3) are imaginary quaternionic. Hence these terms do not cortribute

to the quaternionic imaginary parts of &n, <522 and the complex part of <y2i.

Thus we obtain

d>u = a 2n(t)'{x+2a! 2 a x xco'zx+ a f2a>22

^22=≪2lG>n―2a2ia22ft>2l+Gl2^22

dJ2i= ― au≪2io>i/1 + (fli1a22― ai2a2i)a>2i + a22ai2^22

The relationsin (5.4) can be summarized in the following matrix form

L ―O>21
(O22J ―(0'21

lu

(5.4)

(5.5)

where U^U(2) is defined in (3.8).

Using a)a=qapa)pq [(1.7)], we also calculate the effectof change of a coframe

on ((Oi-o)2y. First

oh･^>2―HqijOijq･q<djqaj=11qii(Oi(djq2j

=qii(tiiO)lq21+qll(i)1U)zqz2+ql2(i)2G}lq2l+qna)2a)2qz2.

Hence taking the complex parts from both sides and using (3.8) we get

(Q)i.-&2y=(aud22+a12a2i)((i)1-cd2y=det(U)((Oi-a}2y. (5.6)

We also observe from (3.12) that

<Oi-(t)2=(s(p-{-aT<p)-i<p=st(pz-}-JTt<p2.

Hence

(<≪!･w2)'= slip2.

Therefore ((Or^)' is a symmetric complex form of type (2,0). Also from (4.11),

the elements of the matrix
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■ <1

―<t)'21 ^22.

are 1-forms of type (1,0). Thus the determinant of the above matrix ((o'dw'lz

(co'zif)is a symmetric form of type (2, 0). Let

^ = [(tt)1-aJ2)']2-det
l―a*2i a≫2≪.

(5.9)

Then from (5.7) and (5.8), A is a sextic form of type (6,0). From (5.5) and

(5.6) and the fact that U is unitary hence |det(£/)|=l, we observe that A is

globally defined.

§6. The Case of X=HP＼

When the ambient space X is HP' = Si, the problem has been extensively

studied (cf. Calabi [2], Chern [3], Chern-Wolfson [4], Bryant [1]). In fact

that case fails under the class of degenerate immersions by our definition(2.3).

For n>l we have the following:

Theorem 6.1. Let f : M-*HPn be a non-degenerate minimal immersion, where

M is an oriented surface. Then the 6-form A in (5.9)is a holomorphic (abelian)

differentialof order 6 on M.

Proof. Let <p=Adz where z is a local complex coordinate on M. From

(3.12) and (4.11) we can write

(o[―adz, (O^Bdz, (o"=rdz, o>2=0 )
(6.1)

o)n ―adz, 0)'z2=bdz, a)'21=cdz. J

From structure equation (1.3) we have

d'ft>i=ft)iiA(yi+ft>i2A<y2+o>1Aft>.

Hence

d(o[―a)[!A a)[―oin A ft)T+(o[2A ft>2―Q)i2A ft)2+ ft>iA ft)'―ft>'/A ft>".

Therefore after substitution of (6.1) into the above, we obtain

d(t)[= d(adz)=da Adz=(aa)n―aa)'+f(o")Adz

Thus,

da=(a(o'n―acof+fa)") mod dz. (6.2)

Similarly differentiating o)2 gives

rfJS=(-^22+iQG>'-f<2)mod^. (6.3)
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To find the derivatives of a, b, c we p-ioced as follows. From (1.5) and

(1.10) we have

d(Oap=^(Ottr/＼(0rp―Q>aASfi (6.4)

Using (6.4) we calculate da>[＼,d(D'2'2and doy21. From (6.4) for #=/3 ―1 we have

da>n=a>uAa>n+<0izAa)zi+Ha>ixA(0xi―a>iAa>i.
x

(6.5)

From (4.10) and Q)ap+copa=0 we have

which is complex and hence does not contribute to da>"x. Also from (3.12) we have

(t)1Aa}i=(ppAp^>=＼p＼2(pA^>

which is again complex. Therefore from (6.5) we obtain

^<i=[(ft>n+y<1)A(ft>n+y<1)+(^2+y<2)A(G>2i+y<)]//

=―2a)'nAo>n+a)'n Aa>l'2+a>!'2Ao)'n.

Hence substituting (6.1)into the above gives

do)[＼= d(adz)=daAdz=(―2a<D'n+2c(D"i) Adz.

Thus

cfa=2(― a<o'n-＼-c(i)"^mQ&dz. (6.6)

Similarly differentiatingo)22and using (6.4) we get

db^2(b(t)'2z-co)'1'2)moddz. (6.7)

To calculate dc, we differentiate<o21and use (6.4) as before to get,

do)2l=(t)ziA(i)n+a)22Ao)2i+^!,o)2xAo)xi―o)2A<t)i.
x

From (4.10) we have

Let Jlcxax=A. Then
x

^<O2xA(Oxl = -<pAA<p=-(p(A'+jA//)A<p=jA"(pA<p,

which is quaternionic imaginary and thus does not contribute to do)'2l.Also

from (3.12) we obtain

o)2Ao)i―tipA(s^>―jT(p)=(―jh)<pAX,

which is again quaternionic imaginary. Therefore

dft>21= (0>21Aft>ll+G>22AG>2l)',
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and similar substitutions as before lead to

dQ)2i= d(cdz)=dcAdz=(―ca)'u+CQ)z2 ―cia)"2+ba)i2)Adz.

Hence

dc=(―CQ)'n + cQ)22―dQ)'12+bQ)i2)moddz. (6.8)

Now from (6.2) and (6.3) we get

d(a^)2=2a^la^(<o'11-Q)f22)+f^<o'r-a(o/1'i)']moddz. (6.9)

From (3.12) and (6.1) we have

(i)[-=s<p=adz

o)l2:=t^=^dz.

Using (p―ldz, we get a=sX, fi=tl. Hence from the sixth equation of (4.10)

we obtain

pa>"- a<2=iXco" -sM=W- sq)['2)

= 0mod <p=0 mod dz.

Substituting above in (6.9) we obtain

d(afi)2=2(afi)＼<o'n-Q)'22)mod dz. (6.10)

Also using (6.6),(6.7) and (6.8) we obtain

d(ab-c2)=-2(ab-c2)(<o'n-(o22)mod dz. (6.11)

Now for the proof of the theorem we recall from (5.9)

74=(Q)i-aJj)2[<1e}2/2-(aJ2i)2]=(≪i8)2(a6-c2)rf26.

Hence from (6.10) and (6.11) we finallyget

d＼_{a^)2{ab-c2)']=0mod dz.

Therefore A is holomorphic.

§7. Isotropic Minimal Surfaces in HP71.

In this section we try to explain the relation between our work and

Glazebrook's isotropic minimal surfaces [7]. The section is brief and mainly-

restricted to HP2.

We recall that HPn = Sp(n + l)/Sp(n)xSp(l). When the subgroup Sp(n)xSp(l)

is reduced to Sp(n)XU(l) we get Sp(n + l)/Sp(n)xU(l)^CP2n+1 which is the

standard twistor space. If Sp(n)xSp(l) is reduced to U(n)xSp(l) we get

Glazebrook's twistor space (Glazebrook [7, 8]) which is again a complex manifold.

We give the following definition of an isotropic minimal immersion in HPn.
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For details cf. Glazebrook [7].

Definition 7.1. A minimal immersion of a surface in HP71 is isotropic

provided that it can be lifted in a "natural" way as a holomorphic or antiholo-

morphic map to Z=Sp(n + l)/U(n)xSp(l).

Now in the case of HP2, for example, from (3.8) we see the Sp(2)xSp(l)

is reduced naturally to U(2)xSp(l). Therefore the surface can be lifted not to

the standard twistor space Sp(3)/Sp(2)xSp(l) = CP5 but to Glazebrook's twistor

space Z=Sp(3)/U(2)xSp(l).

The standard method of reduction of G-structures gives a set of quaternionic

1-forms {<J)U(p2,(pij,l<*i, jf^2} and 2-forms {Wij} on Z. These forms satisfy

the same structure equations as w's [(1.3), (1.5), (1.6) and (1.10)]. The difference

is that on Z, {<p[, 0", <p'2,(p'i,<p[2,<pn, <p'k＼form a basis for forms of type (1,0).

(The reason for this basis being non-symmetrical is that the embedding of £7(2)

in Sp(2) in (3.8) is not the natural one.) These (1, 0)-forms satisfy the integra-

bility conditions of Newlander-Nirenberg and define a complex structure on Z.

It is easy to see that for the lift of M to Z we also hava the same equations

for (p's as we had for <y's. Hence (3.12) and (4.11) become

(7.1)

<pn = 022 = 012=0mod (p. )

Therefore to get a holomorphic curve in Z we must have ^Ci=^^2=^12=0, on

M. Notice that the sextic form A in (5.9) is, up to a non-zero factor, equal to

0i'i022―(012)2. Hence to get a holomorphic curve in Z it is necessary but not

evidently sufficient to have A = 0. This could expiain why not all minimal im-

mersions of S2 in (for instance) HP2 are isotropic, even though J=0 for S2

(Riemann-Roch).
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