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ON A TYPE OF REAL HYPERSURFACES IN

COMPLEX PROJECTIVE SPACE

By

ChristosBaikqussis* and David E. Blair

Abstract. We give a classification of real hypersurfaces in

complex proiective space under assumptions that the structure vector

t is principal, the focal map has constant rank and that V f = o,

where C is the Weyl conformal curvature tensor of the real

hvoersurface.

1. Introduction

Let M"(c) denote an n-dimensional complex space form with constant

holomorphic sectional curvature c. It is well known that a complete and simply

connected complex space form is either complex projective space PC", complex

Euclidean space C" or complex hyerbolic space HC", according as c>0, c = Q

or c<0.

In thispaper we consider a real hypersurface M of PC". The induced almost

contact metric structure and the Weyl conformal curvature tensor of the real

hypersurface M in PC" are respectively denoted by (<p,£,7],g) and C. Many

differentialgeometers have studied M by using the structure (cp,£,77,g). Typical

examples of real hypersurfaces in complex projective space PC" are

homogeneous ones and one of the firstresearches is the classificationof these by

Takagi [12]. He proved that all homogeneous hypersurfaces of PC" could be

divided into six types which are said to be Al,A2,B,C,D and E (see Theorem A).

This result was generalized by Kimura [4], who classifiedreal hypersurfaces of

PC" with constant principal curvatures and for which the structure vector t, is

principal. Now, there exist many studies of real hypersurfaces in PC". Some

hypersurfaces in PC" are characterized by conditions on the shape operator (or

principal curvatures) and one of the structure tensors. On the other hand, some
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studies about the nonexistence of real hypersurfaces under natural linear

conditions imposed on the Ricci tensor S or VS or the Weyl conformal curvature

tensor C or VC have been made by many researchers. Many results for real

hypersurfaces of complex projective space have been obtained by Cecil and Ryan

[1], Kimura [4], [5], Kon [7], S. Maeda [8], [9], Okumura [11], Takagi [12],

[13] and so on (for more details see [8]).In particular,itis well known that there

exist no Einstein real hypersurfaces M in PC" for n>3 (cf. [7]). Also

PC"(n>3) does not admit real hypersurfaces M with parallel Ricci tensor S [2].

Recently S. Maeda [9], classified real hypersurfaces M in PC" satisfying

V^S = 0 (that is the Ricci tensor 5 is parallel in the direction of the structure

vector % = -JN, where N is a unit normal vector fieldon M) under the conditions

that t,is a principal curvature vector of M and that the focal map has constant

rank on M.

On the other hand U. H. Ki, H. Nakagawa and Y. J. Suh [3] have proved that

PC" does not admit real hypersurfaces M with harmonic Weyl tensor C. So PC"

does not admit real hypersurfaces M with parallel Weyl tensor C (that is VXC = Q

for each vector X tangent to M). This is perhaps natural since VC = 0 is not a

conformal invariant. However one might impose a weaker condition utilizing

some additional structure eventhough one might not have conformal invariance.

Thus we investigate real hypersurfaces M by using the condition V=C = 0 (on the

derivative of C) which is weaker than VC = 0.

The purpose of this paper is to classify real hypersurfaces M in PC"

satisfying V^C = 0 under the condition that t,is a principal curvature vector of M

and that the focal map has constant rank on M.

THEOREM. Let M be a real hyper surface of PC"(n>3) on which <§is a

principal curvature vector with principal curvature a = Icotlr and the focal map

0r has constant rank. If for the Weyl conformal curvature tensor C we have

V=C = 0, then M is locally congruent to one of the following:

(1) a homogeneous real hyper surface which lies on a tube of radius r over a

totallygeodesic PCk(＼<k<n-l), where 0<r<n/2,

(2) a non-homogeneous real hyper surface whch lies on a tube of radius 7tlA

over a Kaehler submanifold N with nonzero principal curvature ^±1.

(3) a non-homogeneous real hypersurface which lies on a tube of radius r

over a k-dimensional Kaehler submanifold N on which the rank of each shape

operator is not greater than

*±

2

(n-k-l)/(k-l) and cot2r= (n-k

with nonzero principal curvature

l)/(fc-l), where fc= 2,---,n-l.
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Remark 1. Since case (3) in the Theorem is a new example which is

differentfrom case (7) in Maeda's theorem in [9],it is essential to guarantee the

existence of the Kaehler submanifold Nk(k>2) such that the rank of each shape

operator is not greater than 2 in PC". The following example N"~lis a complex

hypersurface (with singularity)in PC" such that the rank of each shape operator

is not ereater than 2 in PC".

Example. Let 7 be a non-totally-geodesic complex curve in PC" and let

<pKn{y) be a tube of radius nil around the curve 7, that is 0^/2(7) = U^r

{expx(nl2)v,v is a unit normal vector of 7 at x}. Then <pnn(7) is an (n-1)-

dimensional complex hypersurface in PC" (with singularity).Let ±cotO be the

eigenvalues of the shape operator Av with respect to a unit normal vector v of

7. Then the principal curvatures of (/>7[/2(Y)at expx{nl2)v are given by (see

Proposition 3.1 in [1]) cot(nl2 + 6) with multiplicity 1, cot(nl2-6) with

multiplicity1 and 0 with multiplicity2n - 4.

2. Preliminaries.

First we briefly describe the basic properties of real hypersurfaces of a

complex project!ve space. Let M be an orientable real hypersurface of

PC"(n>3) with the Fubini-Study metric of constant holomorphic sectional

curvature 4. On a neighborhood of each point of M, we denote by N a local unit

normal vector field of M in PC". It is well known that M admits an almost

contact metric structure induced from the complex structure /on PC". Namely,

for the Riemannian metric g of M induced from the Fubini-Study metric g of

PC", we define a tensor field q> of type (1,1), a vector fieis t,and a 1-form r＼on

Mby g((pX,Y) = g(JX,Y),g(^,X) = j](X) = g(JX,N) for any vector fields X, Yon M.

Then we have

(2.1) <p2X = -X + ri(X)Z, *(££)= 1, p(£)= 0.

The Riemannian connections V of PC" and V of M are related by the following

(2.2) VxY = VxY + g(AX,Y)N, VXN = -AX

where A is the shape operatorof M in PC".

Now itfollows from (2.2)thatthe structure(q>,%,7],g) satisfies

(2.3) C7x<p)Y= rKY)AX-g(AX,Y)Z, Vx£= <pAX.

Let R and R be the curvature tensors of PC" and M, respectively.Since the
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curvature tensor R has a nice form, namely PC" is of constant holomorphic

sectionalcurvature4, the Gauss and Codazzi equationsarerespectively

R(X, Y)Z = g(Y,Z)X - g(X,Z)Y + s((pY,Z)<pX- e(q>X,Z)(pY

-2g((pX,Y)(pZ+ g(AY,Z)AX - g(AX, Z)AY,

(2.4)

(VxA)Y-(VyA)X = i1(X)(PY-2g((pX,Y^

By (2.1),(2.3)and (2.4) we get

(2.5) QX = (2n + l)X-37](X)£+ hAX-A2X

where h = traceA and Q denotes the Ricci operator of M definedfrom the Ricci

tensor S, i.e.S(X,Y) = g(QX,Y). The Weyl conformal curvature tensor C of M

is givenby

(2.6)

(2.7)

C(X,Y)Z = R(X,Y)Z +

(A)

(A2)

(B)

(C)

(D)

(E)

[g(QX, Z)Y - g(QY, Z)X + g(X, Z)QY

T

2(n-l)(2n-3)

aA + 2

2X-a
(pX

(g(X,Z)Y-g(Y,Z)X)

1

2n-3

-g(Y,Z)QX]-

where T is the scalar curvature of M.

An eigenvector X of the shape operator A is called a principal curvature

vector and an eigenvalue A is called a principal curvature. From now on, we

assume that the structure vector field £ is principal, and (X is the principal

curvature associated with £, thatis, A^ = a^. Then it has been shown that (X is

constant (see [14]). Also for a principal curvature vector X orthogonal to £ and

the associated principal curvature X we have (see [10])

AX = XX and AcpX =

Now we recallwithout proof the followingin orderto prove our Theorem.

THEOREM A ([12]). Let M be a homogeneous real hypersurface of PC".

Then M is a tube ofradius r over one of thefollowing Kaehler submanifolds:

hyperplane PC1 ', where 0<r</r/2,

totallygeodesic PCk(l<k<n-2), where 0 < r < 7T/2,

complex quadric Qn_{,where 0<r<7t/4,

PC1 x PC(n~l)n,where 0<r<7t/4and n (> 5) is odd,

complex Grasmannian G25(C), where 0<r<7i/4 and n = 9,

Hermitian symmetric space SO(10)/U(5), where 0<r<K/4 and
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Theorem B ([4]). Let M be a real hypersurface of PC". Then M has

constantprincipalcurvatures and Z, is a principalvector if and only if M is

locallycongruent toa homogeneous real hypersurface.

Theorem C ([6]). Let M be a real hyper surface of PC". If V^A = 0, then E,

is a principal curvature vector; in addition, except for the null set on which the

focal map (f)rdegenerates, M islocally congruent to one of the following:

(i) a homogeneous real hypersurface which lies on a tube of radius r over a

totallygeodesic PCk(l<k<n-l), where 0<r<7t/2.

(ii)a non-homogeneous real hypersurface which lies on a tube of radius k/4

over a Kaehler submanifold N with nonzero principal curvatures * ±1.

THEOREM D ([1]). Let M be a connected orientablereal hypersurface (with

unitnormal vector N) in PC" on which t,is a principalcurvature vector with

principalcurvature a = 2cot2r and the focal map (j)rhas constant rank on M.

Then thefollowing hold:

(i) M is a tube of radius r around a certainKaehler submanfild N in PC".

(ii)For x e M, let cotO be a principalcurvature of the shape operator at

expxrN of N, N being theinward normal at x. Then the real hypersurface M has

a nrin.rinnlcurvaturep.aualtn rntiQ―r＼at r

Remark 2. For later use, we note that from the Theorem A, the

homogeneous real hypersurfaces M of type Al,A2,B,C,D, and E have distinct

principal curvatures £,with multiplicitiesm(£,) which we can read as follows

(cf. [12]).

A, : £,= cotr, m(|,) = 2(n -1), £,= 2cot2r, m(£2)= 1

A2 : £,= cetfr, m(|,) = 2A:,£2= -tonr, m(^2) = 2(≪- ^ -1),

|3=2co/2r, m(^3) = l

fi: ^=cot(r-(n/4)), m(£,)= /i-l, |2 =-tan(r -(it14)), m(£2)= n-l,

£3=2cot2r, m(^3) = l

C: ^. = cor(r - (a* /4)) (/ = 1,2,3,4), m(|,.)= n - 3, for /= 2,4

and m(^,.)= 2, for /= 1,3 $5 = Icotlr, m(%5) = 1

D: ^=cot(r-(m/4)), m(^) = 4 (i = 1,2,3,4),

£5= 2cor2r, m(^5) = 1 and dim M = 17

£: %t=cot(r-(m/4)), (i = 1,2,3,4), /n(|f.)= 8 for i = 2,4 and

m(£) = 6 for /= 1,3, 6 = 2cof2r, and m(&) = 1 and dim M = 29.



510 Christos Baikoussis and David E. Blair

It is easy to see that if £ is a principal curvature vector with principal

curvature (X, then

(2.8) (V ,A)X = a(pAX -A(pAX + (pX

Indeed, from (2.4) for Y = ^ we have (V^A)X = aVx£,- A＼x%-(pX and then using

(2.3) we obtain (2.8).

Finally we complete our preliminaries with the following two lemmas:

Lemma 1. // £,is a principal curvature vector and V JC = 0 , then t,x= 0 .

Proof. From (2.6) bv using (2.4) and (2.5) we get

C(X,Y)Z =
1 ( t

2n-3＼2(n-l)
-2n-5 Y, Z)X - g(X, Z)Y) + g((pY, Z)(pX

-g(mX,Z)(DY - 2g(<pX,Y)<pZ+ s(AY,Z)AX- e(AX, Z)AY

+ [3r](Z)(n(Y)X - 7](X)Y) + h(g(AX, Z)Y - g(AY, Z)X)

(2.9)

(2.12)

[h(g(Uy,Z)Y-g(UY,Z)X) + g(VY,Z)X-g(Vy,Z)Y

1

2rc-3

+g(A2Y, Z)X - g(A2X, Z)Y + 3(g(Y, Z)T](X) - g(X, Z)7?(F))£

+h(g(X,Z)AY-g(Y,Z)AX) + g(Y,Z)A2X-g(X,Z)A2Y]

We note that the condition Vf = 0 is equivalent to

V§(C(X, Y)Z - C(V^X, Y)Z - C(X, Vf) Z - C(X, Y)V ^Z = 0

Now for simplicity we put

(2.10) Ux =ct(pAX-A(pAX + (pX, VX=UAX+AUX.

Then by a straightforward calculation and using (2.3) and (2.8) we obtain

(V O (X, Y,Z) = -L (^t)(g(Y, Z)X - g(X, Z)Y)
s 2(n-l)(2n-3)

(2.11) +e(Uv,Z)AX-e(Uy,Z)AY + e(AY,Z)Uv-e(AX,Z)Uv

+
1

2n-3

+h(g(X,Z)UY -g(Y,Z)Ux) + g(Y,Z)Vx -g(X,Z)VY]

If we choose X orthogonalto £,and AX = XX, then

Ux = {aX - X＼x+ l)q>X, Vx = (A + /i)(aX - Xfi + ＼)q>X
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where fi= {aX + 2)l(2X-a).

Therefore putting Z = t in (2.11) we obtain

(2.13)
1

2(/i-l)(2/i-3)

+(aX -fai + ＼)

&)r)(Y)X

a + ~~^a + pi-h))ri(Y)(pX = ()

Thus £r= Q.

We notice that from (2.13) we also have

(2.14) (aX-^ + l)＼a+ -^―a + ju-h)) = O
V 2n - 3 J
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LEMMA 2. If t, is a principal curvature vector with principal curvature

a = 0, then £t = 0 and V.C = 0 .

PROOF. From (2.5) we have z = 4(n2 -＼)+ h2 -trA2. Thus %T = 2h(%h)

-trVrA2. But from [9. Lemma 2] we know that %h = 0. Also a = 0 implies

V＼A = 0 (see [9, Lemma 1]).Thus we obtain £r = 0.

Now from (2.10) and (2.8) we get U4 = 0 and Ux=0 for X orthogonal to
<£J

such that AX = XX. Thus finallywe have Uy = Vy = 0 for allX. Then from (2.11)

we obtain V^C = Q

3. Proof of Theorem:

From the fact that the principal curvature (X of the principal curvature vector

E,is constant, our discussion is divided into two cases:

(i) a = 0 and (ii) a*0.

(i) a = 0.

In this case we have V^A = 0. Hence by virtue of Theorem C we find that M

is locally congruent to a homogeneous real hypersurface which lies on a tube of

radius kIA over a totally geodesic PCk(＼ <k < n-l), or congruent to a non-

homogeneous real hypersurface which lies on a tube of radius nIA over a

Kaehler submanifold N with nonzero principal curvatures ^ ±1. Thus M is of

case (1) with r-(nlA) or of case (2) in the Theorem. From Lemma 2 we have

that these examples satisfy V JZ - 0 .

(ii) a*Q.

We will follow the method of [91 and we will prove that M cannot be
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homogeneous of type B, C, D, or E.

From Lemma 1 and the relations (2.11) and (2.14) we have that for any

principal curvature vector X orthogonal to t,, the principal curvature X must

satisfythe following equation for X

(3.1) (A2 - ok - 1)[2A2 - lih - (2n - 3)a)X + ha + 2 -(In - 3)cr ]= 0 .

Since ^ is a principal curvature vector and the focal map (j)rhas constant rank on

M, our hypersurface M is a tube (of radius r) over a certain (k-dimensional)

Kaehler submanifold N in PC". So we may put a = 2cot2r(= cotr-tanr) (cf.

Theorem D). Now from (3.1) we have A2-aA-l = 0 which gives X-cotr and

X = ―tanr,or

(3.2) 2A2 - 2(h - (In - 3)aU + ha + 2 - (In - 3)a2 = 0

We denote by A,,A,(*cotr,-tanr) the solutions of (3.2).

Since

(3.3)

we have

(3.4)

A.+A2 = h-(2n-3)a

aA, + 2 _ .
―Z. ―f^i
2L-a

Now denote by VA the eigenspace of A associated with the eigenvalue A and by

m{X) the multiplicityof A. Then by using (2.7) and (3.4) we obtain

<pVcolr= Vcolr,(pV_lmr= V_tmr and (pVXj= ^ .

Thus the real hypersurface M has at most fivedistinctprincipal curvatures 2cot2r

(with multiplicity 1) cotr (with multiplicity2n - 2k - 2), -tanr (with multiplicity

2k-2m), X, (with multiplicity ra>O)and A7 (with multiplicity m>0). Hence

(3.5) h = (2n-2k- l)cotr - (2k -2m + ＼)tanr+ m( A, + X7)

Using (3.3),(3.4) and (3.5) we obtain

(3.6) (In -2k- ＼)cotr- (2k -2m + ＼)tanr+ (m -1

{

1 2Xx-a)

Now for the multiplicity m of the principal curvature A,

(2n - 3)a = 0.

namely for the integer

m = m(A,) we distinguishthreecases:m = 0, m = 1 and m > 2 .

We shallprove that m < 2 .

Suppose for the moment that m>2. From (3.6) we have that A, = constant.
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Thus our manifold M is homogeneous (cf. Theorem B) and from the Remark 2

we conclude that M is of type B, C, D or E. We will check one by one that these

cases cannot occur.

Let M be of type B (namely M is a tube of radius r). Then M has three

distinct constant principal curvatures /x,= (l + x)/(l-x), fi2 = (x-l)/(x + l),

a = (x-l/x), where x = cotr, with m(^) = n-1, m(fi2) = n-＼ and m(a) = 1.

T1!

h = (n-l)
4x x2-l

l-x2 x

On the other hand, from (3.3) we have

(n-2)

l + x

l-x

h =

JC ― 1

JC + 1

+ (2n-3)

H)

1

3)

Ax

l-x2

From the last two relations we obtain

x2-l

+ (n-2

X

2 = 2(w-2) or x4+1 = 0,impossible.

Now let M be of type C (which is also a tube of radius r).Let x = cotr. Then

M has five distinct constant principal curvatures //,= (l + x)/(l-x) with

m(/i,)= 2, fi2=(x-l)/(x + l) with ra(//2)= 2, jjlz= x with m(/i3) = n-3,

//4=(-l/x) with m(fiA) = n-3> and a = (x-l/x) with m(a) = l (cf. Remark 2).

Since (pV^ = V^, q>V^ = V^ and (pV^ = V^, the condition V^C = 0 is equivalent to

h = II -i-II -UCJm ―^"li/vTh^ri frnitnthic＼j/<=>nV＼tain

= (2/i
x2-l

X

or

(n - l)x4 - 2(n - 3)x2 + n -1 = 0.

But this is impossible because the discriminant of this equation is negative.

Let M be of type D (which is a tube of radius r). Then M has five distinct constant

principal curvatures //,= (1 + x) /(I- x) with m(fil) = 4, fi2 = (x -1)/(x +1) with

m(Jw2) = 4, ^3=* with m(/i3) = 4, //4=-1/jc with m(//4) = 4 and a = (jc-l/x)

with m(a) = 1, where x = cofr and dimM =17 (cf. Remark 2). We have again as

in case of type C, that
(oV,, = V,,, wV. - Vu and dV,, = V, . Thus the condition

J " ' f1] M2 ' Mi Mi ' Mi M＼
VcC = 0 is equivalent to h = u, + w, +(2n-3)a. This becomes

(n - 4)x4 - 2(n - l)x2 + n - 4 = 0 .From this we get n < 5 or equivalently M < 9, a
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Finally,let M be of type E (which is a tube of radius r).Then as above M has

the same five distinctconstant principal curvatures ju,,jU2,/x3,jU4and OL but with

multiplicity m(Ju,)= m(Ju2) = 6, m(/i3)= m(/i4) = 8 and m(a) = 1 (cf. Remark 2). By

virtue of the discussion in cases of type C or D we have only to solve the equation

/?-/!,-fi2 -(2n-3)a = 0. Namely we have the equation (n-6)jc4-2(n-ll)x2

+(n ―6)= 0. But in our case dimM = 29, or equivalently n - 15. Thus we have

9x4 -8x2 +9 = 0, which is impossible. This completes the proof of the assertion

that m<2.

We will examine now the cases m = 0 and m = 1 separately. Let m = 0. Our

real hypersurface M has three distinctprincipal curvatures and it is of case (1)

with 0 < r(& 7r/4)< k/2 in the Theorem. Now let m = 1. Our real hypersurface

M has at most five distinctprincipal curvatures Icorlr with m(2cot2r)=l, cotr

with m(cotr) = 2n―2k-2, -tanr with m{-tanr) = 2k―2, A, with m(A,) = l and A2

with m(A2) = l. Since the multiplicitiesof the principal curvatures of M do not

match with the multiplicitiesof any homogeneous real hypersurface (cf. Remark

2), the manifold M is not homogeneous. Hence both A, and A2 are not constant

(cf. Theorem B). Moreover, Theorem D shows that A, and A2 can be expressed

as: X{ =cot(r-6) and A2 =cot(r + 0), where cotO is a principal curvature of the

Kaehler submanifold N. In addition equation (3.6) yields that cot2r =

(n-k-＼)l{k-1). Hence the manifold M is of case (3) in the Theorem.

Acknowledgement.

The authors wish to express their sincere thanks to the referee for his helpful

suggestions.

References

[ 1 ] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans.

Amer. Math. Soc. 269 (1982), 481-499.

[ 2 ] U. H. Ki, Real hypersurfaces with paralleltensor of a complex space form, Tsukuba J. Math. 13

(1989), 73-81.

[3 ] U. H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a

complex space form, Hiroshima Math. J. 20 (1990), 93-102.

[4] M. Kimura, Real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 296

(1986), 137-149.

[5] M. Kimura, Real hypersurfaces in complex projective space, Bull. Austral. Math. Soc. 33

(1986), 383-387.

16] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J.

Math. 15 (1991), 547-561.

17] M. Kon, Pseudo-Einstein real hypersurfaces in complex space frm, J. Diff. Geom. 14 (1979),

339-354.

[ 8 ] S. Maeda, Geometry of submanifolds which are neither Kaehler nor totally real in complex



On a type of real hypersurfaces

projective space, Bull, of Naeoya Institute of Technology 45 (1993), 1-50.

515

[ 9 ] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer.

Math. Soc. 122 (1994), 1229-1235.

[10] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1986),

529-540.

[11] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math.

Soc. 212 (1975), 355-364.

[12] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math.

10(1973), 495-506.

[13] R. Takagi, Real hypersurfaces in complex space with constant principal curvatures I, II, J.

Math. Soc. Japan 27 (1975), 43-53, 507-516.

[14] K. Yano and M. Kon, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progress in

Department of Mathematics

Universityofloannina

45110 loannina

Crrp.p.ce.

Department of Mathematics

Michigan StateUniversity

East Lansing, MI 48824

U.S.A.


