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ON THE EXISTENCE OF WEIERSTRASS POINTS WITH A

CERTAIN SEMIGROUP GENERATED BY 4 ELEMENTS

By

Jiryo Komeda

Introduction

Let X be a smooth, proper 1-dimensional algebraic variety (of genus^2) over

an algebraically closed field k of characteristic 0, and let P be a point of X.

Then a positive integer v is called a gap at P if h＼X, Oxikv―l)P)) = h＼X, Ox(vP)),

and GP denotes the set of gaps at P. If we denote by N and HP respectively

the additive semigroup of non-negative integers and the complement of GP in N,

then HP is a semigroup. A subsemigroup // of N whose complement is finite

is called a numerical semigroup. The following problem is fundamental and is

a long-standing problem.

Is there a pair {X, P) with X a smooth, proper 1-dimensional algebraic variety

over k and P its point, such that H=HP?

Using the deformation theory on algebraic varieties with Gm-action, Pinkham

[7] constructed a moduli space 3tH which classifies the set of isomorphic classes

of pairs (X, P) consisting of a smooth, proper 1-dimensional algebraic variety X

together with its point P such that HP―H. But he did not claim that 3AH is

non-empty. Using the Pinkham's construction of JMH, some mathematicians

showed that for some H, 3AH is non-empty. To state their results we prepare

some notation. Let M(H)={au ･･･, an] be the minimal set of generators for the

semigroup H, which is uniquely determined by H. IH denotes the kernel of

the ^-algebra homomorphism <p: k＼_X^＼―k{,Xu ■■･, X^＼-≫k[f] defined by (p(Xi)=tai

where k＼_X~]and k[f＼ are polynomial rings over k, and fi{H) denotes the least

number of generators for the ideal IH- When we set C# = Spec k[_X~]/IH, we

denote by T£ = c jTL(/) the ^-vector space of first order deformations of CH
h llEZ u

with a natural graded structure. Moreover, g{H) and C{H) denote the cardinal

number of the set N―H and the least integer c with c+NQH, respectively.

Then 3lH is non-empty in the following cases:

1) H is a complete intersection, i.e., fi(H) = n ―l,

2) H is a special almost complete intersection (Waldi [10]),
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3) H is negatively graded, i.e.,ThH(l)=O for />0 (Pinkham [7], Rim-Vitulli

[8]),

4) H is generated by. 4 elements and is symmetric, i.e., C(H) ―2g(H)

(Buchweitz [2], Waldi [9]).

In this paper we shall give some examples of numerical semigroups H

generated by 4 elements with 3lH^, because for any numerical semigroup H

generated by 2 or 3 elements, 1) and 2) imply JAH^$. Throughout the paper, we

are devoted to a numerical semigroup H of torus embedding type (see Definition

1.1),roughly speaking, CH is the fibre of a torus embedding. For such an H,

we can prove that JMH is non-empty. In Section 2 we show that numerical

semigroups H generated by 2 or 3 elements are of torus embedding type. When

H is a neat numerical semigroup (see Definition 3.1)generated by 4 elements,

we construct a torus embedding, any irreducible component of whose fibre over

the origin is isomorphic to CH, in Section 4. Moreover, if H is 1-neat (see

Definition 4.10),we can show that H is of torus embedding type. Using this

we can show that symmetric or almost symmetric numerical semigroups H

generated by 4 elements are of torus embedding type.

Notation

Throughout this paper we will use the following notation without further

warning. We denote by k an algebraically closed fieldand by N the additive

semigroup of non-negative integers. For elements alf ■■■, an, m and / of N,

<≪!,■･･, any (resp. (ax, ･･･, an), resp. [/, m]) denotes the subsemigroup of N

generated by alt ･･･, an (resp. the greatest common measure of ax, ･･■, an, resp.

the set of integers which is larger than or equal to /,and which is smaller than

or equal to m). For a weighted ring R and a homogeneous element / of R, d(f)

means the weight of /. Let H be a numerical semigroup, i.e.,the subsemigroup

of N whose complement in N is finite. Then JMH denotes the moduli space,

which is obtained by Pinkham, consisting of isomorphic classes of pairs {X, P)

with a smooth, proper 1-dimensional algebraic variety X over k and with its

point P whose gaps are N―H. Moreover, we denote by g{H) the cardinal

number of the set N―H, by C{H) the least integer c with c+NQH and by

M{H)―{au ･･･, an} the minimal set of generators for the semigroup//. We set

ai=M'm{a(EN~-{0} |aate<fli, ･･･, at-ltai+1,･･･,an>}

for alli―1, ･■･n. For any non-zero element h of H let

Lh(H)= {0=a)h(l)< ■･･<<oh(h)＼



On the Existence of Weierstrass Points 239

be the set of the least elements of H in respective congruence classes mod h.

<pH denotes the ^-algebra homomorphism from k[_Xly■■■, Xn~]to k＼T＼defined by

sending Xt to tai,hence assigning d(Xi)= a,ifor ls^'fSn and 9(c)=0 for c<^kx,

kLXi, ･■･, Xn~]is made into a weighted ^-algebra. We denote by IH the kernel

of <pH,by pt(H) the least number of generators for the ideal IH and by CH the

affine curve Spec krXlt ■･■, Xnl/IH.

1. Numerical semigroups of torus embedding type.

In this paper we are concerned with the following numerical semigroups:

Definition 1.1. A numerical semigroup H with M(H)={alt ■■■,an} is of

torus embedding type if there exist a positive integer m^n, homogeneous elements

gi(l^it=km) of k＼_X~]―k＼_Xu ■■■, Xn2 of weight >0, and a saturated subsemigroup

S of Zm+1~n which is generated by bu ■■■, bm and which generates a subgroup

of rank m+l―n of Zm+1~n as a group, such that the kernel of the ^-algebra

homomorphism

K : k[Yl = klYlf ･･･, Fm] ―> k[_Sl = kLT^SBS

defined by 7r(Yi)―Tbi, is generated by homogeneous elements Fk(l^k^u) with

Iii=(Fi(gi, ■■■, gm), ･" , Fu(gu ･■■, gm)) where the weight on £[F] is defined by

d(Xi)=d(gt) for l^iSm and 3(c)=0 for c^kx.

A sufficientcondition that a numerical semigroup is of torus embedding type,

which we will use, is the following:

Lemma 1.2. Let H be a numerical semigroup with M(H)={a1> ■■■, an).

Assume that there exist a positiveinteger m^,n, non-constant monomials gi(lf^i

Sm) in k＼iX~＼= k[_Xlt･･･, Xn~],and a saturated subsemigroup S of Zm+1~n which

is generated by bly■■･, bm and which generates a subgroup of rank m-＼-l―n of

Zm+1~n as a group, such that if we let

* : klYl = k[Yu - , Fm] ―> £[T*]Ses (resp. r): k＼_T＼- klXl)

be the k-algebra homomorphism defined by iz(Yi)―Tbi (resp. r]iXi)―gi),then the

ideal IH is generated by the elements of 3?(Kerre). Then H is of torus embedding

type.

Proof. When we define a weight on k[_Y~]in virtue of d{Yi)―d{gi) for

lfgffSm and 9(c)=0 for ceF, it sufficesto show that there exists a set {Fk}liksu

of homogeneous generators for the ideal Ker tc,because the ideal IH is generated
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by '/](Fk)(l^kSu). Now by [5] we may take generatorsFk(l^k^u) of the

ideal Ker tzas follows:

771 Tili^=im≪-iir*"

where vki-nki ―Q for all l^k£u and all lfSzfSm. If we put gi = X{il ■■■Xrjn for

all l^i^m, then we have

(ro
m ＼

ngi"- iigiki)

7TI U 771 71

=tt*1>'*iJ*1w_ti*1'"'iAriJa>
f

m n m n
which implies ~£,vkîTaO-j― ^^kiUlijdj- Therefore Fk's are homogeneous.

i=l .7=1 i=l j=l
Q. E. D.

Here we give a few examples of numerical semigroups of torus embedding

type.

Example 1.3. (1) H=<Z, 7> is of torus embedding type. In fact, let aa=3

and az=7. If we set n=m=2, g1=X＼, g%=-X＼ and bx―b2―＼, then these satisfy

the assumption of Lemma 1.2. In this case Ker k contains a homogeneous element

F1=Y1―Yz. See Lemma 2.3 for a generalization.

(2) i/=<4,7,13> is of torus embedding type. In fact, let fl!=4, a2=7 and

fl8=13. If we set n=3, m=6, gi=Xf, ^2=^2, ^3=^3, gi=X＼, g6=X＼, ge=X3,

^=(1,0,0,0), 68=(0,1,0,0), 68=(0,0,1,0), 6,=(-l, 1,1,0), 66=(0,0,0,1) and b6=

(―1,1,0,1), then these satisfy the assumption of Lemma 1.2. In this case we

can see that Ker % contains homogeneous elements Fk(l^kS3) as follows:

F1=YlY,-YtY>> F^YtYi-Yjr, and Ft=Y,Yt-Y4Yt.

See Proposition 2.5 for a generalization.

(3) H= <4,9,14,15> is of torus embedding type. In fact, let fli=15, a2:=9,

a3=4 and a4=14. If we set n=4, m=9, gi=Xu gz=X2, g%―X＼, gi ―X4, g5=Xu

g,-X2, g7=X3, gB^Xitg9=X3, bi^et (l^z'^4), &6=(―1,0,1,1,0,0), 66=e5, 67=g6,

^8=(0,1,0,0,1,-1) and £9=(1,1,-1,0,0,―1) where for any /e[l,6] we denote

by ei<EZ6 the vector whose i-th component equals to 1 and whose /-th com-

ponent equals to 0 if /=£/",then these satisfy the assumption of Lemma 1.2. In

this case we can see that Ker tv contains homogeneous elements Fk(lSkS3) as

follows:

F-YYs-Y.Y,, F2-F2F6-r7F8, Ft=YtY,Yt-YtYt,
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F4=F4F8-r5r6r9> JpB=r1F8-r3r6r9 and F6=r2r4-rer7F9.

See Theorem 4.11 for a generalization.

(4) H--{5,8,9,11> is of torus embedding type. In fact, let ai=5, 02=8,

£3=9 and a<=ll. If we set n=4, m=9, gi^Xi (l^z'^4), gb―X＼, gi+i―Xi

(2^*^4), gs=Xu b^ei (l^/^6), &7=(0,1,-1,0,1,0), fcg=(-l, 1,0,0,0,1) and

b9=(―l, 0,1,1, ―1,0) where e/s are as in (3),then these satisfy the assumption

of Lemma 1.2. In this case, Ker k contains homogeneous elements Fk(l^k^5)

as follows:

F^YtfsYs-YsYt, F^YzYs-Y^s, Fs=Y9Y7-YtYB,

F4=r4r8-y6y7r9 and f^y.y.y.-y.y,.

See Theorem 4.11 for a generalization. Now we get g(H)―7 and C(//)―13,

which imply C(H)=2g(H) ―l, i.e.,H is almost symmetric (see Theorem 6.4).

In the remains of this section we assume that k is of characteristic0. If H

is of torus embedding type, then we can show JW#=£0. For this purpose we

show the following:

Proposition 1.4. Let au ･■■, an be positive integers and let k[X~]=

k＼_Xi,･■■,Xn~] he a polynomial ring on which the weight is defined by d{Xi)=ai

for l^i^n and 3(c)=0 for cek＼ Let k[Y~＼=k[Yit ･･･, Ym~] and k[Y, W]=

k[Xi, ･･･, Ym, Wi} ･■■, W{＼ be two polynomial rings. Let r be a non-negative

integer with n―l^r, let J be an ideal in k[Y~＼such that R ―k[Y"}/J is a Cohen-

Macaulay domain of dimension m+l+r―n and that the singular locus of Spec R

has codimension larger than r, and let R[_X~]―R＼_Xi,■･･, X^＼. Assume that there

exist homogeneous elements giiX^i^m) and hj(l^j^l) of &[X] of weight >0

such that we have the fibre product:

4>~Ktheorigin) 5*Speci?(X]
I I*

Speck £~SpecklY, W3

with dim</> ＼the origin)~r, where <p is the morphism which is induced by the

k-algebra homomorphism <p*: k[Y, W~＼-*R[_X~]defined by <p*{Yi)=gi~-Yi mod/

and <p*(W})=hj, and such that the ideal J is homogeneous where the weight on

k[Y] is defined by d(Fi)=9(£<) for 1^/^ra and 3(c)=0 for ce£x. Then <pis

flat and there exists a non-empty open subset V of Spec kYY, W~＼such that the
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restriction (p~1(V)-*V is smooth.
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Proof. We define a weight on k[_Y, W~]as follows:

d(Yi)=d(gi), d(Wj)=d(hj) and 3(c)=0 for ce&*.

Since the ideal / in k[Y^＼ is homogeneous, <J>is a {?m-equivariant morphism.

For any seZ, the closed subset

F,= {xeSpec J?[JT]|dim* ^(^U))^}

contains the origin if Fsi^%, because <p is Gm-equivariant and the weights of

Yi, Xk are positive, (p is dominating in virtue of

dim Spec i?[X]~dim Spec k[Y, ^] = m+/+r-(m+/)=r

and

dimc/r^the origin)=r,

which implies &＼mx(p~x{(p{x))~^rfor all xeSpeci?[Z]. Moreover, in virtue of

d(Xi)>0 and d(Wj)>0 the map 9^ send the origin in Spec R＼JC＼ to the one in

Spec k[Y, Wl. Assume that FT+1^ty. Since the origin belongs to Fr+U we get

the
J(^(theorigin))=dim^(the origin)
origin the origin

^dim ^(the origin)=r,

a contradiction, which implies Fr+3=0. Therefore we get d＼mx<p~1((/>(x))=rfor

all xeSpeci?[X], i.e., cp is equidimensional Since R is a Cohen-Macaulay

domain, <pis flat([3]). Let Zi(i^I) be the irreducible components in the singular

locus Sing(Spec R＼LX~＼)of Spec i?[X] and let rj be the generic point of Spec

k[Y, W]. Assume that ^~1(>?)nSing(Spec R[_XJ)^0, i.e.,there exists fe/ such

that (J)-＼7])r＼Zi^$.Since the restrictionZ^cSpec i?[X]->Spec k[Y, W] is dom-

inating, we have

O^dim Zi-dim Spec k[Y, W^]^dim Sing(Spec i?[X])-dim Spec k[Y, W]

<dim Spec i?[Z]-r-dim Spec k[Y, W]=0,

a contradiction. Hence we get ^≫"'1(7)nSing(Speci?[JY])=0, which implies that

the set

{3/eSpec k[Y, ^]|^-J(3;)nSmg(Spec i?[Z])=0}

contains a non-empty open subset U. Then we have

^(^SSpec i?[X]-Sing(Spec R£X1)

Hence there is a non-empty open subset V in Spec k[Y, Wl such that the restric-
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tion (1>~＼V)-*Vis smooth, because the restriction <p~＼U)―>Speck[Y, W] is a

morphism of varieties with smooth <ft~＼U)over the algebraically closed fieldk

of charcteristic0 ([4]). Q. E. D.

Pinkham [7] showed the following:

Remark 1.5. Let if be a numerical semigroup with M(H)={au ･･■, an}.

Then we have JAHi^% if and only if there exists a flathomogeneous homomo-

rphism c^*: A= 0 At―>B= 0 Bt of affine graded ^-algebras with A0^k and
i(E.Z ieZ

B0^k such that 1) CH is the fibreof the morphism </>:Spec 5―>Spec A associated

to (f>*over a homogeneous ^-rational point on Spec A, 2) A is a domain and the

generic fibre of <bis smooth, and 3) Ai―0 for all z*<0.

Combining Proposition 1.4 with Remark 1.5, we get the following:

Corollary 1.6. Let H be a numerical semigroup with M(H)={alf ■■■, an}

and let k＼_X~],k[Y~]and k[Y, W} be polynomial rings as in Proposition 1.4. Let

J be an ideal in k[Y~＼such that R = k[Y"l/J is a normal Cohen-Macaulay domain

of dimension m+l+l ―n. Assume that there exist homogeneous elements gi(l^

iSm) and hj(l^j^=l) of k[_X^＼of weight >0 such that we have the fibre product:

CH ^Speci?PQ
i i*

Specfc―*≫SpecklY,W3

[(0)]! s*~theorigin

whe <p is the morphism induced by the k-algebra homomorphism d>*:k[Y, W]-*

i?[Z] defined by <p*{Yi)=gi-Yi mod/ and ^*(Wj)=hJt and such that the ideal

J is homogeneous where the weight on k[Y~]is defined by d(Yi)―d(gi)for l^i^m

and 3(c)=0 for ce£x. Then we have MH^Q.

If we apply Corollary 1.6 to numerical semigroups of torus embedding type,

we see;

THEOREM 1.7. For any numerical semigroup H of torus embedding type,we

have MH^$.

Proof. We use the notation in Definition 1.1. Since S is a saturated sub-
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semigroup of Zm+1~n which is finitelygenerated and which generates a subgroup

of rank ra+1 ―n of Zm+l~n as a group, by [6] Spec k[Ts^＼s(£Sis a normal affine

equivariant embedding of (Gm)m+1~n and is a Cohen-Macaulay scheme. Hence

i? = £[Y]/Ker 7ris a normal Cohen-Macaulay domain of dimension m+l ―n and

the ideal /=Ker tzis generated by homogeneous elements Fk(l^k^u). Since

the ideal IH is generated by the Fk(gi, ･･･, ^m)^", we have a fibre product:

d ^Spec RtXl

I ＼*

Spec &-^Spec &[Y]

[(0)1! ^-the origin

where cp is the morphism induced by the ^-algebra homomorphism </>*:k[Y~＼-+

R＼_X~]defined by <p*(Yi)=gi~-Yt mod/. If we apply Corollary 1.6 to the case

/=0, we obtain JH≫=ifc0. Q.E.D.

2. Numerical semigroups generated by 2 or 3 elements.

In this section we will show that numerical semigroups generated by 2 or 3

elements are of torus embedding type. First we consider the following numerical

semigroups:

Definition 2.1. A numerical semigroup H with M(H)= {au ･■■,an) is called

a strictlycomplete intersectionif renumbering alt ･･･, an the least common mul-

tiple of (ai, ･･･, fli-i)and at belongs to {alt ･･■, a*_i> for 2^i^n. In this case

by [5] a set of generators for the ideal /, is well-known.

Remark 2.2. For a numerical semigroup H as in Definition 2.1 we have

ai=(a1, ■■■, Gi-i)/(ai,･･･, a*) for 2^fgn. If we set

i-1
<Xi(ii=T;aiJaj with a^eiV

for 2^z^n, then the ideal IH is generated by /2,■■-,/,where we set ft=

xy―xi" ― xt±＼-＼

LEMMA 2.3. A numerical semigroup H which is a strictlycomplete intersec-

tion,is of torus embedding type.

Proof. We use the notation in Remark 2.2. The set
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£/={(/, j)^N2＼2£i£n and l^/^i-l}

is a totally ordered set, where we define (/, j)^(i', /')if i<＼ or if i―i' and /^/'.

If we set P={(i, j)&U＼ai}=t0} and l=*P, then we have the isomorphism £: P->

[1, /] of ordered sets. Let

be the ^-algebra homomorphism of polynomial rings, defined by 7r(Yij)=ts<n,fi

and x{Zk)= n f≪* ≫ where P(^)={/e[l, jfe―l]|(fe,/)eP}. We set

gw,fl = XajV for (f, y)eP and ^!+i-!=lF for2^^^n.

Let rj: kZYtj] Zkl^klX3=k＼:X1) - , ZJ (resp. C:^&i, - , ^]-^M) be the 6-

algebra homomorphism defined by 7](Yij)=g^ii^ and rj{Zk)―gi+k-i (resp. C(^(t,j))

=taiJaJ). In virtue of <pH°7]=C,°7r,we get ^(Ker ^)£Ker (pH=IH. If we set

F =zft- n Fw for 2£k^n, then F&eKerTz: and v(Fk)=fk. Therefore by

Remark 2.2 the ideal /# is generated by the elements of ^(Ker n). By Lemma

1.2 H is of torus embedding type. Q. E. D.

Corollary 2.4. 1) Numerical semigroups with M(H)={au az} are of torus

embedding type.

2) Symmetric numerical semigroups, i.e.,C{H)=2g{H), with M{H)― {au a2,a3}

are of torus embedding type.

Proof. It is trivial that numerical semigroups with M{H)―{au a2) are

are strictlycomplete intersections. Herzog [5] proved that numerical semigroups

i/with M(H)={a1> a2, as} are strictlycomplete intersections if and only if they

are symmetric.

In the non-symmetric case H with M(H)={au a2,as}, H is

embedding type In the following way: by [5]

≪i,<(X,-such that

a,<2i

Q. E. D.

a2, az}, H is also of torus

there exist positive integers

=<x12a2+a13<23> azai=ailaiJra2iaz and asas=asla1+aS2a2,

in thiscase

oci=a21+a.il, a2=≪i2+tt32 and a3=als+a23^

Moreover, Herzog showed that the idealIH is generated by

f^X^-X^X^13, /2=Zf2-Zf2iZf23 and fz=Xa^-Xal^X%^

Let S be the subsemigroup of Z4 generated by
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&21=(1,0,0,0), 612=(0,1,0,0), ^,=(0,0,1,0), h

6s≪=(0,0,0,1) and &,.=(-!, 1,0,1).

=(-1,1 1,0)

Then it can be easily seen that S~SR+biJr＼Zi where R+ is the set of non-

negative real numbers. Hence S is saturated. When we let

*: kLYi&tw ―* kmBS (resp. tj: k[Ytj} - ktXlt Xt, X,l)

be the ^-algebra homomorphism defined by 7t(Yij)~Tb^ (resp. y]{Yij)~XajiJ),

there exists a ^-algebra homomorphism C,:^[Ts]ses->^CO such that (pn°7]―^°tc,

which implies ^(Ker Tt)QlH. Since

Fi―YziY3i―F12Fis, F%r=YivYzi J21/28 snd F3=YisY%s Ysu 32

belong to Ker tc and we have r){Fi)―fifor l^f^3, the ideal /H is generated by

the elements of tj(Ker n), hence if is of torus embedding type. Therefore com-

bining this with Corollary 2.4 2), we obtain the following:

Proposition 2.5. Numerical semigroups with M(H)={au ait a3} are of torus

embedding type.

3. Neat numerical semigroups.

Hereafter we are concerned with the followingnumerical semigroups:

Definition 3.1. For a numerical semigroup H with M(H)―＼au ･･･,aJ

j*i

with O^S a*,･<≪,-,

HcCij―aj for 1^/^gn

for lsSz'^n,

is called a neat system of relations with respect to H and {au ･■･,an). When H

has a neat system of relations,it is called to be neat.

Example 3.2. (1) H― <4,7,13> is neat. In fact,let ai=4, 02=7 and a3=13.

Then

5i: 5a1=a2+a3, 3a2=2a1+a3, 2a3=3a1+2a2

is a neat system of relations.

(2) H=<4,9,14,15> is neat. In fact,let Ci=15, a2=9, as=4 and a4=14.

Then

iR.:2<21=4a3-ffl4, 2a2=G3+a4, Gfl3=ai+a2, 2a4 = aj+ G2+O3

is a neat system of relations.
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(3) #=<10,11,13,14) is neat. In fact,let a^lO, a2=ll, 03=14 and a4=13.

Then

Si: Aa1―a3Jr2ai, 3a2=2a1Jrai, 3a3=2a1+2a2, 3a4―a2+2as

is a neat system of relations.

(4) if=<5,7,9,11,13) is neat. In fact,let d=5, g2=7, a3=9, a4=ll and

a5= 13. Then

Si: 4a1=a!i-＼-as, 2a2―a1-JraS) 2a3=a.i+a4, 2a4=a3+a5, 2a6=3a1 + a4

is a neat system of relations.

In this section,let H be a neat numerical semigroup with M(H)= {a1}---,an},

and let Si be a neat system of relations with respect to H and {au ■■■, an}.

We can see easily:

Remark 3.3. We put

P=P<R={(i, /)e[l, nl*＼i*j, aij^O}, Pf={ye[l, n]|(*, /)eP}

for 1^'^n and />,=|£e[l, n]|(z; /)£?} for 1^/^n.

Then *P*^2 and *P,^2. Hence we have *fP^2n, for

^= U {(i,j)＼jeP*}= U {(i,7-)|iePj}.

Moreover, we make P into a totally ordered set by defining an order on it as

follows: for a fixed /e[l, n] and any l^k^Pj we define inductively

≫,(*)=Min{ie[l, nUiePj-iija), - ,ij(k-l)}} .

For any (i,j) and {V, j')(eP with i=ij(k) and i'=ij,(k/),we define (z,j)^ii', /')

if ^<y^' or if jfe= fe'and /^/'.

Definition 3.4. An element {i,j) of P has a v-relation(resp. an h-relation)

if we have

*=Max {V e [1, n] |*'e P,-} and P^(f,;)=0

where Pj(i,j)= {;vg P' |(/,;v)> (i,j)}

(resp. (/,;)=Max{(*, jv)|/e^} and P&, j)=$

where P,(f,;)= {f e ^ |(f, f)> (/,;)}).

u-relationsand /i-relationshave the following properties:

Lemma 3.5.

2) For any

1) (io, /o)=Max P has a v-relation and an h-relation.

lfg/fSn, there exists z"e[l, n~＼such that (i, /) has a v-relation or
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/e[l, n~＼such that (I,j) has an h-relation.

3) We have *Q^n ―l where

Q={(i, j)e.P＼{i,j) has either a v-relation or an h-relation}

Proof. 1) is trivial. We set

*=Max Pt and (/, /)=Max{(/, j')＼j'^P1}.

Assume that (i,I) does not have a v-relation and that (/, /) does not have an h-

relation. Then there exist j'^Pl(i, I) and i'^P^l, j), which imply

(U)^(zv, ox/, ma, j')>{i,D,

a contradiction. This proves 2). Let /e[l, n~＼.If (i, I) has a f-relation, then

we define C,{l)―{i,I). If (/, /) has an /i-relation,then we define Q(l)= (l, j). Then

the map C "･[1, n~＼-^Qis well-defined. In fact, if {i,I) (resp. {V, I)) has a v-

relation, then /=Max Pi=i'. If (/,;) (resp. (I, j')) has an /i-relation,then (/, /)=

Max{(/, k)＼k^Pl}^=(l, j'), hence j―jf. If (/, /) (resp. (/,;)) has a y-relation

(resp. an /i-relation),then we have (z, /)^(/, 7)^(2, /),hence /=y, a contradiction.

To prove 3) it suffices to show that C is surjective, because we have C(zo)=

ih, jo)=QUo)- W (i,jl^Q has a ^-relation (resp. an /i-relation),then C(j) = (h j)

(resp., Q{i)= (i, j)). Hence C is surjective. Q.E.D.

Finally we define the subset PH of Sn―{{i, /)e[l, n]2|*"=£/}associated to a

neat numerical semigroup H with M(H)={au ■■･, an} as follows:

Definition 3.6. We define an order on the set of subsets of Sn in the

following way:

1) for any (z, /) and {{', j')^Sn, we define (i, j)^{i', /') if i<i' or if i=if

and j-^j',

2) for two subsets P and P' of Sn with *P=*P' = *<SB-r, we define PSP'

if there exists Q^fSr such that

(*i,ji)= (i[, ji), ･･■, (iq, ]q)= (i'q,j'q) and (iq+1, jq+1)<(i'q+1,j'q+1)

where

Sn-P= {(ti,h)< -･ <Hr, jr)} and Jn-P^ {(?{,j[)< - < (#, /0} ,

3) for two subsets P and P' of .S,,we define P^P' if *P<*P/ or if ≪P^*P'

and P^P'.

Then the set of subsets of Sn becomes a totally ordered set. Using this order,

we define the subset Pn of Sn:
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■Pfl=Min{iVia<Kl),...,a<Kn))|crruns over the set of permutations of [1, n]}

where

^V{a1,-,arti= Min{.Ps|iR runs over the set of neat systems of relations

with respect to H and {a,. ･･･, an}＼.

4. Neat numerical semigroups generated by 4 elements.

In this section, we are devoted to neat numerical semigroups if with M{H)―

{di, a2, a3, a4}. In the case *M(//)=4 we can explain v-relatkrasand /i-relations

in f＼f*t'*＼＼

Lemma 4.1. Let SI be a neat system of relations with respect to H and

{alt a2, a3> a4}. Then

1) (i,j)^P& has a v-relationand an h-relationif and only if (i,/)=Max P&,

2) we have *Q―3 where

Q―{(.i,D^PsiKh i) has either a v-relation or an h-relation}.

Proof. To check 1), by Lemma 3.5 1) it sufficesto show the "only if" part.

For brevity, we put P=P&. Let us take (z,/)£? which has a y-relation and

an ^-relation. Then for any &<=[1,4] the following hold:

a) if (i, fc)eP, then (i, k)^(i, j), b) if (/, k)<zP, then (/, k)<{i, j), c) if

{k, i)e=P, then (k, i)<{i, j), d) if (k, j)<=P, then (/?,j)<{i, j).

From now on we will see that for (k, /)eP with &? /e[l, 4]]―{/, /},{k, l)<

(i,j). The case i=l does not occur, because (z, /) has a y-relation. Moreover,

since for k=l we have (^, /)<(/,j), we may assume y=l or /=1.

fA) /=1. Then i=3 or 4. because z>f,(2)>3.

1)

2)

I =3. Then (*8(2),3)<(3, I)=(j1(2), 1), a contradiction.

=4. Then (k, /)=(2, 3) or (3, 2). If (&, /)=(2, 3), then

(&, 0^(≫8(2), 3)<(*4(2), 4)<(4, l)=(z, j).

If (k, /)=(3, 2), then

(*, /)^(*.(2), 2)<(i4(2), 4)<(4, l)=(f, j).

(B) /=1. Then ^=2 or 3 or 4.

1) &=2. Then (k, /)=(*i(D, D<(≪, j).

2) *=3. Then (*, 0^(^(2), 1)<(^(2), j)S{i, j).

3) j&=4. Then (i, /)=(2, 3) or (3, 2). If *=0(3), then

(ife,0 = (4, 1)^(^(3), 1)<(//3), ;-)=(i, ;).
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Assume i=ij{2). Then

(i,j)=(ij(2), j)<(h(2), 4)<(f, y),

because *4(2)=2 or 3. This is a contradiction. Hence we have (i, y)= Max P.

By the proof of Lemma 3.5 3), we can define a surjective map £: [1, 4]-+Q

by sending / to (fj, /) (resp. (/,it)) if (^, /) has a ^-relation (resp. if (/,it) has an

/i-relation). Let / and V be two distinct elements of [1, 4] such that £(/)=C(O-

Then £(/)=£(/')has a y-relation and an /z-relation. Hence if we set (/,;)=Max P,

by 1) we get {/,l'} ―{i, j). So C(k), Z[kr) and Z[i) are distinct where we set

[1, 4]={f, y, ^, k'}. Therefore we obtain #0=3, because £is surjective.

Q. £. Z).

From now on, we will construct a torus embedding THxA＼, any irreducible

component of whose fibre over the origin of Spec k^Yf^a, j)epH is isomorphic

to CH. First let 31 be a neat system of relations with respect to H and

{au a2,as, c4},i.e.,aiai=T,ocijaj for l^i^i and aj=Sa^ for 1^;^4, with

O^ocij<aj, and let Ytj,(i,j)e.P&, (resp. tlt･･･, tm-z) be independent variables

over k where we put m―*P&. Q denotes the set of (/,j)^Psi which has either

a y-relation or an /z-relation.For brevity, we put P―P&, and let the order on

Q (resp. P―Q) be induced by that on P defined in Definition 3.3. Then by

Lemma 4.1 2) the set Q consists of three elements

(*',/')<(*■",;')<(≪; Jo),

and there exists a unique isomorphism £:P― Q―+[1, m~~3]of ordered sets. Now

we will define a &-algebra homomorphism

inductively as follows:

1) 7^: k[YiJ2ci,flep<(i',j")'^k[_t±i1,･･･, ^L8] is denned by

XxiYi.,.)

and

II tzlij.-)II ttu'j-) if (*', ]') has a y-relation,

iePj'-{i') j&PJ'

II teh'i) II tnu') if (if, i') has an /z-relation,

jePt'-W) iePt'

xiiYi^tew if {if, /')<(*, j)<{i", j"),

2) ?r2: ^[Fi;-]a,i)GP<ao,Jv~^^Df1> ■■■, /m-s] is defined by

w,(ro)=7r1(r≪) if (i, ])≪?, n,
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n XitXtj.)-1 n itttYj-j) if (*"> J") has a ^-relation,

i&Pj―[i'＼ J&P3'
xt<yt.j.)=

ictft-j)-1
n

TTxCr,*.) if (i*f 7V/) has an /.-relation,
jePi'-U"} ie.P%>

7ct(yij)=te≪fi if d", /")<(*, j)<Vo, Jo),

3) k : k[yii-＼≪.fleP-+k[t%＼ ■･･,t^UI is defined by

niYij^n^Yij) if (i, /)<(/,, ;"o)

7r(rio;-o)- n ^.(F,,^-1 n. xt<yJoj).

We note that

n
jGPJO

n xAYtj-1 n *t<y≪j
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Definition 4.2. If we canonicallyidentify k[tt1,･･･,tm-z] with the semigroup

k-algebra k[Tb'}b&zm~s,in the above situation for any (/,;)gP there exists a

unique JyEZ"1"' such that tt(Fo)=T6^. Then the subsemigroup S of Zm"3

generated by bij{(i,;)eP) is called the semigroup associated to P and the sur-

jective ^-algebra homomorphism %: k[Yij}a.flep'-*k[Ts2ses is called the homo-

morphism associated to P.

Lemma 4.3. Let iq: k[Yi}r]a,fl<Ep-*k＼_X~}=k＼_Xl,X2, X3, X4] be the k-algebra

homomorphism defined by sending Ytj to Xpj. Then we have IH 2 ^(Ker k).

Proof. The ^-algebra homomorphism £':k[THJ']<;i,j-)ep-Q->k[t'l2heHdefined

by C,'(Tbi3)=taiiaJextends uniquely to the ^-algebra homomorphism C,:k[Ts~]ses

-^k[th~]h<EH-Moreover,

<Pn'V<Yij)= 9H(XajtJ)= ta*JaJ

and

C-7r(rii)=C(T6*i)=fa*^,

hence (pH'Tj―^Tz, which implies Jff=Ker <pH2^(Ker x). Q.E.D.

Let us recall the definitionof PH in Definition 3.6 which is determined by

a neat numerical semigroup H. In our case M(H)={alt a2, a3, aA), elementary

computations show the following:

Proposition 4.4. PH is one of the following:

(1) the case *PH=l2, then PIi^si^{(i> ;)e=[l,AJ＼i^j]

(2) the case *PH=U, then PH=Si~{(l, 2)},
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(3) the case *PH = IQ, then Pn=Si―({lX, 2)}^JG) where G is one of the fol-

lowing :

a) {(2,1)}, b) {(2,3)}, c) {(3,4)},

(4) the case *Pa=§, then Pj7=≪S4―({(1,2)}WG) where G is one of the fol-

lowing :

a) {(2,1),(3, 4)}, b) {(2,3),(3, 1)}, c) {(2,3),(3, 4)},

(5) the case *P^=8, then PH=≪S4-({(1, 2)}VJG) where G is one of the fol-

lowing :

a) {(2,1),(3, 4),(4, 3)} and b) {(2,3),(3, 4),(4, 1)}.

Definition-Proposition 4.5. Let SH be the semigroup associated to PH.

Then the subsemigroup SH of Zm~3 is saturated and generates Zm~3 as a group.

Therefore TH―Spec k[Y＼j~＼a,_,-)eFi7/Kerit,which is isomorphic to Spec ^[Ts]se5//,

is called the torus embedding associated to the neat numerical semigroup H with

M(H)={au a2, a&, aA.

Proof. By the construction of SH, SH generates Zm~3 as a group. For any

ie[l, m―3] we denote by ei&Zm~z the vector whose f-th component equals to

1 and whose j'-th component equals to 0 if /=£/. Let

a: [1, ml ―* PH= {(i,;)e[l, 4]2|^/, ao^0}

be the isomorphism of ordered sets, and for brevity we set bi―bam for all

ie[l, m]. Let the situation be as in Proposition 4.4. Then

(1) bt=et (1^^8), 69=(-l, 1,1,1, -1,0,0,0,0), 610=(l, -1,0,0,0, -1,1,1,0),

b11=e9, &i2=(0,0,1,0, -1,-1,1,0,1),

(2) bt=et dStS7), ba=(-l, h 0,0,0,1, -1,0), &9=(-l, 0,1,1, -1,0,0,0),

blo=ea, fcn=(0, -1,1,0,-1,0,1,1),

(3) a) fci=et (1^^4), fc6=(-l,0,l,l,0,0,0), 66=eSl fe7=ee,

£8=(0,1,0,0,1, -1,0), b9=e7, blo=(-l, -1,1,0,0, 1,1),

b) bt=et (1^^7), ft8=(-l,l,0,0,0,l,0), 6,=(-l, 0,1,1,-1,0,0),

^,=(0,-1,1,0,-1,0,1),

c) ^=^ d^i^7), &8=(-l, 1,0,0,0,1, -1), ft9=(-l, 0,1,1, -1,0,0),

fclo=(0,1,-1,0,1,0,-1),

(4) a) 6i=e< (1^^4), 68=(-l, 0,1,1,0,0), ft,=e5, 67=ee,

b, -(0,1,0,0,1, -1), &,=(!, 1, -1,0,0, -1),

b) bt=et (1^^4), &6=(-l, 0,1,1,0,0), 66=e5, bi=e6, &8=(-l, 1,0,0,1,0),

v=co,-i,i, o,o,d,

c) fei=ei (l^/^6), ftT=(0,1,-1,0,1,0), fcg=(-l, 1,0,0,0,1),

*9=(-l, 0,1,1,-1,0),
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(5) a) bt=et {l^i^4), ft8=(-l,0,l,l,0), h=e5, 67=(l,l,-l,0,0)

=/_i_o. in. n
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b) bt=et (1^4), bs=(-l, 0,1,1,0), b6=e&, 67=(-l, 1,0,1, 0),

fc8=(-l,l, 0,0,1).

By computation the subsemigroups SH of Zm~3 generated by bu ■■■,bm are

saturated. For example, we check the case (4) c). It suffices to show that

2 R+bir＼Z6QSH where R+ is the set of non-negative real numbers. Let us

9
take z―J] Aibi^Ze with ^ejB+, and set Xi―nii+^i with m^N and 0^/?*

9
for l^f^9. Hence it suffices to show that 3>=S pibi<BSH. Now we get

2=1

<1

3>= (<8l-i38-&, ft + 07 + ft, 03-07 + 09, 04 + 09, 05 + 07"09, 06 + 08) =Z＼

hence

0i~08-09=-l or 0, 02+07+08=0 or 1 or 2, 03-07+09=O or 1,

04+09=0 or 1, 06+07-09=O or 1, and 06+08=Q or 1.

First assume 0X―08―09=O. Since e^eS* for all lfS/^6, we get y^SH.

Secondly assume 0X―08―09=―1. Then we have 08>O and 09>O, which imply

02+07+08=l or 2, 04+09=l and 06+08=l. Then y^SH, because (-1,1,0,1,0,1)

=64+fr8eS//. Therefore S# is saturated. The other cases work similarly.

Q. E. D.

For our purposes it is necessary to investigate generators of the ideal IH.

When H is a neat numerical semigroup with M(H)={au a2, as, a4}, the follow-

ing Lemma gives us a set of generators for IH.

Lemma 4.6. Let H be a numerical semigroup with M(H)={au a2, a8, g4},

such that for any l2Sz^4

aiai ― aijUj+aikak+anai with aii7->0, aik>0 and aa^Q

where i, j, k and I are distinct. For any I^ff24 we denote X%i―XjiiX%ikXfil

by ft. Set

Ai= {/, /, /, ft), At= {XfrXfr-XfrXt'el^OKPiKai},

A>={XfrXt*-X%*Xi*eLlH＼0<pt<at}, A^= W^!*-^|^|≫e/jy|O<0t<ai} .

Moreover, for any 2^/^=4 u;e />wf

A*t = {X^Xli-XpXfc(EAtlfor any X^XV-X^X^^Au different

from XfrXti-XfrXi* 71^Bl and r^Bt do not hold}.
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Then 1) the ideal IH is generated by the elements of the set A^JA%^JAfOv4*,

2) if (Xidi^ajdj for i^j, then fi(H) is equal to 4+Mf-f ^f+M*.

Proof. 1) Let {A') (resp. (^4),resp. (A*)) be the ideal generated by the set

A'=a,sj{xvxy-xi>>xvGiH＼ri, rj,r*. n>o and a, y, k, i)

is a permutation of [1> 4]}

(resp. the set A=A^＼JAjJAjUAit resp. the set A*=A1UAi^JAiUA*i).

First we show: IH=(A'). that is, 8=X$i―XVXl*X)ieIu. with !■>≪,■and a

permutation (f,j, k, I) of [1,4], belongs to {A'), i.e., g=f+(JjLXi')h with

f^{A') and dh<dg if /i^G. If we setli=atq+r with q>0 and ^Sr<ait then

Then we can write G=f+(llXxAh with fe=(A') and dh<dg if hi-O.

Secondly we see: IH~(A), that is,g=XriiXrJs―Xii'XTlleIH, with TuTj>Tk,T>

>0 and a permutation (i,j, k, I) of [1, 4], belongs to (A). We may assume

that Yi―<Xiq+r with g>0 and 0^r<aj. Hence we have

G=g-XlXWXV9-XFflX%i≫≪Xf"<)=XrtXrjJ+awX%≫<Xf"*-X]l*Xrli.

Then we can write G=(TLX*Ah with 9/i<9^ if /t^O.
＼s=l /

Lastly we check: IH=(A*). Let us take g^X^X^―X^X^^Ai such that

there exists gt=X^Xl*-X§JXl*<=A$ with n^ft, r^/34 and (r1?Yti^^u j8<).

Then

with dh<dg.

2) It sufficesto show that the images of elements of ^W/lfW/lfVJAf in

Ih/(Xu X2, Xs, Xi)IH are linearly independent over k. By the assumptions

aiCii^ajdj and the minimality of at, the weights of elements of Ai^JA^A^JA4

are distinct. For brevity, the ideal (Xlt Xit Xs, Xt) (resp. X^X^-X§iXi^At)

is denoted by (X) (resp. g^t). Let

with Ci,c^2, cj^gj,c^4eife. First assume that c^O. Since the ideal (X)/^ is

homogeneous, we get Cifi&(X)IH> which has an expression:
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with hm, hflfo hflpa, htflp^iX). If we substitute 0 for Xit all /different from

i,then we get ciXaii= cX^ai with c^k and /3>0, a contradiction. Hence Ci―0

for all i―1, ･･･,4. Secondly assume that c^.^0. Then c^^g^^^iX)^,

which has an expression:

because of g^^Ai and the minimality of ≪_,-.Substituting 0 for Xj and X*,

where (1,i, j, k) is a permutation of [1, 4], we obtain

hence there exists Ux, ^)eiV2, ^(0, 0) such that

i31a1+)9ifli=(ri+^i)a1+(ri+^)ai.

If 181^7*1+^1,in virtue of ai>/3i we have ^i=7'i+^i and /8t= 7'i+^, which con-

tradict gfipi^At If jSKn+^i, we have

(jSi-n―^i)at = (n+^i-i8j)a1,

which contradicts the minimality of a*. Hence we get c^l^―d. Q. E. D.

For a neat system 31: cddi―Sa^a; for l^f^=4 and a,-=2#i./ for l^/^4,

of relations with respect to if with M{H)={au a2, a3, aA}, the following holds:

Lemma 4.7. We have

D=

at ―a12 ― ≪is

#21 ≪2 ―≪23

#31 OC32

>0.

≪3

Proof. Since we have <Xj―2≪ij for l^/^4, we obtain

D=

Oil <*12 ^13

an

+ ≪43

<^2 <^23

≪42 ≪43

≪1 ―≪12

<X2i <x2

an

―a12 ―a13

≪2 ―≪23

― ≪42

≪1 ≪13

― ≪23

If ai3>0, then D>0 because of ai3a1(a32+a4i)>0. If a43―Q, then a41>0 and

ai3>0, hence we get D>0. Q.E.D.
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Hereafter we are in the following situation, which is similar to that in

Corollary 1.6: let P=PH be as in Definition 3.6 and let TH = Spec klYijJaj^p/

Ker k be the torus embedding associated to the neat numerical semigroup // with

M(H)= {alt a2, a3, a4}. Let us consider the fibre product:

0-i(0). ^THxAi^Spec(klYi^/J)lXlf X2, Xs> XJ

I I*

Spec k >Spec klYi^a.pBP

where O and / are respectively the origin of Spec k[Yi}~]and the ideal Ker x,

and <pis the morphism corresponding to the ^-algebra homomorphism (/>*:k{Yij']

->(klYtjl/J)ZXu Xt, X3, X,-] by sending YtJ to Xyi-Y^ mod/. If /, is the

ideal in k[_X~＼= k{.Xu X2f X3, XJ generated by the set r){J) where rj＼k[Yij2-^

k＼_X~＼is the ^-algebra homomorphism defined by rj(Y'ij)=X^, then (f)~l(O)is

isomorphic to Spec k＼_X~＼/J0.

Proposition 4.8. CH is an irreducible component in 0"1(O)=Spec fc[Z]//0.

Proof. We use the notation in Lemma 4.6. Since

Ft= n Yjt- n YtJe=j

for all * implies (fJf f2, fs, /4)£/0 and by Lemma 4.3 we have IH=Jo, we will

check that the ideal IH is minimal prime over (flt f2> fz, /4). Let |) be any prime

ideal in k[X~] with (fu f2, f3, f4)Qp^IH. Let us take

£=Z?^2-.Jf3j^e,42, hence ^^+^^-^,0,=^.

By Lemma 4.7, there exists a positive integer pt such that

/*(&, i32, ―i83)=yi(ai, ―ai2, ―ais)+y2(―≪2i, "a, ―a23)+%>3(―asu ―as2, a3)

with v^Z, which implies /i^4=viai4+y2≪24+y3a34. Since /3j>0 for 1^?^4, this

case is divided into the following:

1) Vi>0, v2>0, y3^0, 2) v!>0, v2>0s v3<0,

3) ya>0, y2<0, y3<0, 4) ya^0, v2>0, v3<0.

If v!>0, v2>0 and vs^Q, then

―X^a2Xlsa3(X1iiai―X^a^X^ai3X^an)

-j-X2ianXliai&+Psa3Xiia:li(X22a2~ I{2"2lX^S3jj4≪2()
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Since

we get g=X^X^2―X^X^^p. The other cases work similarly. For g^A3＼JAi,

the proof of g&p is similar. By Lemma 4.6 p coincides with IH, hence we get

our desired result. Q. E. D.

If (p'1^) and CH are respectively regarded as the algebraic subsets V(J0)

and VCIn) of the affine soace At we see:

Proposition 4.9. 1) For any x = (xlt xif xit xA)G<p-＼O), differentfrom the

origin, we have Xj^O for any l^z'^4.

2) For any x=(x1} xz, x3, x4)e^"1(O), different from the origin, we have

x-^ixT1, x-*1,xl1, x?)<E(b-＼O).

3) Any irreducible component in <p 1(0) is isomorphic to CH.

PROOF. In the proof we use the notation in Lemma 4:6.

1) If Xi=0 for some /,x must be the origin of A＼,because /o contains the

ideal (fu f2, fa,f＼).

2) We may take generators Fk(l^k^u) of the ideal / as follows:

with VijUij

Fk= n Y＼y- n yip
(i,j)<EP (i,;)SP

=0. In virtue of x^(p~＼O)=V(J0)=V(ri(J)), we have

which implies

This means x'^^'KO).

3) For any x=(xu x2, x3, x4)e^"1(O), differentfrom the origin,let <px: k[X2

-*k[X~]/J0 be the ^-algebra homomorphism defined by (pxiX^ ―XiXf+Jo. Then

Ker <px contains the ideal Jo, because

<px(v(Fk))=n(xjxJri^-n(xJxJri^+j0

=iix^viKii(x]r^iJ-uixJr^J)+j0

Therefore <px induces the homomorphism q>x:k＼_X~]/J0-^k＼_X~]/Jo,which is an

isomorphism by 2). Since Jo is homogeneous, (f)'l{0)has a natural G^-action.

Then we see that for any xg^W), different from the origin, we have



258 Jiryo Komeda

(px-1(the closure of Gm'x)―CH

where <px-1 is the automorphism of (p"l{0) corresponding to <px-i. Using Pro-

position 4.8 any irreducible component in (p~l{0)is isomorphic to Cn. Q. E. D.

Lastly, for our purpose we classify neat numerical semigroups H with

M(H)~{au a2, a%, a4} as follows:

Definition 4.10. In virtue of (au a-2,a3, a4)―1 and Lemma 4.7, there ex-

ists a unique positiveinteger v such that

0L＼ #12 <^13

va4= ^21 <X<i Ot%%

OCsi (X32 a3

D.

Then the numerical semigroup H is called to be v-neat.

Our main result in this section is the following:

Theorem 4.11. l-neat numerical semigroups H are of torus embedding type,

hence if the characteristicof k is 0, then we get
<3ttHi^ty.

Proof. Let the situation be as in Proposition 4.4. Since a4―D, by com-

putation we get:

(1) Las(H)= {Piai+Ptat+PiatiPi^N and (/3i, /32,/34) satisfies one of the

following: 1) PiKau+au, /32<a82, Pi<ocif 2) /3i<a8i, a32^i32<a2, /34<aH+a34,

3) a2i+a8i^^i<ai, /32<a:32, /34<a24+a34) 4) a3i^j8i<ai, a82^/32<a82+a42, j94<

≪34, 5) pi<atu a8S^^2<a18+as2, ≪i4+a34^iS4<a4, 6) a8i^j8i<a8i+≪4i, asa+a.^

(2) Laz(H)= {i31a1+/32fl2+/34a41 i^eiV and (fit,pt, pt) satisfies one of the

following: 1) jSKaji+a,,, /32<a32, i34<a4, 2) jSKarw, a32^i82<Q:2, pi<<xu+(xu,

3) a2i+asi^i9i<ai, /52<a32, iS4<a24+a.34, 4) a3i^/3i<ai, ≪32^iS2<a2J /34<a84},

(3) a) Las(H)= {/31a1+iS2a2+iS4G4|i8iGiV and (^j, jS2,^ satisfies one of the

following: 1) fli<au ^<a2, i84<≪34, 2) jS^a,!, /32<a32, a.34^iS4<a4, 3) a3i^

^i<ai, /32<a32, <x34^i84<a24+a34, 4) /Ji<a3i, a32^^2<≪r2, ≪84^^4<≪i4+≪'34},

b) Lai(H)={p2az+fi3as+Pia4＼fii&N and (/S2, jQ3,j84) satisfies one of the

following: 1) j82<a2, j88<a8, £4<an, 2) £2<a2, j88<a18, a14^j94<ai4+a84, 3)

j32<≪32, iS3<a13, ≪i4+≪34^i34<a4},

c) La3(H)={fi1a1Jrp2ar,JrPia4＼Pi(BN and (/?-,,j92>^4) satisfies one of the

following: 1) j8a<a2i+≪8i, /52<a32, /54<a1, 2) /3i<≪3i,≪'32^i82<a2, /94<aM, 3)

aai+aji^SKai, i32<a32, /34<≪24},
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(4) a) Lat(H)={^1a1+fitat+fiiai＼fit^N and (0,, ft, ft) satisfies one of the

following: 1) ft<a31, ft<a32, ft<≪4, 2) ft<a3i, ≪32^ft<≪2? ft<≪i4, 3) a31^

ft<≪l, ft<≪32, ft<≪24},

b) La4(//)={fta1+fta2+fta3|fteiV' and (ft, ft, ft) satisfies one of the

following; 1) ft<a1; ft<≪2, fts<ai3, 2) ft<afi, ft<a42, aia^j33<a3, 3) ft<a4i,

≪42^ft<≪2, ≪43^ft<a3},

c) La1(H)={piai+fiias+^iai＼pi&N and ()3g,j93,^34) satisfies one of the

following: 1) ^2<a2, i83<≪3, ^<aXi, 2) /32<a32, ^3<≪i3, ≪i4^iS4<a4}5

(5) a) LOl(//)= {08a8+j88a8+!84a41 j8i<=JV and (^ ^88,j84)satisfies one of the

following: 1) pt<at, i83<≪i3, /34<a14, 2) ]S2<a427 <XuSp3<a3, ^<au, 3) /92<

≪32,/3s<ai3, ai4^^4<a4},

b) Lai{H)=^{fi2a2+^3a3+^iai＼^i^N and (/32,^3,/34) satisfies one of the

following: 1) /32<a2, /33<a3, /34<a14, 2) fi2<a32, ps<a13, ≪14^i84<a4}.

Using the above and Lemma 4.6 we get J0―Ih- For example, in the case (4)

c) we will show that J0=Ih> It suffices to show that Jo^Ih- We use the nota-

tion in Lemma 4.6. Assume that A2^$, i.e., take

XfrX$*-Xl>XZ*<=As, hence ^a1+^2a2=^3a3+^ai.

Then 1) implies p4^au, hence by 2) we get p3^a13. Therefore we have

i3ifl1+y92fl2=(jS3-als)f23+(/34~a14)a4-f≪i3G3+ai4a4

= (^3―au)az+(^i―au)aiJra1a1,

which implies

j82a8=(ai―j8i)ai+(j88―ai3)a3+(/34―≪i4)a4.

Since 0</32<<x2, this contradicts the minimality of a2, hence ^2=0, which

implies A%=0. Now we have

g3=Xa1^+a^Xa343-Xa2^Xai^eA3.

Take ZfiXf3~-Z|2Z^e^3, different from g3. Then 1) implies ^4^≪i4, hence

by 2) we get
iS2^a32.

Therefore we get

4?= {^3=Zri+a"^?≪-^fs2Xf"}.

Lastly 1) implies A4―0. Hence by Lemma 4.6 the ideal /H is generated by

fu fi, fz, fi and g3. Since we have

7l(Y 21Y Hi 43- F32/ li)= titi £5£3/4?3?s^2 ?2^4= 0

and

v(Y21Y41Yi3-Y32Yu)=X^+a"Xi≪-Xa2s>XV*=gs,
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we get //y£7o. The other cases work similarly. Using Lemma 1.2, H is of

torus embedding type. Q. E. D.

Remark 4.12. 1) By calculation,any neat numerical semigroup with M{H)

= {alt a.2,as, a4} and g(H)^S is 1-neat.

2) For a y-neat numerical semigroup H with v^2, <fi~1(O)=$>peck[.X~]/Jo

does not necessarily coincide with CH=Spec k[_X~＼/IH.For example, let H be

the numerical semigroup with M(H)~ {10,11,14,13}. Then g(H) = l6 and H is

2-neat. Using Lemma 4.6,///is generated by

frXi-XnXl, ft=X＼-XlX<, f,=Xl-X＼Xl, f^Xl-XtXl,

f^XlXz-XjXt, fe=X1Xs-XiXi and f^X^-XlX,,

hence fi(H)=7. But /, is generated by fu f2,fz, /4 and X＼X＼―X＼X＼.More ex-

plicitly,as an algebraic subset of A＼ we have V(JO)1£V(IH), because (―1,1,1, l)e

VUo)-V(IH).

5. Symmetric numerical semigroups generated by 4 elements.

In this section, we always assume that H is a numerical semigroup with

M(H)={a1) a%, a%, a4}. Then using Bresinsky's result [1] we will show that

any symmetric H is of torus embedding type, in this case if H is not a com-

plete intersection then it is 1-neat. In the symmetric case, a set of generators

for the ideal IH is given by the following, which is due to Bresinsky:

Remark 5.1. Let H be symmetric, i.e.,2g(H)=C(H).

(1) When H is a complete intersection,renumbering alf a%, a3, a4 we may

assume that Xa^~Xi2^IH-

a) The case X%*―X1*<eIm. Then (alr a2)(a3,a4)^<au az)r＼<as,a4}, hence

we put

(fll7a2)(fls,a4)=/5ifl1+/32a2=/3sG3+/54G4.

In this case,

IH=(fi=XV-XV, frXV-X?*, f,=XliXt*-Xt≫Xl*).

b) The case Xfs―Zf4C/ff. Then H is a strictlycomplete intersection.

(2) If H is not a complete intersection,renumbering alf az, a%, a4 we have

where
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0<aij<(Xj, a1=a2i-＼-aSi, a2―ocS2+<Xi2, as=ai3+aii, a4―au+oc2i ･

In this case,

0-＼― ≪2≪3Ctl4
+ ≪32≪13≪24 , fla^ ≪21≪3^4 + ≪31≪43≪24 , fl3 ―≪1^32≪4 + ^31≪42ai4

and

a4=::≪ia2a43+a2i≪42ai3,

hence H is 1-neat.

261

Proposition 5.2. Any symmetric H is of torus embedding type.

Proof. In virtue of Lemma 2.3 and Theorem 4.11,it sufficesto show that

in the case of Remark 5.1 (1) a) H is of torus embedding type. Renumbering

ax and a2 (resp. as and at),we may assume that /3i^0 and /33^0, hence the

following four cases occur:

1) p2^Q and ^0, 2) ^0 and 04=O, 3) /32=0 and /34^0

and

4) ^=0 and /34=0.

For the case 1),let

ic: k＼_Z,Yl=kZZlf - , Zit Y1> ･･■,F4] ―^ ^[^f1,･･■,tt1!

(resp. v: k{_Z, F] ―^ k＼X＼^k＼Xu - , XJ)

be the yfe-algebrahomomorphism defined by 7r(Zf)=?i for i=l, 2, x(Zj)=tz for

/=3, 4, 7^*)=**+* for fe=l, 2, 3 and TciY^UUts1 (resp. v(Zt)=Xat* and ^(FJ

=Z|* for l^/^4). Then we see easily that IH^7](Ker tt). Moreover, since

F^Zt-Zt, Fz=Zz-Zi and F3=F1F2-F3F4eKer ?r,we have///=(^(F1), ^(F2),

37CF3)),which is generated by the set ^(Ker k). Using Lemma 1.2,H is of torus

embedding type. The other cases 2), 3),4) work similarly. Q. E. D.

6. Almost symmetric numerical semigroups generated by 4 elements.

In the last section we will give another examples of 1-neat numerical semi-

groups, which are called to be almost symmetric, i.e.,C(H)―2g(H)―l. In this

section we are devoted to proving that any almost symmetric numerical semi-

group H with M(H)={alf a2, a3, g4} is 1-neat. First we investigate the pro-

perties of almost symmetric H with M(H)={aL, ■･･,an}.

Lemma 6.1. Let H be a numerical semigroup with M{H)~{au ■■■, an} and

h ha its alamant..
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0) For any lsSf^/t there exists a unique l^h^h such that a)h(h)―<Dh(i)=

wh(ht) mod h.

1) H is almost symmetric if and only if there exists a unique zoG[2, h ―V＼

such that 2a)h(io)=a)!i(h)+h and that a)h(i)+Q)h(hi)=(Dh(h)for all ii^i0.

Proof. The definition of Lh(H)={o)h{l)< ･･･<o)h(h)} means 0). We see

easily:

g(H)=£l<oh(i)/h3 and C(J/)-g(tf)=2 [(<wfc(/0-ft>ft(*))//O

where C ] is the Gauss symbol. For

such that (oh(h)―a)!l(i)=Q)h(hi)―nih.

h
if S rii=l. This implies 1)

any l^iSh there exists a unique n*eiV

Hence H is almost symmetric if and only

Q. E. D.

Proposition 6.2. Let H be an almost symmetric numerical semigroup with

M{H)―{a1, ･･･, an}, and let j, k be two distinct element of [1, n] such that

ocjaj―^ajiai with ajk^l.

1) // ajk^2, then (Oa^a^-iaj-Da^La^H).

2) We have

(^akidk)―^

ten re]-[k,j]

s

fieri, ni-(k,j]

piaMaj―l)a} if (Dah(ak)-(-aj-l)ai&Lah(H)

ajiaL+(aj-2)aj otherwise.

Proof. 1) Since {aj―l)aj&Lak{H), by Lemma 6.1 it sufficesto show that

(<Xj―l)aj^Q)ak(i0) where 2a)ak(iQ)=<oak(ak)-＼-ak.

Assume (aj―l)aj=coak(i0). Then

a>ak(ak)+ak=2(aj―l)aJ=(aj―2)aJ+'Eajlai.

Hence we have

coak(ak)―ak=(aj―2)aJ+(ajk―2)ak+ 2 ajtai.
!E[I,?!]-(i,J]

This contradicts a)ak(ak)―ak&H-

2) In view of ajk^l, if Q)a.k(ak)―((Xj―l)aje.Lak(H),then

a>ak(ak)= S Piat+(aj―l)aj.

If Q)ak(ak)―{aj―＼)aj$.Lak(H), we have

hence
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a>ak(ak)=ajaj+(aj―2)aj―ak= 2 ajlai + (aj-2)aj+(ajk-l)ak
len.m-u, k＼

2 aJlal + (aj―2)aJ
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Q. E. D.

For the remainder of this section we assume that H is a numerical semi

crrouo with M(H)=＼a,. a.,,a*. aA.

Proposition 6.3. Let H be almost symmetric and let &e[l, 4] such thatfor

any j'e[l, 4], differentfrom k, we have ajaj―'^ajiai with a,-*^l.

1) For any je[l, 4], differentfrom k, the following are eqivalent:

a) o)ak(ak)― 2 ^iai + (aj―2)aj,
* leii.n-ik.ji'

b) <yajk(a*)―Car-l)djGLak(H).

In this case, aJk=l and Pi=aji for /e[l, 4^―{k, ;}.

2) FFe Aaue

<wOJk(a*)=(≪i―l)ai+(ai―l)aj+ (a^―2)a^

LOft(^)={i8ifli+^ai+iSia>|0^i8i<ai, O^^K^, O^Pj<cxj- 1}U}(≪― l)c,j

/or some permutation (k, i, I,j) of [1, 4],

Proof. 1) Proposition 6.2 2) implies b)=>a). By the assumption we have

fii<ai for /e[l, 4]―{&,/}, which induces fii= aji. Assume that (Dak(ak)―

((Xi―Y)ai^LnAH). Then we have

*a.$≫J""-H'"-z>'"=K0.&>.J'""-H'"-1)'"

This is a contradiction.

2) Renumbering au ■■■, aif we may assume k = l. Now assume (Dai{ax)―

(aj―l)aj^Lai(H) for all /e[2, 4]. Then by Proposition 6.2 and the assump-

tion, we get

GJa/ai)^^―l)02+(a3―1)g3+(≪4―l)a4,

which imnlies

Lai(H)={^a2+^a3+^ai＼0^^i<ai}.

This contradicts Lemma 6.1 1). Hence there exists a unique ye[2, 4] such that

2(ai~l)a-i―Wr,..(a,)Jra,.which imolies

(t)a1(a1)= S ^al + (aj~-2)aJ
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Therefore we get

Q)a1(a1)=(ai―l)ai^-(ai ―l)ai + iaJ―2)aJ

for some permutation (i,I, j) or (2, 3, 4). Hence we have

Assume z=Yiai+'fiaiJr(aj―i)aj(=La1(.H) with (jif fr)=£((),0). Since o)ai(a1)―z<B

Lai(H), we put

<oai(a1)―z=viai-{-viai+Vjaj

where Vi<at, vt<ai and Vj<ah hence

(at ―1―ri)fli+(≪j~ l―Ti)a-i― aj―Vitti + viai+Vjaj,

which implies v,-+l=0, a contradiction. Q.E.D.

By tedious computations using Proposition 6.3 we can give generators of the

ideal IH in the case of almost symmetric H.

Theorem 6.4. Let H be almost symmetric. Then renumbering au a2, as, a4

the ideal IH is generated by

f^Xii-Xl^Xi", ft=X^―Xi^X%^, f^Xft-XpiXij*,

f^X^-X^X^X"^ and g=X^+a^Xi*^―X^X^*

where Q<aij<aj, a1=azl+asl+a41, az=aS2+ai2, a3=an+ai3 and a^au+^i,

which imply ft(H)=5. More explicitly we obtain an―l, ali=ai―l, a2i=l, an―

a1―a21―l, cxS2―l, ail=l, ai2=a2―l and a43=a3―1. Hence using Proposition

6.3 2). We can show that H is 1-neat.

Proof. For any ie[l, 4], let /jG/h be a polynomial of the type X?* ―

II Xaji}- First, assume that there exist two distinct /,;'e[l, 4] with X^ ―

XajJ^IH. Then renumbering alf ･･･, a4 we may assume i=l and j=2. They

are divided into the four cases:

1) XV-Xy&lH for all {i, j{^ {1, 2},

2) Xfi-^;≫E/ff and X^-Xi^IH,

3) X%*-XV<=IH and XV-X%*&IH,

4) XV-X%^IH and X%i-X%*<=IH.

The case 1). Then/8=Xf≫-X?≫i^?≪*Z?≫* and/4=X?*-X?≪Xf≪Xf≪. These

are divided into the following:
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a) asl>0, a32>0, an>0, ai2>R, b) a31>0, <x32>0, a41>0, ≪42=0,

c) a31>0, a3z―0, an>0} ai2―O, d) an>0, aB2=R, a41=0, ai2>0 .

a) Then we have

eoai(a1)=(a2―l)a2+(a3―l)a3+(ai―2)ai=ai2ai+ai3a3+(ai―2)ai,

wa%{a2)―{a1―l)ai+{az―l)a3+{ai―2)ai―aila1+(xi3a3+((xi―2)(ii,

which imply a1=a2―2, hence a1=a2, a contradiction.

b) Similarly, we get ax―a2, a contradiction.

c) We have

<Oa1(a1)―(a2―l)a2+(ai―l)ai+{aj―2)aj

with {i, /}―{3, 4}. This is a contradiction.

d) We get

o>a1{a1)―{a2―＼)a2Jr{az―I)a8+j84a≪,<wO2(a≪)=(ai―l)ai+(a4―l)al+Btat,

which implies ^i=ai―1. Hence we have

Lai(//)={i92a2+/33G3+iS4G4|0^i3f<≪J,

which implies C(H)―2g(H), a contradiction.

The case 2). Then /4=Xf4―X^lX^2XiiS, where we may assume ≪41>0.

In the similar manner to 1) a), we get a^―a%, a contradiction.

The case 3). We have o)a^a%)=yxaxJrT2(L2+{(xi―l)a4. Set d=(a3, a4) and

H'―id, a1} a2y. Then Ld{H')^Laz{H). If v1a1+v2a2+v4G4=iM1a1+//2fl2+iM4a4

with v4<a4 and fii<ait then v4=/*4. Using this, for any <w'e<a1, g2> with

o)az{az)―<o'^La3{H) we have

<wa3(a3)―o>'=/i1a1+/i2a2+(a4―l)<24

with ^!, pz<BN. Hence if a>'<E:Ld{H') with Q)as(a3)―a)'eLa3(H), then for any

y4e[0, a4―1] we get a)'+y4G4eLa3(i/). Therefore we can see:

La3(//)={a/+y4a41 a/££<*(#'),0^y4<a4} and (yas(a3)=≪d(^)+(a4-l)a4.

Since we have (od(d)―a)'<BLd(H') for any a)'^Ld{H'), we get Q)a3(a3)―<o L̂as(H)

for any a)^La3{H), i.e.,C{H)―2g{H), a contradiction.

The case 4). Then i/ is a complete intersection ([1]),which implies C(H)―

2g(H), a contradiction.

Secondly, assume: each ft contains st least three variables and there ex-

ists /e[l, 4] such that the variable Xj appears only in the /,-. Then we may

assume that
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f^XV-Xt^Xl^X^, fs=Xp-Xi^Xp*, ft=Xas'-X^Xat≫*r

and

with ai3>0, ≪i4>0. Hence we get

(i>a3(a3)= (ai―l)ai+(ai―l)ai+(a1―2)alf

ft)a4(a4)=(a8―I)a2+(as―l)fls+(ai―2)ai,

which imply aia4,=asas=aS2a2+aSi(ii, a contradiction.

Thirdly, assume: each ft contains at least three variables and there exists

/e[l, 4] such that the variable X, appears twice in the //s. Then we may

assume that

f^xv-x^xi^xm, f2=xa2z-xi^xp*x<zzi, f^xp-x^xr^

and

f^X^-X^Xf^.

The case ≪i2>0. Then we have

(Oaz(az)=(ai―l)as+(ai ―l)a4+(ai―2)alf

a>as(a3)r=(oCi―l)ai+(ai―l)aiJr(aj―2)aj,

(i>ai(ai)= {a;i―l)a.i+(aj―l)aj+(ai―2)ai,

with {i,;} = {1, 2}. If j=l (resp. 2), then (ai―aii)a4 = a1+(a32-l)a2 (resp. (cc3―

≪43)G3=Ci+(a42―l)flz), a contradiction. The case a12=0. We have

a>oj(as)= (ai ―1)gi+(≪4 ―l)fl4+(≪2―2)fl8,

≪a4(a4)= (ai―l)ai+(as―l)a3+(≪2―2)a2,

which implies a4a4=a3a3, a contradiction.

Lastly, assume: each ft contains at least three variables and all the variables

Xj appear at least three times in the ft's. Renumbering au ■･■, a4, these are

divided into the 10 cases in Proposition 4.4.

The case (1). Then we may assume:

a≫Ol(ai)=(a8―I)fl2+(a8―l)as+(a4―2)a<,

it)ai(ai)=(ai ―l)ai+(aj'~l)aj^{ak―2)ak.

Using (Dai{al)―al=Q}ai{ai)―ai, this is a contradiction.

The case (2). We have

o)as(fl8)=(ai―l)ai+(≪i―l)a*+(a^―2)a^,

a>a4(fl4)=(a* ―l)a*+(ai ―l)fli+ (am―2)am.

This is a contradiction.
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a)as(as)―(ai―l)a1+(a2―i)a2+(ai-'2)ai,
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O)ai(ai)=(al ―l)a1+(a2-~l)a2+{a3―2)as.

Then (a4―I)a4=(a3―l)a3, a contradiction.

The case (3) b). We have

(Oai(ai)=(a1--l)a1+(a2--l)a2+(a3―2)aS)

O)a1(al)= (a2―l)a2+{aa―l)a3+(ai―2)ai.

Moreover,

0)a3(.a3)―(a1―l)a1+T2az+Tiai or (a1―2)a1+auai.

Using o)ai{ai)--ai―o)as{az)―a3=Wa1{a1)--a1, this is a contradiction.

The case (3) c). We have

<w≪1(a1)= (a8―I)fl8+(≪i―l)fl*+(≪y―2)aj,

Wa3(c3)=(ai- l)a1+(aJ― l)a^+(ai―2)at

This is a contradiction.

The case (4) a). We have

<Wa,(a8)=(ai―l)ai+(a8―l)ag+(a4―2)a4

and

<wOl(ai)=(a3―I)a3+r2a2+r4fl4 or (a3-~2)a3Jtaua2.

This is a contradiction.

The case (4) b). (DaA{ai) ―{ai-~l)ai-＼-{aj―l)aj-＼-{ai―2)au a contradiction.

The case (5) a). We have

<i>a1(al)=(a3―l)as-＼-T2a2+Tiai or (a3―2)a3+a32a2

Moreover,

a>a1(ai)=(ai―l)aiJrl!}za2+fi3as or (ai―2)ai-＼r-ai2a2

This is a contradiction.

The case (5) b). We have

ft>ai(oi)―(cr2―I)a2+(a3―l)a.i-＼-jiai or (a2―l)a2-＼-{a3―2)at,

Q)a2(a2)―(a3―l)a3+(ai―l)aiJrifia1 or (a3―I)a3+(a4―2)a4,

≪a3(a3)―(≪4~I)fl4+(≪i―I)fli+r2a2 or (ar4―I)a4+(ai―2)ax

and

<Wa4(a4)=(ai―l^+Cag―I)a8+r8a≪ or (ai―l)ai+(a8―2)a8.
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If we renumber ai} ･･･, a4, each latter case is reduced to the case (4) c). Foi

example, let a>ai(a1)=(a2―I)a2+(a3―2)a3. If o>a2(a2)=(a8―I)a3+(a4--l)a4+?'i≪i

then ≪2a2=(ri+l)^i+^s+(a4―1)≪4, whose case is reduced to (4) c). If a)a2{a.z)~

(as―l)as+(ai-―2)a4, then aia2=a1+as+(at―2)ai. If a4=2, we replace f2 bj

X＼―XxXZf which is reduced to the third case, a contradiction. Hence we have

≪4^3, whose case is reduced to (4) c). Therefore for any z'e[l, 4], wai((ii) is

equal to the former case. Then we see:

oczi+aSi=(Xi, aaz+oc42=ocz, au+atia=a3 and au+a24=oci.

Using (Oa^dy)―ai~o)ai(a4)―a4 we obtain

ft>ai(fli)=(a2―l)a2+(≪3―l)as+(≪:i4―l)fl≪

=(a≪8―l)fla+(au―I)a8+(af4+au―I)fl4,

which implies

Lai(-^)2 {i82a2+j33G3+J84a41 jSiSiV and (/32, ^3, /94)satisfies one of the following:

1) fiz<az, i83<a3, fit<au, 2) i32<a32, fiz<<Xu, ai4^i34<a4} ･

Since there exists a positive integer v such that

aa=y"1(a2a3ai4+a32ai3a24),

the above inclusion becomes the equality, hence for any o)^.Lai{H) we have

^(fli)―<o^Lai(H), i.e., C(H)=2g(H), a contradiction.

Therefore, if i7 is almost symmetric, renumbering ax, ･･･, a4 it is reduced

to the case (4) c), i.e.,

f^X^-X^X^*, ft=Xp-X^X^*, fz=X^-Xa^Xa2^

and

f^XV-XtHX^X?".

Moreover,

Q)a1(ai)=(az―l)az+(as―l)as-＼-(al―2)ai=ai2ai+aisaa+(ai―2)ai

which implies ≪41=1, ai2=a2―1 and ai%=a3―1. Now

a>o1(ai)=(a≪―l)fla+(a8―1―ai8)a8+(a4―2―aiJfl^+aifl!,

which implies a14=a4―1. Moreover, we get

<Wa4(a4)=(ai―l)ai+(a≪―l)flg+(a8―1―a18)a8

= (ai―1―≪2i―a3i―a4i)ai+(a≪―1―a-ia+aa―ass)a2

+ (as―aiZ)a%-{-{(xi--ati)ai
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If a2^as2, then ai<a21+a31+an. If oc2<a32, then we have

O)a4(a4)=(a1-l)a1+(az-l)a2+(a.i~ 2)a3

= (oc21+an)a1+(a32―a2)a2+(a3―2)a3>

which implies an+a31=a1―l, hence a^a^a^+an. Since

a1a1+a2a2+a3a3+aiai―(a21Jran+ail)a1Jt-(a32+ai2)a2

+ (a13+a43)G3+(ai4+a34)a4,

we have

ai=a21+an+aa, a2=aS2Jrai2, a3=an+aiS and ai=au+a3is

which imply

a4i=l, aal=a1―atl―l, aiZ=l, ai2=a2―1,

ais=l, a43=as―1, ali=ai―l, au=l .

Since we have

Lai(H)={^at+ptaa+fitat＼O^t<at, 0^p3<a3, 0^iQ4<a4-l} W{(≪4-l)a4},

H is 1-neat. Q. E. D.

Conversely, by simple calculations we get the following:

Theorem 6.5. Let at>l for l^z^4 and let 0<a2i<ai―1. // ax―a2a3(a4

―1)+1, a2=a21a3ai+(a1―a21―l)(a3―l)Jra3, a3―a1ai+(a1―a2l― l)(a2―l)(a4―1)

―a4+l, ai―ala2(a3―l)Jraii{a2―l)-＼-a2and {au az,a3, a4)=l, then H=(alt az,a3,

a4> is an almost symmetric numerical semigroup with M(H)― {ax, a2, as, aj and

the ideal IH is generated by

f^XV-X.XV'1, U^XV-XinXi, /,=*?s_*?i-≪≫-i*2,

fi=Xai*-X1X%*-1X%*-1 and g=Xa1*i+1X%*-1-XiX°i*-1.

Proof. By the assumption, we have

a1a1=as+(ai~l)ai, a2a2=a21a!+ai and a3a3={a1―an―l)Gi+a2,

which imply a4a4=ai+(a2―I)fl2+(a3―1)^3- Using the relations, we get

Lttl(H)={iS2fl2+i33G3+i34a4|0^i82<a2, 0^^3<a3, 0^/34<a4-l}W{(a4-l)a4}

and

(Oa1(a1)=(a2―l)a2+(a3―l)a3Jr(ai―2)ai,

which show that H is almost symmetric. Moreover, since we have
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La4(H)={^1a1+^ai-＼-^as＼OS^<a1, 0^j88<a8, O^J83<≪≫-1}

W{(a2-l)a8+(a,-l)a3},

we get Gj$<a2, as, a4}, az^(au a3, a4>, c3^<a1, aif a4>, a4^<Gi, a2, a?>>. Using

the above relations, we tret

Lat(H) = {j81a1+j98as+j84flu|O^01<a21, O^ps<as, 0^/34<a4}

UI&ai+flsaslasi^Ka!, 0^j38<a8-l}U{aglai+(a,-l)as}

The complete descriptionsof Lai{H), Laz(H) and Lai{H) show that

relationsare minimal.

the above

Q. E. D.
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