ARCWISE CONNECTEDNESS OF THE COMPLEMENT IN A HYPERSPACE

By
Hiroshi Hosokawa

Abstract

The hyperspace $C(X)$ of a continuum X is always arcwise connected. In [6], S. B. Nadler Jr. and J. Quinn show that if $C(X)-\left\{A_{i}\right\}$ is arcwise connected for each $i=1,2$, then $C(X)-$ $\left\{A_{1}, A_{2}\right\}$ is also arcwise connected. Nadler raised questions in his book [5]: Is it still true with the two sets A_{1} and A_{2} replaced by n sets, n finite? What about countably many? What about a collection $\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ which is a compact zero-dimensional subset of the hyperspace? In this paper we prove that if $\mathscr{A} \subset C(X)$ is a closed countable subset, \because is an arc component of an open set of $C(X)$ and $C(X)-\{A\}$ is arcwise connected for each $A \in \mathscr{A}$, then $\mathscr{U}-\mathscr{A}$ is arcwise connected. Key words and phrasses: continuum, hyperspace, order arc, Whitney map, arcwise connectedness, indecomposable continuum, decomposable continuum.

AMS subject classifications (1980): 54B20, 54C05.

1. Notation and Preliminary Lemmas

A continuum is a nonempty compact connected metric space. The letter X will always denotes a nondegenerate continuum with a metric function d. Let Y be a subcontinuum of X and ε a positive number. The set $N(Y ; \varepsilon)$ denotes the ε neighborhood of Y in X, i.e., $N(Y ; \varepsilon)=\{x \in X: d(x, y)<\varepsilon$ for some $y \in Y\}$ and Y_{ε} denotes the component of the closure of $N(Y ; \varepsilon)$ containing Y. The hyperspace $C(X)$ of X is the space of all subcontinuum of X with the Hausdorff metric H_{d} defined by

$$
H_{d}(A, B)=\inf \{\varepsilon>0: A \subset N(B ; \varepsilon) \text { and } B \subset N(A ; \varepsilon)\} .
$$

With this metric, $C(X)$ becomes a continuum. If Y is a subcontinuum of X, then
we consider $C(Y)$ as a subspace of $C(X)$. For two subsets \mathscr{A} and \mathscr{B} of $C(X)$, let $H_{d}(\mathscr{A}, \mathscr{B})=\inf \left\{H_{d}(A, B): A \in \mathscr{A}\right.$ and $\left.B \in \mathscr{B}\right\}$. A map is a continuous function. Any map $\mu: C(X) \rightarrow[0,1]$ satisfying
(1) if $A \subset B$ and $A \neq B$, then $\mu(A)<\mu(B)$,
(2) $\mu(\{x\})=0$ for each $x \in X$ and $\mu(X)=1$
is called a Whitney map for $C(X)$. Such a map always exists (see [7]). An order arc is a map $\sigma:[a, b] \rightarrow C(X)$ such that if $a \leq t_{0}<t_{1} \leq b$, then $\sigma\left(t_{0}\right) \subset \sigma\left(t_{1}\right)$ and $\sigma\left(t_{0}\right) \neq \sigma\left(t_{1}\right)$. It is also called an order arc from $\sigma(a)$ to $\sigma(b)$.

If A, B are distinct elements of $C(X)$, then there is an order arc from A to B if and only if $A \subset B$ (see [1]).

We often use the following lemmas which are easy to prove hence we omit their proofs.

LEMMA 1. Let Y be a proper subcontinuum of X. If there is a subcontinuum M of X such that $M \cap Y \neq \phi \neq M-Y$, then for any $\varepsilon>0$ and $y \in M \cap Y$, there is a subcontinuum N of $M \cap Y_{\varepsilon}$ such that $N \cap Y \neq \phi \neq N-Y$ and $y \in N$.

The diameter of a subset A of X is denoted by $\delta(A)$, i.e., $\delta(A)=\sup \{d(x, y)$: $x, y \in A\}$.

Remark. If \mathscr{A} is a connected subset of $C(X)$ such that $Y \in \mathscr{A}$ and $\delta(\mathscr{A}) \leq \varepsilon$, then $\mathscr{A} \subset C\left(Y_{\varepsilon}\right)$.

Lemma 2. If a subset $\{A, B, C, D\} \subset C(X)$ satisfies $A \subset B \cap C \subset B \cup C \subset D$, then $H_{d}(B, C) \leq H_{d}(A, D)$. In particular, if σ is an order arc, then $\delta(\sigma([a, b]))=$ $H_{d}(\sigma(a), \sigma(b))$.

Furthermore we need the following Krasinkiewiz-Nadler's Theorem (Theorem 3.1 of [2]).

Proposition 3. Let $\mu: C(X) \rightarrow[0,1]$ be a Whitney map and $A_{1}, A_{2} \in \mu^{-1}\left(t_{0}\right)$, where $t_{0} \in[0,1]$. Let K be a subcontinuum of $A_{1} \cap A_{2}$. Then there is a map $\alpha:[0,1] \rightarrow \mu^{-1}\left(t_{0}\right) \cap C\left(A_{1} \cup A_{2}\right)$ such that $\alpha(0)=A_{1}, \alpha(1)=A_{2}$ and $K \subset \alpha(t)$ for all $t \in[0,1]$. If $A_{1} \neq A_{2}$, then α can be taken to be an emmbedding.

In fact Theorem 3.1 of [2] is much more general, and from its proof we obtain the following lemma.

Lemma 4. Let $\mu: C(X) \rightarrow[0,1]$ be a Whitney map and let A, B, C be
subcontinua of X such that $A \cap B \supset C$. Then there is a map $\alpha:[0,1] \rightarrow \mu^{-1}(\mu(A))$ $\cap C(A \cup B)$ such that $\alpha(0)=A, \alpha(t) \supset C$ for each $t \in[0,1]$, and
if $\mu(A) \leq \mu(B)$ then $\alpha(1) \subset B$,
if $\mu(A)>\mu(B)$ then $\alpha(1) \supset B$.
In the same paper they proved (Theorem 3.5 in [2]) that:
Proposition 5. Let X be decomposable and $\mu: C(X) \rightarrow[0,1]$ a Whitney map. Then there is $s_{0} \in[0,1)$ such that if $s \in\left[s_{0}, 1\right]$, then $\mu^{-1}(s)$ is arcwise connected.

The following proposition is Theorem 4.6 of [4].
Proposition 6. If Y is a non-degenerate proper subcontinuum of X, then the following two statements are equivalent:
(1) $C(X)-\{Y\}$ is not arcwise connected.
(2) There is a dense subset D of Y such that if M is a subcontinuum of X satisfying $M \cap D \neq \phi \neq M-Y$, then $M \supset Y$.

2. Bypass Lemma

Let $K, L \in C(X)$ and $\mathscr{A} \subset C(X)$. An arc from K to L in \mathscr{A} is a map $\alpha:[a, b] \rightarrow \mathscr{A}$ such that $\alpha(a)=K$ and $\alpha(b)=L$. If α is an embedding, then we call it an embedding arc. Following is a key lemma.

Lemma 7. Let Y be a nondegenerate proper subcontinuum of a continuum X such that $C(X)-\{Y\}$ is arcwise connected. Let $\alpha:[0,1] \rightarrow C(X)$ be a map such that $\alpha(1)=Y$ and $\alpha(t) \in C(Y)-\{Y\}$ for each $t \in[0,1)$. Then for a given $\varepsilon>0$, there is a map $\beta:[0,1] \rightarrow C(X)-\{Y\}$ such that $\alpha(0)=\beta(0), H_{d}(\alpha(t), \beta(t))<\varepsilon$ for each $t \in[0,1]$ and $\beta(1)-Y \neq \phi$.

Proof. First suppose that Y is indecomposable. Put $\varepsilon_{1}=\varepsilon / 3$. Since α is continuous, there is $t_{0} \in[0,1)$ such that $\delta\left(\alpha\left(\left[t_{0}, 1\right]\right)\right)<\varepsilon_{1}$. Let λ be the composant of Y such that $\alpha\left(t_{0}\right) \subset \lambda$. By Lemma 1 and Proposition 6, there is a subcontinuum M of Y_{ε} such that $M-Y \neq \phi \neq Y-M$ and $M \cap \lambda \neq \phi$. We may assume that $M \cap \alpha\left(t_{0}\right) \neq \phi$. (Because let λ^{\prime} be a composant of Y different from λ. Since M is compact and $Y-M \neq \phi, \lambda^{\prime}-M \neq \phi$. Thus we can replace M by $M \cup N$, where N is a continuum contained in λ such that $M \cap N \neq \phi \neq N \cap \alpha\left(t_{0}\right)$.). Let $\sigma:\left[t_{0}, 1\right] \rightarrow C(X)$ be an order arc from $\alpha\left(t_{0}\right)$ to $M \cup \alpha\left(t_{0}\right)$. Then

$$
\begin{gathered}
\delta\left(\sigma\left(\left[t_{0}, 1\right]\right)\right)=H_{d}\left(\alpha\left(t_{0}\right), M \cup \alpha\left(t_{0}\right)\right) \leq H_{d}\left(\alpha\left(t_{0}\right), Y_{\varepsilon_{1}}\right) \\
\leq H_{d}\left(\alpha\left(t_{0}\right), Y\right)+H_{d}\left(Y, Y_{\varepsilon_{1}}\right)<2 \varepsilon_{1} .
\end{gathered}
$$

Define an arc β in $C(X)$ by

$$
\beta(t)= \begin{cases}\alpha(t) & \text { if } t \in\left[0, t_{0}\right], \\ \sigma(t) & \text { if } t \in\left(t_{0}, 1\right] .\end{cases}
$$

Clearly β is continuous and its image does not contain Y. If $t \in\left[0, t_{0}\right]$, then $H_{d}(\alpha(t), \beta(t))=0$. Suppose that $t \in\left(t_{0}, 1\right]$. Then since $\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)$,

$$
\begin{gathered}
H_{d}(\alpha(t), \beta(t)) \leq H_{d}\left(\alpha(t), \alpha\left(t_{0}\right)\right)+H_{d}\left(\beta\left(t_{0}\right), \beta(t)\right) \\
\quad \leq \delta\left(\alpha\left(\left[t_{0}, 1\right]\right)\right)+\delta\left(\sigma\left(\left[t_{0}, 1\right]\right)\right)<3 \varepsilon_{1}=\varepsilon .
\end{gathered}
$$

For the second case, suppose that Y is decomposable. Put $\varepsilon_{1}=\varepsilon / 5$ and let μ be a Whitney map for $C(X)$. By Proposition 5, there is $s_{0}<\mu(Y)$ such that if $s \in\left[s_{0}, \mu(Y)\right]$, then $\mu^{-1}(s) \cap C(Y)$ is arcwise connected. Moreover s_{0} can be taken so that $\delta\left(\mu^{-1}\left(\left[s_{0}, 1\right]\right) \cap C(Y)\right)<\varepsilon_{1}$. Since α is continuous, there is $t_{0} \in[0,1)$ such that $\mu\left(\sigma\left(\left[t_{0}, 1\right]\right)\right) \subset\left[s_{0}, 1\right]$. For simplicity, put $s_{1}=\mu\left(\alpha\left(t_{0}\right)\right)$. By Proposition 6 and Lemma 1, there is a subcontinuum M of $Y_{\varepsilon_{1}}$, such that $M-Y \neq \phi \neq Y-M$ and $M \cap Y \neq \phi$. There are two cases.
(i) Suppose there is $A \in \mu^{-1}\left(s_{1}\right) \cap C(Y)$ such that $A \cap M \neq \phi \neq Y-(A \cup M)$. Put $t_{1}=\left(t_{0}+1\right) / 2$ and let $\sigma_{1}:\left[t_{0}, t_{1}\right] \rightarrow \mu^{-1}\left(s_{1}\right) \cap C(Y)$ be an arc from $\alpha\left(t_{0}\right)$ to A (such an arc exists since $s_{0} \leq s_{1}<\mu(Y)$) and $\sigma_{2}:\left[t_{1}, 1\right] \rightarrow C(X)$ an order arc from A to $A \cup M$. Note that $\delta\left(\sigma_{2}\left(\left[t_{1}, 1\right]\right)\right)<2 \varepsilon_{1}$. Define an arc β in $C(X)$ by

$$
\beta(t)=\left\{\begin{array}{l}
\alpha(t) \text { if } t \in\left[0, t_{0}\right], \\
\sigma_{1}(t) \text { if } t \in\left(t_{0}, t_{1}\right], \\
\sigma_{2}(t) \text { if } t \in\left(t_{1}, 1\right] .
\end{array}\right.
$$

Clearly β is continuous and $\beta(t) \neq Y$ for each $t \in[0,1]$. If $t \in\left[0, t_{0}\right]$, then $H_{d}(\alpha(t), \beta(t))=0$. Suppose $t \in\left[t_{0}, t_{1}\right]$. Then since $\beta\left(\left[t_{0}, t\right]\right) \subset \mu^{-1}\left(s_{1}\right) \cap C(Y)$,

$$
\begin{aligned}
& H_{d}(\alpha(t), \beta(t)) \leq H_{d}\left(\alpha(t), \alpha\left(t_{0}\right)\right)+H_{d}\left(\beta\left(t_{0}\right), \beta(t)\right) \\
& \left.\quad \leq \delta\left(\alpha\left[t_{0}, 1\right]\right)\right)+\delta\left(\mu^{-1}\left(s_{1}\right) \cap C(Y)\right)<2 \varepsilon_{1}<\varepsilon .
\end{aligned}
$$

Finally suppose $t \in\left[t_{1}, 1\right]$. Then

$$
\begin{gathered}
H_{d}(\alpha(t), \beta(t)) \leq H_{d}\left(\alpha(t), \alpha\left(t_{1}\right)\right)+H_{d}\left(\alpha\left(t_{1}\right), \beta\left(t_{1}\right)\right)+H_{d}\left(\beta\left(t_{1}\right), \beta(t)\right) \\
\quad<\delta\left(\alpha\left(\left[t_{1}, 1\right]\right)\right)+2 \varepsilon_{1}+\delta\left(\sigma_{2}\left(\left[t_{1}, 1\right]\right)\right)<\varepsilon_{1}+2 \varepsilon_{1}+2 \varepsilon_{1}=5 \varepsilon_{1}=\varepsilon .
\end{gathered}
$$

(ii) Suppose that for each $A \in \mu^{-1}\left(s_{1}\right) \cap C(Y), A \cap M \neq \phi$ implies $Y \subset A \cup M$. In this case, each element of $\mu^{-1}\left(s_{1}\right) \cap C(Y)$ intersects M. In particular,
$\alpha\left(t_{0}\right) \cap M \neq \phi$. Considering an order arc from M to $M \cup Y$, we can enlarge M and hence we can assume $\mu(M)>s_{1}$. By Lemma 4, there is a map $\sigma_{1}:\left[t_{0}, t_{1}\right] \rightarrow \mu^{-1}\left(s_{1}\right) \cap C(Y \cup M)$ from $\alpha\left(t_{0}\right)$ to $\sigma_{1}\left(t_{1}\right) \subset M$, where $t_{1}=\left(t_{0}+1\right) / 2$. Let $\sigma_{2}:\left[t_{1}, 1\right] \rightarrow C(X)$ be an order arc from $\sigma_{1}\left(t_{1}\right)$ to M. Define an arc β in $C(X)$ by

$$
\beta(t)=\left\{\begin{array}{l}
\alpha(t) \text { if } t \in\left[0, t_{0}\right], \\
\sigma_{1}(t) \text { if } t \in\left(t_{0}, t_{1}\right], \\
\sigma_{2}(t) \text { if } t \in\left(t_{1}, 1\right] .
\end{array}\right.
$$

As in case (i), β satisfies all the required conditions.
Now we prove the main lemma.
Bypass Lemma 8. Let Y be a subcontinuum of X such that $C(X)-\{Y\}$ is arcwise connected and let $\alpha:[0,1] \rightarrow C(X)$ be an arc such that $\alpha(t)=Y$ if and only if $t=1 / 2$. Then for each $\varepsilon>0$ and each a, b, where $0 \leq a<1 / 2<b \leq 1$, there is a map $\beta:[0,1] \rightarrow C(X)-\{Y\}$ such that $\alpha(t)=\beta(t)$ for all $t \in[0, a] \cup[b, 1]$ and $H_{d}(\alpha(t), \beta(t))<\varepsilon$ for all $t \in[0,1]$.

Proof. If $Y=X$, then X is decomposable (by Theorem 11.4 and Corollary 11.8 of [5]). Let μ be a Whitney map for $C(X)$. By Proposition 5, there is $s_{0} \in[0,1)$ such that $\mu^{-1}(s)$ is arcwise connected for each $s \in\left[s_{0}, 1\right]$. Moreover s_{0} can be chosen so that $\left.\delta\left(\mu^{-1}\left[s_{0}, 1\right]\right)\right)<\varepsilon / 2$. Since α is continuous, there exist two numbers t_{0}, t_{1} such that $a \leq t_{0}<1 / 2<t_{1} \leq b, \mu\left(\alpha\left(t_{0}\right)\right)=\mu\left(\alpha\left(t_{1}\right)\right) \in\left[s_{0}, 1\right]$ and $\delta\left(\alpha\left(\left[t_{0}, t_{1}\right]\right)\right)<\varepsilon / 2$. Put $\mu\left(\alpha\left(t_{0}\right)\right)=s_{1}$. Then since $s_{1} \in\left[s_{0}, 1\right]$, there is a map $\sigma:\left[t_{0}, t_{1}\right] \rightarrow \mu^{-1}\left(s_{1}\right)$ from $\alpha\left(t_{0}\right)$ to $\alpha\left(t_{1}\right)$. Define an arc β in $C(X)-\{Y\}$ by

$$
\beta(t)=\left\{\begin{array}{l}
\alpha(t) \text { if } t \in\left[0, t_{0}\right] \cup\left[t_{1}, 1\right] \\
\sigma(t) \text { if } t \in\left(t_{0}, t_{1}\right)
\end{array}\right.
$$

If $t \in\left(t_{0}, t_{1}\right)$, then

$$
\begin{aligned}
& H_{d}(\alpha(t), \beta(t)) \leq H_{d}\left(\alpha(t), \alpha\left(t_{0}\right)\right)+H_{d}\left(\sigma\left(t_{0}\right), \sigma(t)\right) \\
& \quad \leq \delta\left(\alpha\left(\left[t_{0}, t_{1}\right]\right)\right)+\delta\left(\mu^{-1}\left(s_{1}\right)\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Therefore β satisfies the required conditions.
Next suppose that Y is a proper subcontinuum of X. Put $\varepsilon_{1}=\varepsilon / 4$. There exist two numbers t_{0}, t_{1} such that $a \leq t_{0}<1 / 2<t_{1} \leq b$ and $\delta\left(\alpha\left(\left[t_{0}, t_{1}\right]\right)\right)<\varepsilon_{1}$. Note that $\alpha\left(\left[t_{0}, t_{1}\right]\right) \subset C\left(Y_{\varepsilon_{1}}\right)$. If $\alpha\left(\left[t_{0}, 1 / 2\right]\right) \subset C(Y)$, then by Lemma 7 , there is a map $\sigma:\left[t_{0}, 1 / 2\right] \rightarrow C\left(Y_{\varepsilon_{1}}\right)-\{Y\}$ such that $\sigma\left(t_{0}\right)=\alpha\left(t_{0}\right), \sigma(1 / 2)-Y \neq \phi$ and $H_{d}(\alpha(t)$, $\sigma(t))<\varepsilon_{1}$ for each $t \in\left[t_{0}, 1 / 2\right]$. If $\alpha\left(\left[t_{0}, 1 / 2\right]\right)-C(Y) \neq \phi$, then put $\sigma=\alpha \mid\left[t_{0}, 1 / 2\right]$. There is $r \in\left(t_{0}, 1 / 2\right)$ such that $\sigma(r)-Y \neq \phi \neq Y_{\varepsilon_{1}}-\sigma(r)$. Let $\tau:[r, 1 / 2] \rightarrow C(X)$ be
an order arc from $\sigma(r)$ to $Y_{\varepsilon_{1}}$. Define $\beta_{0}:\left[t_{0}, 1 / 2\right] \rightarrow C(X)$ by

$$
\beta_{0}(t)= \begin{cases}\sigma(t) & \text { if } t \in\left[t_{0}, r\right] \\ \tau(t) & \text { if } t \in(r, 1 / 2]\end{cases}
$$

It is easy to see that $H_{d}\left(\alpha(t), \beta_{0}(t)\right)<4 \varepsilon_{1}$ for each $t \in\left[t_{0}, 1 / 2\right]$.
As in the same way, we can find a map $\beta_{1}:\left[1 / 2, t_{1}\right] \rightarrow C(X)$ such that $\beta_{1}(1 / 2)=Y_{\varepsilon_{1}}, \beta_{1}\left(t_{1}\right)=\alpha\left(t_{1}\right)$ and $H_{d}\left(\alpha(t), \beta_{1}(t)\right)<4 \varepsilon_{1}$ for each $t \in\left[1 / 2, t_{1}\right]$. Then the $\operatorname{arc} \beta$ defined by

$$
\beta(t)= \begin{cases}\alpha(t) & \text { if } t \in\left[0, t_{0}\right] \cup\left[t_{1}, 1\right] \\ \beta_{0}(t) & \text { if } t \in\left[t_{0}, 1 / 2\right] \\ \beta_{1}(t) & \text { if } t \in\left[1 / 2, t_{1}\right]\end{cases}
$$

satisfies the required conditions.

3. Arcwise Connectedness of the Complement

Let \mathscr{O} be a closed subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected for each $Y \in \mathscr{Y}$. We will show that if \mathscr{Y} is a finite set, then its complement is also arcwise connected. Using this, we show that the same is fold if 9 is a closed countable set. If $\mathscr{A} \subset \mathscr{E}(X)$ and $\varepsilon>0$, then we wright the ε-neighborhood of \mathscr{A} in $C(X)$ by $N(\mathscr{A} ; \varepsilon)$.

THEOREM 9. Let Y be a finite subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected for each $Y \in \mathscr{Y}$ and let $\alpha:[0,1] \rightarrow C(X)$ be an arc from K to L, where $K, L \in C(X)-9$. Then for each $\varepsilon>0$, there is a map $\beta:[0,1] \rightarrow C(X)-$ y from K to L such that $\beta([0,1]) \subset N(\alpha([0,1]) ; \varepsilon)$.

Proof. If $K=L$, then we can take β to be a constant map. Hence let us suppose $K \neq L$. There is an embedding $\alpha^{\prime}:[0,1] \rightarrow \alpha([0,1])$ such that $\alpha(t)$ $=\alpha^{\prime}(t)$ for $t=0,1$. Therefore we can assume that α is an embedding arc and hence $\alpha^{-1}(\mathscr{Y})$ is a finite set. Let $\alpha^{-1}(\mathscr{Y})=\left\{t_{1}, t_{2}, \cdots, t_{n}\right\}$, where $0<t_{i}<t_{i+1}<1$ for $i=1,2, \cdots, n-1$.
(i) Suppose $n=1$ and without loss of generality, assume $t_{1}=1 / 2$. Put $\alpha(1 / 2)=Y$. Then $\alpha([0,1])$ and $\mathscr{Y}_{1}=\mathscr{Y}-\{Y\}$ are closed and disjoint. Put $\delta=H_{d}\left(\alpha([0,1]), \mathscr{Y}_{1}\right)$ and $\varepsilon_{1}=\min \{\varepsilon, \delta\}$. Then $\varepsilon_{1}>0$. Applying Bypass Lemma, there is a map $\beta:[0,1] \rightarrow C(X)-\{Y\}$ from K to L such that $H_{d}(\alpha(t), \beta(t))<\varepsilon_{1}$. By the choice of ε_{1}, β satisfies the required conditions.
(ii) Suppose $k \geq 2$ and the Theorem holds for $n=k-1$. Let $\alpha^{-1}(\mathscr{Y})=\left\{t_{1}, t_{2}\right.$, $\left.\cdots, t_{k}\right\}$ where $0<t_{i}<t_{i+1}<1$ for $i-1,2, \cdots, k-1$. Put $\delta=H_{d}\left(\alpha\left[t_{0}, 1\right]\right), \mathscr{y}-\left\{\alpha\left(t_{k}\right)\right\}$ and
$\varepsilon_{1}=\min \{\varepsilon / 2, \delta\}$, where $t_{0}=\left(t_{k-1}+t_{k}\right) / 2$. Then partially applying Bypass Lemma, there is a map $\beta_{1}:[0,1] \rightarrow C(X)$ such that $\alpha\left|\left[0, t_{0}\right]=\beta_{1}\right|\left[0, t_{0}\right], \alpha(1)=\beta_{1}(1)$, $H_{d}\left(\alpha(t), \beta_{1}(t)\right)<\varepsilon_{1}$ and $\beta_{1}([0,1])$ does not contain $\alpha\left(t_{k}\right)$. Let α_{1} be an embedding arc from K to L such that $\alpha_{1}([0,1]) \subset \beta_{1}([0,1])$. Then it is easy to see that the image of α_{1} intersects at most $n-1$ elements of \mathscr{y}. Therefore by the inductive hypothesis, there is an arc β from K to L in $C(X)-y$ such that $\beta([0,1]) \subset N\left(\alpha_{1}([0,1]) ; \varepsilon / 2\right)$. Hence β is a required arc.

Corollary 10. Let \mathscr{F} be a closed subset of $C(X)$ and let \mathscr{A} be an arc component of $C(X)-\mathscr{F}$. If \mathscr{Y} is a finite subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected for each $Y \in \mathscr{Y}$, then $\mathscr{A}-\mathscr{Y}$ is arcwise connected.

Proof. Let K, L be arbitrary elements of $\mathscr{A}-\mathscr{Y}$. There is a map $\alpha:[0,1] \rightarrow \mathscr{A}$ from K to L. Put $\varepsilon=(1 / 2) H_{d}(\alpha([0,1]), \mathscr{F})$. Then $\varepsilon>0$ and hence by Theorem 9 , there is a map $\beta:[0,1] \rightarrow C(X)-9$ from K to L such that $\beta([0,1])$ $\subset N(\alpha([0,1]) ; \varepsilon)$. By the definition of $\varepsilon, N(\alpha([0,1]) ; \varepsilon) \cap \mathscr{F}=\phi$. Therefore β is an arc in $\mathscr{A}-\mathscr{y}$ from K to L.

Let A^{\prime} denote the derived set of the space A. The derived set of A of order λ is defined by

$$
A^{(1)}=A^{\prime}, \quad A^{(n+1)}=\left(A^{(n)}\right)^{\prime} \quad \text { and } \quad A^{(\lambda)}=\cap_{n<\lambda} A^{(n)}
$$

if λ is a limit ordinal (see [3]).
We say that a triple $\{\mathscr{F}, \mathscr{A}, \mathscr{Y}\}$ is admissible if \mathscr{F} is a closed subset of $C(X), \mathscr{A}$ is an arc component of $C(X)-\mathscr{F}, \mathscr{y}$ is a closed countable subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected for each $Y \in \mathcal{Y}$.

Theorem 11. If $\{\mathscr{F}, \mathscr{A}, \mathscr{Y}\}$ is admissible, then $\mathscr{A}-\mathscr{Y}$ is arcwise connected.
Proof. First observe that the least ordinal v such that $y^{(v)}=\phi$ (such an ordinal v exists since \mathscr{y} does not contain perfect sets) is not a limit ordinal. Therefore there is the least ordinal λ such that $y^{(\lambda)}=\phi$. Denote such the ordinal λ by $\Lambda(Y)$. To prove the Theorem, we shall proceed by transfinite induction on $\Lambda(Y)$.

If $\Lambda(\mathscr{Y})=0$, then Y is a finite set. Hence Theorem follows from Corollary 10.

Suppose that the Theorem holds for any admissible triple $\{\mathscr{F}, \mathscr{A}, \mathscr{Y}\}$ such that $\Lambda(\mathscr{Y})<\lambda$. Let $\{\mathscr{F}, \mathscr{A}, \mathscr{Y}\}$ be an admissible triple such that $\Lambda(\mathscr{Y})=\lambda$ and let K, L be arbitrary elements of $\mathscr{A}-\mathscr{Y}$. It is sufficient to show that there is an arc from K to L in $\mathscr{A}-\mathscr{y}$. Since $\mathscr{y}^{(\lambda+1)}=\phi, \mathscr{y}^{(\lambda)}$ is a finite set. Therefore by Corollary 10,
there is a map $\alpha:[0,1] \rightarrow \mathscr{A}-\mathscr{Y}^{(\lambda)}$ from K to L. Put $\varepsilon=(1 / 2) H_{d}(\alpha([0$, 1]), $\left.\mathscr{y}^{(\lambda)}\right), \mathscr{Y}_{1}=\mathscr{Y}-N\left(\mathscr{Y}^{(\lambda)} ; \varepsilon\right), \mathscr{F}=\mathscr{F} \cup \overline{N\left(\mathscr{Y}^{(\lambda)} ; \varepsilon\right)}$, where $\overline{N\left(\mathscr{Y}^{(\lambda)} ; \varepsilon\right)}$ is the closure of $N\left(\mathscr{Y}^{(\lambda)} ; \varepsilon\right)$ in $C(X)$, and let \mathscr{A}_{1} be the arc component of $C(X)-\mathscr{F}$, containing K (and hence L). Note that $\mathscr{A}_{1} \subset \mathscr{A}$. The triple $\left\{\mathscr{F}_{1}, \mathscr{A}_{1}, \mathscr{Y}_{1}\right\}$ is admissible and $\Lambda\left(\mathscr{Y}_{1}\right)<\lambda$. Hence by inductive hypothesis, there is an arc from K to L in $\mathscr{A}_{1}-\mathscr{Y}_{1}$. Since $\mathscr{A}_{1}-\mathscr{Y}_{1} \subset \mathscr{A}-\mathscr{Y}$ and K, L are arbitrary elements of $\mathscr{A}-\mathscr{Y}, \mathscr{A}-\mathscr{Y}$ is arcwise connected.

COROLLARY 12. If 9 is a countable closed subset of $C(X)$ such that $C(X)-\{Y\}$ is arcwise connected for each $Y \in \mathscr{Y}$, then $C(X)-\mathcal{Y}$ is arcwise connected.

References

[1] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22--36.
[2] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180.
[3] K. Kuratowski, Topology, vol. I, New York-London-Warszawa, 1966.
[4] S. B. Nadler, Jr., Arcwise accessibility in hyperspaces, Dissertationes Math. 138 (1976).
[5] S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York, (1978).
[6] S. B. Nadler, Jr. and J. Quinn, Continua whose hyperspace and suspension are homeomorphic, Gen. Top. and Its Applications 8 (1978), 119-126.
[7] H. Whitney, Regular families of curves, Annals of Math. 34 (1933), 244-270.
Department of Mathematics, Tokyo Gakugei Univ.
Nukuikita-machi, koganei-shi, Tokyo, 184, Japan

