ON A TYPE OF REAL HYPERSURFACES IN COMPLEX PROJECTIVE SPACE

By
Christos Baikoussis* and David E. Blair

Abstract

We give a classification of real hypersurfaces in complex projective space under assumptions that the structure vector ξ is principal, the focal map has constant rank and that $\nabla_{\xi} C=0$, where C is the Weyl conformal curvature tensor of the real hypersurface.

1. Introduction

Let $M^{n}(c)$ denote an n-dimensional complex space form with constant holomorphic sectional curvature c. It is well known that a complete and simply connected complex space form is either complex projective space $P C^{n}$, complex Euclidean space C^{n} or complex hyerbolic space $H C^{n}$, according as $c>0, c=0$ or $c<0$.

In this paper we consider a real hypersurface M of $P C^{n}$. The induced almost contact metric structure and the Weyl conformal curvature tensor of the real hypersurface M in $P C^{n}$ are respectively denoted by (φ, ξ, η, g) and C. Many differential geometers have studied M by using the structure (φ, ξ, η, g). Typical examples of real hypersurfaces in complex projective space $P C^{n}$ are homogeneous ones and one of the first researches is the classification of these by Takagi [12]. He proved that all homogeneous hypersurfaces of $P C^{n}$ could be divided into six types which are said to be A_{1}, A_{2}, B, C, D and E (see Theorem A). This result was generalized by Kimura [4], who classified real hypersurfaces of $P C^{n}$ with constant principal curvatures and for which the structure vector ξ is principal. Now, there exist many studies of real hypersurfaces in $P C^{n}$. Some hypersurfaces in $P C^{n}$ are characterized by conditions on the shape operator (or principal curvatures) and one of the structure tensors. On the other hand, some

[^0]studies about the nonexistence of real hypersurfaces under natural linear conditions imposed on the Ricci tensor S or ∇S or the Weyl conformal curvature tensor C or ∇C have been made by many researchers. Many results for real hypersurfaces of complex projective space have been obtained by Cecil and Ryan [1], Kimura [4], [5], Kon [7], S. Maeda [8], [9], Okumura [11], Takagi [12], [13] and so on (for more details see [8]). In particular, it is well known that there exist no Einstein real hypersurfaces M in $P C^{n}$ for $n \geq 3$ (cf. [7]). Also $P C^{n}(n \geq 3)$ does not admit real hypersurfaces M with parallel Ricci tensor S [2]. Recently S. Maeda [9], classified real hypersurfaces M in $P C^{n}$ satisfying $\nabla_{\xi} S=0$ (that is the Ricci tensor S is parallel in the direction of the structure vector $\xi=-J N$, where N is a unit normal vector field on M) under the conditions that ξ is a principal curvature vector of M and that the focal map has constant rank on M.

On the other hand U. H. Ki, H. Nakagawa and Y. J. Suh [3] have proved that $P C^{n}$ does not admit real hypersurfaces M with harmonic Weyl tensor C. So $P C^{n}$ does not admit real hypersurfaces M with parallel Weyl tensor C (that is $\nabla_{X} C=0$ for each vector X tangent to M). This is perhaps natural since $\nabla C=0$ is not a conformal invariant. However one might impose a weaker condition utilizing some additional structure eventhough one might not have conformal invariance. Thus we investigate real hypersurfaces M by using the condition $\nabla_{\xi} C=0$ (on the derivative of C) which is weaker than $\nabla C=0$.

The purpose of this paper is to classify real hypersurfaces M in $P C^{n}$ satisfying $\nabla_{\xi} C=0$ under the condition that ξ is a principal curvature vector of M and that the focal map has constant rank on M.

THEOREM. Let M be a real hypersurface of $P C^{n}(n \geq 3)$ on which ξ is a principal curvature vector with principal curvature $\alpha=2 \cot 2 r$ and the focal map ϕ_{r} has constant rank. If for the Weyl conformal curvature tensor C we have $\nabla_{\xi} C=0$, then M is locally congruent to one of the following:
(1) a homogeneous real hypersurface which lies on a tube of radius r over a totally geodesic $P C^{k}(1 \leq k \leq n-1)$, where $0<r<\pi / 2$,
(2) a non-homogeneous real hypersurface whch lies on a tube of radius $\pi / 4$ over a Kaehler submanifold \tilde{N} with nonzero principal curvature $\neq \pm 1$.
(3) a non-homogeneous real hypersurface which lies on a tube of radius r over a k-dimensional Kaehler submanifold \tilde{N} on which the rank of each shape operator is not greater than 2 with nonzero principal curvature $\neq \pm \sqrt{(n-k-1) /(k-1)}$ and $\cot ^{2} r=(n-k-1) /(k-1)$, where $k=2, \cdots, n-1$.

Remark 1. Since case (3) in the Theorem is a new example which is different from case (7) in Maeda's theorem in [9], it is essential to guarantee the existence of the Kaehler submanifold $\tilde{N}^{k}(k \geq 2)$ such that the rank of each shape operator is not greater than 2 in $P C^{n}$. The following example \tilde{N}^{n-1} is a complex hypersurface (with singularity) in $P C^{n}$ such that the rank of each shape operator is not greater than 2 in $P C^{n}$.

Example. Let γ be a non-totally-geodesic complex curve in $P C^{n}$ and let $\phi_{\pi / 2}(\gamma)$ be a tube of radius $\pi / 2$ around the curve γ, that is $\phi_{\pi / 2}(\gamma)=\bigcup_{x \in \gamma}$ $\left\{\exp _{x}(\pi / 2) v, v\right.$ is a unit normal vector of γ at $\left.x\right\}$. Then $\phi_{\pi / 2}(\gamma)$ is an $(n-1)$ dimensional complex hypersurface in $P C^{n}$ (with singularity). Let $\pm \cot \theta$ be the eigenvalues of the shape operator A_{v} with respect to a unit normal vector v of γ. Then the principal curvatures of $\phi_{\pi / 2}(\gamma)$ at $\exp _{x}(\pi / 2) v$ are given by (see Proposition 3.1 in [1]) $\cot (\pi / 2+\theta)$ with multiplicity $1, \cot (\pi / 2-\theta)$ with multiplicity 1 and 0 with multiplicity $2 n-4$.

2. Preliminaries.

First we briefly describe the basic properties of real hypersurfaces of a complex projective space. Let M be an orientable real hypersurface of $P C^{n}(n \geq 3)$ with the Fubini-Study metric of constant holomorphic sectional curvature 4. On a neighborhood of each point of M, we denote by N a local unit normal vector field of M in $P C^{n}$. It is well known that M admits an almost contact metric structure induced from the complex structure J on $P C^{n}$. Namely, for the Riemannian metric g of M induced from the Fubini-Study metric \tilde{g} of $P C^{n}$, we define a tensor field φ of type (1,1), a vector fiels ξ and a 1-form η on M by $g(\varphi X, Y)=\tilde{g}(J X, Y), g(\xi, X)=\eta(X)=\tilde{g}(J X, N)$ for any vector fields X, Y on M. Then we have

$$
\begin{equation*}
\varphi^{2} X=-X+\eta(X) \xi, g(\xi, \xi)=1, \varphi(\xi)=0 . \tag{2.1}
\end{equation*}
$$

The Riemannian connections $\tilde{\nabla}$ of $P C^{n}$ and ∇ of M are related by the following formulas

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \tilde{\nabla}_{X} N=-A X \tag{2.2}
\end{equation*}
$$

where A is the shape operator of M in $P C^{n}$.
Now it follows from (2.2) that the structure (φ, ξ, η, g) satisfies

$$
\begin{equation*}
\left(\nabla_{x} \varphi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{x} \xi=\varphi A X \tag{2.3}
\end{equation*}
$$

Let \tilde{R} and R be the curvature tensors of $P C^{n}$ and M, respectively. Since the
curvature tensor \tilde{R} has a nice form, namely $P C^{n}$ is of constant holomorphic sectional curvature 4 , the Gauss and Codazzi equations are respectively

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y \\
-2 g(\varphi X, Y) \varphi Z+g(A Y, Z) A X-g(A X, Z) A Y \tag{2.4}\\
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \varphi Y-2 g(\varphi X, Y) \xi
\end{gather*}
$$

By (2.1), (2.3) and (2.4) we get

$$
\begin{equation*}
Q X=(2 n+1) X-3 \eta(X) \xi+h A X-A^{2} X \tag{2.5}
\end{equation*}
$$

where $h=$ traceA and Q denotes the Ricci operator of M defined from the Ricci tensor S, i.e. $S(X, Y)=g(Q X, Y)$. The Weyl conformal curvature tensor C of M is given by

$$
\begin{align*}
C(X, Y) Z=R(X, Y) Z & +\frac{1}{2 n-3}[g(Q X, Z) Y-g(Q Y, Z) X+g(X, Z) Q Y \\
& -g(Y, Z) Q X]-\frac{\tau}{2(n-1)(2 n-3)}(g(X, Z) Y-g(Y, Z) X) \tag{2.6}
\end{align*}
$$

where τ is the scalar curvature of M.
An eigenvector X of the shape operator A is called a principal curvature vector and an eigenvalue λ is called a principal curvature. From now on, we assume that the structure vector field ξ is principal, and α is the principal curvature associated with ξ, that is, $A \xi=\alpha \xi$. Then it has been shown that α is constant (see [14]). Also for a principal curvature vector X orthogonal to ξ and the associated principal curvature λ we have (see [10])

$$
\begin{equation*}
A X=\lambda X \text { and } A \varphi X=\frac{\alpha \lambda+2}{2 \lambda-\alpha} \varphi X \tag{2.7}
\end{equation*}
$$

Now we recall without proof the following in order to prove our Theorem.
THEOREM A ([12]). Let M be a homogeneous real hypersurface of $P C^{\prime \prime}$. Then M is a tube of radius r over one of the following Kaehler submanifolds:
(A_{1}) hyperplane $P C^{n-1}$, where $0<r<\pi / 2$,
(A_{2}) totally geodesic $P C^{k}(1 \leq k \leq n-2)$, where $0<r<\pi / 2$,
(B) complex quadric Q_{n-1}, where $0<r<\pi / 4$,
(C) $P C^{1} \times P C^{(n-1) / 2}$, where $0<r<\pi / 4$ and $n(\geq 5)$ is odd,
(D) complex Grasmannian $G_{2,5}(C)$, where $0<r<\pi / 4$ and $n=9$,
(E) Hermitian symmetric space $\operatorname{SO}(10) / U(5)$, where $0<r<\pi / 4$ and

$$
n=15
$$

THEOREM B ([4]). Let M be a real hypersurface of $P C^{n}$. Then M has constant principal curvatures and ξ is a principal vector if and only if M is locally congruent to a homogeneous real hypersurface.

THEOREM C ([6]). Let M be a real hypersurface of $P C^{n}$. If $\nabla_{\xi} A=0$, then ξ is a principal curvature vector; in addition, except for the null set on which the focal map ϕ_{r} degenerates, M is locally congruent to one of the following:
(i) a homogeneous real hypersurface which lies on a tube of radius r over a totally geodesic $P C^{k}(1 \leq k \leq n-1)$, where $0<r<\pi / 2$.
(ii) a non-homogeneous real hypersurface which lies on a tube of radius $\pi / 4$ over a Kaehler submanifold N with nonzero principal curvatures $\neq \pm 1$.

THEOREM D ([1]). Let M be a connected orientable real hypersurface (with unit normal vector N) in $P C^{n}$ on which ξ is a principal curvature vector with principal curvature $\alpha=2 \cot 2 r$ and the focal map ϕ_{r} has constant rank on M. Then the following hold:
(i) M is a tube of radius r around a certain Kaehler submanfild \tilde{N} in $P C^{n}$.
(ii) For $x \in M$, let $\cot \theta$ be a principal curvature of the shape operator at $\exp _{x} r N$ of \tilde{N}, N being the inward normal at x. Then the real hypersurface M has a principal curvature equal to $\cot (\theta-r)$ at x.

REMARK 2. For later use, we note that from the Theorem A, the homogeneous real hypersurfaces M of type A_{1}, A_{2}, B, C, D, and E have distinct principal curvatures ξ_{i} with multiplicities $m\left(\xi_{i}\right)$ which we can read as follows (cf. [12]).
$A_{1}: \quad \xi_{1}=\operatorname{cotr}, \quad m\left(\xi_{1}\right)=2(n-1), \quad \xi_{2}=2 \cot 2 r, m\left(\xi_{2}\right)=1$
$A_{2}: \quad \xi_{1}=\operatorname{cotr}, \quad m\left(\xi_{1}\right)=2 k, \xi_{2}=-\operatorname{tanr}, m\left(\xi_{2}\right)=2(n-k-1)$,
$\xi_{3}=2 \cot 2 r, \quad m\left(\xi_{3}\right)=1$
$B: \quad \xi_{1}=\cot (r-(\pi / 4)), \quad m\left(\xi_{1}\right)=n-1, \xi_{2}=-\tan (r-(\pi / 4)), m\left(\xi_{2}\right)=n-1$,
$\xi_{3}=2 \cot 2 r, \quad m\left(\xi_{3}\right)=1$
$C: \quad \xi_{i}=\cot (r-(\pi i / 4))(i=1,2,3,4), \quad m\left(\xi_{i}\right)=n-3$, for $i=2,4$
and $m\left(\xi_{i}\right)=2$, for $i=1,3 \quad \xi_{5}=2 \cot 2 r, m\left(\xi_{5}\right)=1$
$D: \quad \xi_{i}=\cot (r-(\pi i / 4)), \quad m\left(\xi_{i}\right)=4(i=1,2,3,4)$,
$\xi_{5}=2 \cot 2 r, m\left(\xi_{5}\right)=1$ and $\operatorname{dim} M=17$
$E: \quad \xi_{i}=\cot (r-(\pi i / 4)), \quad(i=1,2,3,4), \quad m\left(\xi_{i}\right)=8$ for $i=2,4$ and $m\left(\xi_{i}\right)=6$ for $i=1,3, \quad \xi_{5}=2 \cot 2 r$, and $m\left(\xi_{5}\right)=1$ and $\operatorname{dim} M=29$.

It is easy to see that if ξ is a principal curvature vector with principal curvature α, then

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) X=\alpha \varphi A X-A \varphi A X+\varphi X \tag{2.8}
\end{equation*}
$$

Indeed, from (2.4) for $Y=\xi$ we have $\left(\nabla_{\xi} A\right) X=\alpha \nabla_{x} \xi-A \nabla_{x} \xi-\varphi X$ and then using (2.3) we obtain (2.8).

Finally we complete our preliminaries with the following two lemmas:
Lemma 1. If ξ is a principal curvature vector and $\nabla_{\xi} C=0$, then $\xi \tau=0$.
Proof. From (2.6) by using (2.4) and (2.5) we get

$$
\begin{aligned}
C(X, Y) Z= & \frac{1}{2 n-3}\left(\frac{\tau}{2(n-1)}-2 n-5\right)(g(Y, Z) X-g(X, Z) Y)+g(\varphi Y, Z) \varphi X \\
& -g(\varphi X, Z) \varphi Y-2 g(\varphi X, Y) \varphi Z+g(A Y, Z) A X-g(A X, Z) A Y \\
& +\frac{1}{2 n-3}[3 \eta(Z)(\eta(Y) X-\eta(X) Y)+h(g(A X, Z) Y-g(A Y, Z) X) \\
& +g\left(A^{2} Y, Z\right) X-g\left(A^{2} X, Z\right) Y+3(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)) \xi \\
& \left.+h(g(X, Z) A Y-g(Y, Z) A X)+g(Y, Z) A^{2} X-g(X, Z) A^{2} Y\right]
\end{aligned}
$$

We note that the condition $\nabla_{\xi} C=0$ is equivalent to

$$
\begin{equation*}
\nabla_{\xi}\left(C(X, Y) Z-C\left(\nabla_{\xi} X, Y\right) Z-C\left(X, \nabla_{\xi} C\right) Z-C(X, Y) \nabla_{\xi} Z=0 .\right. \tag{2.9}
\end{equation*}
$$

Now for simplicity we put

$$
\begin{equation*}
U_{X}=\alpha \varphi A X-A \varphi A X+\varphi X, \quad V_{X}=U_{A X}+A U_{X} \tag{2.10}
\end{equation*}
$$

Then by a straightforward calculation and using (2.3) and (2.8) we obtain

$$
\begin{align*}
\left(\nabla_{\xi} C\right)(X, Y, Z)= & \frac{1}{2(n-1)(2 n-3)}(\xi \tau)(g(Y, Z) X-g(X, Z) Y) \\
& +g\left(U_{Y}, Z\right) A X-g\left(U_{X}, Z\right) A Y+g(A Y, Z) U_{X}-g(A X, Z) U_{Y} \tag{2.11}\\
& +\frac{1}{2 n-3}\left[h\left(g\left(U_{X}, Z\right) Y-g\left(U_{Y}, Z\right) X\right)+g\left(V_{Y}, Z\right) X-g\left(V_{X}, Z\right) Y\right. \\
& \left.+h\left(g(X, Z) U_{Y}-g(Y, Z) U_{X}\right)+g(Y, Z) V_{X}-g(X, Z) V_{Y}\right]
\end{align*}
$$

If we choose X orthogonal to ξ and $A X=\lambda X$, then

$$
\begin{equation*}
U_{X}=(\alpha \lambda-\lambda \mu+1) \varphi X, \quad V_{X}=(\lambda+\mu)(\alpha \lambda-\lambda \mu+1) \varphi X \tag{2.12}
\end{equation*}
$$

where $\mu=(\alpha \lambda+2) /(2 \lambda-\alpha)$.
Therefore putting $Z=\xi$ in (2.11) we obtain

$$
\begin{align*}
& \frac{1}{2(n-1)(2 n-3)}(\xi \tau) \eta(Y) X \tag{2.13}\\
& +(\alpha \lambda-\lambda \mu+1)\left(\alpha+\frac{1}{2 n-3}(\lambda+\mu-h)\right) \eta(Y) \varphi X=0
\end{align*}
$$

Thus $\xi \tau=0$.
We notice that from (2.13) we also have

$$
\begin{equation*}
(\alpha \lambda-\lambda \mu+1)\left(\alpha+\frac{1}{2 n-3}(\lambda+\mu-h)\right)=0 \tag{2.14}
\end{equation*}
$$

Lemma 2. If ξ is a principal curvature vector with principal curvature $\alpha=0$, then $\xi \tau=0$ and $\nabla_{\xi} C=0$.

Proof. From (2.5) we have $\tau=4\left(n^{2}-1\right)+h^{2}-t r A^{2}$. Thus $\xi \tau=2 h(\xi h)$ $-\operatorname{tr} \nabla_{\xi} A^{2}$. But from [9. Lemma 2] we know that $\xi_{h}=0$. Also $\alpha=0$ implies $\nabla_{\xi} A=0$ (see [9, Lemma 1]). Thus we obtain $\xi \tau=0$.

Now from (2.10) and (2.8) we get $U_{\xi}=0$ and $U_{X}=0$ for X orthogonal to ξ such that $A X=\lambda X$. Thus finally we have $U_{X}=V_{X}=0$ for all X. Then from (2.11) we obtain $\nabla_{\xi} C=0$.

3. Proof of Theorem:

From the fact that the principal curvature α of the principal curvature vector ξ is constant, our discussion is divided into two cases:
(i) $\alpha=0$ and (ii) $\alpha \neq 0$.
(i) $\alpha=0$.

In this case we have $\nabla_{\xi} A=0$. Hence by virtue of Theorem C we find that M is locally congruent to a homogeneous real hypersurface which lies on a tube of radius $\pi / 4$ over a totally geodesic $P C^{k}(1 \leq k \leq n-1)$, or congruent to a nonhomogeneous real hypersurface which lies on a tube of radius $\pi / 4$ over a Kaehler submanifold \tilde{N} with nonzero principal curvatures $\neq \pm 1$. Thus M is of case (1) with $r=(\pi / 4)$ or of case (2) in the Theorem. From Lemma 2 we have that these examples satisfy $\nabla_{\xi} C=0$.
(ii) $\alpha \neq 0$.

We will follow the method of [9] and we will prove that M cannot be
homogeneous of type B, C, D, or E.
From Lemma 1 and the relations (2.11) and (2.14) we have that for any principal curvature vector X orthogonal to ξ, the principal curvature λ must satisfy the following equation for λ

$$
\begin{equation*}
\left(\lambda^{2}-\alpha \lambda-1\right)\left[2 \lambda^{2}-2(h-(2 n-3) \alpha) \lambda+h \alpha+2-(2 n-3) \alpha^{2}\right]=0 \tag{3.1}
\end{equation*}
$$

Since ξ is a principal curvature vector and the focal map ϕ_{r} has constant rank on M, our hypersurface M is a tube (of radius r) over a certain (k-dimensional) Kaehler submanifold \tilde{N} in $P C^{n}$. So we may put $\alpha=2 \cot 2 r(=\operatorname{cotr}-\operatorname{tanr})$ (cf. Theorem D). Now from (3.1) we have $\lambda^{2}-\alpha \lambda-1=0$ which gives $\lambda=\operatorname{cotr}$ and $\lambda=-$ tanr , or

$$
\begin{equation*}
2 \lambda^{2}-2(h-(2 n-3) \alpha) \lambda+h \alpha+2-(2 n-3) \alpha^{2}=0 \tag{3.2}
\end{equation*}
$$

We denote by $\lambda_{1}, \lambda_{2}(\neq$ cotr, -tanr) the solutions of (3.2).
Since

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}=h-(2 n-3) \alpha \tag{3.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\alpha \lambda_{1}+2}{2 \lambda_{1}-\alpha}=\lambda_{2} \tag{3.4}
\end{equation*}
$$

Now denote by V_{λ} the eigenspace of A associated with the eigenvalue λ and by $m(\lambda)$ the multiplicity of λ. Then by using (2.7) and (3.4) we obtain

$$
\varphi V_{\text {cotr }}=V_{\text {catr }}, \varphi V_{-l a n r}=V_{- \text {tanr }} \text { and } \varphi V_{\lambda_{1}}=V_{\lambda_{2}}
$$

Thus the real hypersurface M has at most five distinct principal curvatures $2 \cot 2 r$ (with multiplicity 1) cotr (with multiplicity $2 n-2 k-2$), $-\operatorname{tanr}$ (with multiplicity $2 k-2 m$), λ_{1} (with multiplicity $m \geq 0$) and λ_{2} (with multiplicity $m \geq 0$). Hence

$$
\begin{equation*}
h=(2 n-2 k-1) \operatorname{cotr}-(2 k-2 m+1) \tan r+m\left(\lambda_{1}+\lambda_{2}\right) . \tag{3.5}
\end{equation*}
$$

Using (3.3), (3.4) and (3.5) we obtain

$$
\begin{equation*}
(2 n-2 k-1) \operatorname{cotr}-(2 k-2 m+1) \operatorname{tanr}+(m-1)\left(\lambda_{1}+\frac{\alpha \lambda_{1}+2}{2 \lambda_{1}-\alpha}\right)-(2 n-3) \alpha=0 \tag{3.6}
\end{equation*}
$$

Now for the multiplicity m of the principal curvature λ_{1}, namely for the integer $m=m\left(\lambda_{1}\right)$ we distinguish three cases: $m=0, m=1$ and $m \geq 2$.

We shall prove that $m<2$.
Suppose for the moment that $m \geq 2$. From (3.6) we have that $\lambda_{1}=$ constant .

Thus our manifold M is homogeneous (cf. Theorem B) and from the Remark 2 we conclude that M is of type B, C, D or E. We will check one by one that these cases cannot occur.

Let M be of type B (namely M is a tube of radius r). Then M has three distinct constant principal curvatures $\mu_{1}=(1+x) /(1-x), \quad \mu_{2}=(x-1) /(x+1)$, $\alpha=(x-1 / x)$, where $x=$ cotr, with $m\left(\mu_{1}\right)=n-1, m\left(\mu_{2}\right)=n-1$ and $m(\alpha)=1$.

Thus

$$
h=(n-1) \frac{4 x}{1-x^{2}}+\frac{x^{2}-1}{x} .
$$

On the other hand, from (3.3) we have

$$
h=\frac{4 x}{1-x^{2}}+(2 n-3) \frac{x^{2}-1}{x} .
$$

From the last two relations we obtain

$$
(n-2) \frac{4 x}{1-x^{2}}=2(n-2) \frac{x^{2}-1}{x} \text { or } x^{4}+1=0, \text { impossible. }
$$

Now let M be of type C (which is also a tube of radius r). Let $x=\operatorname{cotr}$. Then M has five distinct constant principal curvatures $\mu_{1}=(1+x) /(1-x)$ with $m\left(\mu_{1}\right)=2, \quad \mu_{2}=(x-1) /(x+1)$ with $m\left(\mu_{2}\right)=2, \mu_{3}=x$ with $m\left(\mu_{3}\right)=n-3$, $\mu_{4}=(-1 / x)$ with $m\left(\mu_{4}\right)=n-3$ and $\alpha=(x-1 / x)$ with $m(\alpha)=1$ (cf. Remark 2). Since $\varphi V_{\mu_{1}}=V_{\mu_{2}}, \varphi V_{\mu_{3}}=V_{\mu_{3}}$ and $\varphi V_{\mu_{4}}=V_{\mu_{4}}$, the condition $\nabla_{\xi} C=0$ is equivalent to $h=\mu_{1}+\mu_{2}+(2 n-3) \alpha$. Then from this we obtain

$$
\frac{1+x}{1-x}+\frac{x-1}{x+1}+(n-2)\left(x-\frac{1}{x}\right)=(2 n-3) \frac{x^{2}-1}{x}
$$

or

$$
(n-1) x^{4}-2(n-3) x^{2}+n-1=0
$$

But this is impossible because the discriminant of this equation is negative.
Let M be of type D (which is a tube of radius r). Then M has five distinct constant principal curvatures $\mu_{1}=(1+x) /(1-x)$ with $m\left(\mu_{1}\right)=4, \mu_{2}=(x-1) /(x+1)$ with $m\left(\mu_{2}\right)=4, \mu_{3}=x$ with $m\left(\mu_{3}\right)=4, \mu_{4}=-1 / x$ with $m\left(\mu_{4}\right)=4$ and $\alpha=(x-1 / x)$ with $m(\alpha)=1$, where $x=\operatorname{cotr}$ and $\operatorname{dim} M=17$ (cf. Remark 2). We have again as in case of type C, that $\varphi V_{\mu_{1}}=V_{\mu_{2}}, \varphi V_{\mu_{3}}=V_{\mu_{3}}$ and $\varphi V_{\mu_{4}}=V_{\mu_{4}}$. Thus the condition $\nabla_{\xi} C=0 \quad$ is equivalent to $h=\mu_{1}+\mu_{2}+(2 n-3) \alpha$. This becomes $(n-4) x^{4}-2(n-7) x^{2}+n-4=0$. From this we get $n \leq 5$ or equivalently $M \leq 9$, a contradiction.

Finally, let M be of type E (which is a tube of radius r). Then as above M has the same five distinct constant principal curvatures $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ and α but with multiplicity $m\left(\mu_{1}\right)=m\left(\mu_{2}\right)=6, m\left(\mu_{3}\right)=m\left(\mu_{4}\right)=8$ and $m(\alpha)=1$ (cf. Remark 2). By virtue of the discussion in cases of type C or D we have only to solve the equation $h-\mu_{1}-\mu_{2}-(2 n-3) \alpha=0$. Namely we have the equation $(n-6) x^{4}-2(n-11) x^{2}$ $+(n-6)=0$. But in our case $\operatorname{dim} M=29$, or equivalently $n=15$. Thus we have $9 x^{4}-8 x^{2}+9=0$, which is impossible. This completes the proof of the assertion that $m<2$.

We will examine now the cases $m=0$ and $m=1$ separately. Let $m=0$. Our real hypersurface M has three distinct principal curvatures and it is of case (1) with $0<r(\neq \pi / 4)<\pi / 2$ in the Theorem. Now let $m=1$. Our real hypersurface M has at most five distinct principal curvatures $2 \operatorname{cor} 2 r$ with $m(2 \cot 2 r)=1$, cotr with $m($ cotr $)=2 n-2 k-2,-\tan r$ with $m(-\operatorname{tanr})=2 k-2, \lambda_{1}$ with $m\left(\lambda_{1}\right)=1$ and λ_{2} with $m\left(\lambda_{2}\right)=1$. Since the multiplicities of the principal curvatures of M do not match with the multiplicities of any homogeneous real hypersurface (cf. Remark 2), the manifold M is not homogeneous. Hence both λ_{1} and λ_{2} are not constant (cf. Theorem B). Moreover, Theorem D shows that λ_{1} and λ_{2} can be expressed as: $\lambda_{1}=\cot (r-\theta)$ and $\lambda_{2}=\cot (r+\theta)$, where $\cot \theta$ is a principal curvature of the Kaehler submanifold \tilde{N}. In addition equation (3.6) yields that $\cot ^{2} r=$ $(n-k-1) /(k-1)$. Hence the manifold M is of case (3) in the Theorem.

Acknowledgement.

The authors wish to express their sincere thanks to the referee for his helpful suggestions.

References

[1] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[2] U.H. Ki, Real hypersurfaces with parallel tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73-81.
[3] U. H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J. 20 (1990), 93-102.
[4] M. Kimura, Real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[5] M. Kimura, Real hypersurfaces in complex projective space, Bull. Austral. Math. Soc. 33 (1986), 383-387.
[6] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math. 15 (1991), 547-561.
17] M. Kon, Pseudo-Einstein real hypersurfaces in complex space frm, J. Diff. Geom. 14 (1979), 339-354.
[8] S. Maeda, Geometry of submanifolds which are neither Kaehler nor totally real in complex
projective space, Bull. of Nagoya Institute of Technology 45 (1993), 1-50.
[9] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 122 (1994), 1229-1235.
[10] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1986), 529-540.
[11] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[12] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[13] R. Takagi, Real hypersurfaces in complex space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
[14] K. Yano and M. Kon, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progress in Math. 30 (1983), Birkhauser.

Department of Mathematics
University of Ioannina
45110 loannina
Greece
Department of Mathematics
Michigan State University
East Lansing, MI 48824
U.S.A.

[^0]: * This work was done while the first author was a visiting scholar at Michigan State University. Received December 5, 1994.
 Revised March 2, 1995.

