TWO THEOREMS ON THE EXISTENCE OF INDISCERNIBLE SEQUENCES

By

Akito TSUBOI

§0. Introduction.

In this paper we shall state two theorems (Theorem A and Theorem B below) concerning the existence of indiscernible sequences which realize a given type. When we know the existence of a set $A = (a_i)_{i < \omega}$ which realizes a given infinite type p, it will be convenient to assume that A is an indiscernible sequence. Of course this is not always the case. But the type p satisfies a certain condition, we can assume A to be an indiscernible sequence. The reader will find some such conditions in this paper. Our results generalize the following fact:

FACT. The following two conditions on a type $p(x_0, \dots, x_i, \dots)_{i < \omega}$ are equivalent:

i) There is an indiscernible sequence $(a_i)_{i < \omega}$ which realizes $p(x_i)_{i < \omega}$.

ii) There is a sequence $(a_i)_{i < \omega}$ such that $(a_{f(i)})_{i < \omega}$ realizes $p(x_i)_{i < \omega}$, whenever f is an increasing function on ω .

Our results in this paper will be used to investigate the number $\kappa_{inp}(T)$ of independent particles of T, in the sequel [3] to this paper. In §1 below, we shall state Theorem A and Theorem B, whose proofs will be given in §2.

§1. Theorems.

We use the usual standard notions in Shelah [2]. But some of them will be explained below. Let T be a fixed complete theory formulated in a first order language L(T), and \mathfrak{C} a model of T with sufficiently large saturation (cf. p. 7 in [2]). We use α , β , γ , \cdots for ordinals and m, n, i, j, k, \cdots for natural numbers. \bar{a} , \bar{b} , and \bar{a}^i_{α} are used to denote finite tuples of elements in \mathfrak{C} . \bar{x} , \bar{y} , and \bar{x}^i_{α} are used to denote finite sequence of variables. We use capitals $A_{\alpha}, B_{\alpha}, \cdots (X_{\alpha}, Y_{\alpha}, \cdots)$ to denote (distinct) ω -sequences of (distinct) k-tuples of (distinct) elements in \mathfrak{C} (variables). Therefore, A_{α} has the form $(\bar{a}^i_{\alpha})_{i < \omega}$, where \bar{a}^i_{α} is a tuple of elements of \mathfrak{C} , whose length is k. For such an A_{α} ,

Received March 1, 1984.

 $\bigcup A_{\alpha}$ means the set $\{a: a \text{ is an element of some } \bar{a}_{\alpha}^{i}\}$. The set of increasing functions on ω is denoted by \mathcal{F} . If $f \in \mathcal{F}$ and $A = (\bar{a}^{i})_{i < \omega}$, then A^{f} is the sequence $(\bar{a}^{f(i)})_{i < \omega}$. Similarly, $\bigcup X_{\alpha}$ and X^{f} will be used. Also we assume that $\bigcup X_{\alpha}$, $\bigcup X_{\beta}, \dots, \bigcup Y_{\alpha}, \dots$ are all disjoint.

To state our results, we require two notions, "strongly consistent" and "almost strongly consistent", on a set $p(X_{\alpha})_{\alpha < \kappa}$ of formulas of L(T) with variables in $\bigcup_{\alpha < \kappa} \bigcup X_{\alpha}$ defined by:

i) $p(X_{\alpha})_{\alpha < \kappa}$ is strongly consistent if $\bigcup_{F \in {}^{\kappa_{\mathcal{F}}}} p(X_{\alpha}^{F(\alpha)})_{\alpha < \kappa}$ is consistent with T;

ii) $p(X_{\alpha})_{\alpha < \epsilon}$ is almost strongly consistent if $\bigcup_{F \in {}^{e_{\mathcal{F}}}} p(Y_{F \restriction \alpha}^{F(\alpha)})_{\alpha < \epsilon}$ is consistent with T, where $F \restriction \alpha$ is the restriction of F to α , and Y_G $(G \in {}^{\epsilon > \mathcal{F}})$ are sequences of new variables.

Then our results are:

THEOREM A. The following two conditions on a type $p(X_{\alpha})_{\alpha < \kappa}$ are equivalent: a) $p(X_{\alpha})_{\alpha < \kappa}$ is strongly consistent.

b) There is a sequence $(A_{\alpha})_{\alpha < \kappa}$ with the properties i) $(A_{\alpha})_{\alpha < \kappa}$ realizes $p(X_{\alpha})_{\alpha < \kappa}$ and ii) $A_{\alpha} = (\bar{a}^{i}_{\alpha})_{i < \omega}$ is an indiscernible sequence over $\bigcup_{\beta \neq \alpha} \bigcup A_{\beta}$ for each $\alpha < \kappa$.

THEOREM B. The following two conditions on a type $p(X_{\alpha})_{\alpha < \kappa}$ are equivalent: c) $p(X_{\alpha})_{\alpha < \kappa}$ is almost strongly consistent.

d) There is a sequence $(A_{\alpha})_{\alpha < \kappa}$ with the properties i) $(A_{\alpha})_{\alpha < \kappa}$ realizes $p(X_{\alpha})_{\alpha < \kappa}$ and ii) $A_{\alpha} = (\bar{a}^{i}_{\alpha})_{i < \omega}$ is an indiscernible sequence over $\bigcup_{\alpha < \alpha} \cup A_{\beta}$ for each $\alpha < \kappa$.

§2. Proofs.

The implication b) \Rightarrow a) is trivial, because the sequence $(A_{\alpha})_{\alpha < \kappa}$ realizes every $p(X_{\alpha}^{F(\alpha)})_{\alpha < \kappa}$ $(F \in {}^{\kappa} \mathcal{F})$. a) \Rightarrow b) and c) \Rightarrow d) will be proved by iterated use of Ramsey's theorem.

a) \Rightarrow b): Let's define the set r(X, Y) by

$$\begin{aligned} r(X, Y) &= \{ \phi(\bar{x}^{i_1} \cdots \bar{x}^{i_n} : \bar{y}) \longleftrightarrow \phi(\bar{x}^{j_1} \cdots \bar{x}^{j_n} : \bar{y}) : \phi \in L(T), \\ \bar{x}^{i_1}, \cdots, \ \bar{x}^{i_n} \in X \ (i_1 < \cdots < i_n), \\ \bar{x}^{j_1}, \cdots, \ \bar{x}^{j_n} \in X \ (j_1 < \cdots < j_n), \ \bar{y} \in \bigcup Y \}, \end{aligned}$$

where $\bar{y} \in \bigcup Y$ means that every element in the tuple \bar{y} belongs to the set $\bigcup Y$. We shall show the consistency of

$$q_{\beta}(X_{\alpha})_{\alpha < \kappa} = \bigcup_{F \in {}^{\kappa_{\mathfrak{F}}}} p(X_{\alpha}^{F(\alpha)})_{\alpha < \kappa} \cup \bigcup_{\gamma < \beta} r(X_{\gamma}, \bigcup_{\delta \neq \gamma} X_{\delta}) ,$$

by induction on β . If $\beta=0$, then the consistency follows from a). If β is a limit ordinal, the consistency is clear by compactness. Let $\beta=\gamma+1$ and suppose that $(B_{\alpha})_{\alpha<\kappa}$ realizes $q_{\gamma}(X_{\alpha})_{\alpha<\kappa}$. For given formulas ${}^{(*)}\phi_i(\bar{x}_1\wedge\cdots\wedge\bar{x}_n:\bar{y}_i)\in L(T)$ $(i=1, \cdots, m)$ and elements $\bar{b}_i \in \bigcup_{\delta\in\gamma} \cup B_{\delta}$ $(i=1, \cdots, m)$, we can choose a function $f \in \mathcal{F}$ such that

$$\mathfrak{C} = \phi_i(\bar{b}_r^{f(i_1)} \cdots \bar{b}_r^{f(i_n)} : \bar{b}_i) \longleftrightarrow \phi_i(\bar{b}_r^{f(j_1)} \cdots \bar{b}_r^{f(j_n)} : \bar{b}_i) \qquad (i=1, \cdots, m),$$

whenever $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$, by using Ramsey's theorem. Then the sequence $(B_{\delta})_{\delta < r} \land (B_r^f) \land (B_{\delta})_{\delta < r}$ realizes the following type:

$$q_{\gamma}(X_{\alpha})_{\alpha < \epsilon} \cup \bigcup_{i=1}^{m} \{ \phi_{i}(\bar{x}_{7}^{i_{1}} \cdot \dots \cdot \bar{x}_{7}^{i_{n}} : \bar{b}_{i}) \longleftrightarrow \phi_{i}(\bar{x}_{7}^{j_{1}} \cdot \dots \cdot \bar{x}_{7}^{j_{n}} : \bar{b}_{i}) : i_{1} < \dots < i_{n}, \ j_{1} < \dots < j_{n} \}$$

This shows the consistency of $q_{\beta}(X_{\alpha})_{\alpha < \kappa}$. This means that b) holds.

c) \Rightarrow d): The proof of this case is similar to that of a) \Rightarrow b). For each $F = (f_{\alpha})_{\alpha < \beta} \in {}^{\kappa} > \mathcal{F}$, we prepare new variables $X_F = (\bar{x}_F^i)_{i < \omega}$. We shall show the contency of

$$q'_{\beta}(X_F)_{F \in {}^{k} \geq_{\widehat{T}}} = \bigcup_{F \in {}^{k} \mathfrak{F}} p(X_{F \restriction \alpha}^{F(\alpha)}) \cup \bigcup_{7 < \beta} \bigcup_{F \in {}^{\widetilde{T}} \mathfrak{F}} r(X_F, \bigcup_{\delta < \tau} X_{F \restriction \delta}^{F(\delta)}) ,$$

by induction on β . As in a) \Rightarrow b), we can assume that β is a successor and that $\beta = \gamma + 1$. Let $(B_F)_{F \in k^{>_{\mathcal{F}}}}$ realize $q'_{\mathcal{T}}(X_F)_{F \in k^{>_{\mathcal{F}}}}$. For given $\phi_{i,j}(\bar{x}_1 \cap \cdots \cap \bar{x}_n : \bar{y}) \in L(T)$ $(i=1, \dots, l; j=1, \dots, m), F_i \in \gamma_{\mathcal{F}} (i=1, \dots, l), \text{ and } b_{i,j} \in \bigcup_{\delta < \gamma} \cup B_{F_i}^{F_i(\delta)} (i=1, \dots, l; j=1, \dots, n), j=1, \dots, m),$ we can choose a function $f \in \mathcal{F}$ such that, for each i, j,

$$\mathfrak{C} \mid = \phi_{i,j}(\bar{b}_{F_i}^{f_{(i_1)}} \cdots \bar{b}_{F_i}^{f_{(i_n)}} : \bar{b}_{i,j}) \longleftrightarrow \phi_{i,j}(\bar{b}_{F_i}^{f_{(j_1)}} \cdots \bar{b}_{F_i}^{f_{(j_n)}} : \bar{b}_{i,j}),$$

whenever $i_1 < \cdots < i_n$ and $j_1 < \cdots < j_n$, by using Ramsey's theorem. Then define $(A_F)_{F \in {}^{K > g}}$ by

$$A_F = B_F \quad \text{if} \quad lh(F) < \gamma ,$$

$$A_F = B_F^f \quad \text{if} \quad lh(F) = \gamma ,$$

$$A_{F^{(g)}} = B_{F^{(g)}} = B_{F^{(g)}} = H \quad \text{if} \quad lh(F) = \gamma .$$

It is a routine to check that $(A_F)_{F \in {}^{\kappa_{\mathcal{F}}}}$ realizes the following type:

e

$$q'_{I}(X_{F})_{F \in {}^{\kappa_{\mathcal{I}}} \bigcup \bigcup_{\substack{1 \leq i \leq i \\ 1 \leq j \leq n}} \{\phi_{i,j}(\bar{x}_{F_{i}}^{i_{1}} \cdots \cap \bar{x}_{F_{i}}^{i_{n}} : \bar{b}_{i,j}) \\ \longleftrightarrow \phi_{i,j}(\bar{x}_{F_{i}}^{j_{1}} \cdots \cap \bar{x}_{F_{i}}^{j_{n}} : \bar{b}_{i,j}) \colon i_{1} < \cdots < i_{n}, j_{1} < \cdots < j_{n}\}.$$

The above argument shows the consistency of $q'_{\beta}(X_F)_{F \in {}^{\kappa_{\mathcal{F}}}}$. Let $(A_F)_{F \in {}^{\kappa_{\mathcal{F}}}}$ realize $q'_{\kappa}(X_F)_{F \in {}^{\kappa_{\mathcal{F}}}}$ and define $(A_{\alpha})_{\alpha < \kappa}$ by

^(*) Exactly speaking, n depends on i, but we can assume that n does not depend on i without loss of generality.

$$A_{\alpha} = A_{(id)}_{\beta < \alpha} = \underbrace{A_{(id, id, \cdots)}}_{\alpha \text{ times}}.$$

 $(A_{\alpha})_{\alpha < \kappa}$ is the desired sequence which satisfies the conditions i) and ii) of d).

d) \Rightarrow c): For each $\alpha < \kappa$ and each $f \in \mathcal{F}$, let $E_{\alpha, f}$ be an elementary map such that

- 1) dom $(A_{\alpha,f}) = \bigcup_{\beta \leq \alpha+1} \cup A_{\beta}, E_{\alpha,id}$ = the identity map,
- 2) $E_{\alpha,f} \upharpoonright (\bigcup_{\beta \geq \alpha} \cup A_{\beta}) =$ the identity map,
- 3) $E_{\alpha, f}(\bar{a}^{i}_{\alpha}) = \bar{a}^{f(i)}_{\alpha}$, for each $i < \omega$.

Using these $E_{\alpha,f}$ ($\alpha < \kappa, f \in \mathcal{F}$), let's define elementary maps I_F ($F \in \mathcal{F} = \mathcal{F}$) such that

4) dom(I_F)= ∪ ∪ A_α,
5) I_F (∪ ∪ A_α)⊆I_G (∪ ∪ A_α), for all F, G∈^{κ≥} F such that F⊆G,
6) I_F[^](t)=I_F[^](td) ∈ L_{th}(F), f.

Suppose that we have already constructed I_F ($F \in {}^{\alpha > \mathcal{F}}$). Our construction splits into the following two cases:

CASE 1. $\alpha = \beta + 1$. For each $F \in {}^{\beta}\mathcal{F}$, let J be an arbitrary elementary map such that $J \supseteq I_F$ and $\operatorname{dom}(J) = \bigcup_{\substack{\gamma \leq \alpha}} \bigcup A_{\gamma}$. Then put $I_{F \wedge (f)} = J \circ E_{\beta, f}$.

CASE 2. α is a limit ordinal. For each $F \in {}^{\alpha}\mathcal{F}$, let $I_{F}^{*} = \bigcup_{\beta < \alpha} (I_{F \restriction \beta} \upharpoonright (\bigcup_{I < \beta} A_{\gamma}))$. By 5), I_{F}^{*} is an elementary map. We define I_{F} as an elementary map such that $I_{F} \supseteq I_{F}^{*}$ and $\operatorname{dom}(I_{F}) = \bigcup_{\beta < \alpha} \bigcup A_{\beta}$. If we put $A_{F} = (I_{F}(\bar{a}_{lh(F)}))_{i < \omega}$, then $(A_{F})_{F \in {}^{\epsilon} \supset \mathcal{F}}$ guarantees the almost strong consistency of $p(X_{\alpha})_{\alpha < \epsilon}$, i.e., it realizes the type $\bigcup_{F \in {}^{\epsilon} \cap \mathcal{F}} p(Y_{F \restriction \alpha}^{F(\alpha)})_{\alpha < \epsilon}$. For this we must show that $(A_{F \restriction \alpha}^{F(\alpha)})_{\alpha < \epsilon}$ realizes $p(X_{\alpha})_{\alpha < \epsilon}$ for $\stackrel{F \in {}^{\epsilon} \cap \mathcal{F}}{=}$. But this is clear, since the followings hold in turn :

$$\begin{split} &(A_{\alpha})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}; \\ &((I_{F}(\bar{a}_{\alpha}^{i}))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}; \\ &((I_{F\uparrow\alpha+1}(\bar{a}_{\alpha}^{i}))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}; \\ &((I_{F\uparrow\alpha}\wedge(id)\circ E_{\alpha,F(\alpha)}(\bar{a}_{\alpha}^{i}))_{i<\omega})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}; \\ &(((I_{F\uparrow\alpha}(\bar{a}_{\alpha}^{i}))_{i<\omega})^{F(\alpha)})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}; \\ &(A_{F\uparrow\alpha}^{F(\alpha)})_{\alpha<\kappa} \text{ realizes } p(X_{\alpha})_{\alpha<\kappa}. \end{split}$$

REMARK. If T is stable, any indiscernible sequence becomes an indiscernible set. Hence, in such cases, we can require in b) and d) that A_{α} is an indiscernible set. We are inspired by Chapter III of [2]. In fact, the construction of I_F^* in

386

the proof of d) \Rightarrow c) is very similar to that of F_{η} in Theorem 3.7 of [2]. We use Theorems A and B freely in our forthcoming paper [3].

Added in proof.

In Theorems A and B, each sequence X_{α} ($\alpha < \kappa$) is assumed to be an ω sequence of finite tuples of variables (to avoid unnecessary complexity). But the
restriction to ω -sequence is not necessary. By using compactness, we can prove
Theorems A and B for a type $p(X_{\alpha})_{\alpha < \kappa}$ with $lh(X_{\alpha}) = \lambda$, where λ is an arbitrary
infinite cardinal. Moreover, if $p(X_{\alpha})_{\alpha < \kappa}$ is a strongly consistent type of a stable
theory T, its realization $(A_{\alpha})_{\alpha < \kappa}$ can be assumed to be independent over some A
with $|A| = \kappa$. (Precisely speaking, $\bigcup_{\alpha < \kappa} A_{\alpha}$ is independent over A.) To prove
this, we must note that for each $A_{\alpha} = (\bar{a}^i_{\alpha})_{i < \lambda}$, the average type $Av(A_{\alpha}/A_{\alpha})$ is a
unique non-forking extension of $Av(A_{\alpha}/(\bar{a}^i_{\alpha})_{i < \omega})$ to the domain A_{α} . A hint for
its proof will be found in [3].

References

- [1] Sacks, G.E., Saturated Model Theory, W.A. Benjamin, Reading Mass., 1972.
- [2] Shelah, S., Classification Theory and the Number of Non-isomorphic Models, Studies in logic, North-Holland, Amsterdam, 1978.
- [3] Tsuboi, A., On the number of independent partitions, to appear in J. Symb. Logic.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan