HOMOGENEOUS TUBES OVER ONE-POINT EXTENSIONS

By

Noritaka KOYAMA and Jun-ichi MIYACHI

Introduction

Let A be a finite dimensional algebra over a field k, and M a finite dimensional left Amodule. We denote by R = R(A, M) the one-point extension of A by M, namely,

$$R = \left[\begin{array}{cc} A & M \\ 0 & k \end{array} \right].$$

V. Dlab and C. M. Ringel looked into the indecomposable representations of tame hereditary algebras [3]. As a result, they found that stable tubes, in particular homogeneous tubes, play an important role in their Auslander-Reiten quivers. Here a connected component Γ of the Auslander-Reiten quiver is called a stable tube if Γ is of the form $\mathbb{Z}A_{\infty}/n$ for some $n \in \mathbb{N}$, and called a homogeneous tube if Γ is a stable tube with n=1 [6]. Recently, in case of the base field being algebraically closed, C. M. Ringel generalized their results in terms of the one-point extension, and gave conditions on A and M that make R(A, M) have stable separating tubular families [6].

We are interested in stable tubes, and in this paper we characterize broader parts of DTr-invariant *R*-modules in terms of the one-point extension, and construct the homogeneous tubes which contain them.

Throughout this paper, we deal only with finite dimensional algebras over a field k, and finite dimensional (usually left) modules. We denote by P(X), the projective cover of X, and by E(Y), the injective hull of Y. The k-dual Hom_k (-, k) is denoted by D, and the A-dual Hom_A (-, A) (resp. the *R*-dual Hom_R (-, R)) is denoted by $-^*$ (resp. $-^{\#}$). Further we freely use the results of [1], [2] and [5], and denote DTr by τ .

1. The Auslander-Reiten Translation over One-point Extensions

In this section, we calculate the Auslander-Reiten translation of R(A, M)-modules. Given R = R(A, M), it is well known that the category of left *R*-modules is equivalent to the category $\mathfrak{M}(_{A}M_{k})$. Recall that the category $\mathfrak{M}(_{A}M_{k})$ of representations of the bimodule $_{A}M_{k}$ has as objects the triples $(_{k}U, _{A}X, \phi)$ with an *A*-homomorphism $\phi: _{A}M \otimes_{k}U \rightarrow_{A}X$, and a morphism from $(_{k}U, _{A}X, \phi)$ to $(_{k}U', _{A}X', \phi')$ is given by a pair (α, β) of a *k*-linear map α :

Received June 18, 1985.

 $_{k}U \rightarrow_{k}U'$, and an A-homomorphism $\beta: {}_{A}X \rightarrow_{A}X'$, satisfying $\beta \phi = \phi'(1 \otimes \alpha)$. After this, we write $(\dim_{k}U, X, \phi)$ for (U, X, ϕ) and we will call $V = (\dim_{k}U, X, \phi)$ just an R-module.

Now, for an *R*-module $V = (n, X, \phi)$, we consider the following commutative diagram with exact rows:

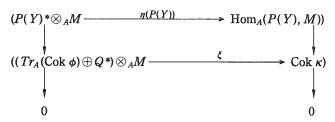
This construction is as follows. In the bottom row morphisms are canonical. Since $P(\operatorname{Cok} \phi) \stackrel{\varepsilon}{\to} \operatorname{Cok} \phi \to 0$ is the projective cover, we can take $\rho \in \operatorname{Hom}_A(P(\operatorname{Cok} \phi), X)$ such that $\varepsilon = \pi \rho$. For the pair (ϕ, ρ) , we take the pull-back $(Y; \mu, v)$. Then this square is exact, and Ker v is isomorphic to Ker ϕ .

PROPOSITION 1.1. Let $V = (n, X, \phi)$ be a non-projective indecomposable R-module. Then $\tau_R V$ is isomorphic to the R-module $(\dim_k \operatorname{Hom}_A (M, \tau_A (\operatorname{Cok} \phi) \oplus I_V) - n, \tau_A (\operatorname{Cok} \phi) \oplus I_V, \tilde{\phi})$ with some $\tilde{\phi}$. Here I_V is the injective A-module $D(Q^*)$ where Q is the direct summand of P(Y) such that $P(Y) = Q \oplus P(\operatorname{Ker} \varepsilon)$.

PROOF. It is easy to see that an indecomposable projective *R*-module has the form (0, P, 0) with an indecomposable projective *A*-module *P*, or the form $(1, M, 1_M)$. Applying $-^{\#}$, $(0, P, 0)^{\#} \simeq (\dim_k P^*, \operatorname{Hom}_A(P, M), \eta(P))$ where $\eta(P)$ is the canonical isomorphism $(\eta(P)(m \otimes f))(p) = f(p)m, m \in M, f \in P^*$ and $p \in P$, or $(1, M, 1_M)^{\#} \simeq (0, k, 0)$. (For right *R*-modules, we use the similar notations.) Now the minimal projective presentation of *V* has the following form:

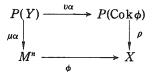
$$\begin{bmatrix} 0 \\ \downarrow \\ P(Y) \end{bmatrix} \xrightarrow{\longrightarrow} \begin{bmatrix} M^n \\ \downarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ M^n \oplus P(\operatorname{Cok} \phi) \end{bmatrix} \xrightarrow{\longrightarrow} \begin{bmatrix} M^n \\ \downarrow \phi \\ X \end{bmatrix} \xrightarrow{\longrightarrow} 0$$
$$\begin{bmatrix} \mu \alpha \\ \nu \alpha \end{bmatrix} \xrightarrow{(\phi, -\rho)}$$

where α is the projective cover $P(Y) \stackrel{\alpha}{\to} Y \to 0$, and each row is exact. According to the difinition of the transpose, applying $-^{\#}$ to the above, we obtain the following diagram with exact columns:



Here $\kappa = (\kappa_1, \kappa_2)$ where $\kappa_1: k^n \to \operatorname{Hom}_A(P(Y), M)$ and $\kappa_2: \operatorname{Hom}_A(P(\operatorname{Cok} \phi), M) \to \operatorname{Hom}_A(P(Y), M)$ with $\kappa_1((a_i)) = \sum_{i=1}^n a_i \mu_i \alpha, \kappa_2(f) = f \nu \alpha$ where μ_i is the composition of μ and the *i*th projection, and ξ is the induced morphism. We obtain $Tr_R \ V \simeq (\dim_k (Tr_A (\operatorname{Cok} \phi) \oplus Q^*), \operatorname{Cok} \kappa, \xi)$. Consequently $\tau_R \ V \simeq (\dim_k D(\operatorname{Cok} \kappa), \tau_A(\operatorname{Cok} \phi) \oplus I_V, \tilde{\phi})$ with some $\tilde{\phi}$. To complete the proof, it is sufficient to show $\dim_k D(\operatorname{Cok} \kappa) = \dim_k \operatorname{Hom}_A(M, \tau_A(\operatorname{Cok} \phi) \oplus I_V) - n$. Since $\operatorname{Hom}_A(M, \tau_A(\operatorname{Cok} \phi) \oplus I_V) \simeq D((Tr_A (\operatorname{Cok} \phi) \oplus Q^*) \otimes_A M)$, we will show \dim_k $\operatorname{Cok} \kappa = \dim_k ((Tr_A (\operatorname{Cok} \phi) \oplus Q^*) \otimes_A M) - n$. This follows from the following two facts: (1) $\operatorname{Im} \kappa_1 \cap \operatorname{Im} \kappa_2 = 0$ and (2) κ_1 is a monomorphism.

(1) Assume Im $\kappa_1 \cap \text{Im } \kappa_2 \neq 0$. Then there exists $(a_i) \in k^n$ and $f \in \text{Hom}_A$ ($P(\text{Cok } \phi), M$) such that $f \upsilon \alpha = \sum_{i=1}^n a_i \mu_i \alpha \neq 0$. Since the following diagram is push-out, we have $\delta \in \text{Hom}_A$ (X, M) such that $\delta \phi = (a_i)$.



This means that V has a projective direct summand $(1, M, 1_M)$. It's a contradiction.

(2) Similarly.

COROLLARY 1.2. Let $V = (n, X, \phi)$ be a non-projective indecomposable R-module. Then

- (1) If ϕ is an epimorphism, $\tau_R V$ is isomorphic to $(\dim_k \operatorname{Hom}_A (M, E(\operatorname{top} (\operatorname{Ker} \phi))) - n, E(\operatorname{top} (\operatorname{Ker} \phi)), \tilde{\phi}).$
- (2) If ϕ is a monomorphism, $\tau_R V$ is isomorphic to (dim_k Hom_A (M, τ_A (Cok ϕ)) -n, τ_A (Cok ϕ), $\tilde{\phi}$).
- (3) If proj.dim_A Cok $\phi = 1$, $\tau_R V$ is isomorphic to (dim_k Hom_A (M, τ_A (Cok ϕ) $\oplus E$ (top (Ker ϕ))) -n, τ_A (Cok ϕ) $\oplus E$ (top (Ker ϕ)), $\tilde{\phi}$).

PROOF. By Proposition 1.1.

2. Homogeneous Tubes

In this section, we characterize some τ_R -invariant modules by using the previous proposition. And we construct homogeneous tubes which contain them.

LEMMA 2.1. Let $V = (n, X, \phi)$, $(n \neq 0)$ be a non-projective indecomposable R-module. Then the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{array}{c} 0 \longrightarrow \begin{bmatrix} M^{m-n} \\ \downarrow \begin{bmatrix} \tilde{\phi}_1 \\ \tilde{\phi}_2 \end{bmatrix} \\ 0 \longrightarrow \begin{bmatrix} \tau_A(\operatorname{Cok} \phi) \oplus I_V \end{bmatrix} \end{array} \xrightarrow{\left[\begin{array}{c} 1 \\ 0 \end{bmatrix} \\ \rightarrow \end{array} } \begin{bmatrix} M^{m-n} \oplus M^n \\ \downarrow \begin{bmatrix} \tilde{\phi}_1 \ \psi_1 \\ \tilde{\phi}_2 \ \psi_2 \\ 0 \ \phi \end{bmatrix} \\ \left[\begin{array}{c} 0 \\ \tau_A(\operatorname{Cok} \phi) \oplus I_V \right] \oplus X \end{array} \end{array} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \rightarrow 0 \\ \left[\begin{array}{c} \tau_A(\operatorname{Cok} \phi) \oplus I_V \oplus X \end{array} \right] \xrightarrow{\left[\begin{array}{c} 0 \\ \phi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \phi \\ \chi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \psi \end{array} \right]} \xrightarrow{\left[\begin{array}{c} 0 \\ \downarrow \end{array}}$$

with some $\tilde{\phi}_1$, $\tilde{\phi}_2$, ψ_1 and ψ_2 , where $m = \dim_k \operatorname{Hom}_A (M, \tau_A(\operatorname{Cok} \phi) \oplus I_V)$.

PROOF. By Proposition 1.1, the Auslander-Reiten sequence has the following form:

$$0 \longrightarrow \begin{bmatrix} M^{m-n} \\ \downarrow \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow[(\alpha_1 \ \alpha_2)]{} \xrightarrow{M^{m-n} \oplus M^n} \begin{bmatrix} M^{m-n} \oplus M^n \\ \downarrow \\ \downarrow \\ E \end{bmatrix} \xrightarrow[\beta]{} \begin{bmatrix} M^n \\ \downarrow \\ \downarrow \\ B \end{bmatrix} \xrightarrow[\beta]{} \xrightarrow{\beta} \begin{bmatrix} M^n \\ \downarrow \\ X \end{bmatrix} \xrightarrow[] \rightarrow 0$$

with some E, and some ϕ_1 , ϕ_2 , α_1 , α_2 and β . Since the R-homomorphism

$$\left[\begin{array}{c}0\\\\\\X\end{array}\right] \xrightarrow{} \left[\begin{array}{c}M^n\\\\\\\\\\\\X\end{array}\right]$$

is not a splitable epimorphism, it factors through ((0 1), β), and E has X as a direct summand.

THEOREM 2.2. Let $V = (1, X, \phi)$ be a non-projective indecomposable R-module. (I) If ϕ is an epimorphism, the following two statements are equivalent.

- (1) $\tau_R V \simeq V$.
- (2) (a) ${}_{A}X \simeq E(\text{top (Ker }\phi)).$
 - (b) $\dim_k \operatorname{Hom}_A (M, X) = 2.$

- (II) If ϕ is not an epimorphism, the following two statements are equivalent.
 - (1) $\tau_R V \simeq V$.
 - (2) (a) ${}_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi).$
 - (b) $\dim_k \operatorname{Hom}_A(M, X) = 2$.
 - (c) In the commutative diagram(A), $\operatorname{Im} \iota \subset \operatorname{rad} Y$.

PROOF. (I) (2) \rightarrow (1) By Proposition 1.1, $\tau_R V \simeq (1, X, \tilde{\phi})$ with some $\tilde{\phi}$. Then, by Lemma 2.1, the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{bmatrix} 1\\0 \end{bmatrix}$$

$$0 \longrightarrow \begin{bmatrix} M\\ \downarrow \tilde{\phi}\\X \end{bmatrix} \longrightarrow \begin{bmatrix} M \oplus M\\ \downarrow\\X \oplus X \end{bmatrix} \stackrel{\tilde{\phi} \psi}{0 \phi} \end{bmatrix} \stackrel{(0 \ 1)}{\longrightarrow} \begin{bmatrix} M\\ \downarrow\\\psi\\X \oplus X \end{bmatrix} \stackrel{\tilde{\phi} \psi}{0 \phi} \end{bmatrix} \xrightarrow{(0 \ 1)} \begin{bmatrix} M\\ \downarrow\\\psi\\X \end{bmatrix} \xrightarrow{\phi} 0$$

$$\begin{bmatrix} 1\\0 \end{bmatrix}$$

with some ψ . If ϕ and $\tilde{\phi}$ are linearly independent over k, this extension splits. It's a contradiction. Hence $\tau_R V \simeq V$. (1) \rightarrow (2) Obviously.

(II) By the after remark, the proof is similar to (I).

COROLLARY 2.3. Let $V = (1, X, \phi)$ be a non-projective indecomposable R-module. (I) If ϕ is a monomorphism, the following two statements are equivalent.

- (1) $\tau_R V \simeq V$.
- (2) (a) ${}_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi).$
 - (b) $\dim_k \operatorname{Hom}_A(M, X) = 2$.

(II) If ϕ is not an epimorphism and proj.dim_A Cok $\phi = 1$, the following two statements are equivalent.

- (1) $\tau_R V \simeq V$.
- (2) (a) ϕ is a monomorphism.
 - (b) $_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi).$
 - (c) $\dim_k \operatorname{Hom}_A(M, X) = 2$.

REMARK. In case of $\tau_R V \simeq V$, X is indecomposable. Otherwise, X decomposes as $X = X_1 \oplus X_2$, X_1 , $X_2 \neq 0$, we have dim_k Hom_A $(M, X_1) = \dim_k \text{Hom}_A (M, X_2) = 1$, and the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{array}{c} \begin{bmatrix} 1\\ 0 \end{bmatrix} \\ 0 \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow{\longrightarrow} \begin{bmatrix} M \oplus M\\ \downarrow \begin{bmatrix} \phi_1 & b_1 \phi_1\\ \phi_2 & b_2 \phi_2\\ 0 & \phi_1\\ 0 & \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow{(0,1)} \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \downarrow \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \xrightarrow{(0,1)} \longrightarrow \begin{bmatrix} M\\ \phi_2 \end{bmatrix} \xrightarrow{(0,1)} \xrightarrow$$

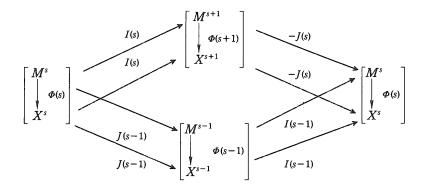
with $b_1, b_2 \in k$. But it is easy to see that this sequence splits. It's a contradiction, therefore ${}_A X$ is indecomposable.

If $\tau_R V \simeq V$, V belongs to some homogeneous tube C [4]. Next we will state the construction of the homogeneous tube C. Here we denote V(s) the module in C which has the quasi-length s [5].

THEOREM 2.4. Let $V = (1, X, \phi)$ be a non-projective indecomposable R-module. And assume $\tau_R V \simeq V$. Then V is quasi-simple, and $V(s) = (s, X^s, \Phi(s))$, where $\Phi(s) =$

 $\begin{bmatrix} \phi & \psi & & \\ \phi & \ddots & 0 \\ & \ddots & \psi \\ 0 & & \phi \end{bmatrix}$ with ψ being an arbitrary linear map which is linearly inde-

pendent of ϕ . Further the Auslander-Reiten sequence which has the end-term V(s) has the following form:



where I(s) = (E(s)/0), J(s) = (0 | E(s)) with E(s) the unit matrix of degree s.

188

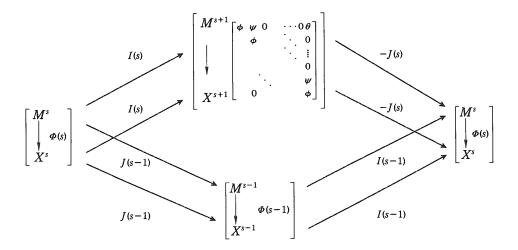
PROOF. It is easy to see that V is quasi-simple. We prove the rest parts by the induction on s. First, by Lemma 2.1, the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{bmatrix} 1\\0 \end{bmatrix}$$

$$0 \longrightarrow \begin{bmatrix} M\\ \downarrow \phi\\X \end{bmatrix} \longrightarrow \begin{bmatrix} M \oplus M\\ \downarrow & \psi\\X \oplus X \end{bmatrix} \begin{bmatrix} \phi & \psi\\ 0 & \phi \end{bmatrix} \end{bmatrix} \stackrel{(0\ 1)}{\longrightarrow} \begin{bmatrix} M\\ \downarrow \phi\\X \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} 1\\0 \end{bmatrix}$$

with some ψ . If ψ is linearly dependent of ϕ , this sequence splits. Consequently it must be linearly independent of ϕ . Here it is easy to see that the arbitrary ψ which is linearly independent of ϕ makes the isomorphic extension. Second, assume that the form of V(s) and the form of the Auslander-Reiten sequence which has the end-term V(s-1) are checked. Then the Auslander-Reiten sequence which has the end-term V(s) is decided except θ as the following form. But routine calculations show that we can take $\theta=0$.



Recently Ringel considered the stable separating tubular families, and he made $\mathbb{P}_1 k$ -family of stable tubes [6]. In connection with it, we show the following.

PROPOSITION 2.5. Let $V = (1, X, \phi)$ be a non-projective indecomposable R-module. Assume $\tau_R V \simeq V$, ϕ a monomorphism, End_A (X) = k, and k an infinite field. Then we can make

|k|-family of homogeneous tubes. (| | means the cardinal number.)

PROOF. We write the canonical extension

$$0 \longrightarrow M \xrightarrow{\phi} X \xrightarrow{\pi} \operatorname{Cok} \phi \longrightarrow 0$$

and let

$$0 \longrightarrow X \xrightarrow{\lambda} E \xrightarrow{\mu} \operatorname{Cok} \phi \longrightarrow 0$$

be the Auslander-Reiten sequence. Since π is not a splitable epimorphism, there exists λ' such that $\pi = \mu \lambda'$. If necessary, adding some $a\lambda$ ($a \in k$) to λ' , we can take λ' as a monomorphism. Further, since λ' is not a splitable monomorphism, there exists ζ such that $\lambda' = \zeta \lambda$. We can also take ζ as an automorphism. Now, using λ' above, we can make the following commutative diagram with exact rows and columns, with some $\phi' \in \text{Hom}_A$ (M, X):

$$0 \longrightarrow M \xrightarrow{\phi} X \xrightarrow{\pi} \operatorname{Cok} \phi \longrightarrow 0$$

$$0 \longrightarrow X \xrightarrow{\phi'} E \xrightarrow{\lambda'} U \xrightarrow{\mu} \operatorname{Cok} \phi \longrightarrow 0$$

$$\downarrow \lambda' \qquad \downarrow \lambda' \qquad \downarrow \mu$$

$$0 \longrightarrow X \xrightarrow{\lambda} E \xrightarrow{\mu} \operatorname{Cok} \phi \longrightarrow 0$$

$$\downarrow \chi \qquad \downarrow \chi \qquad \downarrow \mu$$

$$\operatorname{Cok} \phi' \simeq \operatorname{Cok} \lambda'$$

$$\downarrow \qquad \downarrow \chi$$

$$0 \qquad 0$$

Notice Cok $\phi \simeq \operatorname{Cok} \lambda'$ from the commutative diagram below:

where each row is exact. Set $V' = (1, X, \phi')$, then by Corollary 2.3, $\tau_R V' \simeq V'$. It is easy to see $V \not\simeq V'$. In this way we can construct |k|-number of τ_R -invariant modules.

EXAMPLE. We give an example where $gl.dim_A A = \infty$ and there exists a left A-module M such that R(A, M) has homogeneous tubes. Let

190

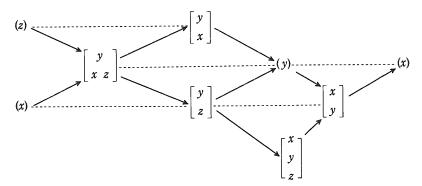
$$A = \left\{ \begin{bmatrix} z & 0 & 0 & \alpha & \beta \\ 0 & x & y & 0 & 0 \\ 0 & 0 & y & 0 & 0 \\ 0 & 0 & 0 & y & \delta \\ 0 & 0 & 0 & 0 & x \end{bmatrix} \in M_5(k) \right\}$$

In other words, A is defined by the following quiver with relations:

$$x \xrightarrow{\delta} y \xrightarrow{\alpha} z,$$

with $\gamma \delta = \delta \gamma = 0$ ($\beta = \alpha \delta$).

A is representation-finite, and has the following Auslander-Reiten quiver:



Here, for example, $\begin{pmatrix} y \\ x z \end{pmatrix}$ means the indecomposable *A*-module *N* such that top $N \simeq S_y$ and soc $N \simeq S_x \oplus S_z$, where S_- means the simple *A*-module corresponding to the idempotent -. Let $M = (x) \oplus (z)$. Then *R*-modules $V = \begin{pmatrix} 1, \begin{pmatrix} y \\ x z \end{pmatrix}, \phi \end{pmatrix}$, where ϕ are inclusions in the sense of Proposition 2.5, are τ_R -invariant.

REMARK. (Ringel [6]) Under the additional assumption that $\operatorname{End}_A(X) = k$, the homogeneous tube in mod R constructed in Theorem 2.4. is an abelian category which is serial, and is closed under extensions in mod R.

References

- Auslander, M., Reiten, I., Representation theory of artin algebras III. Comm. Algebra 3 (1975) 239-294.
- [2] Auslander, M., Reiten, I., Representation theory of artin algebras IV. Comm. Algebra 5 (1977) 443-518.

192

- [3] Dlab, V., Ringel, C. M., Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).
- [4] Hoshino, M., DTr-invariant modules. Tsukuba J. Math. 7 (2) (1983) 205-214.
- [5] Ringel, C. M., Finite dimensional hereditary algebras of wild representation type. Math. Z. 161 (1978) 235-255.
- [6] Ringel, C. M., Tame algebras and integral quadratic forms. Springer L. N. 1099 (1984).

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan