ON THE EXISTENCE OF WEIERSTRASS POINTS WITH A Certain semigroup generated by 4 Elements

By

Jiryo Komeda

Introduction

Let X be a smooth, proper 1-dimensional algebraic variety (of genus $\geqq 2$) over an algebraically closed field k of characteristic 0 , and let P be a point of X. Then a positive integer ν is called a gap at P if $h^{0}\left(X, \mathcal{O}_{X}((\nu-1) P)\right)=h^{0}\left(X, \mathcal{O}_{X}(\nu P)\right)$, and G_{P} denotes the set of gaps at P. If we denote by N and H_{P} respectively the additive semigroup of non-negative integers and the complement of G_{P} in N, then H_{P} is a semigroup. A subsemigroup H of N whose complement is finite is called a numerical semigroup. The following problem is fundamental and is a long-standing problem.

Is there a pair (X, P) with X a smooth, proper 1-dimensional algebraic variety over k and P its point, such that $H=H_{P}$?

Using the deformation theory on algebraic varieties with G_{m}-action, Pinkham [7] constructed a moduli space \mathscr{M}_{H} which classifies the set of isomorphic classes of pairs (X, P) consisting of a smooth, proper 1-dimensional algebraic variety X together with its point P such that $H_{P}=H$. But he did not claim that \mathscr{M}_{H} is non-empty. Using the Pinkham's construction of \mathscr{M}_{H}, some mathematicians showed that for some H, \mathcal{M}_{H} is non-empty. To state their results we prepare some notation. Let $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ be the minimal set of generators for the semigroup H, which is uniquely determined by $H . I_{H}$ denotes the kernel of the k-algebra homomorphism $\varphi: k[X]=k\left[X_{1}, \cdots, X_{n}\right] \rightarrow k[t]$ defined by $\varphi\left(X_{i}\right)=t^{a_{i}}$ where $k[X]$ and $k[t]$ are polynomial rings over k, and $\mu(H)$ denotes the least number of generators for the ideal I_{H}. When we set $C_{H}=\operatorname{Spec} k[X] / I_{H}$, we denote by $T_{C_{H}}^{1}=\underset{l \in Z}{\bigoplus} T_{C_{H}}^{1}(l)$ the k-vector space of first order deformations of C_{H} with a natural graded structure. Moreover, $g(H)$ and $C(H)$ denote the cardinal number of the set $N-H$ and the least integer c with $c+N \cong H$, respectively. Then \mathscr{M}_{H} is non-empty in the following cases:

1) H is a complete intersection, i. e., $\mu(H)=n-1$,
2) H is a special almost complete intersection (Waldi [10]),
3) H is negatively graded, i. e., $T_{C_{H}}^{\prime}(l)=0$ for $l>0$ (Pinkham [7], Rim-Vitulli [8]),
4) H is generated by 4 elements and is symmetric, i.e., $C(H)=2 g(H)$ (Buchweitz [2], Waldi [9]).

In this paper we shall give some examples of numerical semigroups H generated by 4 elements with $\mathscr{M}_{H} \neq \emptyset$, because for any numerical semigroup H generated by 2 or 3 elements, 1) and 2) imply $\mathscr{M}_{H} \neq \emptyset$. Throughout the paper, we are devoted to a numerical semigroup H of torus embedding type (see Definition 1.1), roughly speaking, C_{H} is the fibre of a torus embedding. For such an H, we can prove that \mathscr{M}_{H} is non-empty. In Section 2 we show that numerical semigroups H generated by 2 or 3 elements are of torus embedding type. When H is a neat numerical semigroup (see Definition 3.1) generated by 4 elements, we construct a torus embedding, any irreducible component of whose fibre over the origin is isomorphic to C_{H}, in Section 4. Moreover, if H is 1 -neat (see Definition 4.10), we can show that H is of torus embedding type. Using this we can show that symmetric or almost symmetric numerical semigroups H generated by 4 elements are of torus embedding type.

Notation

Throughout this paper we will use the following notation without further warning. We denote by k an algebraically closed field and by N the additive semigroup of non-negative integers. For elements a_{1}, \cdots, a_{n}, m and l of N, $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ (resp. $\left(a_{1}, \cdots, a_{n}\right)$, resp. $[l, m]$) denotes the subsemigroup of N generated by a_{1}, \cdots, a_{n} (resp. the greatest common measure of a_{1}, \cdots, a_{n}, resp. the set of integers which is larger than or equal to l, and which is smaller than or equal to m). For a weighted ring R and a homogeneous element f of $R, \partial(f)$ means the weight of f. Let H be a numerical semigroup, i. e., the subsemigroup of N whose complement in N is finite. Then \mathscr{M}_{H} denotes the moduli space, which is obtained by Pinkham, consisting of isomorphic classes of pairs (X, P) with a smooth, proper 1-dimensional algebraic variety X over k and with its point P whose gaps are $N-H$. Moreover, we denote by $g(H)$ the cardinal number of the set $N-H$, by $C(H)$ the least integer c with $c+N \subseteq H$ and by $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ the minimal set of generators for the semigroup H. We set

$$
\alpha_{i}=\operatorname{Min}\left\{\alpha \in N-\{0\} \mid \alpha a_{i} \in\left\langle a_{1}, \cdots, a_{i-1}, a_{i+1}, \cdots, a_{n}\right\rangle\right\}
$$

for all $i=1, \cdots n$. For any non-zero element h of H let

$$
L_{h}(H)=\left\{0=\omega_{h}(1)<\cdots<\omega_{h}(h)\right\}
$$

be the set of the least elements of H in respective congruence classes mod h. φ_{H} denotes the k-algebra homomorphism from $k\left[X_{1}, \cdots, X_{n}\right]$ to $k[t]$ defined by sending X_{i} to $t^{a_{i}}$, hence assigning $\partial\left(X_{i}\right)=a_{i}$ for $1 \leqq i \leqq n$ and $\partial(c)=0$ for $c \in k^{\times}$, $k\left[X_{1}, \cdots, X_{n}\right]$ is made into a weighted k-algebra. We denote by I_{H} the kernel of φ_{H}, by $\mu(H)$ the least number of generators for the ideal I_{H} and by C_{H} the affine curve Spec $k\left[X_{1}, \cdots, X_{n}\right] / I_{H}$.

1. Numerical semigroups of torus embedding type.

In this paper we are concerned with the following numerical semigroups:
Definition 1.1. A numerical semigroup H with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ is of torus embedding type if there exist a positive integer $m \geqq n$, homogeneous elements $g_{i}(1 \leqq i \leqq m)$ of $k[X]=k\left[X_{1}, \cdots, X_{n}\right]$ of weight >0, and a saturated subsemigroup S of \boldsymbol{Z}^{m+1-n} which is generated by b_{1}, \cdots, b_{m} and which generates a subgroup of rank $m+1-n$ of \boldsymbol{Z}^{m+1-n} as a group, such that the kernel of the k-algebra homomorphism

$$
\pi: k[Y]=k\left[Y_{1}, \cdots, Y_{m}\right] \longrightarrow k[S]=k\left[T^{s}\right]_{s \in S}
$$

defined by $\pi\left(Y_{i}\right)=T^{b_{i}}$, is generated by homogeneous elements $F_{k}(1 \leqq k \leqq u)$ with $I_{H}=\left(F_{1}\left(g_{1}, \cdots, g_{m}\right), \cdots, F_{u}\left(g_{1}, \cdots, g_{m}\right)\right)$ where the weight on $k[Y]$ is defined by $\partial\left(Y_{i}\right)=\partial\left(g_{i}\right)$ for $1 \leqq i \leqq m$ and $\partial(c)=0$ for $c \in k^{\times}$.

A sufficient condition that a numerical semigroup is of torus embedding type, which we will use, is the following:

Lemma 1.2. Let H be a numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$. Assume that there exist a positive integer $m \geqq n$, non-constant monomials $g_{i}(1 \leqq i$ $\leqq m$) in $k[X]=k\left[X_{1}, \cdots, X_{n}\right]$, and a saturated subsemigroup S of \boldsymbol{Z}^{m+1-n} which is generated by b_{1}, \cdots, b_{m} and which generates a subgroup of rank $m+1-n$ of \boldsymbol{Z}^{m+1-n} as a group, such that if we let

$$
\left.\pi: k[Y]=k\left[Y_{1}, \cdots, Y_{m}\right] \longrightarrow k\left[T^{s}\right]_{s \in S} \quad \text { (resp. } \eta: k[Y] \rightarrow k[X]\right)
$$

be the k-algebra homomorphism defined by $\pi\left(Y_{i}\right)=T^{b_{i}}\left(\right.$ resp. $\left.\eta\left(Y_{i}\right)=g_{i}\right)$, then the ideal I_{H} is generated by the elements of $\gamma(\operatorname{Ker} \pi)$. Then H is of torus embedding type.

Proof. When we define a weight on $k[Y]$ in virtue of $\partial\left(Y_{i}\right)=\partial\left(g_{i}\right)$ for $1 \leqq i \leqq m$ and $\partial(c)=0$ for $c \in k^{\times}$, it suffices to show that there exists a set $\left\{F_{k}\right\}_{1 \leqq k \leqq u}$ of homogeneous generators for the ideal $\operatorname{Ker} \pi$, because the ideal I_{H} is generated
by $\eta\left(F_{k}\right)(1 \leqq k \leqq u)$. Now by [5] we may take generators $F_{k}(1 \leqq k \leqq u)$ of the ideal $\operatorname{Ker} \pi$ as follows:

$$
F_{k}=\prod_{i=1}^{m} Y_{i}^{\nu}{ }_{k}^{i}-\prod_{i=1}^{n 2} Y_{i}^{\mu}{ }^{\mu}{ }^{2}
$$

where $\nu_{k i} \cdot \mu_{k i}=0$ for all $1 \leqq k \leqq u$ and all $1 \leqq i \leqq m$. If we put $g_{i}=X_{1}^{r_{11}} \cdots X_{n}^{r_{i n}}$ for all $1 \leqq i \leqq m$, then we have

$$
\begin{aligned}
0 & =\varphi_{H}\left(\eta\left(F_{k}\right)\right)=\varphi_{H}\left(\prod_{i=1}^{m} g_{i}^{\psi k i}-\prod_{i=1}^{m} g_{i}^{\mu^{\mu} k}\right) \\
& =t^{\sum_{i=1}^{m} v_{k} i_{j=1}^{n} \gamma_{i j} \alpha_{j}}-t^{\sum_{i=1}^{m} \mu_{k i} i_{j=1}^{n} \gamma_{i j} \alpha_{j}},
\end{aligned}
$$

which implies $\sum_{i=1}^{m} \nu_{k i} \sum_{j=1}^{n} \gamma_{i j} a_{j}=\sum_{i=1}^{m} \mu_{k i} \sum_{j=1}^{n} \gamma_{i j} a_{j}$. Therefore F_{k} 's are homogeneous.
Q.E.D.

Here we give a few examples of numerical semigroups of torus embedding type.

Example 1.3. (1) $H=\langle 3,7\rangle$ is of torus embedding type. In fact, let $a_{1}=3$ and $a_{2}=7$. If we set $n=m=2, g_{1}=X_{1}^{7}, g_{2}=X_{2}^{3}$ and $b_{1}=b_{2}=1$, then these satisfy the assumption of Lemma 1.2. In this case Ker π contains a homogeneous element $F_{1}=Y_{1}-Y_{2}$. See Lemma 2.3 for a generalization.
(2) $H=\langle 4,7,13\rangle$ is of torus embedding type. In fact, let $a_{1}=4, a_{2}=7$ and $a_{3}=13$. If we set $n=3, m=6, g_{1}=X_{1}^{2}, g_{2}=X_{2}, g_{3}=X_{3}, g_{4}=X_{1}^{3}, g_{5}=X_{2}^{2}, g_{6}=X_{3}$, $b_{1}=(1,0,0,0), b_{2}=(0,1,0,0), b_{3}=(0,0,1,0), b_{4}=(-1,1,1,0), b_{5}=(0,0,0,1)$ and $b_{6}=$ $(-1,1,0,1)$, then these satisfy the assumption of Lemma 1.2. In this case we can see that $\operatorname{Ker} \pi$ contains homogeneous elements $F_{k}(1 \leqq k \leqq 3)$ as follows:

$$
F_{1}=Y_{1} Y_{4}-Y_{2} Y_{3}, \quad F_{2}=Y_{2} Y_{5}-Y_{1} Y_{6} \quad \text { and } \quad F_{3}=Y_{3} Y_{6}-Y_{4} Y_{5}
$$

See Proposition 2.5 for a generalization.
(3) $H=\langle 4,9,14,15\rangle$ is of torus embedding type. In fact, let $a_{1}=15, a_{2}=9$, $a_{3}=4$ and $a_{4}=14$. If we set $n=4, m=9, g_{1}=X_{1}, g_{2}=X_{2}, g_{3}=X_{3}^{4}, g_{4}=X_{4}, g_{5}=X_{1}$, $g_{6}=X_{2}, g_{7}=X_{3}, g_{8}=X_{4}, g_{9}=X_{3}, b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0,0), b_{6}=e_{5}, b_{7}=e_{6}$, $b_{8}=(0,1,0,0,1,-1)$ and $b_{9}=(1,1,-1,0,0,-1)$ where for any $i \in[1,6]$ we denote by $e_{i} \in Z^{6}$ the vector whose i-th component equals to 1 and whose j-th component equals to 0 if $j \neq i$, then these satisfy the assumption of Lemma 1.2. In this case we can see that $\operatorname{Ker} \pi$ contains homogeneous elements $F_{k}(1 \leqq k \leqq 6)$ as follows:

$$
F_{1}=Y_{1} Y_{5}-Y_{3} Y_{4}, \quad F_{2}=Y_{2} Y_{6}-Y_{7} Y_{8}, \quad F_{3}=Y_{3} Y_{7} Y_{9}-Y_{1} Y_{2},
$$

$$
F_{4}=Y_{4} Y_{8}-Y_{5} Y_{6} Y_{9}, \quad F_{5}=Y_{1} Y_{8}-Y_{3} Y_{6} Y_{9} \quad \text { and } \quad F_{6}=Y_{2} Y_{4}-Y_{5} Y_{7} Y_{9} .
$$

See Theorem 4.11 for a generalization.
(4) $H=\langle 5,8,9,11\rangle$ is of torus embedding type. In fact, let $a_{1}=5, a_{2}=8$, $a_{3}=9$ and $a_{4}=11$. If we set $n=4, m=9, g_{i}=X_{i}(1 \leqq i \leqq 4), g_{5}=X_{1}^{2}, g_{4+i}=X_{i}$ $(2 \leqq i \leqq 4), \quad g_{9}=X_{1}, \quad b_{i}=e_{i}(1 \leqq i \leqq 6), \quad b_{7}=(0,1,-1,0,1,0), \quad b_{8}=(-1,1,0,0,0,1)$ and $b_{9}=(-1,0,1,1,-1,0)$ where e_{i} 's are as in (3), then these satisfy the assumption of Lemma 1.2. In this case, $\operatorname{Ker} \pi$ contains homogeneous elements $F_{k}(1 \leqq k \leqq 5)$ as follows:

$$
\begin{aligned}
& F_{1}=Y_{1} Y_{5} Y_{9}-Y_{3} Y_{4}, \quad F_{2}=Y_{2} Y_{6}-Y_{1} Y_{8}, \quad F_{3}=Y_{3} Y_{7}-Y_{2} Y_{5}, \\
& F_{4}=Y_{4} Y_{8}-Y_{6} Y_{7} Y_{9} \quad \text { and } \quad F_{5}=Y_{1} Y_{7} Y_{9}-Y_{2} Y_{4} .
\end{aligned}
$$

See Theorem 4.11 for a generalization. Now we get $g(H)=7$ and $C(H)=13$, which imply $C(H)=2 g(H)-1$, i. e., H is almost symmetric (see Theorem 6.4).

In the remains of this section we assume that k is of characteristic 0 . If H is of torus embedding type, then we can show $\mathscr{M}_{H} \neq \emptyset$. For this purpose we show the following:

Proposition 1.4. Let a_{1}, \cdots, a_{n} be positive integers and let $k[X]=$ $k\left[X_{1}, \cdots, X_{n}\right]$ be a polynomial ring on which the weight is defined by $\partial\left(X_{i}\right)=a_{i}$ for $1 \leqq i \leqq n$ and $\partial(c)=0$ for $c \in k^{\times}$. Let $k[Y]=k\left[Y_{1}, \cdots, Y_{m}\right]$ and $k[Y, W]=$ $k\left[Y_{1}, \cdots, Y_{m}, W_{1}, \cdots, W_{l}\right]$ be two polynomial rings. Let r be a non-negative integer with $n-l \geqq r$, let J be an ideal in $k[Y]$ such that $R=k[Y] / J$ is a CohenMacaulay domain of dimension $m+l+r-n$ and that the singular locus of $\operatorname{Spec} R$ has codimension larger than r, and let $R[X]=R\left[X_{1}, \cdots, X_{n}\right]$. Assume that there exist homogeneous elements $g_{i}(1 \leqq i \leqq m)$ and $h_{j}(1 \leqq j \leqq l)$ of $k[X]$ of weight >0 such that we have the fibre product:

with $\operatorname{dim} \psi^{-1}($ the origin $)=r$, where ψ is the morphism which is induced by the k-algebra homomorphism $\psi^{*}: k[Y, W] \rightarrow R[X]$ defined by $\psi^{*}\left(Y_{i}\right)=g_{i}-Y_{i} \bmod J$ and $\phi^{*}\left(W_{j}\right)=h_{j}$, and such that the ideal J is homogeneous where the weight on $k[Y]$ is defined by $\partial\left(Y_{i}\right)=\partial\left(g_{i}\right)$ for $1 \leqq i \leqq m$ and $\partial(c)=0$ for $c \in k^{\times}$. Then ψ is flat and there exists a non-empty open subset V of $\operatorname{Spec} k[Y, W]$ such that the
restriction $\psi^{-1}(V) \rightarrow V$ is smooth.
Proof. We define a weight on $k[Y, W]$ as follows:

$$
\partial\left(Y_{i}\right)=\partial\left(g_{i}\right), \quad \partial\left(W_{j}\right)=\partial\left(h_{j}\right) \quad \text { and } \quad \partial(c)=0 \quad \text { for } \quad c \in k^{\times}
$$

Since the ideal J in $k[Y]$ is homogeneous, ψ is a \boldsymbol{G}_{m}-equivariant morphism. For any $s \in \boldsymbol{Z}$, the closed subset

$$
F_{s}=\left\{x \in \operatorname{Spec} R[X] \mid \operatorname{dim}_{x} \psi^{-1}(\psi(x)) \geqq s\right\}
$$

contains the origin if $F_{s} \neq \emptyset$, because ψ is \boldsymbol{G}_{m}-equivariant and the weights of Y_{i}, X_{k} are positive. ψ is dominating in virtue of

$$
\operatorname{dim} \operatorname{Spec} R[X]-\operatorname{dim} \operatorname{Spec} k[Y, W]=m+l+r-(m+l)=r
$$

and

$$
\operatorname{dim} \psi^{-1}(\text { the origin })=r,
$$

which implies $\operatorname{dim}_{x} \psi^{-1}(\psi(x)) \geqq r$ for all $x \in \operatorname{Spec} R[X]$. Moreover, in virtue of $\partial\left(Y_{i}\right)>0$ and $\partial\left(W_{j}\right)>0$ the map ψ send the origin in Spec $R[X]$ to the one in $\operatorname{Spec} k[Y, W]$. Assume that $F_{r+1} \neq \emptyset$. Since the origin belongs to F_{r+1}, we get

$$
\begin{aligned}
& r+1 \leqq \operatorname{dim} \psi^{-1}(\psi(\text { the origin }))=\underset{\text { the origin }}{\operatorname{dim} \psi^{-1}(\text { the origin })} \\
& \text { the origin } \\
& \leqq \operatorname{dim} \psi^{-1}(\text { the origin })=r
\end{aligned}
$$

a contradiction, which implies $F_{r+1}=\emptyset$. Therefore we get $\operatorname{dim}_{x} \psi^{-1}(\psi(x))=r$ for all $x \in \operatorname{Spec} R[X]$, i. e., ψ is equidimensional. Since R is a Cohen-Macaulay domain, ψ is flat ([3]). Let $Z_{i}(i \in I)$ be the irreducible components in the singular locus Sing (Spec $R[X]$) of $\operatorname{Spec} R[X]$ and let η be the generic point of Spec $k[Y, W]$. Assume that $\psi^{-1}(\eta) \cap \operatorname{Sing}(\operatorname{Spec} R[X]) \neq \emptyset$, i. e., there exists $i \in I$ such that $\psi^{-1}(\eta) \cap Z_{i} \neq \emptyset$. Since the restriction $Z_{i} \subset \operatorname{Spec} R[X] \rightarrow \operatorname{Spec} k[Y, W]$ is dominating, we have

$$
\begin{aligned}
& 0 \leqq \operatorname{dim} Z_{i}-\operatorname{dim} \operatorname{Spec} k[Y, W] \leqq \operatorname{dim} \operatorname{Sing}(\operatorname{Spec} R[X])-\operatorname{dim} \operatorname{Spec} k[Y, W] \\
& <\operatorname{dim} \operatorname{Spec} R[X]-r-\operatorname{dim} \operatorname{Spec} k[Y, W]=0,
\end{aligned}
$$

a contradiction. Hence we get $\psi^{-1}(\eta) \cap \operatorname{Sing}(\operatorname{Spec} R[X])=\emptyset$, which implies that the set

$$
\left\{y \in \operatorname{Spec} k[Y, W] \mid \psi^{-1}(y) \cap \operatorname{Sing}(\operatorname{Spec} R[X])=\emptyset\right\}
$$

contains a non-empty open subset U. Then we have

$$
\psi^{-1}(U) \cong \operatorname{Spec} R[X]-\operatorname{Sing}(\operatorname{Spec} R[X])
$$

Hence there is a non-empty open subset V in $\operatorname{Spec} k[Y, W]$ such that the restric-
tion $\psi^{-1}(V) \rightarrow V$ is smooth, because the restriction $\psi^{-1}(U) \rightarrow \operatorname{Spec} k[Y, W]$ is a morphism of varieties with smooth $\psi^{-1}(U)$ over the algebraically closed field k of charcteristic 0 ([4]). Q.E.D.

Pinkham [7] showed the following:
Remark 1.5. Let H be a numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$. Then we have $\mathscr{S}_{H} \neq \emptyset$ if and only if there exists a flat homogeneous homomorphism $\psi^{*}: A=\underset{i \in \mathcal{Z}}{ } A_{i} \rightarrow B=\underset{i \in \mathbb{Z}}{\oplus} B_{i}$ of affine graded k-algebras with $A_{0} \supseteq k$ and $B_{0} \supseteq k$ such that 1) C_{H} is the fibre of the morphism $\psi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ associated to ψ^{*} over a homogeneous k-rational point on $\operatorname{Spec} A, 2$) A is a domain and the generic fibre of ψ is smooth, and 3) $A_{i}=0$ for all $i<0$.

Combining Proposition 1.4 with Remark 1.5, we get the following:
Corollary 1.6. Let H be a numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ and let $k[X], k[Y]$ and $k[Y, W]$ be polynomial rings as in Proposition 1.4. Let J be an ideal in $k[Y]$ such that $R=k[Y] / J$ is a normal Cohen-Macaulay domain of dimension $m+l+1-n$. Assume that there exist homogeneous elements $g_{i}(1 \leqq$ $i \leqq m)$ and $h_{j}(1 \leqq j \leqq l)$ of $k[X]$ of weight >0 such that we have the fibre product:

whe ψ is the morphism induced by the k-algebra homomorphism $\psi^{*}: k[Y, W] \rightarrow$ $R[X]$ defined by $\phi^{*}\left(Y_{i}\right)=g_{i}-Y_{i} \bmod J$ and $\phi^{*}\left(W_{j}\right)=h_{j}$, and such that the ideal J is homogeneous where the weight on $k[Y]$ is defined by $\partial\left(Y_{i}\right)=\partial\left(g_{i}\right)$ for $1 \leqq i \leqq m$ and $\partial(c)=0$ for $c \in k^{\times}$. Then we have $\mathcal{M}_{H} \neq \emptyset$.

If we apply Corollary 1.6 to numerical semigroups of torus embedding type, we see:

Theorem 1.7. For any numerical semigroup H of torus embedding type, we have $\mathscr{M}_{H} \neq \emptyset$.

Proof. We use the notation in Definition 1.1. Since S is a saturated sub-
semigroup of Z^{m+1-n} which is finitely generated and which generates a subgroup of rank $m+1-n$ of \boldsymbol{Z}^{m+1-n} as a group, by [6] Spec $k\left[T^{s}\right]_{s \in S}$ is a normal affine equivariant embedding of $\left(\boldsymbol{G}_{\boldsymbol{m}}\right)^{m+1-n}$ and is a Cohen-Macaulay scheme. Hence $R=k[Y] / \operatorname{Ker} \pi$ is a normal Cohen-Macaulay domain of dimension $m+1-n$ and the ideal $J=\operatorname{Ker} \pi$ is generated by homogeneous elements $F_{k}(1 \leqq k \leqq u)$. Since the ideal I_{H} is generated by the $F_{k}\left(g_{1}, \cdots, g_{m}\right)^{\prime} s$, we have a fibre product:

where ψ is the morphism induced by the k-algebra homomorphism $\psi^{*}: k[Y] \rightarrow$ $R[X]$ defined by $\psi^{*}\left(Y_{i}\right)=g_{i}-Y_{i} \bmod J$. If we apply Corollary 1.6 to the case $l=0$, we obtain $\mathscr{M}_{H} \neq \emptyset$.
Q.E.D.

2. Numerical semigroups generated by 2 or 3 elements.

In this section we will show that numerical semigroups generated by 2 or 3 elements are of torus embedding type. First we consider the following numerical semigroups:

Definition 2.1. A numerical semigroup H with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ is called a strictly complete intersection if renumbering a_{1}, \cdots, a_{n} the least common multiple of (a_{1}, \cdots, a_{i-1}) and a_{i} belongs to $\left\langle a_{1}, \cdots, a_{i-1}\right\rangle$ for $2 \leqq i \leqq n$. In this case by [5] a set of generators for the ideal I_{H} is well-known.

Remark 2.2. For a numerical semigroup H as in Definition 2.1 we have $\alpha_{i}=\left(a_{1}, \cdots, a_{i-1}\right) /\left(a_{1}, \cdots, a_{i}\right)$ for $2 \leqq i \leqq n$. If we set

$$
\alpha_{i} a_{i}=\sum_{j=1}^{i-1} \alpha_{i j} a_{j} \quad \text { with } \quad \alpha_{i j} \in N
$$

for $2 \leqq i \leqq n$, then the ideal I_{H} is generated by f_{2}, \cdots, f_{n} where we set $f_{i}=$ $X_{i}^{\alpha_{i}}-X_{1}^{\alpha_{i 1}} \cdots X_{i-1}^{\alpha_{i i-1}}$.

Lemma 2.3. A numerical semigroup H which is a strictly complete intersection, is of torus embedding type.

Proof. We use the notation in Remark 2.2. The set

$$
U=\left\{(i, j) \in N^{2} \mid 2 \leqq i \leqq n \quad \text { and } \quad 1 \leqq j \leqq i-1\right\}
$$

is a totally ordered set, where we define $(i, j) \leqq\left(i^{\prime}, j^{\prime}\right)$ if $i<i^{\prime}$ or if $i=i^{\prime}$ and $j \leqq j^{\prime}$. If we set $P=\left\{(i, j) \in U \mid \alpha_{i j} \neq 0\right\}$ and $l={ }^{\#} P$, then we have the isomorphism $\xi: P \rightarrow$ $[1, l]$ of ordered sets. Let

$$
\pi: k\left[Y_{i j}((i, j) \in P) ; Z_{k}(2 \leqq k \leqq n)\right] \longrightarrow k\left[t_{1}, \cdots, t_{l}\right]
$$

be the k-algebra homomorphism of polynomial rings, defined by $\pi\left(Y_{i j}\right)=t_{\xi(i, j)}$ and $\pi\left(Z_{k}\right)=\prod_{j \in P(k)} t_{\xi(k, j)}$ where $P(k)=\{j \in[1, k-1] \mid(k, j) \in P\}$. We set

$$
g_{\xi(i, j)}=X_{j}^{\alpha i j} \quad \text { for }(i, j) \in P \quad \text { and } \quad g_{l+k-1}=X_{k}^{\alpha} k \quad \text { for } 2 \leqq k \leqq n .
$$

Let $\eta: k\left[Y_{i j} ; Z_{k}\right] \rightarrow k[X]=k\left[X_{1}, \cdots, X_{n}\right]$ (resp. $\zeta: k\left[t_{1}, \cdots, t_{l}\right] \rightarrow k[t]$) be the k algebra homomorphism defined by $\eta\left(Y_{i j}\right)=g_{\xi(i, j)}$ and $\eta\left(Z_{k}\right)=g_{l+k-1}\left(\operatorname{resp} . \zeta\left(t_{\xi(i, j)}\right)\right.$ $=t^{\alpha_{i j} a_{j}}$. In virtue of $\varphi_{H}{ }^{\circ} \eta=\zeta \circ \pi$, we get $\eta(\operatorname{Ker} \pi) \cong \operatorname{Ker} \varphi_{H}=I_{H}$. If we set $F_{k}=Z_{k}-\prod_{j \in P(k)} Y_{k j}$ for $2 \leqq k \leqq n$, then $F_{k} \in \operatorname{Ker} \pi$ and $\eta\left(F_{k}\right)=f_{k}$. Therefore by Remark 2.2 the ideal I_{H} is generated by the elements of $\eta(\operatorname{Ker} \pi)$. By Lemma 1.2 H is of torus embedding type.
Q.E.D.

Corollary 2.4. 1) Numerical semigroups with $M(H)=\left\{a_{1}, a_{2}\right\}$ are of torus embedding type.
2) Symmetric numerical semigroups, i.e., $C(H)=2 g(H)$, with $M(H)=\left\{a_{1}, a_{2}, a_{3}\right\}$ are of torus embedding type.

Proof. It is trivial that numerical semigroups with $M(H)=\left\{a_{1}, a_{2}\right\}$ are are strictly complete intersections. Herzog [5] proved that numerical semigroups H with $M(H)=\left\{a_{1}, a_{2}, a_{3}\right\}$ are strictly complete intersections if and only if they are symmetric.
Q.E.D.

In the non-symmetric case H with $M(H)=\left\{a_{1}, a_{2}, a_{3}\right\}, H$ is also of torus embedding type in the following way: by [5] there exist positive integers $\alpha_{i j}<\alpha_{j}$ such that

$$
\alpha_{1} a_{1}=\alpha_{12} a_{2}+\alpha_{13} a_{3}, \quad \alpha_{2} a_{2}=\alpha_{21} a_{1}+\alpha_{23} a_{3} \quad \text { and } \quad \alpha_{3} a_{3}=\alpha_{31} a_{1}+\alpha_{32} a_{2},
$$

in this case

$$
\alpha_{1}=\alpha_{21}+\alpha_{31}, \quad \alpha_{2}=\alpha_{12}+\alpha_{32} \quad \text { and } \quad \alpha_{3}=\alpha_{13}+\alpha_{23} .
$$

Moreover, Herzog showed that the ideal I_{H} is generated by

$$
f_{1}=X_{1}^{\alpha_{1}}-X_{2}^{\alpha_{12}} X_{3}^{\alpha_{13}}, \quad f_{2}=X_{2}^{\alpha}-X_{1}^{\alpha_{21}} X_{3}^{\alpha_{23}} \quad \text { and } f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{31}} X_{2}^{\alpha_{32}} .
$$

Let S be the subsemigroup of Z^{4} generated by

$$
\begin{aligned}
& b_{21}=(1,0,0,0), \quad b_{12}=(0,1,0,0), \quad b_{18}=(0,0,1,0), \quad b_{31}=(-1,1,1,0), \\
& b_{32}=(0,0,0,1) \quad \text { and } \quad b_{23}=(-1,1,0,1) .
\end{aligned}
$$

Then it can be easily seen that $S=\Sigma \boldsymbol{R}_{+} b_{i j} \cap \boldsymbol{Z}^{4}$ where \boldsymbol{R}_{+}is the set of nonnegative real numbers. Hence S is saturated. When we let

$$
\left.\pi: k\left[Y_{i j}\right]_{1 \leq i \neq j \leqslant 3} \longrightarrow k\left[T^{s}\right]_{s \in S} \quad \text { (resp. } \eta: k\left[Y_{i j}\right] \rightarrow k\left[X_{1}, X_{2}, X_{3}\right]\right)
$$

be the k-algebra homomorphism defined by $\pi\left(Y_{i j}\right)=T^{b_{i j}}$ (resp. $\eta\left(Y_{i j}\right)=X_{j}^{\alpha_{i j}}$), there exists a k-algebra homomorphism $\zeta: k\left[T^{s}\right]_{s \in S} \rightarrow k[t]$ such that $\varphi_{H} \circ \eta=\zeta \circ \pi$, which implies $\eta(\operatorname{Ker} \pi) \subseteq I_{H}$. Since

$$
F_{1}=Y_{21} Y_{31}-Y_{12} Y_{13}, \quad F_{2}=Y_{12} Y_{32}-Y_{21} Y_{23} \quad \text { and } \quad F_{3}=Y_{13} Y_{23}-Y_{31} Y_{32}
$$

belong to Ker π and we have $\eta\left(F_{i}\right)=f_{i}$ for $1 \leqq i \leqq 3$, the ideal I_{H} is generated by the elements of $\eta(\operatorname{Ker} \pi)$, hence H is of torus embedding type. Therefore combining this with Corollary 2.4 2), we obtain the following:

Proposition 2.5. Numerical semigroups with $M(H)=\left\{a_{1}, a_{2}, a_{3}\right\}$ are of torus embedding type.

3. Neat numerical semigroups.

Hereafter we are concerned with the following numerical semigroups:
Definition 3.1. For a numerical semigroup H with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$,

$$
\mathscr{R}:\left\{\begin{array}{l}
\alpha_{i} a_{i}=\sum_{j \neq i} \alpha_{i j} a_{j} \quad \text { with } 0 \leqq \alpha_{i j}<\alpha_{j}, \text { for } 1 \leqq i \leqq n, \\
\sum_{i \neq j} \alpha_{i j}=\alpha_{j} \quad \text { for } 1 \leqq j \leqq n
\end{array}\right.
$$

is called a neat system of relations with respect to H and $\left\{a_{1}, \cdots, a_{n}\right\}$. When H has a neat system of relations, it is called to be neat.

Example 3.2. (1) $H=\langle 4,7,13\rangle$ is neat. In fact, let $a_{1}=4, a_{2}=7$ and $a_{3}=13$. Then

$$
\mathscr{R}: 5 a_{1}=a_{2}+a_{3}, \quad 3 a_{2}=2 a_{1}+a_{3}, \quad 2 a_{3}=3 a_{1}+2 a_{2}
$$

is a neat system of relations.
(2) $H=\langle 4,9,14,15\rangle$ is neat. In fact, let $a_{1}=15, a_{2}=9, a_{3}=4$ and $a_{4}=14$. Then

$$
\mathscr{R}: 2 a_{1}=4 a_{3}+a_{4}, \quad 2 a_{2}=a_{3}+a_{4}, \quad 6 a_{8}=a_{1}+a_{2}, \quad 2 a_{4}=a_{1}+a_{2}+a_{3}
$$

is a neat system of relations.
(3) $H=\langle 10,11,13,14\rangle$ is neat. In fact, let $a_{1}=10, a_{2}=11, a_{3}=14$ and $a_{4}=13$. Then

$$
\mathscr{R}: 4 a_{1}=a_{3}+2 a_{4}, \quad 3 a_{2}=2 a_{1}+a_{4}, \quad 3 a_{3}=2 a_{1}+2 a_{2}, \quad 3 a_{4}=a_{2}+2 a_{3}
$$

is a neat system of relations.
(4) $H=\langle 5,7,9,11,13\rangle$ is neat. In fact, let $a_{1}=5, a_{2}=7, a_{3}=9, a_{4}=11$ and $a_{5}=13$. Then

$$
\mathscr{R}: 4 a_{1}=a_{2}+a_{5}, \quad 2 a_{2}=a_{1}+a_{3}, \quad 2 a_{3}=a_{2}+a_{4}, \quad 2 a_{4}=a_{3}+a_{5}, \quad 2 a_{5}=3 a_{1}+a_{4}
$$

is a neat system of relations.
In this section, let H be a neat numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$, and let \mathcal{R} be a neat system of relations with respect to H and $\left\{a_{1}, \cdots, a_{n}\right\}$. We can see easily:

Remark 3.3. We put

$$
\begin{aligned}
& P=P_{\mathscr{R}}=\left\{(i, j) \in[1, n]^{2} \mid i \neq j, \alpha_{i j} \neq 0\right\}, \quad P^{i}=\{j \in[1, n] \mid(i, j) \in P\} \\
& \text { for } \left.\quad 1 \leqq i \leqq n \quad \text { and } \quad P_{j}=|i \in[1, n]|(i, j) \in P\right\} \quad \text { for } \quad 1 \leqq j \leqq n .
\end{aligned}
$$

Then $\# P^{i} \geqq 2$ and ${ }^{\#} P_{j} \geqq 2$. Hence we have ${ }^{\#} P \geqq 2 n$, for

$$
P=\bigcup_{1 \leqq i \lesssim n}\left\{(i, j) \mid j \in P^{i}\right\}=\bigcup_{1 \leqq j \leqslant n}\left\{(i, j) \mid i \in P_{j}\right\} .
$$

Moreover, we make P into a totally ordered set by defining an order on it as follows: for a fixed $j \in[1, n]$ and any $1 \leqq k \leqq \# P_{j}$ we define inductively

$$
i_{j}(k)=\operatorname{Min}\left\{i \in[1, n] \mid i \in P_{j}-\left\{i_{j}(1), \cdots, i_{j}(k-1)\right\}\right\}
$$

For any (i, j) and $\left(i^{\prime}, j^{\prime}\right) \in P$ with $i=i_{j}(k)$ and $i^{\prime}=i_{j^{\prime}}\left(k^{\prime}\right)$, we define $(i, j) \leqq\left(i^{\prime}, j^{\prime}\right)$ if $k<k^{\prime}$ or if $k=k^{\prime}$ and $j \leqq j^{\prime}$.

Definition 3.4. An element (i, j) of P has a v-relation (resp. an h-relation) if we have

$$
\begin{aligned}
& i=\operatorname{Max}\left\{i^{\prime} \in[1, n] \mid i^{\prime} \in P_{j}\right\} \quad \text { and } \quad P^{j}(i, j)=0 \\
& \text { where } P^{j}(i, j)=\left\{j^{\prime} \in P^{j} \mid\left(j, j^{\prime}\right)>(i, j)\right\} \\
& \text { (resp. }(i, j)=\operatorname{Max}\left\{\left(i, j^{\prime}\right) \mid j^{\prime} \in P^{i}\right\} \quad \text { and } \quad P_{i}(i, j)=\emptyset \\
& \text { where } \left.P_{i}(i, j)=\left\{i^{\prime} \in P_{i} \mid\left(i^{\prime}, i\right)>(i, j)\right\}\right)
\end{aligned}
$$

v-relations and h-relations have the following properties:
Lemma 3.5. 1) $\left(i_{0}, j_{0}\right)=\operatorname{Max} P$ has $a v$-relation and an h-relation.
2) For any $1 \leqq l \leqq n$, there exists $i \in[1, n]$ such that (i, l) has a v-relation or
$j \in[1, n]$ such that (l, j) has an h-relation.
3) We have ${ }^{\#} Q \leqq n-1$ where

$$
Q=\{(i, j) \in P \mid(i, j) \text { has either a v-relation or an h-relation }\} .
$$

Proof. 1) is trivial. We set

$$
i=\operatorname{Max} P_{l} \quad \text { and } \quad(l, j)=\operatorname{Max}\left\{\left(l, j^{\prime}\right) \mid j^{\prime} \in P^{l}\right\}
$$

Assume that (i, l) does not have a v-relation and that (l, j) does not have an h relation. Then there exist $j^{\prime} \in P^{l}(i, l)$ and $i^{\prime} \in P_{l}(l, j)$, which imply

$$
(i, l) \geqq\left(i^{\prime}, l\right)>(l, j) \geqq\left(l, j^{\prime}\right)>(i, l),
$$

a contradiction. This proves 2). Let $l \in[1, n]$. If (i, l) has a v-relation, then we define $\zeta(l)=(i, l)$. If (l, j) has an h-relation, then we define $\zeta(l)=(l, j)$. Then the map $\zeta:[1, n] \rightarrow Q$ is well-defined. In fact, if (i, l) (resp. $\left(i^{\prime}, l\right)$) has a v relation, then $i=\operatorname{Max} P_{l}=i^{\prime}$. If (l, j) (resp. $\left.\left(l, j^{\prime}\right)\right)$ has an h-relation, then $(l, j)=$ $\operatorname{Max}\left\{(l, k) \mid k \in P^{l}\right\}=\left(l, j^{\prime}\right)$, hence $j=j^{\prime}$. If (i, l) (resp. ($\left.l, j\right)$) has a v-relation (resp. an h-relation), then we have $(i, l) \leqq(l, j) \leqq(i, l)$, hence $l=j$, a contradiction. To prove 3) it suffices to show that ζ is surjective, because we have $\zeta\left(i_{0}\right)=$ $\left(i_{0}, j_{0}\right)=\zeta\left(j_{0}\right)$. If $(i, j) \in Q$ has a v-relation (resp. an h-relation), then $\zeta(j)=(i, j)$ (resp., $\zeta(i)=(i, j)$). Hence ζ is surjective.
Q.E.D.

Finally we define the subset P_{H} of $\mathcal{S}_{n}=\left\{(i, j) \in[1, n]^{2} \mid i \neq j\right\}$ associated to a neat numerical semigroup H with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ as follows:

Definition 3.6. We define an order on the set of subsets of \mathcal{S}_{n} in the following way:

1) for any (i, j) and $\left(i^{\prime}, j^{\prime}\right) \in \mathcal{S}_{n}$, we define $(i, j) \leqq\left(i^{\prime}, j^{\prime}\right)$ if $i<i^{\prime}$ or if $i=i^{\prime}$ and $j \leqq j^{\prime}$,
2) for two subsets P and P^{\prime} of \mathcal{S}_{n} with ${ }^{\#} P=\# P^{\prime}=\# \mathcal{S}_{n}-r$, we define $P \leqq P^{\prime}$ if there exists $0 \leqq q \leqq r$ such that

$$
\left(i_{1}, j_{1}\right)=\left(i_{1}^{\prime}, j_{1}^{\prime}\right), \cdots,\left(i_{q}, j_{q}\right)=\left(i_{q}^{\prime}, j_{q}^{\prime}\right) \quad \text { and } \quad\left(i_{q+1}, j_{q+1}\right)<\left(i_{q+1}^{\prime}, j_{q+1}^{\prime}\right)
$$

where

$$
\mathcal{S}_{n}-P=\left\{\left(i_{1}, j_{1}\right)<\cdots<\left(i_{r}, j_{r}\right)\right\} \quad \text { and } \quad S_{n}-P^{\prime}=\left\{\left(i_{1}^{\prime}, j_{1}^{\prime}\right)<\cdots<\left(i_{r}^{\prime}, j_{r}^{\prime}\right)\right\},
$$

3) for two subsets P and P^{\prime} of \mathcal{S}_{n} we define $P \leqq P^{\prime}$ if $\# P<^{\#} P^{\prime}$ or if $\# P=\# P^{\prime}$ and $P \leqq P^{\prime}$.
Then the set of subsets of \mathcal{S}_{n} becomes a totally ordered set. Using this order, we define the subset P_{H} of S_{n} :
$P_{H}=\operatorname{Min}\left\{P_{H,\left\{a_{\sigma(1)}, \ldots, a_{\sigma(n)} \mid \sigma\right.} \mid \sigma\right.$ runs over the set of permutations of [1,n]\}
where
$P_{H,\left\{a_{1}, \ldots, a_{n}\right\}}=\operatorname{Min}\left\{P_{\mathscr{R}} \mid \mathscr{R}\right.$ runs over the set of neat systems of relations with respect to H and $\left.\left\{a_{1}, \cdots, a_{n}\right\}\right\}$.

4. Neat numerical semigroups generated by 4 elements.

In this section, we are devoted to neat numerical semigroups H with $M(H)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. In the case ${ }^{\#} M(H)=4$ we can explain v-relations and h-relations in detail.

Lemma 4.1. Let \mathfrak{R} be a neat system of relations with respect to H and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then

1) $(i, j) \in P_{\mathcal{R}}$ has a v-relation and an h-relation if and only if $(i, j)=\operatorname{Max} P_{\mathscr{R}}$,
2) we have ${ }^{\#} Q=3$ where

$$
Q=\left\{(i, j) \in P_{\mathscr{A}} \mid(i, j) \text { has either a v-relation or an h-relation }\right\} .
$$

Proof. To check 1), by Lemma 3.51) it suffices to show the "only if" part. For brevity, we put $P=P_{q}$. Let us take $(i, j) \in P$ which has a v-relation and an h-relation. Then for any $k \in[1,4]$ the following hold:
a) if $(i, k) \in P$, then $(i, k) \leqq(i, j)$, b) if $(j, k) \in P$, then $(j, k)<(i, j)$, c) if $(k, i) \in P$, then $(k, i)<(i, j)$, d) if $(k, j) \in P$, then $(k, j) \leqq(i, j)$.

From now on we will see that for $(k, l) \in P$ with $k, l \in[1,4]-\{i, j\},(k, l)<$ (i, j). The case $i=1$ does not occur, because (i, j) has a v-relation. Moreover, since for $k=1$ we have $(k, l)<(i, j)$, we may assume $j=1$ or $l=1$.
(A) $j=1$. Then $i=3$ or 4 , because $i \geqq i_{1}(2) \geqq 3$.

1) $i=3$. Then $\left(i_{3}(2), 3\right)<(3,1)=\left(i_{1}(2), 1\right)$, a contradiction.
2) $i=4$. Then $(k, l)=(2,3)$ or $(3,2)$. If $(k, l)=(2,3)$, then

$$
(k, l) \leqq\left(i_{3}(2), 3\right)<\left(i_{4}(2), 4\right)<(4,1)=(i, j) .
$$

If $(k, l)=(3,2)$, then

$$
(k, l) \leqq\left(i_{2}(2), 2\right)<\left(i_{4}(2), 4\right)<(4,1)=(i, j) .
$$

(B) $l=1$. Then $k=2$ or 3 or 4 .

1) $k=2$. Then $(k, l)=\left(i_{1}(1), 1\right)<(i, j)$.
2) $k=3$. Then $(k, l) \leqq\left(i_{1}(2), 1\right)<\left(i_{j}(2), j\right) \leqq(i, j)$.
3) $k=4$. Then $(i, j)=(2,3)$ or $(3,2)$. If $i=i_{j}(3)$, then

$$
(k, l)=(4,1) \leqq\left(i_{1}(3), 1\right)<\left(i_{j}(3), j\right)=(i, j) .
$$

Assume $i=i_{j}(2)$. Then

$$
(i, j)=\left(i_{j}(2), j\right)<\left(i_{4}(2), 4\right)<(i, j),
$$

because $i_{4}(2)=2$ or 3 . This is a contradiction. Hence we have $(i, j)=\operatorname{Max} P$.
By the proof of Lemma 3.53), we can define a surjective map $\zeta:[1,4] \rightarrow Q$ by sending l to $\left(i_{l}, l\right)$ (resp. $\left.\left(l, i_{l}\right)\right)$ if $\left(i_{l}, l\right)$ has a v-relation (resp. if $\left(l, i_{l}\right)$ has an h-relation). Let l and l^{\prime} be two distinct elements of [1, 4] such that $\zeta(l)=\zeta\left(l^{\prime}\right)$. Then $\zeta(l)=\zeta\left(l^{\prime}\right)$ has a v-relation and an h-relation. Hence if we set $(i, j)=\operatorname{Max} P$, by 1) we get $\left\{l, l^{\prime}\right\}=\{i, j\}$. So $\zeta(k), \zeta\left(k^{\prime}\right)$ and $\zeta(i)$ are distinct where we set $[1,4]=\left\{i, j, k, k^{\prime}\right\}$. Therefore we obtain ${ }^{\#} Q=3$, because ζ is surjective. Q.E.D.

From now on, we will construct a torus embedding $T_{H} \times A_{k}^{4}$, any irreducible component of whose fibre over the origin of Spec $k\left[Y_{i j}\right]_{(i, j) \in P_{H}}$ is isomorphic to C_{H}. First let \mathcal{R} be a neat system of relations with respect to H and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, i. e., $\alpha_{i} a_{i}=\sum_{j \neq i} \alpha_{i j} a_{j}$ for $1 \leqq i \leqq 4$ and $\alpha_{j}=\sum_{i \neq j} \alpha_{i j}$ for $1 \leqq j \leqq 4$, with $0 \leqq \alpha_{i j}<\alpha_{j}$, and let $Y_{i j},(i, j) \in P_{\mathscr{R}}$, (resp. t_{1}, \cdots, t_{m-3}) be independent variables over k where we put $m=\# P_{\mathcal{A}}$. Q denotes the set of $(i, j) \in P_{\mathcal{R}}$ which has either a v-relation or an h-relation. For brevity, we put $P=P_{\mathscr{R}}$, and let the order on Q (resp. $P-Q$) be induced by that on P defined in Definition 3.3. Then by Lemma 4.12) the set Q consists of three elements

$$
\left(i^{\prime}, j^{\prime}\right)<\left(i^{\prime \prime}, j^{\prime \prime}\right)<\left(i_{0}, j_{0}\right),
$$

and there exists a unique isomorphism $\xi: P \rightarrow Q \rightarrow[1, m-3]$ of ordered sets. Now we will define a k-algebra homomorphism

$$
\pi: k\left[Y_{i j}\right]_{(i, j) \in P} \longrightarrow k\left[t_{1}^{ \pm 1}, \cdots, t_{m-3}^{ \pm 1}\right]
$$

inductively as follows:

1) $\pi_{1}: k\left[Y_{i j}\right]_{(i, j) \in P<\left(i^{n}, j^{n}\right)} \rightarrow k\left[t_{1}^{ \pm 1}, \cdots, t_{m}^{ \pm 1-3}\right]$ is defined by

$$
\begin{aligned}
& \pi_{1}\left(Y_{i j}\right)=t_{\xi(i j)} \quad \text { if }(i, j)<\left(i^{\prime}, j^{\prime}\right),
\end{aligned}
$$

and

$$
\pi_{1}\left(Y_{i j}\right)=t_{\xi(i j)} \quad \text { if }\left(i^{\prime}, j^{\prime}\right)<(i, j)<\left(i^{\prime \prime}, j^{\prime \prime}\right),
$$

2) $\pi_{2}: k\left[Y_{i j}\right]_{(i, j) \in P<\left(i_{0}, j_{0}\right)} \rightarrow k\left[t_{1}^{ \pm 1}, \cdots, t_{m-3}^{ \pm 1}\right]$ is defined by

$$
\pi_{2}\left(Y_{i j}\right)=\pi_{1}\left(Y_{i j}\right) \quad \text { if }(i, j)<\left(i^{\prime \prime}, j^{\prime \prime}\right),
$$

$$
\pi_{2}\left(Y_{i i^{\prime} j^{\prime}}\right)= \begin{cases}\prod_{i \in P j^{\prime \prime}}\left(i^{j^{\prime}}\right. \\ \pi_{1}\left(Y_{i j^{\prime}}\right)^{-1} \prod_{j \in P^{j}} \pi_{1}\left(Y_{j^{\prime} j}\right) & \text { if }\left(i^{\prime \prime}, j^{\prime \prime}\right) \text { has a } v \text {-relation, } \\ \prod_{j i^{*}-\left(j^{\prime}\right)} \pi_{1}\left(Y_{i^{\prime} j}\right)^{-1} \prod_{i \in P_{i^{*}}} \pi_{1}\left(Y_{i i^{\circ}}\right) & \text { if }\left(i^{\prime \prime}, j^{\prime \prime}\right) \text { has an } h \text {-relation, }\end{cases}
$$

and

$$
\pi_{2}\left(Y_{i j}\right)=t_{\xi(i j)} \quad \text { if }\left(i^{\prime \prime}, j^{\prime \prime}\right)<(i, j)<\left(i_{0}, j_{0}\right),
$$

3) $\pi: k\left[Y_{i j}\right]_{(i, j) \in P} \rightarrow k\left[t_{1}^{ \pm 1}, \cdots, t_{m-3}^{ \pm 1}\right]$ is defined by

$$
\pi\left(Y_{i j}\right)=\pi_{2}\left(Y_{i j}\right) \quad \text { if }(i, j)<\left(i_{0}, j_{0}\right)
$$

and

$$
\pi\left(Y_{i_{0} j_{0}}\right)=\prod_{i \in P_{j_{0}}-\left(i_{0}\right)} \pi_{2}\left(Y_{i j_{0}}\right)^{-1} \prod_{j \in P_{j 0}} \pi_{2}\left(Y_{j_{0} j}\right) .
$$

We note that

$$
\prod_{\left.i \in P_{j_{0}}-1 i_{0}\right\}} \pi_{2}\left(Y_{i j_{0}}\right)^{-1} \prod_{j \in P P_{0}} \pi_{2}\left(Y_{j_{0} j}\right)=\prod_{j \in P i_{0}-1 j_{0} 1} \pi_{2}\left(Y_{i_{0} j}\right)^{-1} \prod_{i \in P_{i_{0}}} \pi_{2}\left(Y_{i i_{0}}\right) .
$$

Definition 4.2. If we canonically identify $k\left[t_{1}^{ \pm 1}, \cdots, t_{m-3}^{t 1}\right]$ with the semigroup k-algebra $k\left[T^{b}\right]_{b \in Z^{m-3}}$, in the above situation for any $(i, j) \in P$ there exists a unique $b_{i j} \in Z^{m-3}$ such that $\pi\left(Y_{i j}\right)=T^{b_{i j}}$. Then the subsemigroup S of Z^{m-3} generated by $b_{i j}((i, j) \in P)$ is called the semigroup associated to P and the surjective k-algebra homomorphism $\pi: k\left[Y_{i j}\right]_{(i, j) \in P \rightarrow} \rightarrow k\left[T^{s}\right]_{s \in S}$ is called the homomorphism associated to P.

Lemma 4.3. Let $\eta: k\left[Y_{i j}\right]_{(i, j) \in P} \rightarrow k[X]=k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ be the k-algebra homomorphism defined by sending $Y_{i j}$ to $X_{j}^{\alpha_{i j}}$. Then we have $I_{H} \supseteq \eta(\operatorname{Ker} \pi)$.

Proof. The k-algebra homomorphism $\zeta^{\prime}: k\left[T^{b_{i j}}\right]_{(i, j) \in P-Q} \rightarrow k\left[t^{h}\right]_{h \in H}$ defined by $\zeta^{\prime}\left(T^{b_{i j}}\right)=t^{\alpha_{j j} a_{j}}$ extends uniquely to the k-algebra homomorphism $\zeta: k\left[T^{s}\right]_{s \in S}$ $\rightarrow k\left[t^{h}\right]_{h \in H}$. Moreover,

$$
\varphi_{H}{ }^{\circ} \eta\left(Y_{i j}\right)=\varphi_{H}\left(X_{j}^{\alpha_{i j}}\right)=t^{\alpha_{i j} a_{j}}
$$

and

$$
\zeta \circ \pi\left(Y_{i j}\right)=\zeta\left(T^{b_{i j}}\right)=t^{\alpha_{i j} a_{j}},
$$

hence $\varphi_{H} \circ \eta=\zeta \circ \pi$, which implies $I_{H}=\operatorname{Ker} \varphi_{H} \supseteq \eta(\operatorname{Ker} \pi)$.
Q.E.D.

Let us recall the definition of P_{H} in Definition 3.6 which is determined by a neat numerical semigroup H. In our case $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, elementary computations show the following:

Proposition 4.4. $\quad P_{H}$ is one of the following:
(1) the case ${ }^{\#} P_{H}=12$, then $P_{H}=S_{4}=\left\{(i, j) \in[1,4]^{2} \mid i \neq j\right\}$,
(2) the case ${ }^{\#} P_{H}=11$, then $P_{H}=\mathcal{S}_{4}-\{(1,2)\}$,
(3) the case ${ }^{\#} P_{H}=10$, then $P_{H}=S_{4}-(\{(1,2)\} \cup G)$ where G is one of the following:
a) $\{(2,1)\}$, b) $\{(2,3)\}$, c) $\{(3,4)\}$,
(4) the case ${ }^{\#} P_{H}=9$, then $P_{H}=\mathcal{S}_{4}-(\{(1,2)\} \cup G)$ where G is one of the following :
a) $\{(2,1),(3,4)\}$, b) $\{(2,3),(3,1)\}$, c) $\{(2,3),(3,4)\}$,
(5) the case ${ }^{\#} P_{H}=8$, then $P_{H}=\mathcal{S}_{4}-(\{(1,2)\} \cup G)$ where G is one of the following :
a) $\{(2,1),(3,4),(4,3)\}$ and b) $\{(2,3),(3,4),(4,1)\}$.

Definition-Proposition 4.5. Let S_{H} be the semigroup associated to P_{H}. Then the subsemigroup S_{H} of \boldsymbol{Z}^{m-3} is saturated and generates \boldsymbol{Z}^{m-3} as a group. Therefore $T_{H}=\operatorname{Spec} k\left[Y_{i j}\right]_{(i, j) \in P_{H}} /$ Ker π, which is isomorphic to Spec $k\left[T^{s}\right]_{s \in S_{H}}$, is called the torus embedding associated to the neat numerical semigroup H with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$.

Proof. By the construction of S_{H}, S_{H} generates \boldsymbol{Z}^{m-3} as a group. For any $i \in[1, m-3]$ we denote by $e_{i} \in Z^{m-3}$ the vector whose i-th component equals to 1 and whose j-th component equals to 0 if $j \neq i$. Let

$$
\sigma:[1, m] \longrightarrow P_{H}=\left\{(i, j) \in[1,4]^{2} \mid i \neq j, \alpha_{i j} \neq 0\right\}
$$

be the isomorphism of ordered sets, and for brevity we set $b_{i}=b_{\sigma(i)}$ for all $i \in[1, m]$. Let the situation be as in Proposition 4.4. Then
(1) $b_{i}=e_{i}(1 \leqq i \leqq 8), b_{9}=(-1,1,1,1,-1,0,0,0,0), b_{10}=(1,-1,0,0,0,-1,1,1,0)$, $b_{11}=e_{9}, b_{12}=(0,0,1,0,-1,-1,1,0,1)$,
(2) $b_{i}=e_{i}(1 \leqq i \leqq 7), b_{8}=(-1,1,0,0,0,1,-1,0), b_{9}=(-1,0,1,1,-1,0,0,0)$, $b_{10}=e_{8}, b_{11}=(0,-1,1,0,-1,0,1,1)$,
(3) a) $b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0,0,0), b_{6}=e_{5}, b_{7}=e_{6}$, $b_{8}=(0,1,0,0,1,-1,0), b_{9}=e_{7}, b_{10}=(-1,-1,1,0,0,1,1)$,
b) $b_{i}=e_{i}(1 \leqq i \leqq 7), b_{8}=(-1,1,0,0,0,1,0), b_{9}=(-1,0,1,1,-1,0,0)$, $b_{10}=(0,-1,1,0,-1,0,1)$,
c) $b_{i}=e_{i}(1 \leqq i \leqq 7), b_{8}=(-1,1,0,0,0,1,-1), b_{9}=(-1,0,1,1,-1,0,0)$, $b_{10}=(0,1,-1,0,1,0,-1)$,
(4) a) $b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0,0), b_{6}=e_{5}, b_{7}=e_{6}$, $b_{8}=(0,1,0,0,1,-1), b_{9}=(1,1,-1,0,0,-1)$,
b) $b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0,0), b_{6}=e_{5}, b_{7}=e_{6}, b_{8}=(-1,1,0,0,1,0)$, $b_{9}=(0,-1,1,0,0,1)$,
c) $b_{i}=e_{i}(1 \leqq i \leqq 6), b_{7}=(0,1,-1,0,1,0), b_{8}=(-1,1,0,0,0,1)$, $b_{9}=(-1,0,1,1,-1,0)$,
(5) a) $b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0), b_{6}=e_{5}, b_{7}=(1,1,-1,0,0)$, $b_{8}=(-1,0,1,0,1)$,
b) $b_{i}=e_{i}(1 \leqq i \leqq 4), b_{5}=(-1,0,1,1,0), b_{6}=e_{5}, b_{7}=(-1,1,0,1,0)$, $b_{8}=(-1,1,0,0,1)$.

By computation the subsemigroups S_{H} of Z^{m-3} generated by b_{1}, \cdots, b_{m} are saturated. For example, we check the case (4) c). It suffices to show that $\sum_{i=1}^{9} \boldsymbol{R}_{+} b_{i} \cap \boldsymbol{Z}^{6} \subseteq S_{H}$ where \boldsymbol{R}_{+}is the set of non-negative real numbers. Let us take $z=\sum_{i=1}^{9} \lambda_{i} b_{i} \in \boldsymbol{Z}^{6}$ with $\lambda_{i} \in \boldsymbol{R}_{+}$, and set $\lambda_{i}=m_{i}+\beta_{i}$ with $m_{i} \in \boldsymbol{N}$ and $0 \leqq \beta_{i}<1$ for $1 \leqq i \leqq 9$. Hence it suffices to show that $y=\sum_{i=1}^{9} \beta_{i} b_{i} \in S_{H}$. Now we get

$$
y=\left(\beta_{1}-\beta_{8}-\beta_{9}, \beta_{2}+\beta_{7}+\beta_{8}, \beta_{3}-\beta_{7}+\beta_{9}, \beta_{4}+\beta_{9}, \beta_{5}+\beta_{7}-\beta_{9}, \beta_{6}+\beta_{8}\right) \in Z^{6},
$$

hence
$\beta_{1}-\beta_{8}-\beta_{9}=-1$ or $0, \beta_{2}+\beta_{7}+\beta_{8}=0$ or 1 or $2, \beta_{3}-\beta_{7}+\beta_{9}=0$ or 1 ,
$\beta_{4}+\beta_{9}=0$ or $1, \beta_{5}+\beta_{7}-\beta_{9}=0$ or 1 , and $\beta_{6}+\beta_{8}=0$ or 1 .
First assume $\beta_{1}-\beta_{8}-\beta_{9}=0$. Since $e_{i} \in S_{H}$ for all $1 \leqq i \leqq 6$, we get $y \in S_{H}$. Secondly assume $\beta_{1}-\beta_{8}-\beta_{9}=-1$. Then we have $\beta_{8}>0$ and $\beta_{9}>0$, which imply $\beta_{2}+\beta_{1}+\beta_{8}=1$ or $2, \beta_{4}+\beta_{9}=1$ and $\beta_{6}+\beta_{8}=1$. Then $y \in S_{H}$, because $(-1,1,0,1,0,1)$ $=b_{4}+b_{8} \in S_{H}$. Therefore S_{H} is saturated. The other cases work similarly.
Q.E.D.

For our purposes it is necessary to investigate generators of the ideal I_{H}. When H is a neat numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, the following Lemma gives us a set of generators for I_{H}.

Lemma 4.6. Let H be a numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, such that for any $1 \leqq i \leqq 4$

$$
\alpha_{i} a_{i}=\alpha_{i j} a_{j}+\alpha_{i k} a_{k}+\alpha_{i l} a_{l} \text { with } \alpha_{i j}>0, \alpha_{i k}>0 \text { and } \alpha_{i l} \geqq 0
$$

where i, j, k and l are distinct. For any $1 \leqq i \leqq 4$ we denote $X_{i}^{\alpha_{i}}-X_{j}^{\alpha_{i j}} X_{k}^{\alpha_{i k}} X_{l}^{\alpha_{i l}}$ by f_{i}. Set

$$
\begin{aligned}
& A_{1}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}, \quad A_{2}=\left\{X_{1}^{\beta_{1}} X_{2}^{\beta_{2}}-X_{3}^{\beta_{3}} X_{4}^{\beta_{4}} \in I_{H} \mid 0<\beta_{i}<\alpha_{i}\right\}, \\
& A_{3}=\left\{X_{1}^{\left.\beta_{1} X_{3}^{\beta_{3}}-X_{2}^{\beta_{2}} X_{4}^{\beta_{4}} \in I_{H} \mid 0<\beta_{i}<\alpha_{i}\right\}, \quad A_{4}=\left\{X_{1}^{\beta_{1}} X_{4}^{\beta_{4}}-X_{2}^{\beta_{2}} X_{3}^{\beta_{3}} \in I_{H} \mid 0<\beta_{i}<\alpha_{i}\right\} .}\right.
\end{aligned}
$$

Moreover, for any $2 \leqq i \leqq 4$ we put

$$
A_{i}^{*}=\left\{X_{1}^{\beta_{1}} X_{i}^{\beta_{i}}-X_{j}^{\beta_{j}} X_{k}^{\beta_{k}} \in A_{i} \mid \text { for any } X_{1}^{r_{1}} X_{i}^{\gamma_{i}}-X_{j}^{\gamma_{j}} X_{k}^{\gamma_{k}} \in A_{i}\right. \text {, different }
$$ from $X_{1}^{\beta_{1}} X_{i}^{\beta_{i}}-X_{j}^{\beta_{j}} X_{k}^{\beta_{k} k}, \gamma_{1} \leqq \beta_{1}$ and $\gamma_{i} \leqq \beta_{i}$ do not hold $\}$.

Then 1) the ideal I_{H} is generated by the elements of the set $A_{1} \cup A_{2}^{*} \cup A_{3}^{*} \cup A_{4}^{*}$, 2) if $\alpha_{i} a_{i} \neq \alpha_{j} a_{j}$ for $i \neq j$, then $\mu(H)$ is equal to $4+^{\#} A_{2}^{*}+^{\#} A_{3}^{*}+^{\#} A_{4}^{*}$.

Proof. 1) Let $\left(A^{\prime}\right)$ (resp. (A), resp. $\left(A^{*}\right)$) be the ideal generated by the set

$$
A^{\prime}=A_{1} \cup\left\{X_{i}^{\gamma_{i}} X_{j}^{\gamma_{j}}-X_{k}^{\gamma_{k}} X_{l}^{\gamma_{l} \in I_{H} \mid \gamma_{i}, \gamma_{j}, \gamma_{k}, \gamma_{l}>0 \text { and }(i, j, k, l)}\right.
$$

is a permutation of $[1,4]\}$
(resp. the set $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$, resp. the set $A^{*}=A_{1} \cup A_{2}^{*} \cup A_{3}^{*} \cup A_{4}^{*}$).
First we show : $I_{H}=\left(A^{\prime}\right)$, that is, $g=X_{i}^{\lambda_{i}}-X_{j}^{\nu_{j}} X_{k}^{\nu} k X_{\imath}^{\nu} \in I_{H}$, with $\lambda_{i} \geqq \alpha_{i}$ and a permutation (i, j, k, l) of $[1,4]$, belongs to (A^{\prime}), i. e., $g=f+\left(\prod_{s=1}^{4} X_{s}^{n_{s}}\right) h$ with $f \in\left(A^{\prime}\right)$ and $\partial h<\partial g$ if $h \neq 0$. If we set $\lambda_{i}=\alpha_{i} q+r$ with $q>0$ and $0 \leqq r<\alpha_{i}$, then

$$
G=g-X_{i}^{r}\left(X_{i}^{\alpha_{i} q}-X_{j}^{\alpha_{i}} j^{q} X_{k}^{\alpha_{i k} q} X_{l}^{\alpha_{i} i q}\right)=X_{i}^{r} X_{j}^{\alpha_{i} j^{q}} X_{l}^{\alpha_{i} l l^{q}}-X_{j}^{\nu_{j}} X_{k}^{\nu k} X_{l}^{\nu} .
$$

Then we can write $G=f+\left(\prod_{s=1}^{4} X_{s}^{\varepsilon_{s}^{s}}\right) h$ with $f \in\left(A^{\prime}\right)$ and $\partial h<\partial g$ if $h \neq 0$.
Secondly we see: $I_{H}=(A)$, that is, $g=X_{i}^{\gamma_{i}} X_{j}^{\gamma_{j}}-X_{k}^{\gamma_{k}} X_{l}^{\gamma_{l}} \in I_{H}$, with $\gamma_{i}, \gamma_{j}, \gamma_{k}, \gamma_{l}$ >0 and a permutation (i, j, k, l) of $[1,4]$, belongs to (A). We may assume that $\gamma_{i}=\alpha_{i} q+r$ with $q>0$ and $0 \leqq r<\alpha_{i}$. Hence we have

Then we can write $G=\left(\prod_{s=1}^{4} X_{s}^{k_{s}}\right) h$ with $\partial h<\partial g$ if $h \neq 0$.
Lastly we check: $I_{H}=\left(A^{*}\right)$. Let us take $g=X_{1}^{\gamma_{1}} X_{i}^{\gamma_{i}}-X_{j}^{\gamma_{j}} X_{k}^{\gamma_{k}} \in A_{i}$ such that there exists $g_{i}=X_{1}^{\beta_{1}} X_{i}^{\beta_{i}}-X_{j}^{\beta_{j}} X_{k}^{\beta_{k}} \in A_{i}^{*}$ with $\gamma_{1} \geqq \beta_{1}, \gamma_{i} \geqq \beta_{i}$ and $\left(\gamma_{1}, \gamma_{i}\right) \neq\left(\beta_{1}, \beta_{i}\right)$. Then

$$
G=g-X_{1}^{\gamma_{1}-\beta_{1}} X_{i}^{\gamma_{i}-\beta_{i}} g_{i}=X_{1}^{\gamma_{1}-\beta_{1}} X_{i}^{\gamma_{i}-\beta_{i}} X_{j}^{\beta_{j}} X_{k}^{\beta_{k}}-X_{j}^{\gamma_{j}} X_{k}^{\gamma_{k}}=X_{j}^{\kappa_{j}} X_{k}^{\kappa_{k}} \cdot h
$$

with $\partial h<\partial g$.
2) It suffices to show that the images of elements of $A_{1} \cup A_{2}^{*} \cup A_{3}^{*} \cup A_{4}^{*}$ in $I_{H} /\left(X_{1}, X_{2}, X_{3}, X_{4}\right) I_{H}$ are linearly independent over k. By the assumptions $\alpha_{i} a_{i} \neq \alpha_{j} a_{j}$ and the minimality of α_{i}, the weights of elements of $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ are distinct. For brevity, the ideal $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)\left(\right.$ resp. $\left.X_{1}^{\beta_{1}} X_{i}^{\beta_{i}}-X_{j}^{\beta_{j}} X_{k}^{\beta_{k}} \in A_{i}^{*}\right)$ is denoted by (X) (resp. $g_{\beta_{1} \beta_{i}}^{(i)}$). Let

$$
\sum_{i=1}^{4} c_{i} f_{i}+\sum c_{\beta_{1} \beta_{2}}^{(2)} g_{\beta_{1} \beta_{2}}^{(2)}+\Sigma c_{\beta_{1} \beta_{3}}^{(3)} g_{\beta_{1} \beta_{3}}^{(3)}+\Sigma c_{\beta_{1} \beta_{4}}^{(4)} g_{\beta_{1} \beta_{4}}^{(4)} \in(X) I_{H}
$$

with $c_{i}, c_{\beta_{1} \beta_{2}}^{(2)}, c_{\beta_{1} \beta_{3}}^{(3)}, c_{\beta_{1} \beta_{4}}^{(4)} \in k$. First assume that $c_{i} \neq 0$. Since the ideal $(X) I_{H}$ is homogeneous, we get $c_{i} f_{i} \in(X) I_{H}$, which has an expression:

$$
c_{i} f_{i}=\sum_{m=1}^{4} h_{m} f_{m}+\sum h_{\beta_{1} \beta_{2}}^{(2)} g_{\beta_{1} \beta_{2}}^{(2)}+\sum h_{\beta_{1} \beta_{3}}^{(3)} g_{\beta_{1} \beta_{3}}^{(3)}+\sum h_{\beta_{1} \beta_{4}}^{(1)} g_{\beta_{1} \beta_{4}}^{(1)}
$$

with $h_{m}, h_{\beta_{1} \beta_{2}}^{(2)}, h_{\beta_{1} \beta_{3}}^{(3)}, h_{\beta_{1} \beta_{4}}^{(4)} \in(X)$. If we substitute 0 for X_{j}, all j different from i, then we get $c_{i} X_{i}^{\alpha_{i}}=c X_{i}^{\beta+\alpha_{i}}$ with $c \in k$ and $\beta>0$, a contradiction. Hence $c_{i}=0$ for all $i=1, \cdots, 4$. Secondly assume that $c_{\beta_{1} \beta_{i}}^{(i)} \neq 0$. Then $c_{\beta_{1} \beta_{i}}^{(i)} g_{\beta_{1} \beta_{i}}^{(i)} \in(X) I_{H}$, which has an expression:

$$
c_{\beta_{1} \beta_{i}}^{(i)} g_{\beta_{1} \beta_{i}}^{(i)}=\sum h_{\beta_{1} \beta_{2}}^{(2)} g_{\beta_{1} \beta_{2}}^{(2)}+\sum h_{\beta_{1} \beta_{3}}^{(3)} g_{\beta_{1} \beta_{3}}^{(3)}+\sum h_{\beta_{1} \beta_{4}}^{(4)} g_{\beta_{1} \beta_{4}}^{(i)}
$$

because of $g_{\beta_{1} \beta_{i}}^{(i)} \in A_{i}$ and the minimality of α_{j}. Substituting 0 for X_{j} and X_{k}, where ($1, i, j, k$) is a permutation of [1,4], we obtain

$$
c_{\beta_{1} \beta_{i}}^{(i)} X_{1}^{\beta_{1}} X_{i}^{\beta_{i}}=\sum_{\left(\gamma_{1}, \gamma_{i}\right) \neq\left(\beta_{1}, \beta_{i}\right)} h_{r_{1} r_{i}}^{(i)}\left(X_{1}, 0, X_{i}, 0\right) X_{1}^{\gamma_{1}} X_{i}^{\gamma_{i}}
$$

hence there exists $\left(\lambda_{1}, \lambda_{i}\right) \in N^{2}, \neq(0,0)$ such that

$$
\beta_{1} a_{1}+\beta_{i} a_{i}=\left(\gamma_{1}+\lambda_{1}\right) a_{1}+\left(\gamma_{i}+\lambda_{i}\right) a_{i} .
$$

If $\beta_{1} \geqq \gamma_{1}+\lambda_{1}$, in virtue of $\alpha_{1}>\beta_{1}$ we have $\beta_{1}=\gamma_{1}+\lambda_{1}$ and $\beta_{i}=\gamma_{i}+\lambda_{i}$, which contradict $g_{\beta_{1} \beta_{i}}^{(i)} \in A_{i}^{*}$. If $\beta_{1}<\gamma_{1}+\lambda_{1}$, we have

$$
\left(\beta_{i}-\gamma_{i}-\lambda_{i}\right) a_{i}=\left(\gamma_{1}+\lambda_{1}-\beta_{1}\right) a_{1},
$$

which contradicts the minimality of α_{i}. Hence we get $c_{\beta_{1} \beta_{i}}^{(i)}=0$.
Q.E.D.

For a neat system $\mathcal{R}: \alpha_{i} a_{i}=\Sigma \alpha_{i j} a_{j}$ for $1 \leqq i \leqq 4$ and $\alpha_{j}=\Sigma \alpha_{i j}$ for $1 \leqq j \leqq 4$, of relations with respect to H with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, the following holds:

Lemma 4.7. We have

$$
D=\left|\begin{array}{rrr}
\alpha_{1} & -\alpha_{12} & -\alpha_{13} \\
-\alpha_{21} & \alpha_{2} & -\alpha_{23} \\
-\alpha_{31} & -\alpha_{32} & \alpha_{3}
\end{array}\right|>0
$$

Proof. Since we have $\alpha_{j}=\sum_{i \neq j} \alpha_{i j}$ for $1 \leqq j \leqq 4$, we obtain

$$
\begin{aligned}
D= & \left|\begin{array}{rrr}
\alpha_{1} & -\alpha_{12} & -\alpha_{13} \\
-\alpha_{21} & \alpha_{2} & -\alpha_{23} \\
\alpha_{41} & \alpha_{42} & \alpha_{43}
\end{array}\right|=\alpha_{41}\left|\begin{array}{rr}
-\alpha_{12} & -\alpha_{13} \\
\alpha_{2} & -\alpha_{23}
\end{array}\right|-\alpha_{42}\left|\begin{array}{rr}
\alpha_{1} & -\alpha_{13} \\
-\alpha_{21} & -\alpha_{23}
\end{array}\right| \\
& +\alpha_{43}\left|\begin{array}{cc}
\alpha_{1} & -\alpha_{12} \\
-\alpha_{21} & \alpha_{2}
\end{array}\right| \\
= & \alpha_{41}\left(\alpha_{12} \alpha_{23}+\alpha_{2} \alpha_{13}\right)+\alpha_{42}\left(\alpha_{1} \alpha_{23}+\alpha_{21} \alpha_{13}\right)+\alpha_{43}\left\{\alpha_{1}\left(\alpha_{32}+\alpha_{42}\right)+\left(\alpha_{31}+\alpha_{41}\right) \alpha_{12}\right\}
\end{aligned}
$$

If $\alpha_{43}>0$, then $D>0$ because of $\alpha_{43} \alpha_{1}\left(\alpha_{32}+\alpha_{42}\right)>0$. If $\alpha_{43}=0$, then $\alpha_{41}>0$ and $\alpha_{13}>0$, hence we get $D>0$.
Q.E.D.

Hereafter we are in the following situation, which is similar to that in Corollary 1.6: let $P=P_{H}$ be as in Definition 3.6 and let $T_{H}=\operatorname{Spec} k\left[Y_{i j}\right]_{(i, j) \in P} /$ Ker π be the torus embedding associated to the neat numerical semigroup H with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Let us consider the fibre product:

where O and J are respectively the origin of $\operatorname{Spec} k\left[Y_{i j}\right]$ and the ideal $\operatorname{Ker} \pi$, and ψ is the morphism corresponding to the k-algebra homomorphism $\psi^{*}: k\left[Y_{i j}\right]$ $\rightarrow\left(k\left[Y_{i j}\right] / J\right)\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ by sending $Y_{i j}$ to $X_{j}^{a_{i j}-Y_{i j}} \bmod J$. If J_{0} is the ideal in $k[X]=k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ generated by the set $\eta(J)$ where $\eta: k\left[Y_{i j}\right] \rightarrow$ $k[X]$ is the k-algebra homomorphism defined by $\eta\left(Y_{i j}\right)=X_{j}^{\alpha_{i j}}$, then $\psi^{-1}(O)$ is isomorphic to Spec $k[X] / J_{0}$.

Proposition 4.8. C_{H} is an irreducible component in $\psi^{-1}(O)=\operatorname{Spec} k[X] / J_{0}$.
Proof. We use the notation in Lemma 4.6. Since

$$
F_{i}=\prod_{j \in P_{i}} Y_{j i}-\prod_{j \in P^{i}} Y_{i j} \in J
$$

for all i implies $\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \subseteq J_{0}$ and by Lemma 4.3 we have $I_{H} \supseteq J_{0}$, we will check that the ideal I_{H} is minimal prime over $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$. Let \mathfrak{p} be any prime ideal in $k[X]$ with $\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \subseteq p \subseteq I_{H}$. Let us take

$$
g=X_{1}^{\beta_{1}} X_{2}^{\beta_{2}}-X_{3}^{\beta_{3}} X_{4}^{\beta_{4}} \in A_{2}, \quad \text { hence } \quad \beta_{1} a_{1}+\beta_{2} a_{2}-\beta_{3} a_{3}=\beta_{4} a_{4} .
$$

By Lemma 4.7, there exists a positive integer μ such that

$$
\mu\left(\beta_{1}, \beta_{2},-\beta_{3}\right)=\nu_{1}\left(\alpha_{1},-\alpha_{12},-\alpha_{13}\right)+\nu_{2}\left(-\alpha_{21}, \alpha_{2},-\alpha_{23}\right)+\nu_{3}\left(-\alpha_{31},-\alpha_{32}, \alpha_{3}\right)
$$

with $\nu_{i} \in Z$, which implies $\mu \beta_{4}=\nu_{1} \alpha_{14}+\nu_{2} \alpha_{24}+\nu_{3} \alpha_{34}$. Since $\beta_{i}>0$ for $1 \leqq i \leqq 4$, this case is divided into the following:

1) $\nu_{1}>0, \nu_{2}>0, \nu_{3} \geqq 0$,
2) $\nu_{1}>0, \nu_{2}>0, \nu_{3}<0$,
3) $\nu_{1}>0, \nu_{2}<0, \nu_{3}<0$,
4) $\nu_{1} \leqq 0, \nu_{2}>0, \nu_{3}<0$.

If $\nu_{1}>0, \nu_{2}>0$ and $\nu_{3} \geqq 0$, then

$$
\begin{aligned}
& X_{1}^{\nu_{2} \alpha_{21}+\nu_{3} \alpha_{31}} X_{2}^{\nu_{1} \alpha_{12}+\nu_{3} \alpha_{32}} X_{3}^{\nu_{3} \alpha_{3}}\left(X_{1}^{\mu} \beta_{1} X_{2}^{\mu} \beta_{2}-X_{3}^{\mu} \beta_{3} X_{4}^{\mu} \beta_{4}\right) \\
& =X_{2}^{\nu_{2} \alpha_{2}} X_{3}^{\nu_{3} \alpha_{3}}\left(X_{1}^{\nu_{1} \alpha_{1}}-X_{2}^{\nu \alpha_{12}} X_{3}^{\nu_{1} \alpha_{13}} X_{4}^{\nu_{1} \alpha_{14}}\right) \\
& +X_{2}^{\nu_{1} \alpha_{12}} X_{3}^{\nu_{1} \alpha_{18}+\nu_{3} \alpha_{3}} X_{4}^{\nu_{1} \alpha_{14}}\left(X_{2}^{\nu_{2} \alpha_{2}}-X_{1}^{\nu_{2} \alpha_{21}} X_{3}^{\nu_{3} \alpha_{23}} X_{4}^{\nu_{4} \alpha_{24}}\right) \\
& +X_{12}^{\nu_{2} \alpha_{21}} X_{2}^{\nu_{1} \alpha_{12}} X_{8}^{\nu_{1} \alpha_{13}+\nu_{2} \alpha_{23}} X_{4}^{\nu_{1} \alpha_{14}+\nu_{2} \alpha_{24}}\left(X_{8}^{\nu_{8} \alpha_{3}}-X_{1}^{\nu_{3} \alpha_{31}} X_{2}^{\nu_{3} \alpha_{32}} X_{4}^{\nu_{3} \alpha_{34}}\right) \\
& \in\left(f_{1}, f_{2}, f_{3}\right) \subseteq \mathfrak{p} \subseteq I_{H} .
\end{aligned}
$$

Since

$$
X_{1}^{22_{2} \alpha_{21}+\nu_{3} \alpha_{31}} X_{2}^{\nu_{1} \alpha_{12}+\nu_{3} \alpha_{32}} X_{3}^{\nu_{3} \alpha_{3}}\left(X_{1}^{(\mu-1) \beta_{1}} X_{2}^{(\mu-1) \beta_{2}}+\cdots+X_{3}^{(\mu-1) \beta_{3}} X_{4}^{\left.(\mu-1) \beta_{4}\right) \oplus I_{H},}\right.
$$

we get $g=X_{1}^{\beta_{1}} X_{2}^{\beta_{2}}-X_{3}^{\beta_{3}} X_{4}^{\beta_{4}} \in \mathfrak{p}$. The other cases work similarly. For $g \in A_{3} \cup A_{4}$, the proof of $g \in \mathfrak{p}$ is similar. By Lemma $4.6 \mathfrak{p}$ coincides with I_{H}, hence we get our desired result.
Q.E.D.

If $\phi^{-1}(O)$ and C_{H} are respectively regarded as the algebraic subsets $V\left(J_{0}\right)$ and $V\left(I_{H}\right)$ of the affine space \boldsymbol{A}_{k}^{4}, we see:

Proposition 4.9. 1) For any $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi^{-1}(O)$, different from the origin, we have $x_{i} \neq 0$ for any $1 \leqq i \leqq 4$.
2) For any $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi^{-1}(O)$, different from the origin, we have $x^{-1}=\left(x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}^{-1}\right) \in \psi^{-1}(O)$.
3) Any irreducible component in $\psi^{-1}(O)$ is isomorphic to C_{H}.

Proof. In the proof we use the notation in Lemma 4:6.

1) If $x_{i}=0$ for some i, x must be the origin of \boldsymbol{A}_{k}^{4}, because J_{0} contains the ideal $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$.
2) We may take generators $F_{k}(1 \leqq k \leqq u)$ of the ideal J as follows:

$$
F_{k}=\prod_{(i, j) \in P} Y_{i j}^{\nu_{i j}}-\prod_{(i, j) \in P} Y_{i j}^{\mu_{i j}}
$$

with $\nu_{i j} \mu_{i j}=0$. In virtue of $x \in \psi^{-1}(O)=V\left(J_{0}\right)=V(\eta(J))$, we have

$$
\Pi x_{j}^{2} j^{\alpha_{i j}}-\Pi x_{j}^{\mu_{i j} \alpha_{i j}}=0,
$$

which implies

$$
\Pi\left(x_{j}^{-1}\right)^{\nu_{i j} \alpha_{i j}}-\Pi\left(x_{j}^{-1}\right)^{\mu_{i j} \alpha_{i j}}=0 .
$$

This means $x^{-1} \in \psi^{-1}(O)$.
3) For any $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \psi^{-1}(O)$, different from the origin, let $\varphi_{x}: k[X]$ $\rightarrow k[X] / J_{0}$ be the k-algebra homomorphism defined by $\varphi_{x}\left(X_{i}\right)=x_{i} X_{i}+J_{0}$. Then $\operatorname{Ker} \varphi_{x}$ contains the ideal J_{0}, because

$$
\begin{aligned}
\varphi_{x}\left(\eta\left(F_{k}\right)\right) & =\Pi\left(x_{j} X_{j}\right)^{\alpha_{i j} j_{i j}}-\Pi\left(x_{j} X_{j}\right)^{\alpha_{i j} \mu_{i j}}+J_{0} \\
& \left.=\Pi x_{i^{\alpha_{i j} \nu^{\nu}}(\Pi(\Pi)}\left(X_{j}\right)^{\alpha_{i j} j^{\nu} i j}-\Pi\left(X_{j}\right)^{\alpha_{i j} \mu_{i j}}\right)+J_{0} \\
& =\Pi x_{j}^{\alpha_{i j} \nu^{\nu} i} \eta\left(F_{k}\right)+J_{0}=J_{0} .
\end{aligned}
$$

Therefore φ_{x} induces the homomorphism $\bar{\varphi}_{x}: k[X] / J_{0} \rightarrow k[X] / J_{0}$, which is an isomorphism by 2). Since J_{0} is homogeneous, $\psi^{-1}(O)$ has a natural $\boldsymbol{G}_{\boldsymbol{m}}$-action. Then we see that for any $x \in \psi^{-1}(O)$, different from the origin, we have

$$
\psi_{x^{-1}}\left(\text { the closure of } \boldsymbol{G}_{m} \cdot x\right)=C_{H}
$$

where $\psi_{x^{-1}}$ is the automorphism of $\psi^{-1}(O)$ corresponding to $\varphi_{x^{-1}}$. Using Proposition 4.8 any irreducible component in $\psi^{-1}(O)$ is isomorphic to C_{H}. Q.E.D.

Lastly, for our purpose we classify neat numerical semigroups H with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{3}\right\}$ as follows:

Definition 4.10. In virtue of $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=1$ and Lemma 4.7, there exists a unique positive integer ν such that

$$
\nu a_{4}=\left|\begin{array}{ccc}
\alpha_{1} & -\alpha_{12} & -\alpha_{13} \\
-\alpha_{21} & \alpha_{2} & -\alpha_{23} \\
-\alpha_{31} & -\alpha_{32} & \alpha_{3}
\end{array}\right|=D
$$

Then the numerical semigroup H is called to be ν-neat.
Our main result in this section is the following:
Theorem 4.11. 1-neat numerical semigroups H are of torus embedding type, hence if the characteristic of k is 0 , then we get $\mathscr{M}_{H} \neq 0$.

Proof. Let the situation be as in Proposition 4.4. Since $a_{4}=D$, by computation we get:
(1) $L_{a_{3}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{21}+\alpha_{31}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{4}$, 2) $\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{14}+\alpha_{34}$, 3) $\alpha_{21}+\alpha_{31} \leqq \beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{24}+\alpha_{34}$, 4) $\alpha_{31} \leqq \beta_{1}<\alpha_{1}, \alpha_{82} \leqq \beta_{2}<\alpha_{32}+\alpha_{42}, \beta_{4}<$ α_{34}, 5) $\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{12}+\alpha_{32}, \alpha_{14}+\alpha_{34} \leqq \beta_{4}<\alpha_{4}$, 6) $\alpha_{31} \leqq \beta_{1}<\alpha_{31}+\alpha_{41}, \alpha_{32}+\alpha_{42}$ $\left.\leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{34}\right\}$,
(2) $L_{a_{3}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{21}+\alpha_{31}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{4}$, 2) $\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{14}+\alpha_{34}$, 3) $\alpha_{21}+\alpha_{31} \leqq \beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{24}+\alpha_{34}$, 4) $\left.\alpha_{31} \leqq \beta_{1}<\alpha_{1}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{34}\right\}$,
(3) a) $L_{a_{3}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{34}$, 2) $\left.\beta_{1}<\alpha_{31}, \beta_{2}<\alpha_{32}, \alpha_{34} \leqq \beta_{4}<\alpha_{4}, 3\right) \alpha_{31} \leqq$ $\beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{32}, \alpha_{34} \leqq \beta_{4}<\alpha_{24}+\alpha_{34}$, 4) $\left.\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \alpha_{34} \leqq \beta_{4}<\alpha_{14}+\alpha_{34}\right\}$,
b) $L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{3}, \beta_{4}<\alpha_{14}$, 2) $\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{13}, \alpha_{14} \leqq \beta_{4}<\alpha_{14}+\alpha_{34}$, 3) $\left.\beta_{2}<\alpha_{32}, \beta_{3}<\alpha_{13}, \alpha_{14}+\alpha_{34} \leqq \beta_{4}<\alpha_{4}\right\}$,
c) $L_{a_{3}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{21}+\alpha_{31}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{4}$, 2) $\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{14}, \quad$ 3) $\left.\alpha_{21}+\alpha_{31} \leqq \beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{32}, \beta_{1}<\alpha_{24}\right\}$,
(4) a) $L_{a_{3}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{31}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{4}$, 2) $\beta_{1}<\alpha_{31}, \alpha_{32} \leqq \beta_{2}<\alpha_{2}, \beta_{4}<\alpha_{14}$, 3) $\alpha_{31} \leqq$ $\left.\beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{32}, \beta_{4}<\alpha_{24}\right\}$,
b) $L_{a_{4}}(H)=\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{3} a_{3} \mid \beta_{i} \in N\right.$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ satisfies one of the following: 1) $\beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{43}$, 2) $\beta_{1}<\alpha_{1}, \beta_{2}<\alpha_{42}, \alpha_{43} \leqq \beta_{3}<\alpha_{3}$, 3) $\beta_{1}<\alpha_{41}$, $\left.\alpha_{42} \leqq \beta_{2}<\alpha_{2}, \alpha_{43} \leqq \beta_{3}<\alpha_{3}\right\}$,
c) $L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid \beta_{i} \in \boldsymbol{N}\right.$ and $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{3}, \beta_{4}<\alpha_{14}$, 2) $\left.\beta_{2}<\alpha_{32}, \beta_{3}<\alpha_{13}, \alpha_{14} \leqq \beta_{4}<\alpha_{4}\right\}$,
(5) a) $L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{13}, \beta_{1}<\alpha_{14}$, 2) $\beta_{2}<\alpha_{42}, \alpha_{13} \leqq \beta_{3}<\alpha_{3}, \beta_{4}<\alpha_{14}$, 3) $\beta_{2}<$ $\left.\alpha_{32}, \beta_{3}<\alpha_{13}, \alpha_{14} \leqq \beta_{4}<\alpha_{4}\right\}$,
b) $L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies one of the following: 1) $\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{3}, \beta_{4}<\alpha_{14}$, 2) $\left.\beta_{2}<\alpha_{32}, \beta_{3}<\alpha_{13}, \alpha_{14} \leqq \beta_{4}<\alpha_{4}\right\}$.

Using the above and Lemma 4.6 we get $J_{0}=I_{H}$. For example, in the case (4) c) we will show that $J_{0}=I_{H}$, It suffices to show that $J_{0} \supseteqq I_{H}$. We use the notation in Lemma 4.6. Assume that $A_{2} \neq \emptyset$, i.e., take

$$
X_{2}^{\beta_{1}} X_{2}^{\beta_{2}}-X_{3}^{\beta_{3}} X_{4}^{\beta_{4}} \in A_{2}, \quad \text { hence } \beta_{1} a_{1}+\beta_{2} a_{2}=\beta_{3} a_{3}+\beta_{4} a_{4} .
$$

Then 1) implies $\beta_{4} \geqq \alpha_{14}$, hence by 2) we get $\beta_{3} \geqq \alpha_{13}$. Therefore we have

$$
\begin{aligned}
\beta_{1} a_{1}+\beta_{2} a_{2} & =\left(\beta_{3}-\alpha_{13}\right) a_{3}+\left(\beta_{4}-\alpha_{14}\right) a_{4}+\alpha_{13} a_{3}+\alpha_{14} a_{4} \\
& =\left(\beta_{3}-\alpha_{13}\right) a_{3}+\left(\beta_{4}-\alpha_{14}\right) a_{4}+\alpha_{1} a_{1},
\end{aligned}
$$

which implies

$$
\beta_{2} a_{2}=\left(\alpha_{1}-\beta_{1}\right) a_{1}+\left(\beta_{3}-\alpha_{18}\right) a_{3}+\left(\beta_{4}-\alpha_{14}\right) a_{4} .
$$

Since $0<\beta_{2}<\alpha_{2}$, this contradicts the minimality of α_{2}, hence $A_{2}=\emptyset$, which implies $A_{2}^{*}=\emptyset$. Now we have

$$
g_{3}=X_{1}^{\alpha_{21}+\alpha_{41}} X_{3}^{\alpha_{43}}-X_{2}^{\alpha_{32}} X_{4}^{\alpha_{14}} \in A_{3} .
$$

Take $X_{1}^{\beta_{1}} X_{3}^{\beta_{3}-} X_{2}^{\beta_{2}} X_{4}^{\beta_{4}} \in A_{3}$, different from g_{3}. Then 1) implies $\beta_{4} \geqq \alpha_{14}$, hence by 2) we get $\beta_{2} \geqq \alpha_{32}$. Therefore we get

$$
A_{3}^{*}=\left\{g_{3}=X_{1}^{\alpha_{21}+\alpha_{41}} X_{3}^{\alpha_{43}} \ldots X_{2}^{\alpha_{32}} X_{4}^{\alpha_{14}}\right\} .
$$

Lastly 1) implies $A_{4}=\emptyset$. Hence by Lemma 4.6 the ideal I_{H} is generated by $f_{1}, f_{2}, f_{3}, f_{4}$ and g_{3}. Since we have

$$
\pi\left(Y_{21} Y_{41} Y_{43}-Y_{32} Y_{14}\right)=t_{1} t_{1}^{-1} t_{5}^{-1} t_{3} t_{4} t_{3} t_{3}^{-1} t_{5} t_{2}-t_{2} t_{4}=0
$$

and

$$
\eta\left(Y_{21} Y_{41} Y_{43}-Y_{32} Y_{14}\right)=X_{1}^{\alpha_{21}+\alpha_{41}} X_{3}^{\alpha_{43}}-X_{2}^{\alpha_{32}} X_{4}^{\alpha_{14}}=g_{3},
$$

we get $I_{H} \sqsubseteq J_{0}$. The other cases work similarly. Using Lemma $1.2, H$ is of torus embedding type.
Q.E.D.

REMARK 4.12. 1) By calculation, any neat numerical semigroup with $M(H)$ $=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $g(H) \leqq 8$ is 1-neat.
2) For a ν-neat numerical semigroup H with $\nu \geqq 2, \psi^{-1}(O)=\operatorname{Spec} k[X] / J_{0}$ does not necessarily coincide with $C_{H}=\operatorname{Spec} k[X] / I_{H}$. For example, let H be the numerical semigroup with $M(H)=\{10,11,14,13\}$. Then $g(H)=16$ and H is 2-neat. Using Lemma 4.6, I_{H} is generated by

$$
\begin{aligned}
& f_{1}=X_{1}^{4}-X_{3} X_{4}^{2}, \quad f_{2}=X_{2}^{3}-X_{1}^{2} X_{4}, \quad f_{3}=X_{3}^{3}-X_{1}^{2} X_{2}^{2}, \quad f_{4}=X_{4}^{3}-X_{2} X_{3}^{2}, \\
& f_{5}=X_{1}^{3} X_{2}-X_{3}^{2} X_{4}, \quad f_{6}=X_{1} X_{3}-X_{2} X_{4} \quad \text { and } f_{7}=X_{1} X_{4}^{2}-X_{2}^{2} X_{3},
\end{aligned}
$$

hence $\mu(H)=7$. But J_{0} is generated by $f_{1}, f_{2}, f_{3}, f_{4}$ and $X_{1}^{2} X_{3}^{2}-X_{2}^{2} X_{4}^{2}$. More explicitly, as an algebraic subset of A_{2}^{4} we have $V\left(J_{0}\right) \supseteqq V\left(I_{H}\right)$, because $(-1,1,1,1) \in$ $V\left(J_{0}\right)-V\left(I_{H}\right)$.

5. Symmetric numerical semigroups generated by 4 elements.

In this section, we always assume that H is a numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then using Bresinsky's result [1] we will show that any symmetric H is of torus embedding type, in this case if H is not a complete intersection then it is 1 -neat. In the symmetric case, a set of generators for the ideal I_{H} is given by the following, which is due to Bresinsky:

Remark 5.1. Let H be symmetric, i. e., $2 g(H)=C(H)$.
(1) When H is a complete intersection, renumbering $a_{1}, a_{2}, a_{3}, a_{4}$ we may assume that $X_{1}^{\alpha_{1}}-X_{2}^{\alpha_{2}} \in I_{H}$.
a) The case $X_{3}^{\alpha_{3}}-X_{4}^{\alpha_{4} \in I_{H}}$. Then $\left(a_{1}, a_{2}\right)\left(a_{3}, a_{4}\right) \in\left\langle a_{1}, a_{2}\right\rangle \cap\left\langle a_{3}, a_{4}\right\rangle$, hence we put

$$
\left(a_{1}, a_{2}\right)\left(a_{3}, a_{4}\right)=\beta_{1} a_{1}+\beta_{2} a_{2}=\beta_{3} a_{3}+\beta_{4} a_{1} .
$$

In this case,

$$
I_{H}=\left(f_{1}=X_{1}^{\alpha_{1}}-X_{2}^{\alpha_{2}}, f_{2}=X_{3}^{\alpha_{3}}-X_{4}^{\alpha_{4}}, f_{3}=X_{1}^{\beta_{1}} X_{2}^{\beta_{2}}-X_{3}^{\beta_{3}} X_{4}^{\beta_{4}}\right) .
$$

b) The case $X_{3}^{\alpha_{3}}-X_{4}^{\alpha_{1}} \in I_{H}$. Then H is a strictly complete intersection.
(2) If H is not a complete intersection, renumbering $a_{1}, a_{2}, a_{3}, a_{4}$ we have

$$
\begin{aligned}
I_{H}= & \left(f_{1}=X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{13}} X_{4}^{\alpha_{14}}, f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{11}} X_{4}^{\alpha_{24}}, f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{31}} X_{2}^{\alpha_{32}},\right. \\
& \left.f_{4}=X_{4}^{\alpha_{4}}-X_{2}^{\alpha_{42}} X_{3}^{\alpha_{43}}, f_{5}=X_{1}^{\alpha_{21}} X_{3}^{\alpha_{43}}-X_{2}^{\alpha_{32}} X_{4}^{\alpha_{14}}\right)
\end{aligned}
$$

where

$$
0<\alpha_{i j}<\alpha_{j}, \quad \alpha_{1}=\alpha_{21}+\alpha_{31}, \quad \alpha_{2}=\alpha_{32}+\alpha_{42}, \quad \alpha_{3}=\alpha_{13}+\alpha_{43}, \quad \alpha_{4}=\alpha_{14}+\alpha_{24} .
$$

In this case,

$$
a_{1}=\alpha_{2} \alpha_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}, \quad a_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\alpha_{31} \alpha_{43} \alpha_{24}, \quad a_{3}=\alpha_{1} \alpha_{32} \alpha_{4}+\alpha_{31} \alpha_{42} \alpha_{14}
$$

and

$$
a_{4}=\alpha_{1} \alpha_{2} \alpha_{43}+\alpha_{21} \alpha_{42} \alpha_{13}
$$

hence H is 1-neat.
Proposition 5.2. Any symmetric H is of torus embedding type.
Proof. In virtue of Lemma 2.3 and Theorem 4.11, it suffices to show that in the case of Remark 5.1 (1) a) H is of torus embedding type. Renumbering a_{1} and a_{2} (resp. a_{3} and a_{4}), we may assume that $\beta_{1} \neq 0$ and $\beta_{3} \neq 0$, hence the following four cases occur:

1) $\beta_{2} \neq 0$ and $\beta_{4} \neq 0$, 2) $\beta_{2} \neq 0$ and $\beta_{4}=0$, 3) $\beta_{2}=0$ and $\beta_{4} \neq 0$
and
2) $\beta_{2}=0$ and $\beta_{4}=0$.

For the case 1), let

$$
\begin{aligned}
& \pi: k[Z, Y]=k\left[Z_{1}, \cdots, Z_{4}, Y_{1}, \cdots, Y_{4}\right] \longrightarrow k\left[t_{1}^{ \pm 1}, \cdots, t_{5}^{ \pm 1}\right] \\
& \text { (resp. } \left.\eta: k[Z, Y] \longrightarrow k[X]=k\left[X_{1}, \cdots, X_{4}\right]\right)
\end{aligned}
$$

be the k-algebra homomorphism defined by $\pi\left(Z_{i}\right)=t_{1}$ for $i=1,2, \pi\left(Z_{j}\right)=t_{2}$ for $j=3,4, \pi\left(Y_{k}\right)=t_{2+k}$ for $k=1,2,3$ and $\pi\left(Y_{4}\right)=t_{8} t_{4} t_{5}^{-1}$ (resp. $\eta\left(Z_{i}\right)=X_{i}^{\alpha_{i}}$ and $\eta\left(Y_{i}\right)$ $=X_{i}^{\beta} i$ for $\left.1 \leqq i \leqq 4\right)$. Then we see easily that $I_{H} \supseteq \eta(\operatorname{Ker} \pi)$. Moreover, since $F_{1}=Z_{1}-Z_{2}, F_{2}=Z_{3}-Z_{4}$ and $F_{3}=Y_{1} Y_{2}-Y_{3} Y_{4} \in \operatorname{Ker} \pi$, we have $I_{H}=\left(\eta\left(F_{1}\right), \eta\left(F_{2}\right)\right.$, $\left.\eta\left(F_{3}\right)\right)$, which is generated by the set $\eta(\operatorname{Ker} \pi)$. Using Lemma 1.2, H is of torus embedding type. The other cases 2), 3), 4) work similarly.
Q.E.D.

6. Almost symmetric numerical semigroups generated by 4 elements.

In the last section we will give another examples of 1 -neat numerical semigroups, which are called to be almost symmetric, i. e., $C(H)=2 g(H)-1$. In this section we are devoted to proving that any almost symmetric numerical semigroup H with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is 1 -neat. First we investigate the properties of almost symmetric H with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$.

Lemma 6.1. Let H be a numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$ and h be its element.
0) For any $1 \leqq i \leqq h$ there exists a unique $1 \leqq h_{i} \leqq h$ such that $\omega_{h}(h)-\omega_{h}(i) \equiv$ $\omega_{h}\left(h_{i}\right) \bmod h$.

1) H is almost symmetric if and only if there exists a unique $i_{0} \in[2, h-1]$ such that $2 \omega_{h}\left(i_{0}\right)=\omega_{h}(h)+h$ and that $\omega_{h}(i)+\omega_{h}\left(h_{i}\right)=\omega_{h}(h)$ for all $i \neq i_{0}$.

Proof. The definition of $L_{n}(H)=\left\{\omega_{h}(1)<\cdots<\omega_{h}(h)\right\}$ means 0$)$. We see easily :

$$
g(H)=\sum_{i=1}^{n}\left[\omega_{h}(i) / h\right] \quad \text { and } \quad C(H)-g(H)=\sum_{i=1}^{h}\left[\left(\omega_{h}(h)-\omega_{h}(i)\right) / h\right]
$$

where [] is the Gauss symbol. For any $1 \leqq i \leqq h$ there exists a unique $n_{i} \in N$ such that $\omega_{h}(h)-\omega_{h}(i)=\omega_{h}\left(h_{i}\right)-n_{i} h$. Hence H is almost symmetric if and only if $\sum_{i=1}^{n} n_{i}=1$. This implies 1).
Q.E.D.

Proposition 6.2. Let H be an almost symmetric numerical semigroup with $M(H)=\left\{a_{1}, \cdots, a_{n}\right\}$, and let j, k be two distinct element of $[1, n]$ such that $\alpha_{j} a_{j}=\sum_{l \neq j} \alpha_{j l} a_{l}$ with $\alpha_{j k} \geqq 1$.

1) If $\alpha_{j_{k} \geqq 2}$, then $\omega_{a_{k}}\left(a_{k}\right)-\left(\alpha_{j}-1\right) a_{j} \in L_{a_{k}}(H)$.
2) We have

$$
\omega_{a_{k}}\left(a_{k}\right)= \begin{cases}\sum_{l \in[1, n]-(k, j)} \beta_{l} a_{l}+\left(\alpha_{j}-1\right) a_{j} & \text { if } \omega_{a_{k}}\left(a_{k}\right)-\left(\alpha_{j}-1\right) a_{j} \in L_{a_{k}}(H) . \\ \sum_{l \in[1, n]-\{k, j \mid} \alpha_{j l} a_{l}+\left(\alpha_{j}-2\right) a_{j} & \text { otherwise. }\end{cases}
$$

Proof. 1) Since $\left(\alpha_{j}-1\right) a_{j} \in \dot{L_{a_{k}}}(H)$, by Lemma 6.1 it suffices to show that

$$
\left(\alpha_{j}-1\right) a_{j} \neq \omega_{a_{k}}\left(i_{0}\right) \quad \text { where } \quad 2 \omega_{a_{k}}\left(i_{0}\right)=\omega_{a_{k}}\left(a_{k}\right)+a_{k}
$$

Assume $\left(\alpha_{j}-1\right) a_{j}=\omega_{a_{k}}\left(i_{0}\right)$. Then

$$
\omega_{a_{k}}\left(a_{k}\right)+a_{k}=2\left(\alpha_{j}-1\right) a_{j}=\left(\alpha_{j}-2\right) a_{j}+\sum_{l \neq j} \alpha_{j l} a_{l}
$$

Hence we have

$$
\omega_{a_{k}}\left(a_{k}\right)-a_{k}=\left(\alpha_{j}-2\right) a_{j}+\left(\alpha_{j k}-2\right) a_{k}+\sum_{l \in[1, n]-\{j, k]} \alpha_{j l} a_{l}
$$

This contradicts $\omega_{a_{k}}\left(a_{k}\right)-a_{k} \notin H$.
2) In view of $\alpha_{j k} \geqq 1$, if $\omega_{a_{k}}\left(a_{k}\right)-\left(\alpha_{j}-1\right) a_{j} \in L_{a_{k}}(H)$, then

$$
\omega_{a_{k}}\left(a_{k}\right)=\sum_{l \in[1, n]^{-1 k, j},} \beta_{l} a_{l}+\left(\alpha_{j}-1\right) a_{j}
$$

If $\omega_{a_{k}}\left(a_{k}\right)-\left(\alpha_{j}-1\right) a_{j} \notin L_{a_{k}}(H)$, we have

$$
2\left(\alpha_{j}-1\right) a_{j}=2 \omega_{a_{k}}\left(i_{0}\right)=\omega_{a_{k}}\left(a_{k}\right)+a_{k},
$$

hence

$$
\begin{aligned}
\omega_{a_{k}}\left(a_{k}\right) & =\alpha_{j} a_{j}+\left(\alpha_{j}-2\right) a_{j}-a_{k}=\sum_{l \in[1, n]-1 j, k)} \alpha_{j l} a_{l}+\left(\alpha_{j}-2\right) a_{j}+\left(\alpha_{j k}-1\right) a_{k} \\
& =\sum_{l \in[1,1, n]-1 j, k j} \alpha_{j l} a_{l}+\left(\alpha_{j}-2\right) a_{j} .
\end{aligned} \text { Q.E.D. }
$$

For the remainder of this section we assume that H is a numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$.

Proposition 6.3. Let H be almost symmetric and let $k \in[1,4]$ such that for any $j \in[1,4]$, different from k, we have $\alpha_{j} a_{j}=\sum_{l \neq j} \alpha_{j l} a_{l}$ with $\alpha_{j k} \geqq 1$.

1) For any $j \in[1,4]$, different from k, the following are eqivalent:
a) $\omega_{a_{k}}\left(a_{k}\right)=\sum_{l \in[1,4]-1 k, j]} \beta_{l} a_{l}+\left(\alpha_{j}-2\right) a_{j}$,
b) $\quad \omega_{a_{k}}\left(a_{k}\right)-\left(\alpha_{j}-1\right) a_{j} \notin L_{a_{k}}(H)$.

In this case, $\alpha_{j k}=1$ and $\beta_{l}=\alpha_{j l}$ for $l \in[1,4]-\{k, j\}$.
2) We have

$$
\omega_{a_{k}}\left(a_{k}\right)=\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{l}-1\right) a_{l}+\left(\alpha_{j}-2\right) a_{j}
$$

and

$$
\left.\left.L_{a_{k}}(H)=\left\{\beta_{i} a_{i}+\beta_{l} a_{l}+\beta_{j} a_{j} \mid 0 \leqq \beta_{i}<\alpha_{i}, 0 \leqq \beta_{l}<\alpha_{l}, 0 \leqq \beta_{j}<\alpha_{j}-1\right\} \cup\right\}\left(\alpha_{j}-1\right) a_{j}\right\}
$$

for some permutation (k, i, l, j) of $[1,4]$.
Proof. 1) Proposition 6.2 2) implies $b) \Rightarrow a$). By the assumption we have $\beta_{l}<\alpha_{l}$ for $l \in[1,4]-\{k, j\}$, which induces $\beta_{l}=\alpha_{j l}$. Assume that $\omega_{a_{k}}\left(a_{k}\right)-$ $\left(\alpha_{j}-1\right) a_{j} \in L_{a_{k}}(H)$. Then we have

$$
\sum_{l \in[1,4]-\mathrm{k}, j_{l}} \beta_{l} a_{l}+\left(\alpha_{j}-2\right) a_{j}=\sum_{l \in[1,4]-k, j_{l}} \beta_{l}^{\prime} a_{l}+\left(\alpha_{j}-1\right) a_{j} .
$$

This is a contradiction.
2) Renumbering a_{1}, \cdots, a_{4}, we may assume $k=1$. Now assume $\omega_{a_{1}}\left(a_{1}\right)-$ $\left(\alpha_{j}-1\right) a_{j} \in L_{a_{1}}(H)$ for all $j \in[2,4]$. Then by Proposition 6.2 and the assumption, we get

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-1\right) a_{4},
$$

which implies

$$
L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid 0 \leqq \beta_{i}<\alpha_{i}\right\} .
$$

This contradicts Lemma 6.11). Hence there exists a unique $j \in[2,4]$ such that $2\left(\alpha_{j}-1\right) a_{j}=\omega_{a_{1}}\left(a_{1}\right)+a_{1}$, which implies

$$
\omega_{a_{1}}\left(a_{1}\right)=\sum_{l \in[2,4]-j j} \beta_{l} a_{l}+\left(\alpha_{j}-2\right) a_{j} .
$$

Therefore we get

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{l}-1\right) a_{l}+\left(\alpha_{j}-2\right) a_{j}
$$

for some permutation (i, l, j) or $(2,3,4)$. Hence we have

$$
L_{a_{1}}(H) \supseteqq\left\{\beta_{i} a_{i}+\beta_{l} a_{l}+\beta_{j} a_{j} \mid 0 \leqq \beta_{i}<\alpha_{i}, 0 \leqq \beta_{l}<\alpha_{l}, 0 \leqq \beta_{j}<\alpha_{j}-1\right\} \cup\left\{\left(\alpha_{j}-1\right) a_{j}\right\}
$$

Assume $z=\gamma_{i} a_{i}+\gamma_{l} a_{l}+\left(\alpha_{j}-1\right) a_{j} \in L_{a_{1}}(H)$ with $\left(\gamma_{i}, \gamma_{l}\right) \neq(0,0)$. Since $\omega_{a_{1}}\left(a_{1}\right)-z \in$ $L_{a_{1}}(H)$, we put

$$
\omega_{a_{1}}\left(a_{1}\right)-z=\nu_{i} a_{i}+\nu_{l} a_{l}+\nu_{j} a_{j}
$$

where $\nu_{i}<\alpha_{i}, \nu_{l}<\alpha_{l}$ and $\nu_{j}<\alpha_{j}$, hence

$$
\left(\alpha_{i}-1-\gamma_{i}\right) a_{i}+\left(\alpha_{l}-1-\gamma_{l}\right) a_{l}-a_{j}=\nu_{i} a_{i}+\nu_{l} a_{l}+\nu_{j} a_{j},
$$

which implies $\nu_{j}+1=0$, a contradiction.
Q.E.D.

By tedious computations using Proposition 6.3 we can give generators of the ideal I_{H} in the case of almost symmetric H.

Theorem 6.4. Let H be almost symmetric. Then renumbering $a_{1}, a_{2}, a_{3}, a_{4}$ the ideal I_{H} is generated by

$$
\begin{aligned}
& f_{1}=X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{13}} X_{4}^{\alpha_{14}}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4}^{\alpha_{24}}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{31}} X_{2}^{\alpha_{32}}, \\
& f_{4}=X_{4}^{\alpha_{4}}-X_{1}^{\alpha_{41}} X_{2}^{\alpha_{42}} X_{3}^{\alpha_{43}} \quad \text { and } g=X_{1}^{\alpha_{21}+\alpha_{41}} X_{3}^{\alpha_{43}}-X_{2}^{\alpha_{32}} X_{4}^{\alpha_{14}}
\end{aligned}
$$

where $0<\alpha_{i j}<\alpha_{j}, \alpha_{1}=\alpha_{21}+\alpha_{31}+\alpha_{41}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{43}$ and $\alpha_{4}=\alpha_{14}+\alpha_{24}$, which imply $\mu(H)=5$. More explicitly we obtain $\alpha_{13}=1, \alpha_{14}=\alpha_{4}-1, \alpha_{24}=1, \alpha_{31}=$ $\alpha_{1}-\alpha_{21}-1, \alpha_{32}=1, \alpha_{41}=1, \alpha_{42}=\alpha_{2}-1$ and $\alpha_{43}=\alpha_{3}-1$. Hence using Proposition 6.3 2). We can show that H is 1-neat.

Proof. For any $i \in[1,4]$, let $f_{i} \in I_{H}$ be a polynomial of the type $X_{i}^{\alpha_{i}}-$ $\prod_{j \in[1,4]-i i_{1}} X_{j}^{\alpha_{i j}}$. First, assume that there exist two distinct $i, j \in[1,4]$ with $X_{i}^{\alpha{ }_{i}}$ $X_{j}^{\alpha_{j}} \in I_{H}$. Then renumbering a_{1}, \cdots, a_{4} we may assume $i=1$ and $j=2$. They are divided into the four cases:

1) $X_{i}^{\alpha_{i}}-X_{j}^{\alpha_{j}} \in I_{H}$ for all $\{i, j\{\neq\{1,2\}$,
2) $X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{3}} \in I_{H} \quad$ and $\quad X_{1}^{\alpha_{1}}-X_{4}^{\alpha_{4}} \oplus I_{H}$,
3) $X_{3}^{\alpha_{3}}-X_{4}^{\alpha_{4}} \in I_{H} \quad$ and $\quad X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{3}} \in I_{H}$,
4) $X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{3}} \in I_{H} \quad$ and $\quad X_{1}^{\alpha_{1}}-X_{4}^{\alpha_{4}} \in I_{H}$.

The case 1). Then $f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{31}} X_{2}^{\alpha_{32}} X_{4}^{\alpha_{34}}$ and $f_{4}=X_{4}^{\alpha_{4}}-X_{1}^{\alpha_{41}} X_{2}^{\alpha_{42}} X_{3}^{\alpha_{4}}$. These are divided into the following:
a) $\alpha_{31}>0, \alpha_{32}>0, \alpha_{41}>0, \alpha_{42}>0$,
b) $\alpha_{31}>0, \alpha_{32}>0, \alpha_{41}>0, \alpha_{42}=0$,
c) $\alpha_{31}>0, \alpha_{32}=0, \alpha_{41}>0, \alpha_{42}=0$,
d) $\alpha_{31}>0, \alpha_{32}=0, \alpha_{41}=0, \alpha_{42}>0$.
a) Then we have

$$
\begin{aligned}
& \omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}=\alpha_{42} a_{2}+\alpha_{43} a_{3}+\left(\alpha_{4}-2\right) a_{4}, \\
& \omega_{a_{2}}\left(a_{2}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}=\alpha_{41} a_{1}+\alpha_{43} a_{3}+\left(\alpha_{4}-2\right) a_{4},
\end{aligned}
$$

which imply $\alpha_{1}=\alpha_{2}=2$, hence $a_{1}=a_{2}$, a contradiction.
b) Similarly, we get $a_{1}=a_{2}$, a contradiction.
c) We have

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-2\right) a_{j}
$$

with $\{i, j\}=\{3,4\}$. This is a contradiction.
d) We get

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\beta_{4} a_{4}, \quad \omega_{a_{2}}\left(a_{2}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{4}-1\right) a_{4}+\beta_{3} a_{3}
$$

which implies $\beta_{4}=\alpha_{4}-1$. Hence we have

$$
L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid 0 \leqq \beta_{i}<\alpha_{i}\right\},
$$

which implies $C(H)=2 g(H)$, a contradiction.
The case 2). Then $f_{4}=X_{4}^{\alpha_{4}}-X_{1}^{\alpha_{41}} X_{2}^{\alpha_{42}} X_{3}^{\alpha_{43}}$, where we may assume $\alpha_{41}>0$. In the similar manner to 1) a), we get $a_{1}=a_{2}$, a contradiction.

The case 3). We have $\omega_{a_{3}}\left(a_{3}\right)=\gamma_{1} a_{1}+\gamma_{2} a_{2}+\left(\alpha_{4}-1\right) a_{4}$. Set $d=\left(a_{3}, a_{4}\right)$ and $H^{\prime}=\left\langle d, a_{1}, a_{2}\right\rangle$. Then $L_{d}\left(H^{\prime}\right) \cong L_{a_{3}}(H)$. If $\nu_{1} a_{1}+\nu_{2} a_{2}+\nu_{4} a_{4}=\mu_{1} a_{1}+\mu_{2} a_{2}+\mu_{4} a_{4}$ with $\nu_{4}<\alpha_{4}$ and $\mu_{4}<\alpha_{4}$, then $\nu_{4}=\mu_{4}$. Using this, for any $\omega^{\prime} \in\left\langle a_{1}, a_{2}\right\rangle$ with $\omega_{a_{3}}\left(a_{3}\right)-\omega^{\prime} \in L_{a_{3}}(H)$ we have

$$
\omega_{a_{3}}\left(a_{3}\right)-\omega^{\prime}=\mu_{1} a_{1}+\mu_{2} a_{2}+\left(\alpha_{4}-1\right) a_{4}
$$

with $\mu_{1}, \mu_{2} \in N$. Hence if $\omega^{\prime} \in L_{d}\left(H^{\prime}\right)$ with $\omega_{a_{3}}\left(a_{3}\right)-\omega^{\prime} \in L_{a_{3}}(H)$, then for any $\nu_{4} \in\left[0, \alpha_{4}-1\right]$ we get $\omega^{\prime}+\nu_{4} a_{4} \in L_{a_{3}}(H)$. Therefore we can see:

$$
L_{a_{3}}(H)=\left\{\omega^{\prime}+\nu_{4} a_{4} \mid \omega^{\prime} \in L_{d}\left(H^{\prime}\right), 0 \leqq \nu_{4}<\alpha_{4}\right\} \quad \text { and } \quad \omega_{a_{3}}\left(a_{3}\right)=\omega_{d}(d)+\left(\alpha_{4}-1\right) a_{4} .
$$

Since we have $\omega_{d}(d)-\omega^{\prime} \in L_{d}\left(H^{\prime}\right)$ for any $\omega^{\prime} \in L_{d}\left(H^{\prime}\right)$, we get $\omega_{a_{3}}\left(a_{3}\right)-\omega \in L_{a_{3}}(H)$ for any $\omega \in L_{a_{3}}(H)$, i. e., $C(H)=2 g(H)$, a contradiction.

The case 4). Then H is a complete intersection ([1]), which implies $C(H)=$ $2 g(H)$, a contradiction.

Secondly, assume: each f_{i} contains st least three variables and there exists $j \in[1,4]$ such that the variable X_{j} appears only in the f_{j}. Then we may assume that

$$
f_{1}=X_{1}^{\alpha_{1}}-X_{2}^{\alpha_{12}} X_{2}^{\alpha_{13}} X_{1}^{\alpha_{11}}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{3}^{\alpha_{23}} X_{4}^{\alpha_{24}}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{2}^{\alpha_{32}} X_{4}^{\alpha_{34}},
$$

and

$$
f_{4}=X_{4}^{\alpha_{1}}-X_{2}^{\alpha_{42}} X_{3}^{\alpha_{4}}
$$

with $\alpha_{13}>0, \alpha_{14}>0$. Hence we get

$$
\begin{aligned}
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{1}-2\right) a_{1}, \\
& \omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{1}-2\right) a_{1},
\end{aligned}
$$

which imply $\alpha_{4} a_{4}=\alpha_{3} a_{3}=\alpha_{32} a_{2}+\alpha_{34} a_{4}$, a contradiction.
Thirdly, assume: each f_{i} contains at least three variables and there exists $j \in[1,4]$ such that the variable X_{j} appears twice in the f_{i} 's. Then we may assume that

$$
f_{1}=X_{1}^{\alpha_{1}}-X_{2}^{\alpha}{ }_{2}^{2} X_{3}^{\alpha_{13}} X_{1}^{\alpha_{14}}, \quad f_{2}=X_{2}^{\alpha}-X_{1}^{\alpha_{11}} X_{3}^{\alpha 23} X_{4}^{\alpha_{24}}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{2}^{\alpha_{23}} X_{4}^{\alpha_{34}}
$$

and

$$
f_{4}=X_{4}^{\alpha_{4}}-X_{2}^{\alpha_{12}} X_{3}^{\alpha_{43}} .
$$

The case $\alpha_{12}>0$. Then we have

$$
\begin{aligned}
& \omega_{a_{2}}\left(a_{2}\right)=\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{1}-2\right) a_{1}, \\
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-2\right) a_{j}, \\
& \omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{j}-1\right) a_{j}+\left(\alpha_{i}-2\right) a_{i},
\end{aligned}
$$

with $\{i, j\}=\{1,2\}$. If $j=1$ (resp. 2), then $\left(\alpha_{4}-\alpha_{34}\right) a_{4}=a_{1}+\left(\alpha_{32}-1\right) a_{2}$ (resp. $\left(\alpha_{3}-\right.$ $\left.\left.\alpha_{43}\right) a_{3}=a_{1}+\left(\alpha_{42}-1\right) a_{2}\right)$, a contradiction. The case $\alpha_{12}=0$. We have

$$
\begin{aligned}
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{2}-2\right) a_{2}, \\
& \omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{2}-2\right) a_{2},
\end{aligned}
$$

which implies $\alpha_{4} a_{4}=\alpha_{3} a_{3}$, a contradiction.
Lastly, assume: each f_{i} contains at least three variables and all the variables X_{j} appear at least three times in the f_{i} 's. Renumbering a_{1}, \cdots, a_{4}, these are divided into the 10 cases in Proposition 4.4.

The case (1). Then we may assume:

$$
\begin{aligned}
& \omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}, \\
& \omega_{\alpha_{4}}\left(a_{4}\right)=\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-1\right) a_{j}+\left(\alpha_{k}-2\right) a_{k} .
\end{aligned}
$$

Using $\omega_{a_{1}}\left(a_{1}\right)-a_{1}=\omega_{a_{4}}\left(a_{4}\right)-a_{4}$, this is a contradiction.
The case (2). We have

$$
\begin{aligned}
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-2\right) a_{j}, \\
& \omega_{a_{4}}\left(a_{1}\right)=\left(\alpha_{k}-1\right) a_{k}+\left(\alpha_{l}-1\right) a_{l}+\left(\alpha_{m}-2\right) a_{m} .
\end{aligned}
$$

This is a contradiction.

The case (3) a). We have

$$
\begin{aligned}
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{4}-2\right) a_{4}, \\
& \omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-2\right) a_{3} .
\end{aligned}
$$

Then $\left(\alpha_{4}-1\right) a_{4}=\left(\alpha_{3}-1\right) a_{3}$, a contradiction.
The case (3) b). We have

$$
\begin{aligned}
& \omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-2\right) a_{3}, \\
& \omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4} .
\end{aligned}
$$

Moreover,

$$
\omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\gamma_{2} a_{2}+\gamma_{4} a_{4} \quad \text { or } \quad\left(\alpha_{1}-2\right) a_{1}+\alpha_{14} a_{4} .
$$

Using $\omega_{a_{4}}\left(a_{4}\right)-a_{4}=\omega_{a_{3}}\left(a_{3}\right)-a_{3}=\omega_{a_{1}}\left(a_{1}\right)-a_{1}$, this is a contradiction.
The case (3) c). We have

$$
\begin{aligned}
& \omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-2\right) a_{j}, \\
& \omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{j}-1\right) a_{j}+\left(\alpha_{i}-2\right) a_{i}
\end{aligned}
$$

This is a contradiction.
The case (4) a). We have

$$
\omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{4}-2\right) a_{4}
$$

and

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{3}-1\right) a_{3}+\gamma_{2} a_{2}+\gamma_{4} a_{4} \quad \text { or } \quad\left(\alpha_{3}-2\right) a_{3}+\alpha_{32} a_{2} .
$$

This is a contradiction.
The case (4) b). $\omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{i}-1\right) a_{i}+\left(\alpha_{j}-1\right) a_{j}+\left(\alpha_{l}-2\right) a_{l}$, a contradiction.
The case (5) a). We have

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{3}-1\right) a_{3}+\gamma_{2} a_{2}+\gamma_{4} a_{4} \quad \text { or } \quad\left(\alpha_{3}-2\right) a_{3}+\alpha_{32} a_{2}
$$

Moreover,

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{4}-1\right) a_{4}+\beta_{2} a_{2}+\beta_{3} a_{3} \quad \text { or } \quad\left(\alpha_{4}-2\right) a_{4}+\alpha_{42} a_{2}
$$

This is a contradiction.
The case (5) b). We have

$$
\begin{array}{lll}
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\gamma_{4} a_{4} & \text { or } & \left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-2\right) a_{3}, \\
\omega_{a_{2}}\left(a_{2}\right)=\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-1\right) a_{4}+\gamma_{1} a_{1} & \text { or } & \left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}, \\
\omega_{a_{3}}\left(a_{3}\right)=\left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{1}-1\right) a_{1}+\gamma_{2} a_{2} & \text { or } & \left(\alpha_{4}-1\right) a_{4}+\left(\alpha_{1}-2\right) a_{1}
\end{array}
$$

and

$$
\omega_{a_{4}}\left(a_{4}\right)=\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\gamma_{3} a_{3} \quad \text { or } \quad\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-2\right) a_{2} .
$$

If we renumber a_{1}, \cdots, a_{4}, each latter case is reduced to the case (4) c). For example, let $\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-2\right) a_{3}$. If $\omega_{a_{2}}\left(a_{2}\right)=\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-1\right) a_{4}+\gamma_{1} a_{1}$, then $\alpha_{2} a_{2}=\left(\gamma_{1}+1\right) a_{1}+a_{3}+\left(\alpha_{4}-1\right) a_{4}$, whose case is reduced to (4) c). If $\omega_{a_{2}}\left(a_{2}\right)=$ $\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}$, then $\alpha_{2} a_{2}=a_{1}+a_{3}+\left(\alpha_{4}-2\right) a_{4}$. If $\alpha_{4}=2$, we replace f_{2} by $X_{2}^{2}-X_{1} X_{3}$, which is reduced to the third case, a contradiction. Hence we have $\alpha_{4} \geqq 3$, whose case is reduced to (4)c). Therefore for any $i \in[1,4], \omega_{a_{i}}\left(a_{i}\right)$ is equal to the former case. Then we see:

$$
\alpha_{21}+\alpha_{31}=\alpha_{1}, \quad \alpha_{32}+\alpha_{42}=\alpha_{2}, \quad \alpha_{13}+\alpha_{43}=\alpha_{3} \quad \text { and } \quad \alpha_{14}+\alpha_{24}=\alpha_{4} .
$$

Using $\omega_{a_{1}}\left(a_{1}\right)-a_{1}=\omega_{a_{4}}\left(a_{4}\right)-a_{4}$ we obtain

$$
\begin{aligned}
\omega_{a_{1}}\left(a_{1}\right) & =\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{14}-1\right) a_{4} \\
& =\left(\alpha_{32}-1\right) a_{2}+\left(\alpha_{13}-1\right) a_{3}+\left(\alpha_{4}+\alpha_{14}-1\right) a_{4},
\end{aligned}
$$

which implies
$L_{a_{1}}(H) \supseteqq\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid \beta_{i} \in N\right.$ and $\left(\beta_{2}, \beta_{3}, \beta_{4}\right)$ satisfies one of the following:

$$
\text { 1) } \left.\beta_{2}<\alpha_{2}, \beta_{3}<\alpha_{3}, \beta_{4}<\alpha_{14}, \text { 2) } \beta_{2}<\alpha_{32}, \beta_{3}<\alpha_{13}, \alpha_{14} \leqq \beta_{4}<\alpha_{4}\right\} \text {. }
$$

Since there exists a positive integer ν such that

$$
a_{1}=\nu^{-1}\left(\alpha_{2} \alpha_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}\right),
$$

the above inclusion becomes the equality, hence for any $\omega \in L_{a_{1}}(H)$ we have $\omega_{a_{1}}\left(a_{1}\right)-\omega \in L_{a_{1}}(H)$, i. e., $C(H)=2 g(H)$, a contradiction.

Therefore, if H is almost symmetric, renumbering a_{1}, \cdots, a_{4} it is reduced to the case (4) c), i. e.,

$$
f_{1}=X_{1}^{\alpha_{1}}-X_{3}^{\alpha_{13}} X_{4}^{\alpha_{14}}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4}^{\alpha_{24}}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{31}} X_{2}^{\alpha_{32}}
$$

and

$$
f_{4}=X_{4}^{\alpha_{4}}-X_{1}^{\alpha_{11}} X_{2}^{\alpha_{42}} X_{3}^{\alpha_{43}} .
$$

Moreover,

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}=\alpha_{42} a_{2}+\alpha_{43} a_{3}+\left(\alpha_{4}-2\right) a_{4},
$$

which implies $\alpha_{41}=1, \alpha_{42}=\alpha_{2}-1$ and $\alpha_{43}=\alpha_{3}-1$. Now

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1-\alpha_{13}\right) a_{3}+\left(\alpha_{4}-2-\alpha_{14}\right) a_{4}+\alpha_{1} a_{1},
$$

which implies $\alpha_{14}=\alpha_{4}-1$. Moreover, we get

$$
\begin{aligned}
\omega_{a_{4}}\left(a_{4}\right)= & \left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1-\alpha_{13}\right) a_{3} \\
= & \left(\alpha_{1}-1-\alpha_{21}-\alpha_{31}-\alpha_{41}\right) a_{1}+\left(\alpha_{2}-1-\alpha_{42}+\alpha_{2}-\alpha_{32}\right) a_{2} \\
& +\left(\alpha_{3}-\alpha_{43}\right) a_{3}+\left(\alpha_{4}-\alpha_{24}\right) a_{4} .
\end{aligned}
$$

If $\alpha_{2} \geqq \alpha_{32}$, then $\alpha_{1} \leqq \alpha_{21}+\alpha_{31}+\alpha_{41}$. If $\alpha_{2}<\alpha_{32}$, then we have

$$
\begin{aligned}
\omega_{a_{4}}\left(a_{4}\right) & =\left(\alpha_{1}-1\right) a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-2\right) a_{3} \\
& =\left(\alpha_{21}+\alpha_{31}\right) a_{1}+\left(\alpha_{32}-\alpha_{2}\right) a_{2}+\left(\alpha_{3}-2\right) a_{3}
\end{aligned}
$$

which implies $\alpha_{21}+\alpha_{31}=\alpha_{1}-1$, hence $\alpha_{1} \leqq \alpha_{21}+\alpha_{31}+\alpha_{41}$. Since

$$
\begin{aligned}
\alpha_{1} a_{1}+\alpha_{2} a_{2}+\alpha_{3} a_{3}+\alpha_{4} a_{4}= & \left(\alpha_{21}+\alpha_{31}+\alpha_{41}\right) a_{1}+\left(\alpha_{32}+\alpha_{42}\right) a_{2} \\
& +\left(\alpha_{13}+\alpha_{43}\right) a_{3}+\left(\alpha_{14}+\alpha_{34}\right) a_{4}
\end{aligned}
$$

we have

$$
\alpha_{1}=\alpha_{21}+\alpha_{31}+\alpha_{41}, \quad \alpha_{2}=\alpha_{32}+\alpha_{42}, \quad \alpha_{3}=\alpha_{13}+\alpha_{43} \quad \text { and } \quad \alpha_{4}=\alpha_{14}+\alpha_{34}
$$

which imply

$$
\begin{array}{lll}
\alpha_{41}=1, & \alpha_{31}=\alpha_{1}-\alpha_{21}-1, \quad \alpha_{32}=1, \quad \alpha_{42}=\alpha_{2}-1 \\
\alpha_{13}=1, & \alpha_{43}=\alpha_{3}-1, \quad \alpha_{14}=\alpha_{4}-1, \quad \alpha_{34}=1
\end{array}
$$

Since we have

$$
L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid 0 \leqq \beta_{2}<\alpha_{2}, 0 \leqq \beta_{3}<\alpha_{3}, 0 \leqq \beta_{4}<\alpha_{4}-1\right\} \cup\left\{\left(\alpha_{4}-1\right) a_{4}\right\}
$$

H is 1-neat.

$$
Q . E . D .
$$

Conversely, by simple calculations we get the following:

THEOREM 6.5. Let $\alpha_{i}>1$ for $1 \leqq i \leqq 4$ and let $0<\alpha_{21}<\alpha_{1}-1$. If $a_{1}=\alpha_{2} \alpha_{3}\left(\alpha_{4}\right.$ $-1)+1, \quad a_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{3}-1\right)+\alpha_{3}, a_{3}=\alpha_{1} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{2}-1\right)\left(\alpha_{4}-1\right)$ $-\alpha_{4}+1, a_{4}=\alpha_{1} \alpha_{2}\left(\alpha_{3}-1\right)+\alpha_{21}\left(\alpha_{2}-1\right)+\alpha_{2}$ and $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=1$, then $H=\left\langle a_{1}, a_{2}, a_{3}\right.$, $\left.a_{4}\right\rangle$ is an almost symmetric numerical semigroup with $M(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and the ideal I_{H} is generated by

$$
\begin{aligned}
& f_{1}=X_{1}^{\alpha_{1}}-X_{3} X_{4}^{\alpha_{4}-1}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2} \\
& f_{4}=X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} \quad \text { and } \quad g=X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}-X_{2} X_{4}^{\alpha_{4}-1}
\end{aligned}
$$

Proof. By the assumption, we have

$$
\alpha_{1} a_{1}=a_{3}+\left(\alpha_{4}-1\right) a_{4}, \quad \alpha_{2} a_{2}=\alpha_{21} a_{1}+a_{4} \quad \text { and } \quad \alpha_{3} a_{3}=\left(\alpha_{1}-\alpha_{21}-1\right) a_{1}+a_{2}
$$

which imply $\alpha_{4} a_{4}=a_{1}+\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}$. Using the relations, we get

$$
L_{a_{1}}(H)=\left\{\beta_{2} a_{2}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid 0 \leqq \beta_{2}<\alpha_{2}, 0 \leqq \beta_{3}<\alpha_{3}, 0 \leqq \beta_{4}<\alpha_{4}-1\right\} \cup\left\{\left(\alpha_{4}-1\right) a_{4}\right\}
$$

and

$$
\omega_{a_{1}}\left(a_{1}\right)=\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}+\left(\alpha_{4}-2\right) a_{4}
$$

which show that H is almost symmetric. Moreover, since we have

$$
\begin{aligned}
L_{a_{4}}(H) & =\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\beta_{3} a_{3} \mid 0 \leqq \beta_{1}<\alpha_{1}, 0 \leqq \beta_{2}<\alpha_{2}, 0 \leqq \beta_{3}<\alpha_{3}-1\right\} \\
& \cup\left\{\beta_{1} a_{1}+\beta_{2} a_{2}+\left(\alpha_{3}-1\right) a_{3} \mid 0 \leqq \beta_{1} \leqq \alpha_{21}, 0 \leqq \beta_{2}<\alpha_{2}-1\right\} \\
& \cup\left\{\left(\alpha_{2}-1\right) a_{2}+\left(\alpha_{3}-1\right) a_{3}\right\},
\end{aligned}
$$

we get $a_{1} \oplus\left\langle a_{2}, a_{3}, a_{4}\right\rangle, a_{2} \notin\left\langle a_{1}, a_{3}, a_{4}\right\rangle, a_{3} \notin\left\langle a_{1}, a_{2}, a_{4}\right\rangle, a_{4} \oplus\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. Using the above relations, we get

$$
\begin{aligned}
L_{a_{2}}(H)= & \left\{\beta_{1} a_{1}+\beta_{3} a_{3}+\beta_{4} a_{4} \mid 0 \leqq \beta_{1}<\alpha_{21}, 0 \leqq \beta_{3}<\alpha_{3}, 0 \leqq \beta_{4}<\alpha_{4}\right\} \\
& \cup\left\{\beta_{1} a_{1}+\beta_{3} a_{3} \mid \alpha_{21} \leqq \beta_{1}<\alpha_{1}, 0 \leqq \beta_{3}<\alpha_{3}-1\right\} \cup\left\{\alpha_{21} a_{1}+\left(\alpha_{3}-1\right) a_{3}\right\}
\end{aligned}
$$

The complete descriptions of $L_{a_{1}}(H), L_{a_{2}}(H)$ and $L_{a_{4}}(H)$ show that the above relations are minimal.
Q.E.D.

References

[1] Bresinsky, H., Symmetric semigroups of integers generated by 4 elements, manuscripta math. 17 (1975) 205-219.
[2] Buchweitz, R.O., On deformations of monomial curves, Séminaire sur les singularités des surfaces, Palaiseau, France 1976-1977, Springer, Lecture Notes 777, 1980, 205-220.
[3] Grothendieck, A. (with Dieudonné, J.), Éléments de géométrie algébrique IV 3éme partie, Publ. Math. I.H.E.S., no. 28, 1966.
[4] Hartshorne, R., Algebraic geometry, Springer, GTM 52, p. 272, 1977.
[5] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, manuscripta math. 3 (1970) 175-193.
[6] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings I, Springer, Lecture Notes 339, 1973.
[7] Pinkham, H.C., Deformations of algebraic varieties with \boldsymbol{G}_{m} action, Astérisque, 20 (1974) 1-131.
[8] Rim, D.S. and Vitulli, M. A., Weierstrass points and monomial curves, J. Algebra, 48 (1977) 454-476.
[9] Waldi, R., Deformation von Gorenstein-Singularitäten der Kodimension 3, Math. Ann. 242 (1979) 201-208.
[10] Waldi, R., Zur Konstruktion von Weierstrasspunkten mit vorgegebener Halbgruppe, manuscripta math. 30 (1980) 257-278.

Institute of Mathematics
University of Tsukuba
Ibaraki, Japan

