HYPERELLIPTIC MODULAR CURVES

By

N. Ishil and F . Momose

Let $N \geqq 1$ be an integer, and Δ be a subgroup of $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$. Let $X_{\Delta}=$ $X_{\Delta}(N)$ be the modular curve defined over \boldsymbol{Q} associating to the modular group $\Gamma_{\Delta}=\Gamma_{\Delta}(N):$

$$
\Gamma_{\Delta}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0 \bmod N,(a \bmod N) \subseteq \Delta\right\} .
$$

Since $X_{\Delta}=X_{\langle \pm 1, \Delta\rangle}$ [2], we always assume that -1 belongs to Δ. For $\Delta=\{ \pm 1\}$ (resp. $\left.\Delta=(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}\right)$, we denote $X_{\Delta}(N)$ by $X_{1}(N)$ (resp. $X_{0}(N)$). Ogg [18] determined all the hyperelliptic modular curves of type $X_{0}(N)$. This work aids the determination of the rational points on the modular curves $X_{s p l i t}(N)$ etc. [15, 16, 17] and that of the automorphism groups of $X_{0}(N)$ [8], [19]. In this paper, we determine all the hyperelliptic modular curves of type $X_{\Delta}(N)$. There are nineteen hyperelliptic modular curves $X_{0}(N)$ for $N=22,23,26,28,29,30,31$, $33,35,37,39,40,41,46,47,48,50,59$ and 71 [18]. The modular curves $X_{\Delta}(N)$ are subcoverings of $X_{1}(N) \rightarrow X_{0}(N)$. Therefore it suffices to discuss the cases for the above nineteen integers N and for the integers N with genus of $X_{0}(N)$ are 0 or 1 (i.e. $N=17,19,20,24,27,32,36,49 ; 13,16,18$ and 25). Our result is as follows.

Theorem. The hyperelliptic modular curves of type $X_{\Delta}(N)$ are the curves $X_{0}(N)$ for the above nineteen integers N, and $X_{1}(13), X_{1}(16)$ and $X_{1}(18)$.

By the above result and [18], we see that the hyperelliptic involutions of $X_{\Delta}(N)$ as above are represented by matrices belonging to $\mathrm{GL}_{2}^{+}(\boldsymbol{Q})$, except for $X_{0}(37)$ (see also [12]). Our result is used to determine the torsion points on elliptic curves defined over quadratic fields [17].

The automorphism groups Aut $X_{\Delta}(N)$ are determined for $X_{0}(N)$, [3], [8], [19], and for all Δ with square free integers N [13]. Except for $N=37$ and 63 the automorphisms of $X_{0}(N)$ with genera $\geqq 2$ are represented by matrices belonging to $\mathrm{GL}_{2}^{+}(\boldsymbol{Q})$ loc. cit.. In the final section, we determine the automorphism

[^0]groups of the hyperelliptic modular curves as above.
Notation. Let $\mathbb{Q}_{p}^{u r}$ denote the maximal unramified extension of \boldsymbol{Q}_{p}. For a positive integer n, ζ_{n} is a primitive n-th root of unity, and μ_{n} is the group consisting of all the n-th roots of unity.

§1. Preliminaries

In this section, we give a review on modular curves and add the list of the hyperelliptic modular curves of type $X_{0}(N)$ [18]. Let $N \geqq 1$ be an integer, and Δ be a subgroup of $(\mathbb{Z} / N \mathbb{Z})^{\times}$containing -1 . Let $X_{\Delta}=X_{\Delta}(N)$ be the modular curve defined over \mathbb{Q} associating to the modular group $\Gamma_{\Delta}(N)$:

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod N,(a \bmod N) \subseteq \Delta\right\}
$$

Then $X_{\Delta}(N)$ is the coarse moduli space (over Q) of the isomorphism classes of the generalized elliptic curves E with a point $P \bmod \Delta$. We have the Galois covering

$$
\begin{aligned}
X_{1}(N) & \longrightarrow X_{\Delta}(N) \\
(E, \pm P) & \longrightarrow(E, \Delta P)
\end{aligned} X_{0}(N),(E,\langle P\rangle)
$$

where $\langle P\rangle$ is the cyclic subgroup generated by P. Let $g_{\Delta}(N), g_{1}(N)$ and $g_{0}(N)$ denote the genera of $X_{L}(N), X_{1}(N)$ and $X_{0}(N)$, respectively, Let $Y_{\Delta}(N), Y_{1}(N)$ and $Y_{0}(N)$ be the open affine subschemes $X_{\Delta}(N) \backslash\{$ cusps $\} X_{1}(N) \backslash\{$ cusps $\}$, and $X_{0}(N) \backslash\{$ cusps $\}$, respectively [2] VI (6.5). Then the covering $Y_{1}(N) \rightarrow Y_{0}(N)$ ramifies at the points represented by the pairs $(E,\langle P\rangle)$ with $\operatorname{Aut}(E,\langle P\rangle) \neq$ $\{ \pm 1\}$ and $\operatorname{Aut}(E, \pm P)=\{ \pm 1\}$. The modular invariants of the remification points on $Y_{0}(N)$ are 0 or 1728.
(1.1) Let $\mathrm{O}=\binom{0}{1}$ and $\infty=\binom{1}{0}$ be the \boldsymbol{Q}-rational cusps on $X_{0}(N)$ which are represented by the pairs ($\boldsymbol{G}_{m} \times \boldsymbol{Z} / N \boldsymbol{Z}, \boldsymbol{Z} / N \mathbb{Z}$) and $\left\{\mathbf{G}_{m}, \mu_{N}\right\}$, respectively [2] II. For a positive divisor d of N and for an integer i prime to d, let $\binom{i}{d}$ denote the cusp on $X_{0}(N)$ which is represented by $\left(G_{m} \times \mathbb{Z} /(N / d) \boldsymbol{Z},\left\langle\zeta_{N}^{i}, 1\right\rangle\right)$. Then $\binom{i}{d}$ is defined over $Q\left(\zeta_{n}\right)$ for $n=$ G.C.D. of d and N / d, and $\binom{i}{d}=\binom{j}{d}$ if and only if $i \equiv j \bmod n$. The ramification index of the covering $X_{1}(N) \rightarrow X_{0}(N)$ at the cusp $\binom{i}{d}$ is G.C.D. of d and N / d. Let $\mathbf{O}_{i}\left(1 \leqq i \leqq \#\left((\boldsymbol{Z} / N \boldsymbol{Z})^{\times} / \Delta\right)\right)$ be the cusps on $X_{\Delta}(N)$ lying over the cusp 0 on $X_{0}(N)$. Then \mathcal{O}_{i} are all \mathbb{Q}-rational.

We call them O-cusps.
Let $C_{0}=\binom{i}{d}$ be a cusp on $X_{0}(N)$, and C be a cusp on $X_{\Delta}(N)$ lying over C_{0}. We here discuss the field of definition of the cusp C. Put $N=d_{1} \cdot N_{d}$ for coprime divisors d_{1} and N_{d} such that d and d_{1} have same prime divisors. Put $\Delta_{d}^{\prime}=\left\{a \bmod d_{1} \mid a \in \Delta, a \equiv 1 \bmod N / d\right\}, \Delta_{d}^{\prime \prime}=\left\{a \in\left(\boldsymbol{Z} / d_{1} Z\right)^{\times} \mid a \equiv 1 \bmod d\right\}$, and let Δ_{d} be the subgroup generated by Δ_{d}^{\prime} and $\Delta_{d}^{\prime \prime}$.

Lemma 1.2. With the notation as above, let $k(\Delta, d)$ be the field associating to the subgroup Δ_{d} of $\left(\boldsymbol{Z} / d_{1} \boldsymbol{Z}\right)^{\times}$. Then $k(\Delta, d)$ is the field of definition of the cusp C. For $C=\infty$, we know $\Delta_{d}=\Delta$.

Proof. The cusp C is represented by the pair

$$
\left(\mathbf{G}_{m} \times \boldsymbol{Z} /(N / d) \boldsymbol{Z},(\zeta, 1) \bmod \Delta\right)
$$

for a primitive d-th root $\zeta=\zeta_{d}$ of unity (1.1). The subgroup Δ acts by $(\zeta, 1)$ $\mapsto\left(\zeta^{a}, a\right)$ for $a \in \Delta$. Further, as a generalized elliptic curve, Aut $\left(\mathbb{G}_{m} \times \boldsymbol{Z} /(N / d) \boldsymbol{Z}\right)$ is generated by $(x, i) \mapsto\left(\zeta_{N / d}^{i} \cdot x, i\right)$ and $(x, i) \mapsto\left(x^{-1},-i\right)$ (see [2] I).
(1.3) Let $M \neq 1$ be a positive divisor of N prime to N / M. The matrix $\left(\begin{array}{cc}M a & b \\ N c & M d\end{array}\right)$ for integers a, b, c, d with $a d M^{2}-c d N=M$ defines an automorphism w_{M} of $X_{1}(N)$. For a choice of a primitive M-th root ζ_{M} of unity. w_{M} is defined by

$$
(E, \pm P) \longmapsto\left(E /\left\langle P_{M}\right\rangle, \pm\left(P+Q_{M}\right) \bmod \left\langle P_{M}\right\rangle\right),
$$

where $P_{M}=(N / M) P$ and Q_{M} is a point of order M such that $e_{M}\left(P_{M}, Q_{M}\right)=\zeta_{M}$ and $e_{M}: E_{M} \times E_{M} \rightarrow \mu_{M}$ is the e_{M} (Weil)-pairing. Then w_{M} induces the involution of $X_{0}(N)$ defined by

$$
\left((E, A) \longmapsto\left(E / A_{M},\left(A+E_{M}\right) / A_{M}\right),\right.
$$

where A_{M} is the cyclic subgroup of order M of A. For an integer i prime to N, let [i] denote the automorphism of $X_{1}(N)$ represented by $g \in \Gamma_{0}(N)$ such that $g \equiv\left(\begin{array}{ll}i & * \\ 0 & *\end{array}\right) \bmod N$, then $[i]$ acts as $(E, \pm P) \mapsto(E, \pm i P)$. We denote also by w_{M} and [i] the automorphisms of a subcovering $X_{\Delta}(N)$ which are induced by w_{M} and [i], respectively.
(1.4) There are exactly nineteen values of N for which $X_{0}(N)$ are hyperelliptic curves and they are listed in the table below [18]:
$\left.\begin{array}{lcll}N & \text { genus } & \text { hyperelliptic involution } \\ 22 & 2 & w_{11} & \\ 23 & 2 & w_{23} & \\ 26 & 2 & w_{26} & \\ 28 & 2 & w_{7} & \\ 29 & 2 & w_{29} & \\ 30 & 3 & w_{15} & \\ 31 & 2 & w_{31} & \\ 33 & 3 & w_{11} & \\ 35 & 3 & w_{35} & \\ 37 & 2 & s \cdots(*) & \\ 39 & 3 & w_{39} & \\ 40 & 3 & (-10 & 1 \\ 40 & w_{41} & \\ 41 & 3 & w_{23} & \\ 46 & 5 & w_{47} & \\ 47 & 4 & (-6 & 1 \\ 4 & 3 & -48 & 6\end{array}\right)$
(*) s is not represented by any 2×2 matrix [12] §5, [18].

§2. Hyperelliptic modular curves $X_{\Delta}(N)$

In this section, we determine the hyperelliptic modular curves of type $X_{\Delta}(N)$. To determine the hyperelliptic modular curve $X_{\Delta}(N)$ (of genus $g_{\Delta}(N) \geqq 2$), it suffices to discuss the following three cases (1), (2) and (3):

Case (1) $\quad g_{0}(N) \geqq 2$ (see (1.4)).
Case (2) $\quad g_{0}(N)=1(N=17,19,20,24,27,32,36$ and 49)
Case (3) $g_{0}(N)=0(N=13,16,18$ and 25)
THEOREM 2.1. All the hyperelliptic modular curves $X_{\Delta}(N)$ are the following twenty-two modular curves:

$$
X_{0}(N) \quad \text { for the nineteen integers } N \text { in (1.4), }
$$

and

	genus	hyperelliptic involution v
$X_{1}(13)$	2	$[5]=[2]^{3}$
$X_{1}(16)$	2	$[7]=[5]^{2}$
$X_{1}(18)$	2	$w_{2} \circ[7]$

Proof. Suppose that $X_{\Delta}=X_{\Delta}(N)$ has the hyperelliptic involution w. Then w is defined over \boldsymbol{Q} and belongs to the center of Aut $X_{\Delta}(N)$. If moreover $g_{0}(N) \geqq 2$, then w induces the hyperelliptic involution v of $X_{0}(N)$.

CASE (1) $g_{0}(N) \geqq 2$: At first, we discuss the case when the hyperelliptic involutions v of $X_{0}(N)$ are of type $w_{M}(1.4)$. For $N=23,26,29,31,35,39,41$, $47,50,59$ and $71, v(\mathbf{0})=\infty$ and the cusps lying over ∞ are defined over the fields associated with the subgroup Δ of $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$by lemma 1.2. For $N=22$, $28,30,33$ and 46 , by Lemma 1.2, we see that the cusps on $X_{\Delta}(N)$ lying over $v(\mathbf{0})$ are not defined over \boldsymbol{Q} for $\Delta \neq(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$. Now we discuss the remaining case for $N=40,48$ and 37.

Case $N=40$: The maximal subgroup of $(\boldsymbol{Z} / 40 \boldsymbol{Z})^{\times}=(\boldsymbol{Z} / 8 \boldsymbol{Z})^{\times} \times(\boldsymbol{Z} / 5 \boldsymbol{Z})^{\times}$containing ± 1 are $\Delta_{1}=\langle \pm 1,(3,1),(-1,1)\rangle, \Delta_{2}=\langle \pm 1,(3,2)\rangle$ and $\Delta_{3}=\langle \pm 1,(1,2)\rangle$. The hyperelliptic involution v of $X_{0}(40)$ sends the cusp ∞ to $\binom{1}{4}$ (1.4). The cusp C on $X_{\Delta_{i}}$ lying over $\binom{1}{4}$ are all \boldsymbol{Q}-rational, and those lying over ∞ are defined over the fields associated with the subgroups Δ_{i} of $(\boldsymbol{Z} / 40 \boldsymbol{Z})^{\times}$, cf. Lemma 1.2.

Case $N=48$: The maximal subgroups of $(\boldsymbol{Z} / 48 \boldsymbol{Z})^{\times}=(\boldsymbol{Z} / 16 \boldsymbol{Z})^{\times} \times(\boldsymbol{Z} / 3 \boldsymbol{Z})^{\times}$are $\Delta_{1}=\langle \pm 1,(3,1)\rangle, \Delta_{2}=\langle \pm 1,(9,1),(1,-1)\rangle$ and $\Delta_{3}=\langle \pm 1,(3,-1)\rangle$. Tne hyperelliptic involution v of $X_{0}(48)$ sends the cusp ∞ to $\binom{1}{8}$ (1.4). Let P_{i} and Q_{i} be the cusps on $X_{\Delta_{i}}$ lying over the cusp ∞ and $\binom{1}{8}$, respectively. Then P_{i} are defined over real quadratic fields, cf. Lemma 1.2. But the cusp Q_{1} is defined over $\boldsymbol{Q}(\sqrt{-2})$, and the cusp Q_{3} is defined over $\boldsymbol{Q}(\sqrt{-1})$. For Δ_{2}, suppose that $X_{\Delta_{2}}$ has the hyperelliptic involution v, which induces the hyperelliptic involution w of $X_{0}(48)$ represented by $\left(\begin{array}{ll}-6 & 1 \\ -48 & 6\end{array}\right)$ cf. (1.4). The matrix $\left(\begin{array}{ll}1 & 1 / 2 \\ 0 & 1\end{array}\right)$ represents an automorphism u of $X_{\Delta_{2}}$, and u does not commute with v.

Case $N=37$: The hyperelliptic involution s of $X_{0}(37)$ sends the cusps to non cuspidal Q-rational points, [12] §5, [18] Theorem 2. Further by [13], any automorphism of $X_{\Delta}(N)$ is represented by a matrix belonging to $\mathrm{GL}_{2}^{+}(\boldsymbol{R})$ for
$\Delta \neq(\boldsymbol{Z} / 37 \boldsymbol{Z})^{\times}$.
CASE (2) $g_{0}(N)=1$: Let $\Gamma_{\Delta}^{*}(N) / Q^{\times}$be the normalizer of $\Gamma_{\Delta}(N) / \pm 1$ in $\operatorname{PGL}_{2}^{+}(\mathbb{Q})$, and put $B_{\Delta}=B_{\Delta}(N)=\Gamma_{\Delta}^{*}(N) / \Gamma_{\Delta}(N) \mathbb{Q}^{\times}$, which is a subgroup of Aut $X_{\Delta}(N)$. For square free integers N with $g_{\Delta}(N) \geqq 2, \quad B_{\Delta}(N)=$ Aut $X_{\Delta}(N)$ except for $X_{0}(37)$ [13].

Case $N=17,19$ and 20 : For $\Delta \neq\{ \pm 1\}, g_{\Delta}(N)=1$. For $N=17$ and 19 , $X_{1}(N)(\mathbb{Q})$ consist of the O-cusps, and $X_{1}(20)(\mathbb{Q})$ consists of the \mathcal{O}-cusps and ramified cusps C_{1} and C_{2} lying over the cusp $\binom{1}{2}$ [10], Lemma 1.2. Suppose that $X_{1}(N)$ has the hyperelliptic involution v. Then v induces an involution w of $X_{0}(N)$ such that $X_{0}(N) /\langle w\rangle \simeq \mathbb{P}_{Q}^{1}$, and w commutes with the automorphisms of type $w_{M} \mathrm{cf}$. $[1] \S 4$. Then w fixes \mathbb{O}, and $\binom{1}{2}$ for $N=20$. For $N=17$ and 19, there are not such involutions. The orbit of $\left\{\mathbf{O},\binom{1}{2}\right\}$ under the subgroup $\left\langle w_{4}, w_{5}\right\rangle$ is $\left\{\mathbf{O}, \infty,\binom{1}{2},\binom{1}{4},\binom{1}{5},\binom{1}{10}\right\}$, which consists of fixed points of w. This is a contradiction.

Case $N=21$: The maximal subgroups of $(\boldsymbol{Z} / 21 \boldsymbol{Z})^{\times}=(\boldsymbol{Z} / 3 \boldsymbol{Z})^{\times} \times(\boldsymbol{Z} / 7 \boldsymbol{Z})^{\times}$are $\Delta_{1}=\langle \pm 1,(1,-1)\rangle, \Delta_{2}=\langle \pm 1,(1,2)\rangle$, and $g_{\Delta_{1}}(21)=3, g_{\Delta_{2}}(21)=1$. Suppose that X_{Δ} has the hyperelliptic involution v for $\Delta=\Delta_{1}$. Then v induces the involution $w=w_{3}$ or $w_{21}[1] \S 4$, [24] table 5. Since $w_{21}(\mathbf{O})=\infty, w \neq w_{21}$ cf. Lemma 1.2, hence $w=w_{3}$. But then v dose not commutes with w_{7}.

Case $N=24$: Since $X_{0}(24)(Q)=\{$ cusps $\}[24]$ table 1 , and $\Gamma_{0}(24) / \pm 1$ has no elliptic element, any Q-rational automorphism of $X_{0}(24)$ belongs to $B_{0}(24)$. The maximal subgroups of $(\boldsymbol{Z} / 24 \boldsymbol{Z})^{\times}=(\boldsymbol{Z} / 8 \boldsymbol{Z})^{\times} \times(\boldsymbol{Z} / 3 \boldsymbol{Z})^{\times}$are $\Delta_{1}=\langle \pm 1,(-1,1)\rangle, \Delta_{2}=$ $\langle \pm 1,(3,1)\rangle$ and $\Delta_{3}=\langle \pm 1,(5,1)\rangle$. For $\Delta=\Delta_{1}$ and $\Delta_{2}, g_{\Delta}(24)=3$ and $g_{\Delta_{3}}(24)=1$. Suppose X_{Δ} has the hyperelliptic involution v for $\Delta=\Delta_{1}$ or Δ_{2}. Since $\left(\begin{array}{ll}1 & 1 / 2 \\ 0 & 1\end{array}\right)$ $\bmod \Gamma_{\Delta}(24)$ does not belong to Aut X_{Δ}, v induces the involution $w=w_{8}$ or w_{24} [1] §4, [24] table 5. But w_{8} and w_{24} are defined over $Q(\sqrt{2})$ for $\Delta=\Delta_{1}$. For $\Delta=\Delta_{2}, w_{24}$ is defined over $Q(\sqrt{-3})$, hence $w=w_{8}$. Since $X_{\Delta}(\mathbb{Q})$ consisits of the O-cusps and ramified cusps $C_{1}, C_{2}, C_{3}, C_{4}, w=w_{8}$ must fix the O-cusps. This is a contradiction.

Case $N=27$: For $\Delta \neq\{ \pm 1\}, g_{\Delta}(27)=1$, and $g_{1}(27)=3$. Let $\mathscr{X}=\mathscr{X}_{1}(27)$ be the normalization of the projective j-line in the function field of $X_{1}(27)$. Then
$\# \mathscr{X}\left(\boldsymbol{F}_{2}\right) \geqq \#\{0$-cusps $\}=9$, so that $X_{1}(27)$ is not hyperelliptic cf. [18].
Case $N=32$: For $\Delta^{\prime}=\langle \pm 1,1+16\rangle, g_{\Delta^{\prime}}(32)=5$, and for $\Delta^{\prime \prime}=\langle \pm 1,1+8\rangle$, $g_{\Delta^{\prime \prime}}(32)=1$. Let $J^{\prime}, J^{\prime \prime}$ be the jacobian varieties of $X_{\Delta^{\prime}}$ and $X_{\Delta^{\prime \prime}}$ respectively. Then $J^{\prime}=J^{\prime \prime}+A$ for an abelian variety $A(/ Q)$ of dimension 4. The involution [9] acts by +1 on $J^{\prime \prime}$, and by -1 on A. If $X_{\Delta^{\prime}}$ has the hyperelliptic involution v, then [9] v acts by -1 on $J^{\prime \prime}$, and +1 on A. But there is not such an involution. It is easily seen by Riemann-Hurwitz formula.

Case $N=36$: The maximal subgroups of $(\boldsymbol{Z} / 36 \boldsymbol{Z})^{\times}=(\boldsymbol{Z} / 4 \boldsymbol{Z})^{\times} \times(\boldsymbol{Z} / 9 \boldsymbol{Z})^{\times}$are $\Delta_{1}=\langle \pm 1,(1,4)\rangle, \Delta_{2}=\langle \pm 1,(1,-1)\rangle$, and $g_{\Delta_{1}}=3, g_{\Delta_{2}}=7$. Snppose X_{Δ} has the hyperelliptic involution v. Then v induces an involution w of $X_{0}(36)$. At first, we discuss for $\Delta=\Delta_{1}$. The set $X_{\Delta_{1}}(Q)$ consists of the 0 -cusps and ramified cusps C_{1}, C_{2} cf. [24] table 1, Lemma 1.2. Then w fixes the set of \mathbb{O}-cusps. The matrix $\left(\begin{array}{ll}1 & 1 / 3 \\ 0 & 1\end{array}\right)$ represents an automorphism g of $X_{\Delta_{1}}$, and the orbit of \mathbf{O} under the subgroup $\left\langle g, w_{4}, w_{9}\right\rangle$ is $S=\left\{0, \infty,\binom{ \pm 1}{3},\binom{1}{9},\binom{1}{4},\binom{ \pm 1}{12}\right\}$. Then w must have more than $\# S=8$ fixed points, which is a contradiction. Now consider the case for $\Delta=\Delta_{2}$. The set $X_{\Delta_{2}}(Q)$ consists of the O-cusps and the cusps lying over the cusps $\binom{1}{2},\binom{1}{4}$, cf. Lemma 1.2. Then v fixes a rational points on $X_{\Delta_{2}}$, since $\# X_{\Delta_{2}}(Q)=9$. The matrix $\left(\begin{array}{ll}1 & 1 / 2 \\ 0 & 1\end{array}\right)$ represents an automorphism g of $X_{\Delta_{2}}$, and the subgroup $\left\langle g, w_{4}, \gamma\right\rangle$ acts transitively on $X_{\iota_{2}}(Q)$, where γ is a generator of the covering group of $X_{\Delta_{2}} \rightarrow X_{0}(36)$. Thus v fixes all the points belonging to $X_{\Delta_{2}}(\mathbb{Q})$ and $w_{9}\left(X_{\Delta_{2}}(\mathbb{Q})\right)$. This contradicts to $g_{\Delta}(36)=7$.

Case $N=49$: Let Δ_{n} be the maximal subgroups of $(\boldsymbol{Z} / 49 \boldsymbol{Z})^{\times}$of indices $n=3,7$. Let \mathscr{X}_{Δ} be the normalization of the projective j-line $\mathscr{X}_{0}(1) \cong \mathbb{P}_{Q}^{1}$ in the function field of X_{Δ}. For $\Delta=\Delta_{3}$, the cusps on X_{Δ} are all defined over $\boldsymbol{Q}\left(\zeta_{7}\right)$, so that $\# \mathscr{X}_{\Delta}\left(\boldsymbol{F}_{8}\right) \geqq 24$. For $\Delta=\Delta_{7}, \# \mathscr{X}_{\Delta}\left(\boldsymbol{F}_{2}\right) \geqq 7$. Therefore $X_{\Delta_{n}}$ are not hyperelliptic cf. [18].

CASE (3) $g_{0}(N)=0$: For $\Delta \neq\{ \pm 1\}, X_{\Delta}=P_{母}^{1}$. For $N=13,16$ and 18, [5], [7] and $w_{2}[7]$ are the hyperelliptic involutions of $X_{1}(N)$, respectively. There remains the case for $N=25$. Let Δ_{n} be the maximal subgroups of $(\mathbb{Z} / 25 \boldsymbol{Z})^{\times}$of index $n=2,5$. Then $g_{\Delta_{2}}(25)=0$ and $g_{\Delta_{5}}(25)=4$. We know that $X_{\Delta_{5}}(\mathbb{Q})$ consists of the 0 -cusps [6]. Suppose that $X=X_{\Delta_{5}}$ has the hyperelliptic involution v. Then v fixes a 0 -cusp, hence v fixes all the 0 -cusps. Then the divisor class $c l\left(\left(0^{\prime}\right)-\left(0^{\prime \prime}\right)\right)$ are of order 2 for the 0 -cusps \mathbf{O}^{\prime} and $\mathbf{O}^{\prime \prime}, \mathbf{O}^{\prime} \neq \mathbf{O}^{\prime \prime}$. But we know that the Mordell-Weil group of the jacobian variety of X is isomorphic to
$\boldsymbol{Z} / 71 \boldsymbol{Z}$ [6].

§3. Automorphism groups of hyperelliptic curves $X_{\Delta}(N)$

In this section, we determined the automorphism groups of hyperelliptic modular curves of type $X_{\Delta}(N)$. For square free integers N, Aut $X_{\Delta}(N)$ are determined [13], [19]. Hence it suffices to discuss for $X_{1}(16)$ and $X_{1}(18)$ cf. Theorem 2.1.

THEOREM 3.1. The automorphisms of $X_{1}(16)$ and $X_{1}(18)$ are represented by 2×2 matricies.

Proof.
Case $N=18$: Let \mathfrak{X} be the minimal model of $X_{1}(18)(/ Z)$. The special fibre $\mathscr{X} \otimes \boldsymbol{F}_{2}$ has two irreducible components Z, Z^{\prime} which are isomorphic to \boldsymbol{P}^{1} and intersect transversally at three supersingular points S_{1}, S_{2} and S_{3} [2]. Let $v=w_{2}[7]$ be the hyperelliptic involution of $X_{1}(18)$. Since the jacobian variety $J_{1}(18)$ of $X_{1}(18)$ has stable reduction at the rational prime 2 [2], any endomorphism of $J_{1}(18)$ is defined over $\boldsymbol{Q}_{2}^{u r}$ [22] Lemma 1. Let G be the subgroup of Aut $X_{1}(18)$ consisting of automorphisms g which fix the irreducible component Z. Then we see that the representation of G into the permutation group \mathcal{S}_{3} of the set $\left\{S_{1}, S_{2}, S_{3}\right\}$ is faithfull. Thus we see that $G=\left\langle w_{3},[7]\right\rangle$. Further w_{2} exchanges Z by Z^{\prime}. Thus Aut $X_{1}(18)$ is generated by w_{2}, w_{9} and [7].

Case $N=16$: The hyperelliptic involution $v=\gamma^{2}$ for $\gamma=[3]$. Put $X=X_{1}(16)$ and $Y=X /\langle v\rangle$. Let C_{1}, C_{2} (resp. C_{3}, C_{4}) be the cusps on X lying over the $\operatorname{cusp}\binom{1}{2}\left(\operatorname{resp} .\binom{1}{8}\right)$. Then C_{i} are the ramification points of the covering $X \rightarrow Y$. Let P_{1}, P_{2} be the totally ramified cusps lying over $\binom{1}{4}$ and $\binom{-1}{4}$, respectively. Let S_{v} be the set of the Weierstrass points of $X: S_{v}=$ $\left\{P_{1}, P_{2}, C_{1}, C_{2}, C_{3}, C_{4}\right\}$, and let S_{6} be the permutation group of the elements of S_{v}. Then (Aut $\left.X\right) /\langle v\rangle$ becomes a subgroup of \mathcal{S}_{6}.

Lemma 3.2. $\left\{g \in\right.$ Aut $\left.X \mid g \gamma g^{-1}=\gamma^{ \pm 1}\right\}=\left\langle\gamma, w_{16}\right\rangle$.
Proof. We can take a local parameter x along the cusp ∞ of X_{0} (16) such that the modular invariant $j=F(x) / G(x)$ for $F(x)=\left(x^{8}+2^{4} x^{7}+7 \cdot 2^{4} x^{6}+7\right.$. $\left.2^{6} x^{5}+69 \cdot 2^{4} x^{4}+13 \cdot 2^{7} x^{3}+11 \cdot 2^{7} x^{2}+2^{10} x+2^{13}\right)^{8}$ and $G(x)=x(x+4)\left(x^{2}+4 x+8\right)(x+2)^{4}$ [3] kapitel IV. Further the values $x=0,-2,-2+2 \sqrt{-1},-2-2 \sqrt{-1}$ and -4
corresponds to the cusps $\infty,\binom{1}{2},\binom{1}{4},\binom{-1}{4}$ and $\binom{1}{8}$, respectively. If $\mathrm{g} \mathrm{\gamma g}^{-1}$ $=\gamma^{ \pm 1}$, then g induces an automorphism of h of $X_{0}(16)=\boldsymbol{P}^{1}(x)$, and h^{*} sends the set $\{-4,-2\}$ and $\{-2 \pm 2 \sqrt{-1}\}$ to themselves. If $h^{*}(-4)=-2$, then $w_{16}{ }^{*} h^{*}$ fixes both -4 and -2 . Changing g by $g w_{16}$, if necessary, we may assume that h^{*} fixes both -4 and -2 . Let δ be the automorphism of $P^{1}(x)$ defined by $\delta^{*}(x)=x+4 / x+2$, then $\delta^{*}(-2+2 \sqrt{-1})=1-\sqrt{-1}, \delta^{*}(-2-2 \sqrt{-1})=1+\sqrt{-1}$, and $\left(\delta h \delta^{-1}\right)^{*}(x)=\alpha x$ for some $\alpha \in C^{\times}$. If $\alpha \neq 1$, then $\alpha(1+\sqrt{-1})=1-\sqrt{-1}$, so that $\alpha=-\sqrt{-1}$. But then $1+\sqrt{-1}=\left(\delta h \delta^{-1}\right)^{*}(1-\sqrt{-1}) \neq(-\sqrt{-1})(1-\sqrt{-1})$. Therefore $\alpha=1$, i. e., $h=i d$ and g belongs to $\langle\gamma\rangle$.

At first, we show that any 2 -sylow subgroup H of $G=$ Aut X containg γ and w_{16} is equal to the subgroup $\left\langle w_{16}, \gamma\right\rangle$, which is a dihedral group with relation $w_{16} \gamma w_{16}^{-1}=\gamma^{-1}$. If $\# H \neq 8$, then G has a subgroup K of order 16 containing $\left\langle w_{16}, \gamma\right\rangle$. Then $\langle\gamma\rangle$ is a normal subgroup of K, since $\langle\gamma\rangle$ is the unique cyclic subgroup of order 4 of $\left\langle w_{16}, \gamma\right\rangle$. Then by Lemma 3.2, any $g \in K$ belongs to $\left\langle w_{16}, \gamma\right\rangle$. It is a contradiction. Now we show that G is a 2 -group. The prime divisors of $\# G$ are 2,3 or 5 . If $g \in G$ is of order 5 , then g fixes a Weierstrass point C, which is defined over $\boldsymbol{Q}\left(\zeta_{16}\right)$. Let t be a local parameter along C. Then $g^{*}(t)=\zeta_{5} t+a_{2} t^{2}+\cdots$ for a primitive 5 -th root ζ_{5} of unity, so that g is not defined over $Q_{5}^{u r}$. But we know that any endomorphism of the jacobian variety of X is defined over $Q_{p}^{u r}$ for any prime number $p \neq 2$ [2], [22] Lemma 1. Suppose that an automorphism $g \in G$ is of order 3 . By the same way as above, we see that g does not fix any Weierstrass point. Changing the induces of $\left\{P_{i}\right\},\left\{C_{1}, C_{2}\right\}$ and $\left\{C_{3}, C_{4}\right\}$, if necessary, we may assume that (1) $g\left(P_{1}\right)=P_{2}$ or (2) $g\left(P_{1}\right)=C_{1}$.

Claim. $g\left(P_{1}\right) \neq P_{2}$.
We know that $\gamma=\left(C_{1}, C_{2}\right)\left(C_{3}, C_{4}\right) \bmod \langle v\rangle$. If $g\left(P_{1}\right)=P_{2}$, then $g \gamma g \bmod \langle v\rangle$ is of order 5, so that $g\left(P_{1}\right) \neq P_{2}$.

Put $h=g \gamma g^{-1}$, which fixes the Q-rational cusp C_{1}. Let t be a local parameter along C_{1}. Then $h^{*}(t)= \pm \sqrt{-1} t+\cdots \in \mathbb{Q}(\sqrt{-1})[[t]]$, and h is defined over $\boldsymbol{Q}(\sqrt{-1})$. For any $\sigma \in \operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}), h^{\sigma}=h^{ \pm 1}$, so that $g^{\sigma} g^{-1}$ belongs to $\left\langle w_{16}, \gamma\right\rangle$ by Lemma 3.2. Since $g^{\sigma} g^{-1}$ fixes the \mathbb{Q}-rational cusp $C_{1}, g^{\sigma} g^{-1}=1$ or v. Then $\left(g^{\sigma}\right)^{2}=g^{2}$. Since g is of order $3, g^{\sigma}=g$, so that g is defined over \boldsymbol{Q}. But we know that $\operatorname{End}_{\boldsymbol{Q}} J_{1}(16) \otimes \boldsymbol{Q} \cong \boldsymbol{Q}(\sqrt{-1})$ [14], [20,21], where $\operatorname{End}_{\boldsymbol{Q}} \cdots$ is the subring consisting of the endomorphisms defined over \boldsymbol{Q}. Thus Aut X is a 2 -group.

References

[1] A.O.L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185, 134-160 (1970).
[2] P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Vol. II of Proceedings of the International Summer School on Modular Functions, Antwerp 1972, Lecture Notes in Math. No. 349 (1973).
[3] N.D. Elkies, The automorphism group of the modular curve $X_{0}(63)$, Composito Matematica Vol. 74, No. 2 (1990).
[4] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, Teubner, Verlag, Leipzig (1922).
[5] M. A. Kenku, Certain torsion points on elliptic curves defined over quadratic fields, J. London Math. Soc. 2, 19, 233-240 (1979).
[6] M. A. Kenku, On modular curves $X_{0}(125), X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. 2, 23, 415-427 (1981).
[7] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. Soc. Vol. 109, 125-149 (1988).
[8] M. A. Kenku and F. Momose, Automorphism groups of the modular curves $X_{0}(N)$, Composito Math. 65, 51-80 (1988).
[9] D. Kubert, Universal bounds on torsion points of elliptic curves, Proc. London Math. Soc. 3, 33, 193-237 (1976).
[10] B. Mazur, Rational points on modular curves, Proceedings of the Conference on Modular Functions held in Bonn 1976, Lecture Notes in Math. 601 (1977).
[11] B. Mazur, Rational isogenies of prime degree, Inv. Math. 44, 129-162 (1978).
[12] B. Mazur and H. P.F. Swinnerton-Dyer, Arithmetic of Weil curves, Inv. Math. 25, 1-61 (1974).
[13] F. Momose, Automorphism groups of the modular curves $X_{1}(N)$, to appear.
[14] F. Momose, On the l-adic representations attached to modular forms, J. Facult. Sci. Univ. Tokyo, Vol. 28, 89-109 (1981).
[15] F. Momose, Rational points on the modular curves $X_{s p l i t}(p)$, Comp. Math. 52, 115137 (1984).
[16] F. Momose, Rational points on the moduIar curves $X_{0}^{+}\left(p^{r}\right)$, J. Facult. Sci. Univ. Tokyo, Vol. 33, 441-466 (1986).
[17] F. Momose, Rational points on the modular curves $X_{0}^{+}(N)$, J. Math. Soc. Japan. Vol. 39, No. 2, 1987,
[18] A.P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France, 102, 449-462 (1974).
[19] A.P. Ogg, Uber die Automorphismengruppe von $X_{0}(N)$, Math. Ann. 228, 279-292 (1977).
[20] K. A. Ribet, On l-adic representations attached to modular forms, Inv. Math. 28, 245-275 (1975).
[21] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253, 245-275 (1975).
[22] K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math. 101, 555-562 (1975).
[23] G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fieilds, Nagoya Math. J. Vol. 43, 199-208 (1971).
[24] Modular functions of one variable VI, Lecture Notes in Math. 476 (1975).

N. Ishil
Dokkyo Secondary High School
1-8, Sekiguchi, Bunkyo-ku
Tokyo 112, Japan
F. Momose
Department of Mathematics
Chuo University
1-13-27 Kasuga, Bunkyo-ku
Tokyo 112, Japan

[^0]: Received October 31, 1990.

