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HYPERELLIPTIC MODULAR CURVES

By

N. Ishii and F. Momose

Let N^>1 be an integer, and A be a subgroup of (Z/NZy. Let XL=

(N) be the modular curve defined over Q associatingto the modular group

=rA(7V):

a b＼ }
＼&SL2{Z) | c=0 mod N, (a mod N)^A＼-

c d

Since XL=X<±lft> [2], we always assume that ―1 belongs to A. For A={±1}

(resp. A=(Z/NZ)X), we denote XL(N) by X,(N) (resp. X0(N)). Ogg [18] deter-

mined all the hyperelliptic modular curves of type X0(N). This work aids the

determination of the rational points on the modular curves Xspnt(N) etc. [15,

16, 17] and that of the automorphism groups of X0(N) [8], [19]. In this paper,

we determine all the hyperelliptic modular curves of type XL(N). There are

nineteen hyperelliptic modular curves X0{N) for N=22, 23, 26, 28, 29, 30, 31,

33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59 and 71 [18]. The modular curves

XL(N) are subcoverings of X^N^XoiN). Therefore it sufficesto discuss the

cases for the above nineteen integers N and for the integers N with genus of

X0(N) are 0 or 1 (i.e. iV=17, 19, 20, 24, 27, 32, 36, 49; 13, 16, 18 and 25). Our

result is as follows.

Theorem. The hyper ellipticmodular curves of type XL(N) are the curves

X0(N) for the above nineteen integers N, and X^IZ), ^(16) and Xi(18).

By the above result and [18], we see that the hyperelliptic involutions of

XL(N) as above are represented by matrices belonging to GL£(Q), except for

Z0(37) (see also [12]). Our result is used to determine the torsion points on

ellipticcurves defined over quadratic fields[17].

The automorphism groups AutXL(N) are determined for X0(N), [3], [8],

[19], and for all A with square freeintegers N [13]. Except for Ar=37 and 63

the automorphisms of X0(N) with genera ^2 are represented by matrices be-

longing to GLl(Q) loc. cit. In the finalsection,we determine the automorphism
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groups of the hyperelliptic modular curves as above.

Notation. Let Q%r denote the maximal unramified extension of Qp. For

a positive integer n, Z,nis a primitive n-th root of unity, and p.n is the group

consisting of all the n-th roots of unity.

§1. Preliminaries

In this section, we give a review on modular curves and add the list of the

hyperelliptic modular curves of type X0(N) [18]. Let iV^l be an integer, and

A be a subgroup of (Z/NZ)* containing ―1. Let XL=XL(N) be the modular

curve defined over Q associating to the modular group PAN):

＼( WsL2(Z)
I c=0 modiV, (a modAOeAl

Then XL(N) is the coarse moduli space (over Q) of the isomorphism classesof

the generalized ellipticcurves E with a pointP mod A. We have the Galois

covering

X^N)―>Xt(N)-^X0(N),

(E, ±P).―>(E, AP).―> (E, <P≫

where <P> is the cyclicsubgroup generatedby P. Let gL(N), gi(N) and go(N)

denote the genera of Xt(N), X^N) and X0(N), respectively,Let Yh(N), Y^N)

and Y0(N) be the open affinesubschemes Xt(N)＼{cusps} Zi(AT)＼{cusps},and

X0(N)＼{cusps},respectively[2] VI (6.5). Then the covering Y^N^Y^N)

ramifiesat the points represented by the pairs(E, <P≫ with Aut(E, <P≫^

{±1} and Aut(£,±P)={±1}. The modular invariants of the remification

points on F0(A0 are 0 or 1728.

(1.1) Let 0―( J and co = f j be the Q-rational cusps on X0(N) which are

represented by the pairs(GmxZ/NZ, Z/NZ) and {Gm, uN}, respectively[2] II.

For a positive divisor d of N and for an integer i prime to d, let y ,j denote

the cusp on X0(N) which is represented by {GmxZ/(N/d)Z, <CV, 1≫. Then

Q) is defined over Q(£B)for n=G.C.D. of d and N/d, and (
j)=( j)

if and

only if i=j mod n. The ramification index of the covering X^N^XJ^N') at

the cusp (I) is G.C.D. of d and N/d. Let Ot (1^^#((Z/A^Z)X/A)) be the

cusps on XJN) lying over the cusp 0 on X0(N). Then 0* are all Q-rational.
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Let Co=(* ) be a cusp on X0(N), and C be a cusp on XA(A0 lying over

Co. We here discuss the fieldof definition of the cusp C. Put N=dl-Nd for

coprime divisors di and Nd such that d and di have same prime divisors. Put

Ard= {a moddl＼a(EA, a = l modN/d}, A'£= {a<=(Z/d1Z)*＼a = l modd}, and let

Ad be the subgroup generated by Ad and Ad.

Lemma 1.2. With the notation as above, let k(A, d) be the field associating

to the subgroup Ad of (Z/diZ)*. Then k(A, d) is the field of definitionof the

cusp C. For C = oo) we know Ad=A.

Proof. The cusp C is represented by the pair

(GmxZ/(N/d)Z, (C, l)modA)

for a primitive d-th root C=Cd of unity (1.1). The subgroup A acts by (£,1)

>―KC",a) for asA. Further, as a generalized ellipticcurve, Aut(GmxZ/(N/d)Z)

is generated by (x, i^iQ^/d-x, i) and (x, O^x"1, ―z)(see [2] I). □

(1.3) Let M#l be a positive divisor of N prime to A^/M. The matrix

( j forintegers a, b, c,d with adM2―cdN=M definesan automorphism

wM of Xi(iV). For a choice of a primitive M-th root G/ of unity, u/j/is de-

fined by

(£,±P)>―>{E/(PMy, ±(P+QM) mod<PM≫ ,

where PM=(N/M)P and Qjf is a point of order M such that eM(Pu, Qm)=£m

and eM: EjiXEm-^fiM is the e^ (Weil)-pairing. Then w^ induces the involution

of X0(N) defined by

where ^4^ is the cyclic subgroup of order M of A. For an integer i prime to

N, let

that g=

wM and

＼j~＼denote the automorphism of XX(N) represented by g^ro(N) such

(＼ *＼mod TV, then [z] acts as (E, ±P)^(E, ±iP). We denote
also by

＼(J */

＼f]the automorphisms of a subcovering XAN) which are induced by

wM and [/], respectively.

(1.4) There are exactly nineteen values of N for which X0(A~) are hyper-

ellipticcurves and they are listed in the table below [18] :
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N

22

23

26

28

29

30

31

33

35

37

39

40

41

46

47

48

50

59

71

N. Ishii and F. Momose

genus

2

2

2

2

2

3

2

3

3

2

3

3

3

5

4

3

2

5

6

hyperelliptic involution

w2e

w-,

w29

w15

wn

s -(*)

/-10 In

V―120 10/

Wai

C6 x)

V-48 6/

w50

(*) s is not represented by any 2x2 matrix [12] §5, [18]

§2. Hyperelliptic modular curves Xt(N)

In this section, we determine the hyperellipticmodular curves of type Xt(N).

To determine the hyperelliptic modular curve XL(N) (of genus gt(N)^2), it

sufficesto discuss the following three cases (1),(2) and (3):

Case (1) gQ(N)^2 (see (1.4)).

Case (2) go(N)=l (N=17, 19, 20, 24, 27, 32, 36 and 49)

Case (3) so(N)=0 (N=13, 16, 18 and 25)

Theorem 2.1. All the hyper ellipticmodular curves,Xt(N) are the following

twenty-two modular curves:

and

X0(N) for the nineteen integers N in (1.4)



*i(13)

A'x(16)

*i(18)

Hyperelliptic modular curves

genus

2

2

2

hyperelliptic involution v

[5] = [2]3

[7] = [5]2

uv[7]

417

Proof. Suppose that XL―XL(N) has the hyperellipticinvolutionw. Then

w is defined over Q and belongs to the center of Aut Xh(N). If moreover

MQ(N)>2, then w induces the hvperellipticinvolutionv of Xn(N).

Case (1) go(N)^2: At first,we discuss the case when the hyperelliptic

involutions v of X,{N) are of type wM (1.4). For JV=23, 26, 29, 31, 35, 39, 41,

47, 50, 59 and 71, y(0)=co and the cusps lying over oo are defined over the

fieldsassociated with the subgroup A of (Z/NZ)* by lemma 1.2. For N=22,

28, 30, 33 and 46, by Lemma 1.2, we see that the cusps on XL(N) lying over

v(O) are not defined over Q for A^(Z/NZy. Now we discuss the remaining

case for M―4-Q.48 and 37

Case N=40: The maximal subgroup of (Z/4QZ)X=(Z/8Z)XX(Z/5Z)X con-

taining ±1 are Ai=<±l, (3, 1),(-1, 1)>, A2=<±1, (3, 2)> and A8=<±1, (1, 2)>.

The hyperelliptic involution v of Z0(40) sends the cusp co to ( j (1.4). The

cusp C on X&t lying over ( j are all Q-rational, and those lying over oo are

defined over the fields associated with the subgroups A* of (Z/40Z)x, cf

T pmmn 1 9

Case N=48 : The maximal subgroups of (Z/48Z)*=(Z/16Z)xx(Z/3Z)x are

A1=<±1, (3, 1)>, A2=<±1, (9, 1),(1, -1)> and A3=<±1, (3, -1)>. Tne hyper-

elliptic involution v of Z0(48) sends the cusp oo to (g) (1.4). Let Pt and Qt

be the cusps on Xti lying over the cusp oo and ( ), respectively. Then Pt

are defined over real quadratic fields,cf. Lemma 1.2. But the cusp Qx is defined

over Q(V^2), and the cusp QB is defined over Q(V^I). For A2, suppose that

X&, has the hyperellipticinvolution v, which induces the hyperellipticinvolution

w of Z0(48) represented by ( ._ _) cf. (1.4). The matrix L . ) represents
＼―4o o/ ＼(J 1 /

an automorphism u of Xt2, and u does not commute with v.

Case N―37: The hyperelliptic involution s of X0(37) sends the cusps to

non cuspidal Q-rational points, [12] §5, [18] Theorem 2. Further by [13], any

automorphism of XJN) is represented by a matrix belonging to GLi(R) for
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A^(Z/37Z)＼

Case (2) go(N)=l: Let r%(N)/Qx be the normalizer of rA(Ar)/±l in

PGLtiQ), and put Bt=BL(N)=rt{N)/rL(N)Qx, which is a subgroup of

AutXL(N). For square free integers N with gA(AT)^2, Bt(N)=Aut XL(N)

except for X0(37) [13].

Case N=17, 19 and 20: For A^{±1}, gL(N)=l. For N=17 and 19,

Xi{N)(Q) consist of the O-cusps, and Xi(20)(Q) consists of the O-cusps and

ramified cusps d and C2 lying over the cusp ( ) [10], Lemma 1.2. Suppose

that Xi(N) has the hyperellipticinvolution v. Then v induces an involution w

of X0(N) such that X0{N)/(w}^PL and w commutes with the automorphisms

of type wu cf. [1] §4. Then w fixes 0, and (＼＼ for N=2Q. For JV=17 and

19, there are not such involutions. The orbit of <0, ( _ H under the subgroup

<>4, Ws) is JO, oo,( V ( V ( ＼(in)|, which consists of fixed points of w

This is a contradiction.

Case N=21: The maximal subgroups of (Z/21Z)X=(Z/3Z)X x(Z/7Z)x are

A!=<±1, (1, -1)>, A2=<±1, (1, 2)>,and gLl(21)=3, #a2(21)=1. Suppose that XL

has the hyperelliptic involution v for A=Ai. Then v induces the involution

w―ws or w2l [1] §4, [24] table 5. Since u;2i(0)=oo, w^w2i cf. Lemma 1.2,

hence w = w3. But then v dose not commutes with w7.

Case A^=24: Since Z0(24)(Q)= {cusps} [24] table 1, and ro(24)/±l has no

ellipticelement, any Q-rational automorphism of X0(2i) belongs to 50(24). The

maximal subgroups of (Z/24Z)X=(Z/8Z)XX(Z/3ZT are A1=<±1, (-1, l)>, A2=

<±1,(3, 1)> and A8=<±1, (5, 1)>. For A=AX and A2, ^A(24)=3 and ^O(24)=l.

Suppose XL has the hyperelliptic involution v for A=AX or A2. Since
<s l/2＼

1 /

modrA(24) does not belong to Aut XL, v induces the involution w = w8 or w24

[1] §4, [24] table 5. But ws and wu are defined over Q(V~2~)for A=AX. For

A=A2, w2i is defined over Q(V^T), hence w ―w%. Since XL(Q) consisits of

the O-cusps and ramified cusps Cu C2, Cs, C4, w = ws must fix the O-cusps.

This is a contradiction.

CaseiV=27: For A^{^1}, gL(27)=l, and g,(27)=3. Let 3f=3rx(27) be

the normalization of the projective /-linein the function field of Xi(27). Then
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#3?(F8)^#{O-cusps}=9, so that Zx(27) Is not hyperelliptic cf. [18].

Case 7V=32: For A'=<±1, 1+16>, gL.(Z2)=5, and for A*=<±1, l+8>,

gL≫(Z2)=l. Let /', J" be the jacobian varieties of XL> and XL≫ respectively.

Then J'―J"-＼-A for an abelian variety A(/Q) of dimension 4. The involution

[9] acts by +1 on /", and by ―1 on A If XL, has the hyperelliptic involu-

tion v, then [9] v acts by ―1 on /", and +1 on A But there is not such an

involution. It is easily seen by Riemann-Hurwitz formula.

Case N=36: The maximal subgroups of (Z/36Zy=(Z/4Z)xx(Z/9Zy are

Ax=<±l, (1, 4)>, A2=<±1, (1, -1)>, and gLl=Z, gtz=7. Snppose XL has the

hyperellipticinvolution v. Then v induces an involution w of Z0(36). At first,

we discuss for A=Aj. The set X^{Q) consists of the O-cusps and ramified

cusps Ci, C2 cf. [24] table 1, Lemma 1.2. Then w fixes the set of O-cusps.

The matrix ( j representsan automorphism g of XLv and the orbitof 0

under the subgroup <g, wt, w9> is S=JO, co,(~ )>(9)> (^(To)}- Then w

must have more than #S=8 fixed points, which is a contradiction. Now con-

sider the case for A=A2. The set XtlQ) consists of the O-cusps and the cusps

lying over the cusps (o)'^)' cf- Lemma 1-2. Then v fixes a rational points

on Xt2, since #ZAa(Q)=9. The matrix ( j represents an automorphism g

of X±2,and the subgroup (g, w4, f> acts transitively on Xt2(Q), where J is a

generator of the covering group of Xt2-+X0(36). Thus v fixes all the points

belonging to Xhz(Q) and w9(XLi(Q)). This contradicts to £A(36)=7.

Case N=49: Let An be the maximal subgroups of (Z/A9Z)X of indices

ft=3, 7. Let 3Ch be the normalization of the projective /-line 3?0(1)=jPq in the

function field of Xh. For A=A3, the cusps on Xt are all defined over Q(CtX

so that #^A(F8)^24. For A=A7, #^A(F2)^7. Therefore XLn are not hyper-

ellipticcf. [181.

Case (3) go(N)=O: For A^{±1}, XL=P^. For iV=13, 16 and 18, [5],

[7] and w2[7] are the hyperelliptic involutions of XX(N), respectively. There

remains the case for 7V=25. Let An be the maximal subgroups of (Z/25Z)X of

index n=2, 5. Then gA2(25)=0 and £a5(25)=4. We know that XLb{Q) consists

of the O-cusps [6]. Suppose that X―Xt5 has the hyperellipticinvolution v.

Then v fixes a O-cusp, hence v fixes all the O-cusps. Then the divisor class

c/((O')-(O")) are of order 2 for the O-cusps 0' and 0*, O'^O". But we know

that the Mordell-Weil group of the jacobian variety of X is isomorphic to
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§3. Automorphism groups of hyperelliptic curves XL(N)

In this section, we determined the automorphism groups of hyperelliptic

modular curves of type Xt(N). For square free integers N, Aut Xt(N) are

determined [13], [19]. Hence it suffices to discuss for Xx(16) and Xi(l8) cf.

Theorem 2.1.

Theorem 3.1. The automorphisms of Xi(16) and Xx(18) are represented by

2y2 mat.rir.ip.fi.

Proof.

Case N=18: Let 3C be the minimal model of X^W) (/Z). The special

fibre T§§F2 has two irreducible components Z, Z' which are isomorphic to P1

and intersect transversally at three supersingular points Si, S2 and S3 [2]. Let

v=w2＼y~＼be the hyperellipticinvolution of Xi(18). Since the jacobian variety

/i(18) of Xi(18) has stable reduction at the rational prime 2 [2], any endomor-

phism of /i(18) is defined over Q＼r [22] Lemma 1. Let G be the subgroup of

Aut X^IS) consisting of automorphisms g which fix the irreducible component

Z. Then we see that the representation of G into the permutation group S3

of the set {Si, S2, S3} is faithfull. Thus we see that G=<.w3, [7]>. Further

w2 exchanges Z by Z'. Thus Aut Xj(18) is generated by w2> iv9 and [7].

Case7V=16: The hyperellipticinvolution v=f for y―[3]. Put X=X0S)

and F=Z/<y>. Let Cu C2 (resp. C3, C4) be the cusps on X lying over the

cusp

X-+Y

( _ j fresp. ( X＼. Then Ct are the ramification points of the covering

. Let Pi, P2 be the totally ramified cusps lying over ( j and ( A

respectively. Let Sv be the set of the Weierstrass points of X: Sv=

{Pi, P%, Cu C2, C3, C4}, and let S6 be the permutation group of the elements of

Sv. Then (Aut X)/<v> becomes a subgroup of S6.

Lemma 3.2. {^eAut X ＼gyg-^r*1}^, wle>.

Proof. We can take a local parameter x along the cusp oo of ^0(16)

such that the modular invariant j=F(x)/G(x) for F(x)=(x8+24x7+7-24x6+7-

26x5+69-24x4+13-27x3+ll-27x2+210x+213)3 and G(x)=x(x+4)(x2+4x+8)(x+2)4

[3] kapitelIV. Further the values x=0, -2, -2+2V:rI> -2-2Virl and -4
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(o)≫ (4)' (
4
) and (8)> respectively. If gyg~l

―j±＼then g induces an automorphism of h of X0(16)―P＼x), and h* sends the

set {-4, -2} and {-2±2V:zI} to themselves. If /i*(-4)=-2, then w16*/i*

fixes both ―4 and ―2. Changing g by gu;^, if necessary, we may assume

that h* fixes both ―4 and ―2. Let 5 be the automorphism of P＼x) defined

by 8*(x)=x+4/x+2, then 5*(-2+2-v/III)= l-V^I, a*(-2-2V:=l)=l+V^T,

and (5/ia"1)*(^)=a^ for some aeCx. If a^=l, then a(l+V3I)=l-V:rl, so

that a = -V^l. But then 1+V:zl=(8h5-I)*(l-V^l)^(-V^i)(l-Vz:l).

Therefore a―I, i.e., A=frf and g belongs to </>. □

At first, we show that any 2-sylow subgroup H of G=Aut X containg j

and w 16is equal to the subgroup (wle,,?}, which is a dihedral group with rela-

tion w^jWii―if'1. If #H=£8, then G has a subgroup K of order 16 containing

<Wi6> j}. Then <f> is a normal subgroup of if, since <j> is the unique cyclic

subgroup of order 4 of (ivls,y}. Then by Lemma 3.2, any ge/f belongs to

<u>i6,f>. It is a contradiction. Now we show that G is a 2-group. The prime

divisors of #G are 2, 3 or 5. If g^G is of order 5, then g fixes a Weierstrass

point C, which is defined over Q(Cie). Let f be a local parameter along C.

Then g*(0=C5^+fl2^2+ ･･･for a primitive 5-th root C,5of unity, so that g is not

defined over Q%r. But we know that any endomorphism of the jacobian variety

of X is defined over Qy for any prime number p--£2[2], [22] Lemma 1. Sup-

pose that an automorphism g^G is of order 3. By the same way as above,

we see that g does not fix any Weierstrass point. Changing the induces of

{Pi}, {Ci, C2} and {C3, C4}, if necessary, we may assume that (1) g{P1)=Pi or

(2) g(P1)=Cl.

Claim. g(P1)^P2.

We know that r=(Clf C2)(C3, C4) mod <y>. If g(F1)=^>2, then gyg mod <v>

is of order 5, so that g(Px)^P2.

Put h=gjg'＼ which fixes the Q-rational cusp Cx. Let t be a local param-

eter along d. Then h*(f)=±V:-Lt+ ･･･eQCV^EP]], and A is defined over

QCV^l). For any <;eGal(Q/Q), ha=h±l, so that ^^.g-"1belongs to <u>18,r> by

Lemma 3.2. Since ^"g"1 fixes the Q-rational cusp Cu g<!g'l=l or v. Then

(g'7)2^^2. Since g is of order 3, ga―g, so that g is defined over Q. But we

know that EndQ/1(16)0QsQ(Vz:l) [14], [20, 21], where Ende ■･･is the subring

consisting of the endomorphisms defined over Q. Thus Aut X is a 2-group. □
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