TWO THEOREMS ON THE EXISTENCE OF INDISCERNIBLE SEQUENCES

By
Akito Tsuboi

§ 0. Introduction.

In this paper we shall state two theorems (Theorem A and Theorem B below) concerning the existence of indiscernible sequences which realize a given type. When we know the existence of a set $A=\left(a_{i}\right)_{i<\omega}$ which realizes a given infinite type p, it will be convenient to assume that A is an indiscernible sequence. Of course this is not always the case. But the type p satisfies a certain condition, we can assume A to be an indiscernible sequence. The reader will find some such conditions in this paper. Our results generalize the following fact:

Fact. The following two conditions on a type $p\left(x_{0}, \cdots, x_{i}, \cdots\right)_{i<\omega}$ are equivalent:
i) There is an indiscernible sequence $\left(a_{i}\right)_{i<\omega}$ which realizes $p\left(x_{i}\right)_{i<\omega}$.
ii) There is a sequence $\left(a_{i}\right)_{i<\omega}$ such that $\left(a_{f(i)}\right)_{i<\omega}$ realizes $p\left(x_{i}\right)_{i<\omega}$, whenever f is an increasing function on ω.

Our results in this paper will be used to investigate the number $\kappa_{i n p}(T)$ of independent partions of T, in the sequel [3] to this paper. In $\S 1$ below, we shall state Theorem A and Theorem B, whose proofs will be given in $\S 2$.

§ 1. Theorems.

We use the usual standard notions in Shelah [2]. But some of them will be explained below. Let T be a fixed complete theory formulated in a first order language $L(T)$, and (5 a model of T with sufficiently large saturation (cf. p. 7 in [2]). We use $\alpha, \beta, \gamma, \cdots$ for ordinals and m, n, i, j, k, \cdots for natural numbers. \bar{a}, \bar{b}, and \bar{a}_{α}^{i} are used to denote finite tuples of elements in (5. \bar{x}, \bar{y}, and \bar{x}_{α}^{i} are used to denote finite sequence of variables. We use capitals $A_{\alpha}, B_{\alpha}, \cdots\left(X_{\alpha}, Y_{\alpha}, \cdots\right)$ to denote (distinct) ω-sequences of (distinct) k-tuples of (distinct) elements in (5 (variables). Therefore, A_{α} has the form $\left(\bar{a}_{\alpha}^{i}\right)_{i<\omega}$, where \bar{a}_{α}^{i} is a tuple of elements of \mathfrak{c}, whose length is k. For such an A_{α},

Received March 1, 1984.
$\cup A_{\alpha}$ means the set $\left\{a: a\right.$ is an element of some $\left.\bar{a}_{\alpha}^{i}\right\}$. The set of increasing functions on ω is denoted by \mathscr{T}. If $f \in \mathscr{F}$ and $A=\left(\bar{a}^{i}\right)_{i<\omega}$, then A^{f} is the sequence $\left(\bar{a}^{f(i)}\right)_{i<\omega}$. Similarly, $\cup X_{\alpha}$ and X^{f} will be used. Also we assume that $\cup X_{a}$, $\cup X_{\beta}, \cdots, \cup Y_{\alpha}, \cdots$ are all disjoint.

To state our results, we require two notions, "strongly consistent" and "almost strongly consistent", on a set $p\left(X_{\alpha}\right)_{\alpha<\varepsilon}$ of formulas of $L(T)$ with variables in $\bigcup_{\alpha<\kappa} \cup X_{\alpha}$ defined by:
i) $p\left(X_{\alpha}\right)_{\alpha<k}$ is strongly consistent if $\bigcup_{F \in \in^{\kappa} F} p\left(X_{\alpha}^{F(\alpha)}\right)_{\alpha<k}$ is consistent with T;
ii) $p\left(X_{\alpha}\right)_{\alpha<k}$ is almost strongly consistent if $\bigcup_{F \in \in_{\mathcal{K}}} p\left(Y_{F(\alpha, \alpha)}^{F(\alpha)}\right)_{\alpha<k}$ is consistent with T, where $F \upharpoonright \alpha$ is the restriction of F to α, and $Y_{G}\left(G \in^{r>} \mathcal{I}\right)$ are sequences of new variables.

Then our results are:
Theorem A. The following two conditions on a type $p\left(X_{\alpha}\right)_{\alpha<\kappa}$ are equivalent:
a) $p\left(X_{\alpha}\right)_{\alpha<k}$ is strongly consistent.
b) There is a sequence $\left(A_{\alpha}\right)_{\alpha<\kappa}$ with the properties i) $\left(A_{\alpha}\right)_{\alpha<\kappa}$ realizes $p\left(X_{\alpha}\right)_{\alpha<\kappa}$ and ii) $A_{\alpha}=\left(\bar{a}_{\alpha}^{i}\right)_{i<\omega}$ is an indiscernible sequence over $\bigcup_{\beta \neq \alpha} \cup A_{\beta}$ for each $\alpha<\kappa$.

Theorem B. The following two conditions on a type $p\left(X_{\alpha}\right)_{\alpha<r}$ are equivalent:
c) $p\left(X_{\alpha}\right)_{\alpha<k}$ is almost strongly consistent.
d) There is a sequence $\left(A_{\alpha}\right)_{\alpha<k}$ with the properties i) $\left(A_{\alpha}\right)_{\alpha<k}$ realizes $p\left(X_{\alpha}\right)_{\alpha<k}$ and ii) $A_{\alpha}=\left(\bar{a}_{\alpha}^{i}\right)_{i<\omega}$ is an indiscernible sequence over $\bigcup_{\beta<\alpha}^{\bigcup} \cup A_{\beta}$ for each $\alpha<\kappa$.

§ 2. Proofs.

The implication b$) \Rightarrow \mathrm{a})$ is trivial, because the sequence $\left(A_{\alpha}\right)_{\alpha<k}$ realizes every $p\left(X_{\alpha}^{F(\alpha)}\right)_{\alpha<\kappa}\left(F \in^{\kappa} \mathcal{F}\right)$. a) \Rightarrow b) and c$) \Rightarrow$ d) will be proved by iterated use of Ramsey's theorem.
a) $\Rightarrow \mathrm{b})$: Let's define the set $r(X, Y)$ by

$$
\begin{aligned}
& r(X, Y)=\left\{\phi\left(\bar{x}^{i_{1} \wedge} \cdots{ }^{\wedge} \bar{x}^{i_{n}}: \bar{y}\right) \longleftrightarrow \phi\left(\bar{x}^{j_{1} \wedge \cdots} \bar{x}^{j_{n}}: \bar{y}\right): \phi \in L(T),\right. \\
& \bar{x}^{i_{1}}, \cdots, \bar{x}^{i_{n}} \in X\left(i_{1}<\cdots<i_{n}\right), \\
&\left.\bar{x}^{j_{1}}, \cdots, \bar{x}^{j_{n}} \in X\left(j_{1}<\cdots<j_{n}\right), \bar{y} \in \cup Y\right\},
\end{aligned}
$$

where $\bar{y} \in \cup Y$ means that every element in the tuple \bar{y} belongs to the set $\cup Y$. We shall show the consistency of

$$
q_{\beta}\left(X_{\alpha}\right)_{\alpha<\kappa}=\bigcup_{F \in \in^{\kappa} \mathcal{F}} p\left(X_{\alpha}^{F(\alpha)}\right)_{\alpha<\kappa} \cup \bigcup_{\gamma<\beta} r\left(X_{r}, \bigcup_{\partial=\gamma} X_{\hat{\partial}}\right),
$$

by induction on β. If $\beta=0$, then the consistency follows from a). If β is a limit ordinal, the consistency is clear by compactness. Let $\beta=\gamma+1$ and suppose that $\left(B_{\alpha}\right)_{\alpha<\kappa}$ realizes $q_{\gamma}\left(X_{\alpha}\right)_{\alpha<\kappa}$. For given formulas ${ }^{(*)} \phi_{i}\left(\bar{x}_{1} \wedge \cdots \wedge \bar{x}_{n}: \bar{y}_{i}\right) \in L(T)$ $(i=1, \cdots, m)$ and elements $\bar{b}_{i} \in \bigcup_{\delta \in r} \cup B_{\delta}(i=1, \cdots, m)$, we can choose a function $f \in \mathscr{F}$ such that

$$
\text { (§) }=\phi_{i}\left(\bar{b}_{\gamma}^{f\left(i_{1}\right) \wedge \ldots \wedge} \bar{b}_{\gamma}^{f\left(i_{n}\right)}: \bar{b}_{i}\right) \longleftrightarrow \phi_{i}\left(\bar{b}_{\gamma}^{f\left(j_{1}\right) \wedge \ldots \wedge} \bar{b}_{\gamma}^{f\left(j_{n}\right)}: \bar{b}_{i}\right) \quad(i=1, \cdots, m),
$$

whenever $i_{1}<\cdots<i_{n}$ and $j_{1}<\cdots<j_{n}$, by using Ramsey's theorem. Then the sequence $\left(B_{\delta}\right)_{\delta<\gamma} \wedge\left(B_{\gamma}^{f}\right) \wedge\left(B_{\dot{\delta}}\right)_{\dot{\delta}<\gamma}$ realizes the following type:

$$
\begin{aligned}
q_{\gamma}\left(X_{\alpha}\right)_{\alpha<\kappa} \bigcup \bigcup_{i=1}^{m}\left\{\phi_{i}\left(\bar{x}_{\gamma}^{i_{1} \wedge \ldots \wedge} \bar{x}_{\gamma}^{i_{n}}: \bar{b}_{i}\right) \longleftrightarrow \longrightarrow\right. & \phi_{i}\left(\bar{x}_{\gamma}^{j_{\gamma}} \wedge^{\wedge}{ }^{\wedge} \bar{x}_{\gamma}^{j_{n}}: \bar{b}_{i}\right): \\
& \left.i_{1}<\cdots<i_{n}, j_{1}<\cdots<j_{n}\right\}
\end{aligned}
$$

This shows the consistency of $q_{\beta}\left(X_{\alpha}\right)_{\alpha<n}$. This means that b) holds.
c) $\Rightarrow \mathrm{d})$: The proof of this case is similar to that of a$) \Rightarrow \mathrm{b}$). For each $F=$ $\left(f_{\alpha}\right)_{\alpha<\beta} \in^{\kappa>} \subseteq$, we prepare new variables $X_{F}=\left(\bar{x}_{F}^{i}\right)_{i<\omega}$. We shall show the contency of

$$
q_{\beta}^{\prime}\left(X_{F}\right)_{F \in}{ }^{\kappa>}>\mathcal{I}=\bigcup_{F \in \in^{\kappa} \varsubsetneqq} p\left(X_{F \upharpoonright \alpha}^{F(\alpha)}\right) \cup \bigcup_{r<\beta} \bigcup_{F \in \in^{\gamma} \Psi} r\left(X_{F}, \bigcup_{\delta<\gamma} X_{F i \delta}^{F(\delta)}\right),
$$

by induction on β. As in a$) \Rightarrow \mathrm{b}$), we can assume that β is a successor and that $\beta=\gamma+1$. Let $\left.\left(B_{F}\right)_{F \in}{ }^{\wedge}\right\rangle_{\mathcal{G}}$ realize $q_{\gamma}^{\prime}\left(X_{F}\right)_{\left.F E^{\kappa>}\right\rangle_{G}}$. For given $\phi_{i, j}\left(\bar{x}_{1}{ }^{\wedge} \ldots{ }^{\wedge} \bar{x}_{n}: \bar{y}\right) \in L(T)$ $(i=1, \cdots, l ; j=1, \cdots, m), F_{i} \in \gamma_{\mathcal{F}}(i=1, \cdots, l)$, and $b_{i, j} \in \bigcup_{\delta<\gamma} \cup B_{F_{i}}^{F_{i}(\hat{\delta})}(i=1, \cdots, l$; $j=1, \cdots, m$, we can choose a function $f \in \mathscr{F}$ such that, for each i, j,

$$
|\mathbb{C}|=\phi_{i, j}\left(\widetilde{b}_{F_{i}}^{f\left(i_{1}\right) \wedge \ldots \wedge} \bar{b}_{F_{i}}^{f\left(i_{n}\right)}: \vec{b}_{i, j}\right) \longleftrightarrow \phi_{i, j}\left(\bar{b}_{F_{i}}^{f\left(j_{1}\right) \wedge \ldots \wedge} \bar{b}_{F_{i}}^{f\left(j_{n}\right)}: \bar{b}_{i, j}\right),
$$

whenever $i_{1}<\cdots<i_{n}$ and $j_{1}<\cdots<j_{n}$, by using Ramsey's theorem. Then define $\left(A_{F}\right)_{F \in}{ }^{\kappa\rangle_{G}}$ by

$$
\begin{aligned}
& A_{F}=B_{F} \quad \text { if } \quad l h(F)<\gamma, \\
& A_{F}=B_{F}^{f} \quad \text { if } \quad l h(F)=\gamma, \\
& A_{F^{\wedge}(g)^{\wedge} H}=B_{F^{\wedge}(g \circ h)^{\wedge} H} \quad \text { if } \quad l h(F)=\gamma .
\end{aligned}
$$

It is a routine to check that $\left(A_{F}\right)_{F E^{\kappa_{F}}}$ realizes the following type:

$$
\begin{aligned}
& q_{r}^{\prime}\left(X_{F}\right)_{F \in^{\kappa} F} \cup \bigcup_{\substack{1 \leq j \leq l \\
1 \leq j \leq n}}\left\{\phi _ { i , j } \left(\bar{x}_{F_{i}}^{\left.i i_{1} \wedge \cdots \wedge \bar{x}_{F_{i}}^{i n}: \bar{b}_{i, j}\right)}\right.\right. \\
&\left.\longleftrightarrow \phi_{i, j}\left(\bar{x}_{F_{i}}^{j_{1} \wedge \cdots} \bar{x}_{F_{i}}^{j_{n}}: \bar{b}_{i, j}\right): i_{1}<\cdots<i_{n}, j_{1}<\cdots<j_{n}\right\}
\end{aligned}
$$

The above argument shows the consistency of $q_{\beta}^{\prime}\left(X_{F}\right)_{F \in \in^{k} \mathcal{G}}$. Let $\left(A_{F}\right)_{\left.F \in \in^{k}\right\rangle_{\mathcal{F}}}$ realize $q_{k}^{\prime}\left(X_{F}\right)_{F \in^{\kappa}>_{G}}$ and define $\left(A_{\alpha}\right)_{\alpha<\kappa}$ by

[^0]$$
A_{\alpha}=A_{(i d)_{\beta<\alpha}}=\underbrace{A_{(i d, i d, \ldots)}}_{\alpha \text { times }}
$$
$\left(A_{\alpha}\right)_{\alpha<k}$ is the desired sequence which satisfies the conditions i) and ii) of d).
d) $\Rightarrow \mathrm{c})$: For each $\alpha<\kappa$ and each $f \in \mathscr{I}$, let $E_{\alpha, f}$ be an elementary map such that

1) $\operatorname{dom}\left(A_{\alpha, f}\right)=\bigcup_{\beta \leq \alpha+1} \cup A_{\beta}, E_{\alpha, i d}=$ the identity map,
2) $E_{\alpha, f} \upharpoonright\left(\bigcup_{\beta<\alpha} \cup A_{\beta}\right)=$ the identity map,
3) $E_{\alpha, f}\left(\bar{a}_{\alpha}^{i}\right)=\bar{a}_{\alpha}^{f(i)}$, for each $i<\omega$.

Using these $E_{\alpha, f}(\alpha<\kappa, f \in \mathscr{I})$, let's define elementary maps $I_{F}(F \in \kappa>\mathcal{F})$ such that
4) $\operatorname{dom}\left(I_{F}\right)=\bigcup_{\alpha \leqq \ln (F)} \cup A_{\alpha}$,
5) $I_{F} \upharpoonright\left(\bigcup_{\alpha<\ln (F)} \cup A_{\alpha}\right) \subseteq I_{G} \upharpoonright\left(\bigcup_{\alpha<\ln (G)} \cup A_{\alpha}\right)$, for all $F, G \subseteq{ }^{\kappa \geqq \mathcal{I}}$ such that $F \subseteq G$,
6) $\quad I_{F^{\wedge}(f)}=I_{F^{\wedge}(i d)}{ }^{\circ} E_{l h(F), f}$.

Suppose that we have already constructed $I_{F}\left(F \in^{\alpha>} \mathcal{F}\right)$. Our construction splits into the following two cases:

CASE 1. $\alpha=\beta+1$. For each $F \in\{\mathcal{F}$, let J be an arbitrary elementary map such that $J \supseteqq I_{F}$ and $\operatorname{dom}(J)=\bigcup_{\gamma \cong \alpha}^{\cup} A_{\gamma}$. Then put $I_{F \wedge(f)}=J \circ E_{\beta, f}$.

CASE 2. α is a limit ordinal. For each $F \in^{\alpha} \mathcal{F}$, let $I_{F}^{*}=\bigcup_{\beta<\alpha}\left(I_{F \upharpoonright \beta}\left\lceil\left(\bigcup_{\gamma<\beta} A_{\gamma}\right)\right)\right.$. By 5), I_{F}^{*} is an elementary map. We define I_{F} as an elementary map such that $I_{F} \supseteq I_{F}^{*}$ and $\operatorname{dom}\left(I_{F}\right)=\bigcup_{\beta<\alpha}^{\cup} A_{\beta}$. If we put $A_{F}=\left(I_{F}\left(\bar{a}_{l h(F)}^{i}\right)\right)_{i<\omega}$, then $\left(A_{F}\right)_{\left.F \in{ }_{F}^{n}\right\rangle_{F}}$ guarantees the almost strong consistency of $p\left(X_{\alpha}\right)_{\alpha<k}$, i. e., it realizes the type $\bigcup p\left(Y_{F \upharpoonright \alpha}^{F(\alpha)}\right)_{\alpha<k}$. For this we must show that $\left(A_{F \upharpoonright \alpha}^{F(\alpha)}\right)_{\alpha<k}$ realizes $p\left(X_{\alpha}\right)_{\alpha<k}$ for $F \in \in^{\kappa} G$ each $F \in^{\kappa} \mathcal{G}$. But this is clear, since the followings hold in turn:

$$
\begin{aligned}
& \left(A_{\alpha}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa} ; \\
& \left(\left(I_{F}\left(\bar{a}_{\alpha}^{i}\right)\right)_{i<\omega}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa} ; \\
& \left(\left(I_{F \upharpoonright \alpha+1}\left(\bar{a}_{\alpha}^{i}\right)\right)_{i<\omega}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa} ; \\
& \left(\left(I_{F \vdash \alpha \wedge(i d)^{\circ}} E_{\alpha, F(\alpha)}\left(\bar{a}_{\alpha}^{i}\right)\right)_{i<\omega}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa} ; \\
& \left(\left(\left(I_{F \upharpoonright \alpha}\left(\bar{a}_{\alpha}^{i}\right)\right)_{i<\omega}\right)^{F(\alpha)}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa} ; \\
& \left(A_{F \upharpoonright \alpha}^{F(\alpha)}\right)_{\alpha<\kappa} \text { realizes } p\left(X_{\alpha}\right)_{\alpha<\kappa}
\end{aligned}
$$

REMARK. If T is stable, any indiscernible sequence becomes an indiscernible set. Hence, in such cases, we can require in b) and d) that A_{α} is an indiscernible set. We are inspired by Chapter III of [2]. In fact, the construction of I_{F}^{*} in
the proof of d$) \Rightarrow \mathrm{c}$) is very similar to that of F_{η} in Theorem 3.7 of [2]. We use Theorems A and B freely in our forthcoming paper [3].

Added in proof.

In Theorems A and B, each sequence $X_{\alpha}(\alpha<\kappa)$ is assumed to be an ω sequence of finite tuples of variables (to avoid unnecessary complexity). But the restriction to ω-sequence is not necessary. By using compactness, we can prove Theorems A and B for a type $p\left(X_{\alpha}\right)_{\alpha<k}$ with $\operatorname{lh}\left(X_{\alpha}\right)=\lambda$, where λ is an arbitrary infinite cardinal. Moreover, if $p\left(X_{\alpha}\right)_{\alpha<\varepsilon}$ is a strongly consistent type of a stable theory T, its realization $\left(A_{\alpha}\right)_{\alpha<x}$ can be assumed to be independent over some A with $|A|=\kappa$. (Precisely speaking, $\bigcup_{a<k} A_{\alpha}$ is independent over A.) To prove this, we must note that for each $A_{\alpha}=\left(\bar{a}_{\alpha}^{i}\right)_{i<\lambda}$, the average type $\operatorname{Av}\left(A_{\alpha} / A_{\alpha}\right)$ is a unique non-forking extension of $\operatorname{Av}\left(A_{\alpha} /\left(\bar{a}_{\alpha}^{i}\right)_{i<\omega}\right)$ to the domain A_{α}. A hint for its proof will be found in [3].

References

[1] Sacks, G. E., Saturated Model Theory, W. A. Benjamin, Reading Mass., 1972.
[2] Shelah, S., Classification Theory and the Number of Non-isomorphic Models, Studies in logic, North-Holland, Amsterdam, 1978.
[3] Tsuboi, A., On the number of independent partitions, to appear in J. Symb. Logic.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan

[^0]: (*) Exactly speaking, n depends on i, but we can assume that n does not depend on i without loss of generality.

