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NEW EXPLICIT EXAMPLES OF COMPLETE

SEMI-SYMMETRIC HYPERSURFACES

OF HYPERBOLIC TYPE

By

Eric Boeckx*

Abstract. We associate to every holomorphic function of one

complex variable a semi-symmetric hypersurface in the four-

dimensional Euclidean space. Under simple explicitconditionsfor

thisfunction the resultingRiemannian space is complete and of

hyperbolictype(in theterminology of Szabo).

1. Introduction and main theorem

Riemannian manifolds (M,,g) whose Riemanniam curvature tensor R satisfies

the algebraic condition RXY -R = 0 for all vector fieldsX and Y on M are called

semi-symmetric spaces. This condition means that, at each point peM, the

curvature tensor Rp is the same as that of a symmetric space. This space may

vary with the point p. Trivial examples are symmetric spaces and all two-

dimensional Riemannian manifolds.

A hypersurface M c ^"+l is said to be semi-symmetric if it is a semi-

symmetric space with respect to the induced Riemannian metric. In 1968, K.

Nomizu ([K]) proved that a connected and complete semi-symmetric

hypersurface of the Euclidean space Rn+l whose type number is greater than two

in at least one point, is of the form SkxRn~k where Sk is a hypersphere in a

Euclidean subspace j^*+1of R"+l and R"~kis a Euclidean subspace orthogonal to

Rk+1. This result inspired his conjecture that every irreducible, complete semi-

symmetric space of dimension greater than or equal to three is locally symmetric.

But this conjecture was refuted in 1972 by H. Takagi who constructed a

connected and complete hypersurface in R4 which satisfiesthe above curvature

condition, but which is not locally symmetric ([T]). See also [Se], [TrV] for
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other counterexamples.

A systematic treatment of complete semi-symmetric hypersurfaces in

Euclidean spaces was presented by Szabo ([Sz2]). He considered hypersurfaces

whose type number is smaller than or equal to two everywhere. Using the Gauss

equation, it is easily seen that all these spaces are semi-symmetric. He

distinguished three classes:hypersurfaces of trivialtype, of parabolic type and of

hyperbolic type. He gave a full classificationfor these three classes and also an

explicit construction. Moreover, he showed, using his general construction

procedure, that the example by Takagi is of hyperbolic type.

To our knowledge, the example of Takagi has been, up to now, the only

explicitexample of a complete semi-symmetric hypersurface of hyperbolic type.

Nevertheless, the procedure by Szabo can be used to construct a large family of

such hypersurfaces of dimension three (which is the only case worth studying, cf.

Theorem 3.2).Indeed, we will prove:

Main Theorem. Let F(z) be a holomorphic function of one complex variable

z defined on the whole complex plane and such that F"(z)^0 everywhere. Let

P(x,y),Q(x,y) be the real functions of the two real variables x and y defined by

F(x + iy) = P(x,y) + iQ(x,y). Define the function f(X,Y,Z) by

(1.1) f(X,Y,Z) = P(
X + YZ Y-XZ

] + Z2 ' 1 + Z2
)-ZQ(

X + YZ Y-XZ

l + Z2 ' 1 + Z2

)

Then W = f(X,Y,Z) determines a complete semi-symmetric hypersurface of

hyperbolictypein R4.

We remark that each function F(z) from the Main Theorem can be

constructed as follows: choose an arbitrary holomorphic function 0(z) defined on

the whole complex plane and take F(z) as a two-step primitive function of exp

((f>(z))([R, Theorem 13.11]). Furthermore, for an arbitrary holomorphic function

F(z) of one complex variable, the hypersurface W = f(X,Y,Z), where / is given

by (1.1), stilldefines a semi-symmetric hypersurface.

For more information and more examples of semi-symmetric spaces we refer

to the fundamental papers by Z. I. Szabo ([Szl], [Sz3]) and to the recent results

in [B], [BKV] and [K]. (We mention that the terminology used in the recent

papers differsfrom thatintroduced by Szabo and that,in fact,new types of semi-

symmetric spaces appear if the completeness assumption is dropped.)
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The paper is organized as follows. In Section 2 we give the basic definitions

concerning complete immersed semi-symmetric hypersurfaces and in Section 3

we briefly review Szabo's construction for complete semi-symmetric

hypersurfaces of hyperbolic type. In Section 4 we apply this construction to prove

the above theorem.

The author wishes to thank O. Kowalski and L. Vanhecke for their help and

for useful discussions.

2. Complete Immersed semi-symmetric hyperserfaces

In thissection,we review brieflythe basic definitionsand resultsabout

complete immersed semi-symmetric hypersurfaces.For a more detailedtreatment

and for furtherreferenceswe referto the articleby Szabo ([Sz2]).

Let (M",g) be a complete semi-symmetric manifold which is isometrically

immersed in Euclidean space Rn+1.We denote by V (resp. D) the Levi Civita

connectionof M" (resp. of JT+I).For the curvature tensorR of M" we use the

signconvention RXYZ- Vrxn -[Vx,Vy]. Then we have

RXYZ = g(A(X), Z)A(Y) - g(A(Y),Z)A(X)

where A is the shape operator of the hypersurface M with respect to a local unit

normal vector fieldu to M in R"+l,i.e., A(X) = ―Dxu for X e TM .The rank of A

at a point p e M is called the type number at p and is denoted by k(p). Because

of Nomizu's result mentioned in the introduction we suppose that k(p)<2

everywhere. If this number is 0 or 1 at a point p, then clearly Rp = 0 .So, in what

follows we consider an (open) subset of M on which the type number is equal to

two. On thisopen set,the tangent space to M at a point pe M can be decomposed

as

TM = Vop+Vxp

where Vp is the nullity vector space of the curvature tensor, i.e., Vp = {X e TpM＼

RXYZ = 0 for all Y,Z&TpM], and Vp is its orthogonal complement. V^0 has

dimension n-2 and Vp has dimension 2. The distributions V° and V1 defined in

this way are differentiable on the open set. Moreover, V° is integrable and its

integral manifolds are totallygeodesic and locally Euclidean submanifolds. They

are open subsets of (n-2)-dimensional Euclidean subspaces of R"+1. The

distribution V1 is not integrable in general, but it is parallel along the integral

manifolds of V"0.

Consider now a local system of smooth unit vector fields {m,,---,m _2] tangent
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to V° which are pairwise orthogonal and such that V/n'm≫=0. For XeVx we

have

V'xma = Ba(X) + a linear combination of mv...,mn+2

where Ba(X) e V[. We extend the endomorphisms Ba to the whole tangent space

by defining Ba(Y) = 0 for all Y eV°. Concerning the fieldsof endomorphisms Ba,

Szabo shows that there are two possibilities:either they are all zero along an

integral manifold of V° or there exists a system of unit vector fields {mx,---,mn_2}

tangent to V"0 satisfying V- m^ = 0 such that Bx * 0 and B2= ...= Bn_2 = 0 along

thisintegral manifold. In the latter case, either Bx has only zero eigenvalues or it

has two imaginary eigenvalues. (Here the completeness of (Mn,g) plays an

essential role.)

We can now give some definitions.Let M" be a connected complete immersed

hypersurface in R"+l such that k{p)< 2 for every point pe M. Let vx be the open

set on which k{p) = 2. Then in the interior v0 of M ＼vx the Riemann curvature

tensor vanishes. Let v2 cv, be the open set where not all Ba are zero. Then all

tensors Ba vanish in the interior v, of vx＼v2. The open set v, is called the pure

trivialpart of M. Finally, let vh cv2 be the open set where the unique non-zero

endomorphism field Bx has two imaginary eigenvalues. vh is called the pure

hyperbolic part of M and v , the interior of v2 ＼vh, the pure parabolic part of M.

On v the endomorphism field Bx has only zero eigenvalues but is non-trivial.It

is clear that the open set v0 uv( u vp u vh is everywhere dense in M. Moreover,

the open sets v,,v and vh always contain the integral manifolds of V° passing

through theirpoints, and these integral manifolds are complete.

We can now define three different types of complete immersed hypersurfaces

M with type number smaller than or equal to two (and hence semi-symmetric).

Definition 2.1. A complete immersed hypersurface M" with type number

everywhere smaller than or equal to two is said to be of

1) trivial type if v2 =0 ,i.e., M" contains only v0 and possibly a pure trivial part;

2) parabolic type if vt = vh =0 and vp ^0, i.e., Mn contains only v0 and a non-

empty pure parabolic part;

3) hyperbolic type if M" - vh, i.e., M" contains only the pure hyperbolic part.

Szabo ([Sz2]) studies these three classes of manifolds in detail and presents

general procedures to construct explicit examples of such spaces. Moreover,he

gives the full classification of complete semi-symmetric hypersurfaces inthe

Euclidean space J?"+l.
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Remark. It is possible to generalize the notions of trivial,parabolic and

hyperbolic type to complete semi-symmetric spaces which are foliated by

Euclidean spaces of codimension two and which are not necessarily imbedded as

hypersurfaces in some Euclidean space (see [Sz3]). The metrics for the spaces of

parabolic type (in this generalized sense) are given explicitly in [BKV].

Furthermore, it is proved there that these spaces are characterized by the

property that their scalar curvature is constant along each integral manifold of the

nullitydistribution V"0.

3. Szabo9s construction for complete semi-symmetric

hypersurfaces of hyperbolic type

In this section we focus on complete semi-symmetric hypersurfaces of

hyperbolic type, and, in particular, on Szabo's procedure for the construction of

such spaces. For the proofs and for more details we refer once again to [Sz2].

Pirct＼x/p>m<=≫ntir≫in

PROPOSITION 3.1. The sectionalcurvature Ka of a plane section G in a

hypersurface of hyperbolictypeis always non-positive.So every complete and

simply connectedimmersed hypersurface M" of hyperbolic typeis diffeomorphic

tn Mn

Next, as concerns the constructionof hypersurfaces of hyperbolictype, we

note thatwe have to consider only three-dimensionalhypersurfaces because of

the followingtheorem.

THEOREM 3.2. Every connected, simply connected and complete immersed

hypersurface M" of hyperbolic typeis of theform Mn = M3 x R"~3,where M3 is

an immersed hypersurface of hyperbolic type in a Euclidean subspace R4 and

R"~3is a Euclidean subspace orthogonalto R4.

Related to the three-dimensional hypersurfaces of hyperbolic type is the

notion of a plane-uncoverable line-fibrationof a simply connected open set U of

Let U be an open set of J?3 which is simply connected. We suppose that a

one-fold covering of U with straightlines exists such that the unit vector field u

tangent to these lines is differentiate. Such a covering will be called a line-

fibration of U. For every point p e U, let V1 be the orthogonal complement of u
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and Vp0 the one-dimensional subspace of TpM spanned by u . Define the field B

of endomorphisms of the distribution V1 by B(X) = Dxu, where D is the usual

covariant derivative of R3. Then either B2 = 0 holds along a line of the fibration

or B has two imaginary eigenvalues along thatline.If B2 = 0 holds for every line

of the line-fibration,then there exists a one-parameter family of planes such that

the lines of the fibrationallliein some plane of thisfamily and the lines lying in

the same plane are parallel.Conversely, if through every line / of a line-fibration

there exists a plane H such that H covers parallel lines from the fibration around

/,then the equation B2 = 0 holds for the line-fibration.These observations lead to

Definition 3.3. If B2 = 0 holds for every line of a line-fibrationof a simply

connected open set U of R3, then the line-fibrationis called plane-coverable. If

the endomorphism B has two imaginary eigenvalues along every line of the

fibration,then the line-fibrationis called plane-uncover able.

Now consider a complete three-dimensional hypersurface M3 of hyperbolic

type in ^4. The integral curves of V°in M3 are straightlines in R4. Fix such a

line / and take a three-dimensional Euclidean subspace S of R4 which is not

orthogonal to / . The orthogonal projection n : M3 ―>S then maps an open

neighbourhood U of I diffeomorphically onto an open set U of S such that the

projections of the integral curves of V°form a line-fibrationof U. This fibration

is called the projected line-fibration.Szabo proves

PROPOSITION 3.4. // M3 is of hyperbolic type, then the projected line

fibration is plane-uncoverable.

Conversely, itholds

THEOREM 3.5. Let UczR3 be an open set with a plane-uncover able line-

fibration. Then around every line of the fibration there exists a differentiate

function f(x,y,z)such that the points (x,y,z,f(x,y,z))represent a hypersurface of

hyperbolic type and the lines of the fibration correspond to the integral curves of

the distribution V° on thishypersurface.

Starting from a plane-uncoverable line-fibrationwith unit tangent vector field

u on some simply connected open subset U of R3, one must construct the

appropriate function f(x,y,z) on U. Szabo deduces the following necessary and

sufficientconditions for the function f:
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Lemma 3.6. The hypersurface (x,y,zj(x,y,z)) is of hyperbolic type with

respect to the line-fibrationof U if and only if

(3.1) Dudf = 0,

(3.2) rank D2f = 2.

Take a plane M2 in J?3 not containing any straightline of the fibration.Let

(x,y) be a Cartesian coordinate system of M2 and let t be such that ― = u and
at

M2 is given by t = 0. Then (x,y,t) is a coordinate system on a neighbourhood of

M2 in U. Condition (3.1) implies in particular u(uf) = 0, so /must be of the form

(3.3) f(x,y,t) = p(x,y)t + Mx,y)

in thiscoordinate neighbourhood, where p and A are functions of the variables jc

andy only.

Expressing the condition (3.1) in terms of the functions p and A, one finds

thatthe partialdifferentialequations

(3.4)

(3.5)

dx

d2X , d2X

dy

dp

dx

dp

dy

must be satisfied.Here the Bl}

points of M2 by

(3.6)
OX sx

dy

,v,0)

AU(x,y,Q) ~

Further, the matrix field(a'.)on

(3.8)

B＼

B＼

dx

dx

dy

0

dy'

dX_

dy

-(B'O,+fi,2O2)M

_,d_ s

)

dxdy

+ (fi>I+B12d>2)p =

+ (Bl2Rl+B22R2)p

determine the fieldof endomorphisms B at the

~B'3x
+ B

B< d +B'd

and O, and <I>2are given by

(3-7) O.=<£.≪>(^, ≫*2

M2 is given by
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As the line-fibration is plane-uncoverable, the discriminant A of the

characteristic equation ju2 -trBfi + det B = 0 is negative. Hence det(o^)

= -B＼B2 -{II4)(B＼ -Bl)2 = -A >0, which implies that the matrix field {a)) is

definiteeverywhere.

Finally,the condition (3.2) is equivalent to

(3.9)

d2lldxdy

d2Xldxdy＼_

d2X/dy2
J"
2

(Without this condition the resulting hypersurface may admit points p with type

number k{p) smaller than two. Then it is of mixed type and vouvft is an

everywhere dense open subset of M.)

The conditions (3.4), (3.5) and (3.9) are necessary and sufficient to ensure

that the function / given by formula (3.3) in terms of the coordinates (x,y,t)

determines a hypersurface of hyperbolic type in R4. The last step then requires

expressing/ in the standard Euclidean coordinates on R3. Indeed, as u is not

orthogonal to M2 everywhere, the coordinates (x,y,t) are not Cartesian

coordinates. We take the standard (Cartesian) coordinates (X,Y,Z) on R3 as

follows: the plane t = 0 is given by Z = 0 and on thisplane the coordinates (X,Y)

and (x,y) are the same.

Note that the above procedure works in general only locally. Nevertheless, as

we will see in the next section,itis possible to obtain complete explicit examples

using the above correspondence between plane-uncoverable line-fibrationsof R3

and hypersurfaces of hyperbolic type in R4.

4. The new examples; proof of the main theorem

In this section we construct the new examples given in the Main Theorem,

following Szabo's procedure as explained in the previous section.

The firstthing to do is to find a plane-uncoverable line-fibrationof R3. For

that purpose, we foliate J?3 by the one-parameter family of one-sheeted

hyperboloids given by

Kk:x2+y2=k2(l + z2), keR+,

to which one has to add the z-axis, corresponding to k = 0. All surfaces Kk are

ruled surfaces. We now determine the straightlines through a point (jco,yo,O)

where xo2+yo2i=O contained in the hyperboloid K^ with k0 =(x02 +y02)1'2.

These straightlines are given by the intersection of Kk with the tangent plane to

K, at the point (xo,yo,O):
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x2+y2=ko2(l + z

Their directions (a,B,y) satisfy

-k 2

xoa + yop = 0,

2),

29

and hence they are given by (-yo,xo,l) and (-yo,*o,-l). In the case x0 = yQ =0,

the corresponding pair of lines coincides with the z-axis. We choose the family of

straight lines corresponding to the firstof the above directions. It is clear that they

form a line-fibration of R3. Moreover, this line-fibration is plane-uncoverable.

This will follow from Definition 3.3 and the explicit calculation of the tensor field

B further on.

Now, we shall define a smooth unit vector field u tangent to the given line-

fibration. So, take (x,y,z) eR*. Then there is a unique point (xo,yo,O) lying on

the same line of the fibration. Hence, for some T g R,

x = x≫- y0T,

y = yo+xj,

z= T,

or

xo=(x + yz)/(l+ z2),

yo=(y-xz)/(l + z2).

Then we put

<W)=w(,0,,0,o) = (V + )>o2+ i)"1/2(-yô + *o -r;+^)

= (l + Z2)-1/2(x2+y2+z2+l)-1/2

((^-j)|-+(}'z+^|-+a+z2)4).
dv ay az

This unit vector fieldappears alsoin [Sz2] and itis shown to belong to Takagi's

example.

The next step in Szabo's construction is to take a plane M2 in J^3 with a

Cartesian coordinate system such that u is never tangent to M2 and to calculate

the associated tensor field B and the associated functions O, and O2. In oui

present situation we can take the plane z = 0 as M2 with (x,y) as Cartesian

coordinates. The functions O,, >2 from (3.7) are given on M2 by



30 Eric BOECKX

d), = -y(x2 + y2 +1)'1'2, #2 = x(x2 + y2 +1)"1'2.

For the tensor field B on M2 given by (3.6) we note that we have

AU(x,y,O)
= -x(x2 + y2 +1)"1 ulx^ + (x2 +y2+1)"1/2 j- ,

°9V,y,0)

Pi'Wo)=-y^2+y2+v~l ≫w> - (*2+y2+1)"1/2 T ,

and so B is given in matrix form by

B = (x2+y2+l)-1/2^_°i
:)

(The formula given in [Sz2] is incorrect.) We see that B has only imaginary

eigenvalues which proves that the line-fibrationis plane-uncoverable. The matrix

field(a'j)from (3.8) is then given by

(a;) = (*2+y2+l)-1/2(
0 l)

By Szabo's construction, it suffices now to find solutions of the following

system of partialdifferentialequations:

(4.1)

(4.2)

d2X d2X

dp

dx
+

dy

X

y_

x2+y2

dy1'
o,

1 dX

+ 1

+ 1

Jx2+y2+l ^y'

p

1 dl

Jx2+y2+l dx'

Then the graph of the function f(x,y,t) = p{x,y)t + A(jc,y),i.e.,W = f(x(X,Y,Z),

y(X,Y,Z),t(X,Y,Z)), is a semi-symmetric hypersurface of the Euclidean space

R4 with standard Euclidean coordinates (X, Y,Z, W). The relation between the

coordinate system (x,y,t) on ^3 and the standard Euclidean coordinates (X,Y,Z)

on R3 is given by

t = za+z2 yU2(x2 + y2+z2 + d1/2,

(4.3) x = (X + YZ)/(l + Z2),

y = (F-XZ)/(l + Z2).

If the harmonic function X(x,y) is defined on the whole of R2, then so is the
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solution p{x,y) = (x2 +y2 +1) 1/2f (dXldy)dx of (4.2) and the associated

hypersurface is complete because it is closed in R4. From (3.9) it follows

moreover that the pure hyperbolic part of the hypersurface consists of those points

for which det , :U 0.
[d2X/dxdy d2Xldy2 )

Now, let F(z) be any holomorphic function of one complex variable z defined

on the whole complex plane. Put z ―x + iy and define two real-valued functions

P(x,y),Q(x,y) by F(x+iy) = P(x,y) +iQ(x,y). P and Q satisfy the Cauchy-Riemann

conditions

dP__dQL

dx dy dy dx

In particular,both P and Q satisfy(4.1) in the whole plane R2[x,y].

If we put A,(x,y)= P(x,y) and p(x,y)= -(x2 + y2 +iyU2Q(x,y), then the system

(4.1), (4.2) is obviously satisfied on the whole plane R2, and we can put

f(x,y,t) = P(x,y)-(x2 +y2 +l)~u2Q(x,y)t.Using the transitionformulas (4.3), we

find after some calculation

f(X,Y,Z) = P(
X+YZ Y-XZ

l + Z2 ' 1 + Z2
)-ZQ(

X+YZ

l + Z2
Y-XZ
JTzr

),

which is the desired formula (1.1). Here f(X,Y,Z) is defined on the whole of ^3,

hence the associated hypersurface W = f(X, Y,Z) is complete.

. ,
t
(d2lldx2 d2lldxdy＼

n u ^ t . ^ AFinally we note that det , , , ^0 whenever F"(x + iy) ^0.

This concludes the proof of the Main Theorem.

Remark 1. We obtain Takagi's example if we start with the holomorphic

function F(z) = jz2.

Remark 2. If we take Mx,y) = Q(x,y), we obtain for the function/ the

followingexpression:

f(X,Y,Z) = Q(
X + YZ Y-XZ

1 + Z2 ' 1 + Z2
) + ZP(

X + YZ Y-XZ

l + Z2 ' 1 + Z2

This solution corresponds to (1.1) by a change of the holomorphic function F(z)

to -iF(z).
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Remark 3. An easy computation shows that the type number of the

hypersurfaces W = F(X, Y,Z) is smaller than or equal to two everywhere. This

gives an alternative way to prove the semi-symmetry of the new examples.

Remark 4. If we start with a foliationof R3 by means of a one-parameter

family of hyperbolic paraboloids, then the two families of straightlines on these

surfaces determine plane-coverable line-fibrations. Hence we cannot apply

Szabo's construction.

Remark 5. Startingfrom the more general one-parameter family of one-

sheetedhyperboloidsgiven by

KK :{x I a)2 +{y I b)1 =k＼l + (zl cf) keR+

with a, b and c strictlypositive real numbers and reasoning in the same way as

before, one can extend our class of examples.

Remark 6. An open problem remains: forwhich holomorphic functions F{(z),

F2(z)are the corresponding semi-symmetric hypersurfaceslocallyisometric?
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