MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

By

Liu Hur-Li

1. Preliminares.

Let E_{q}^{n} be the n-dimensional Pseudo-Euclidean space with metric tensor given by

$$
g=-\sum_{i=1}^{q}\left(d x_{i}\right)^{2}+\sum_{j=q+1}^{n}\left(d x_{j}\right)^{2}
$$

where $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a rectangular coordinate system of $E_{q}^{n} .\left(E_{q}^{n}, g\right)$ is a flat Pseudo-Riemannian manifold of signature ($q, n-q$).

Let c be a point in E_{q}^{n+1} (or E_{q+1}^{n+1}) and $r>0$. We put

$$
\begin{aligned}
& S_{q}^{n}(c, r)=\left\{x \in E_{q}^{n+1}: g(x-c, x-c)=r^{2}\right\} \\
& H_{q}^{n}(c, r)=\left\{x \in E_{q+1}^{n+1}: g(x-c, x-c)=-r^{2}\right\} .
\end{aligned}
$$

It is known that $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$ are complete Pseudo-Riemannian manifolds of signature $(q, n-q)$ and respective constant sectional curvatures r^{-2} and $-r^{-2}$. $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$ are called the Pseudo-Riemannian sphere and the Pseudohyperbolic space, respectively. The point c is called the center of $S_{q}^{n}(c, r)$ and $H_{q}^{n}(c, r)$. In the following, $S_{q}^{n}(0, r)$ and $H_{q}^{n}(0, r)$ are simply denoted by $S_{q}^{n}(r)$ and $H_{q}^{n}(r)$, respectively. N_{p}^{n} denotes the Pseudo-Riemannian manifold with metric tensor of signature ($p, n-p$). The Pseudo-Riemannian manifold, the Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic space are simply denoted by the $P-R$ manifold, the $P-E$ space, the $P-R$ sphere and the $P-h$ space. The $P-R$ manifold N_{1}^{n} is called the Lorentz manifold and the $P-E$ space E_{1}^{p} is called the Minkowski space.

Let $f: M_{p}^{m} \rightarrow N_{q}^{n}$ be an isometric immersion of a $P-R$ manifold M_{p}^{m} in another $P-R$ manifold N_{q}^{n}. That is $f * \bar{g}=g$, where g and \bar{g} are the indefinite metric tensors of M_{p}^{m} and N_{q}^{n}, respectively. $T\left(M_{p}^{m}\right)$ and $T^{\perp}\left(M_{p}^{m}\right)$ denote the tangent bundle and the normal bundle of $M_{p}^{m} . \nabla, \bar{\nabla}$ and ∇^{\perp} denote the Riemannian connections and the normal connection on M_{p}^{m}, N_{q}^{n} and $T^{\perp}\left(M_{p}^{m}\right)$, respectively. Then for any vector fields $X, Y \in T\left(M_{p}^{m}\right), v \in T^{\perp}\left(M_{p}^{m}\right)$, we have the Gauss formula

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y)
$$

Received November 5 1990, Revised May 22, 1991.
The author was supported in part by NNSF of China and SRF of NEUT, when he revised this paper.
the Weingarten formula

$$
\bar{\nabla}_{X} v=-A^{v}(X)+\nabla \frac{1}{\bar{X}} v,
$$

where B is the second fundamental form of the immersion, A^{v} is the Weingarten map with respect to v, and

$$
g\left(A^{v}(X), Y\right)=\bar{g}(B(X, Y), v)
$$

Let N_{q}^{n} be a $P-R$ manifold with the metric tensor \bar{g}. A tangent vector x to N_{q}^{n} is said to be space-like, time-like or light-like (null) if $\bar{g}(x, x)>0$ (or $x=0$), $\bar{g}(x, x)<0$ or $\bar{g}(x, x)=0$ (and $x \neq 0$), respectively.

Let M_{p}^{m} be a submanifold of N_{q}^{n}. If the Pseudo-Riemannian metric tensor \bar{g} of N_{q}^{n} induces a Pseudo-Riemannian metric tensor, a Riemannian metric tensor or a degenerate metric tensor on M_{p}^{m}, then M_{p}^{m} is called a $P-R$ submanifold, a Riemannian submanifold or a degenerate submanifold, respectively. For the nondegenerate submanifold, we have the direct sum decomposion

$$
T\left(N_{q}^{n}\right)=T\left(M_{p}^{m}\right) \oplus T^{\perp}\left(M_{p}^{m}\right)
$$

and $T^{\perp}\left(M_{p}^{m}\right)$ (the normal bundle) is also nondegenerate. In the following, we assume that the submanifold is nondegenerate.

A normal vector field $v \in T^{\perp}\left(M_{p}^{m}\right)$ is said to be parallel if $\nabla_{\hat{X}}^{\perp} v=0$ for any vector $X \in T\left(M_{p}^{m}\right)$.

Let M_{p}^{m} be a nondegenerate submanifold in N_{q}^{n} and $e_{1}, e_{2}, \cdots, e_{m}$ be an orthonormal local basis on M_{p}^{m}. The mean curvature vector H of M_{p}^{m} in N_{q}^{n} is defined by

$$
H=\frac{1}{m} \sum_{i=1}^{m} \varepsilon_{i} B\left(e_{i}, e_{i}\right), \quad \varepsilon_{i}=g\left(e_{i}, e_{i}\right)= \pm 1
$$

The nondegenerate submanifold M_{p}^{m} of N_{q}^{n} is said to be minimal if the mean curvature vector H of M_{p}^{m} in N_{q}^{n} vanishes identically.

For any real function f on M_{p}^{m}, the Laplacian Δf of f is defined by

$$
\Delta f=-g^{j i} \nabla_{j} \nabla_{i} f=-\sum_{i=1}^{m} \varepsilon_{i}\left(e_{i} e_{i} f-\nabla_{e_{i}} e_{i} f\right)
$$

(cf. [2]).
Lemma 1. ([3], [4]) An isometric immersion x of a $P-R$ manifold M_{p}^{m} in a $P-E$ space E_{q}^{n} satisfies

$$
\Delta x=-m H
$$

where H is the mean curvature vector of the immersion and Δ is the Laplacian of M_{p}^{m}.

Lemma 2. ([3], [4]) Let M_{p}^{m} be isometrically immersed in a $P-R$ sphere
$S_{q}^{m+k-1}(c, r)$ or a $P-h$ space $H_{q-1}^{m+k-1}(c, r)$ of the $P-E$ space E_{q}^{m+k}. Then the mean curvature vector H of M_{p}^{m} in E_{q}^{m+k} and the mean curvature vector H_{0} of M_{p}^{m} in S_{q}^{m+k-1} or H_{q-1}^{m+k-1} satisfy

$$
H=H_{0}-\varepsilon(x-c) / r^{2}
$$

Where x is the immersion of M_{p}^{m} (as the vector field in E_{q}^{m+k}) and $\varepsilon= \pm 1$, if $x: M_{p}^{m} \rightarrow S_{q}^{m+k-1}(c, r)$, then $\varepsilon=1$, if $x: M_{p}^{m} \rightarrow H_{q-1}^{m+k-1}(c, r)$, then $\varepsilon=-1$.

2. The minimal immersion in $S_{q}^{m+k-1}(r)$ or $H_{q-1}^{m+k-1}(r)$.

LEMMA 3. Let $M_{p}^{m}(m \geqq 2)$ be a nondegenerate submanifold of a $P-E$ space E_{q}^{n} and H be the mean curvature vector of M_{p}^{m} in $E_{q}^{n} . \quad x$ denotes the position vector field of M_{p}^{m} in E_{q}^{n}. If $x=a H$ for some $a \neq 0$ on M_{p}^{m}, then $\bar{g}(H, H) \neq 0$ on M_{p}^{m}, where \bar{g} is the metric tensor of E_{q}^{n}.

Proof. Suppose $\bar{g}(H, H)=0$ and $x=a H$ for some $a \neq 0$ on M_{p}^{m}. Then $\bar{g}(x, x)=a^{2} \bar{g}(H, H)=0$. Since $\Delta x=-m H$, so

$$
\begin{aligned}
0=\Delta \bar{g}(x, x) & =2 \bar{g}(\Delta x, x)-2 \bar{g}(\nabla x, \nabla x) \\
& =-2 m \tilde{g}(H, x)-2 \bar{g}(\nabla x, \nabla x) \\
& =-2 \bar{g}(\nabla x, \nabla x)
\end{aligned}
$$

that is $\bar{g}(\nabla x, \nabla x)=0$. It is impossible because $M_{p}^{m}(m \geqq 2)$ is nondegenerate.
Q.E.D.

Theorem 1. If an isometric immersion $x: M_{p}^{m} \rightarrow E_{q}^{m+k}$ of a $P-R$ manifold $M_{p}^{m}(m \geqq 2)$ in a $P-E$ space E_{q}^{m+k} satisfies $\Delta x=b x$ for some constant $b \neq 0$
(1) when $b>0$, then x realizes a minimal immersion in a $P-R$ sphere $S_{q}^{m+k-1}(\sqrt{m / b})$ of the sectional curvature b / m in E_{q}^{m+k}; conversely if x realizes a minimal immersion in a $P-R$ sphere of the sectional curvature $r^{-2}(r>0)$ in E_{q}^{m+k}, then x satisfies $\Delta x=b x$ up to a parallel displacement in the $P-E$ space E_{q}^{m+k} and $b=m / r^{2}$.
(2) when $b<0$, then x realizes a minimal immersion in $a \quad P-h$ space $H_{q+1}^{m+k-1}(\sqrt{m /-b})$ of the sectional curvature b / m in E_{q}^{m+k}; conversely if x realizes a minimal immersion in a $P-h$ space of the sectional curvature $-r^{2}(r>0)$ in E_{q}^{m+k}, then x satisfies $\Delta x=b x$ up to a parallel displacement in the $P-E$ space E_{q}^{m+k} and $b=-m / r^{2}$.

Proof. Let $\Delta x=b x, b \neq 0$, then we have $b x=-m H$ by Lemma 1. Since $X \bar{g}(x, x)=2 \bar{g}(X, x)=0$, where \bar{g} is the metric of E_{q}^{m+k}, it yields that $\bar{g}(x, x)=$
constant $\neq 0$ by Lemma 3. So x realizes an immersion in $S_{q}^{m+k-1}(c, r)$ or $H_{q-1}^{m+k-1}(c, r)$. And by Lemma 2 and $b x=-m H$, we have $H_{0}=0$. Thus x realizes a minimal immersion in $S_{q}^{m+k-1}(c, r)$ or $H_{q-1}^{m+k-1}(c, r)$ in E_{q}^{m+k} and $r=\sqrt{m / \varepsilon b}$ ($\varepsilon= \pm 1$).

Conversely, if x realizes a minimal immersion in $S_{q}^{m+k-1}(c, r)$ or $H_{q-1}^{m+k-1}(c, r)$ in E_{q}^{m+k}, then by Lemma 2, we have

$$
H=-\varepsilon(x-c) / r^{2} \quad(\varepsilon= \pm 1)
$$

and $\Delta x=-m H$. Thus, we obtain

$$
\begin{array}{rll}
\Delta(x-c) & =-m\left(-\varepsilon(x-c) / r^{2}\right)=\varepsilon m(x-c) / r^{2} & \\
b & =\varepsilon m / r^{2} \quad(\varepsilon= \pm 1) . & \text { Q.E.D. }
\end{array}
$$

Corollary 1. An isometric immersion $x: M_{p}^{m} \rightarrow E_{q}^{m+k}$ of a $P-R$ manifold M_{p}^{m} in a $P-E$ space E_{q}^{m+k} is minimal if and only if $\Delta x=0$.

Corollary 2. If an isometric immersion $x: M_{p}^{m} \rightarrow E_{p}^{m+k}$ of a $P-R$ manifold M_{p}^{m} in a $P-E$ space E_{p}^{m+k} satisfies $\Delta x=b x$ for some constant $b \neq 0$, then b is necessarily positive and x realizes a minimal immersion of a $P-R$ manifold M_{p}^{m} in a $P-R$ sphere $S_{p}^{m+k-1}(\sqrt{m / b})$ in the $P-E$ space E_{p}^{m+k}.

Proof. For any isometric immersion $x: M_{p}^{m} \rightarrow E_{p}^{m+k}$, the vectors of the normal space of M_{p}^{m} in E_{p}^{m+k} are space-like. Then by Lemma $2, \varepsilon=+1$.
Q.E.D.

Corollary 3. If an isometric immersion $x: M_{p}^{m} \rightarrow E_{p+k}^{m+k}$ of a $P-R$ manifold M_{p}^{m} in a $P-E$ space E_{p+k}^{m+k} satisfies $\Delta x=b x$ for some constant $b \neq 0$, then b is necessarily negative and x realizes a minimal immersion of a $P-R$ manifold M_{p}^{m} in a $P-h$ space $H_{p+k-1}^{m+k-1}(\sqrt{ } m /-\bar{b})$ in the $P-E$ space E_{p+k}^{m+k}.

Proof. By the condition, we know the vectors of the normal space of M_{p}^{m} in E_{p+k}^{m+k} are time-like. So in Lemma 2, $\varepsilon=-1$.
Q.E.D.

3. The spectrum of $S_{p}^{m}(r)$ and $H_{p-1}^{m}(r)$.

In this section we consider the Laplacians Δ of $S_{p}^{m}(r)$ and $H_{p-1}^{m}(r)$ acting on functions. We obtain the constant b that satisfies $\Delta f=b f, f \not \equiv 0$, where Δ is the Laplacian of $S_{p}^{m}(r)$ or $H_{p-1}^{m}(r)$.

Let M_{p}^{m} be a $P-R$ manifold. The Laplacian of M_{p}^{m} has various expressions

$$
\begin{aligned}
\Delta f & =-g^{j i} \nabla_{j} \nabla_{i} f \\
& =-\operatorname{trace}(\nabla d f) \\
& =-\operatorname{trace}(\text { Hess } f),
\end{aligned}
$$

where Hess f denotes the Hessian of the function f. Let $e_{1}, e_{2}, \cdots, e_{m}$ be an orthonormal local basis on M_{p}^{m}, then

$$
\Delta f=-\sum_{i=1}^{m} \varepsilon_{i} \text { Hess } f\left(e_{i}, e_{i}\right) \quad\left(\varepsilon_{i}=g\left(e_{i}, e_{i}\right)= \pm 1\right)
$$

For each point $y \in M_{p}^{m}$, pick an orthonormal set of geodesics $\left(v_{i}\right)$ parameterized by arc length and passing through $y \in M_{p}^{m}$ at $s=0$ and satisfying $v_{i}^{\prime}(0)=e_{i}$. Then we have

$$
\Delta f(y)=-\sum_{i=0}^{m} \varepsilon_{i} \frac{d^{2}}{d s^{2}}\left(f \circ v_{i}\right)(0)
$$

(cf. [2] P. 33, P. 86).
For the $P-R$ sphere $S_{p}^{m}(1)$ and the $P-h$ space $H_{p-1}^{m}(1)$ in the $P-E$ space E_{p}^{m+1}, let $y \in S_{p}^{m}(1)$ or $H_{p-1}^{m}(1)$ be a point. Then y determines a unit vector e_{1} in E_{p}^{m+1}. For $S_{p}^{m}(1) e_{1}$ is a space-like vector and for $H_{p-1}^{m}(1) e_{1}$ is a time-like vector. Let $e_{2}, e_{3}, \cdots, e_{m+1}$ be an orthonormal basis of $T_{y}\left(S_{p}^{m}(1)\right)$ or $T_{y}\left(H_{p-1}^{m}(1)\right)$. Then $e_{1}, e_{2}, \cdots, e_{m}, e_{m+1}$ form an orthonormal basis of $T_{y}\left(E_{p}^{m+1}\right)$.

If $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=1(i \geqq 2)$ on $S_{p}^{m}(1)$ or $H_{p-1}^{m}(1)$, the geodesic $v_{i}(i \geqq 2)$ through y with velocity vector e_{i} at y is given by

$$
v_{i}(s)=(\cos s) e_{1}+(\sin s) e_{i} \quad i=2,3, \cdots,(m+1)
$$

where s is arc length parameter.
If $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=-1(i \geqq 2)$ on $S_{p}^{m}(1)$ or $H_{p-1}^{m}(1)$, the geodesic $v_{i}(i \geqq 2)$ through y with velocity vector e_{i} at y is given by

$$
v_{i}(s)=(\cosh s) e_{1}+(\sinh s) e_{i} \quad i=2,3, \cdots,(m+1) .
$$

Let f be a function on E_{p}^{m+1} and $x^{1}, x^{2}, \cdots, x^{m+1}$ be the Euclidean coordinates associated with $e_{1}, e_{2}, \cdots, e_{m+1}$. Consider the functions $\left(f \circ v_{i}\right)(s)=f\left(v_{i}(s)\right)$. By using the chain rule, we have

$$
\frac{d\left(f \circ v_{i}\right)}{d s}=-(\sin s) \frac{\partial f}{\partial x^{1}}+(\cos s) \frac{\partial f}{\partial x^{i}}
$$

if $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=1(i \geqq 2)$;

$$
\frac{d\left(f \circ v_{i}\right)}{d s}=(\sinh s) \frac{\partial f}{\partial x^{1}}+(\cosh s) \frac{\partial f}{\partial x^{i}}
$$

if $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=-1(i \geqq 2)$.

Therefore, for $y=v_{i}(0)$, we have

$$
\frac{d^{2}\left(f \circ v_{i}\right)}{d s^{2}}(0)=-\frac{\partial f}{\partial x^{3}}(y)+\frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)
$$

if $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=1(i \geqq 2)$;

$$
\frac{d^{2}\left(f \circ v_{i}\right)}{d s^{2}}(0)=\frac{\partial f}{\partial x^{1}}(y)+\frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)
$$

if $\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)=-1(i \geqq 2)$.
Let $\varepsilon=-\bar{g}\left(e_{1}, e_{1}\right) \bar{g}\left(e_{i}, e_{i}\right)(i \geqq 2)$. Then

$$
\begin{aligned}
\Delta^{s_{p}^{m}(1)}\left(f / S_{p}^{m}(1)\right)(y) & =-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{d^{2}\left(f \circ v_{i}\right)}{d s^{2}}(0) \\
& =-\sum_{i=2}^{m+1} \varepsilon_{i}\left(\varepsilon \frac{\partial f}{\partial x^{1}}(y)+\frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)\right) \\
& =-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)-\sum_{i=2}^{m+1} \varepsilon_{i} \varepsilon \frac{\partial f}{\partial x^{1}}(y) \\
& =-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)+m \frac{\partial f}{\partial x^{1}}(y), \\
\Delta^{H_{p-1}^{m}(1)}\left(f / H_{p-1}^{m}(1)(y)\right. & =-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{d^{2}\left(f \circ v_{i}\right)}{d s^{2}}(0) \\
& =-\sum_{i=2}^{m+1} \varepsilon_{i}\left(\varepsilon \frac{\partial f}{\partial x^{1}}(y)+\frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)\right) \\
& =-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)-m \frac{\partial f}{\partial x^{1}}(y)
\end{aligned}
$$

But

$$
\left(\Delta^{E_{p}^{m+1}} f\right)(y)=-\sum_{i=2}^{m+1} \varepsilon_{i} \frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}(y)-\varepsilon_{1} \frac{\partial^{2} f}{\left(\partial x^{1}\right)^{2}}(y) .
$$

If we denote by r the "distance" function from a point in E_{p}^{m+1} to the origin, then we obtain

$$
\begin{align*}
& \left(\Delta^{E_{p}^{m+1}} f\right) / S_{p}^{m}(1)=\Delta^{S_{p}^{m}(1)}\left(f / S_{p}^{m}(1)-\frac{\partial^{2} f}{\partial r^{2}} / S_{p}^{m(1)}-m \frac{\partial f}{\partial r} / S_{p}^{m}(1),\right. \\
& \left(\Delta^{E_{p}^{m+1}} f\right) /_{H_{p-1}^{m}(1)}=\Delta^{H_{p-1}^{m}(1)}\left(f / H_{p-1}^{m}(1)\right)+\frac{\partial^{2} f}{\partial r^{2}} /_{H_{p-1}^{m}(1)}+m \frac{\partial f}{\partial r} /_{H_{p-1}^{m}(1)} . \tag{*}
\end{align*}
$$

Consider a homogeneous polynomial \bar{Q} of degree $k \geqq 0$ on E_{p}^{m+1}. Let $Q=$ $\bar{Q} / S_{p}^{m}(1)$ or $H_{p-1}^{m}(1)$. Then $\bar{Q}=r^{k} Q$. Thus we find

$$
\frac{\partial \bar{Q}}{\partial r}=k r^{k-1} Q, \quad \frac{\partial^{2} \bar{Q}}{\partial r^{2}}=k(k-1) r^{k-2} Q .
$$

Therefore,

$$
\begin{aligned}
\left(\Delta^{E_{p}^{m+1}} \bar{Q}\right) / S_{p}^{m}(1) & =\Delta^{s_{p}^{m}(1)} Q-k(k-1) Q-m k Q \\
& =\Delta^{s_{p}^{m}(1)} Q-k(k+m-1) Q \\
\left(\Delta^{E_{p}^{m+1}} \bar{Q}\right) / H_{p-1}^{m}(1) & =\Delta^{H_{p-1}^{m}(1)} Q+k(k-1) Q+m k Q \\
& =\Delta^{H H_{p-1}^{m}(1)} Q+k(k+m-1) Q .
\end{aligned}
$$

If \bar{Q} satisfies $\Delta^{E_{p}^{m+1}} \bar{Q}=0, \bar{Q}$ is called the harmonic-like homogeneous polynormial. So we have

$$
\begin{aligned}
& \Delta^{S_{p}^{m}(1)} Q=k(m+k-1) Q, \\
& \Delta^{H_{p-1}^{m}(1)} Q=-k(m+k-1) Q .
\end{aligned}
$$

Let \mathscr{H}_{k} be the vector space of harmonic-like homogeneous polynomials of degree k on E_{p}^{m+1}. With the same method of [5] P.238-P.240, we can prove

$$
\operatorname{dim} \mathscr{H}_{k}=\binom{m+k}{k}-\binom{m+k-2}{k-2} .
$$

Here, we give out another proof about $\operatorname{dim} \mathscr{H}_{k}$.
Assume

$$
\Delta=-\sum_{t=1}^{m+1} \frac{\partial^{2}}{\left(\partial x^{t}\right)^{2}} \quad \Delta^{\prime}=\sum_{t=1}^{p} \frac{\partial^{2}}{\left(\partial x^{t}\right)^{2}}-\sum_{t=p+1}^{m+1} \frac{\partial^{2}}{\left(\partial x^{t}\right)^{2}},
$$

they are the Laplacians of E^{m+1} and E_{p}^{m+1}, respectively. A denotes the vector space of complex coefficient harmonic homogeneous polynomials of degree k about Δ. A denotes the vector space of complex coefficient harmonic-like homogeneous polynomials of degree k about Δ^{\prime}. Let $F\left(x^{1}, x^{2}, \cdots, x^{m+1}\right) \in \mathcal{A}$. We have

$$
\begin{aligned}
0 & =\Delta F\left(x^{1}, x^{2}, \cdots, x^{m+1}\right) \\
& =\sum_{t=1}^{m+1} \frac{\partial^{2} F}{\left(\partial x^{t}\right)^{2}} \\
& =\sum_{t=1}^{p} \frac{\partial^{2} F}{\left(\partial x^{t}\right)^{2}}+\sum_{t=p+1}^{m+1} \frac{\partial^{2} F}{\left(\partial x^{t}\right)^{2}} \\
& =\sum_{t=1}^{p} \frac{-\partial^{2} F}{\left(i \partial x^{t}\right)^{2}}+\sum_{t=p+1}^{m+2} \frac{\partial^{2} F}{\left(\partial x^{t}\right)^{2}} \quad\left(i^{2}=-1\right) \\
& =\left(-\sum_{t=1}^{p} \frac{\partial^{2}}{\left(\partial x^{t}\right)^{2}}+\sum_{t=p+1}^{m+1} \frac{\partial^{2}}{\left(\partial x^{t}\right)^{2}}\right) F\left(-i x^{1},-i x^{2}, \cdots,-i x^{p},\right. \\
& \left.x^{p+1}, x^{p+2}, \cdots, x^{m+1}\right) \\
& =\Delta^{\prime} F\left(-i x^{1},-i x^{2}, \cdots,-i x^{p}, x^{p+1}, \cdots, x^{m+1} .\right.
\end{aligned}
$$

Therefore, $F\left(-i x^{1},-i x^{2}, \cdots,-x i^{p}, x^{p+1}, \cdots, x^{m+1}\right) \in \mathcal{A}$ and

$$
\left|\frac{\partial\left(y^{1}, y^{2}, \cdots, y^{m+1}\right)}{\partial\left(x^{1}, x^{2}, \cdots, x^{m+1}\right)}\right|=i^{p} \neq 0
$$

where, $y^{1}=i x^{1}, y^{2}=i x^{2}, \cdots, y^{p}=i x^{p}, y^{p+1}=x^{p+1}, \cdots, y^{m+1}=x^{m+1}$. Thus we obtain $\operatorname{dim} \mathcal{A}=\operatorname{dim} \mathcal{A}$. But $\operatorname{dim} \mathcal{A}=\binom{m+k}{k}-\binom{m+k-2}{k-2}$. So

$$
\operatorname{dim} A=\binom{m+k}{k}-\binom{m+k-2}{k-2} .
$$

Theorem 2. The spectrum of the Laplacians of the $P-R$ sphere $S_{p}^{m}(1)$ and the $P-h$ space $H_{p-1}^{m}(1)$ in the $P-E$ space $E_{p+}^{m}{ }^{1}$ is given by
and

$$
\begin{array}{ll}
b_{k}=k(m+k-1) & (k \geqq 0) \\
b_{k}=-k(m+k-1) & (k \geqq 0)
\end{array}
$$

respectively. And the multiplicity $j\left(b_{k}\right)$ of b_{k} is given by

$$
\begin{aligned}
j\left(b_{0}\right) & =1, \quad j\left(b_{1}\right)=m+1, \\
j\left(b_{k}\right) & =\binom{m+k}{k}-\binom{m+k-2}{k-2} \\
& =\frac{(m+k-2)(m+k-3) \cdots(m+1) m}{k!}(m+2 k-1) . \quad(k \geqq 2)
\end{aligned}
$$

Since $S_{p}^{m}(r)$ with $S_{p}^{m}(1)$ and $H_{p-1}^{m}(r)$ with $H_{p-1}^{m}(1)$ are homothetic, we have
Theorem 3. The syectrum of the Laplacians of the $P-R$ sphere $S_{p}^{m}(r)$ and the $P-h$ space $H_{p-1}^{m}(r)$ in the $P-E$ space E_{p}^{m+1} is given by
and

$$
\begin{aligned}
& b_{k}=r^{-2} k(m+k-1) \\
& b_{k}=-r^{-2} k(m+k-1)
\end{aligned} \quad(k \geqq 0, r>0)
$$

respectively. And the multiplicity $j\left(b_{k}\right)$ of b_{k} is given by

$$
\begin{aligned}
& j\left(b_{0}\right)=1, \quad j\left(b_{1}\right)=m+1, \\
& j\left(b_{k}\right)=\binom{m+k}{k}-\binom{m+k-2}{k-2} \quad(k \geqq 2) .
\end{aligned}
$$

4. The minimal immersions of the $P-R$ sphere and $P-\mathrm{h}$ space.

Theorem 4. Let $M=S_{p}^{m}(r)$ or $H_{p-1}^{m}(r) . \quad M$ is isometrically minimally immersed in $S_{q}^{n}(1)$ or $H_{q-1}^{n}(1)$. Then for $k=0,1,2, \cdots$, we have

$$
r^{-2}=\frac{m}{k(m+k-1)}, \quad n \leqq(m+k 2-1) \frac{(m+k-2)!}{k!(m-1)!}
$$

Proof. By Theorem 1, for the immersion f,

$$
\begin{aligned}
\Delta f=b f, & b>0 ; f: M \longrightarrow S_{q}^{n}(\sqrt{m / b})=S_{q}^{n}(1) \\
& b<0 ; f: M \longrightarrow H_{q-1}^{n}(\sqrt{m /-b})=H_{q-1}^{n}(1) .
\end{aligned}
$$

Then, $b=m$ or $b=-m$ for $S_{q}^{n}(1)$ or $H_{q-1}^{n}(1)$, respectively. With Theorem 3, we have

$$
\begin{array}{ll}
b_{k}=k(m+k-1) r^{-2} & \text { for } S_{p}^{m}(r) \\
b_{k}=-k(m+k-1) r^{-2} & \text { for } H_{p-1}^{m}(r) .
\end{array}
$$

So

$$
m=b=k(m+k-1) r^{-2} \text { or } m=-b=-(-k)(m+k-1) r^{-2} .
$$

Therefore

$$
r^{-2}=\frac{m}{k(m+k-1)}, \quad n \leqq(m+2 k-1) \frac{(m+k-2)!}{k!(m-1)!} . \quad \text { Q.E.D. }
$$

Remark. By Theorem 1 and Theorem 3, we have
(1) $M_{p}^{m}(r)(r<0$ is a constant) can not be isometrically minimally immersed in $S_{q}^{n}(1)$.
(2) The Riemannian manifold $M^{m}(r)$ with the constant sectional curvature $r<0$ can not be isometrically minimally immersed in the Riemannian sphere $S^{n}(1)$.

Acknowledgement.

The author would like to express his gratitude to professor Hisao Nakagawa for many helpful suggestions.

References

[1] Chen, D.Y., Total mean curvature and submanifolds of finite type, Series in Pure Math., Volume 1, World Scientific, 1984.
[2] O'Neill, B., Semi-Riemannian geometry, Academic Press, New York, 1983.
[3] Chen B. Y., Finite type submanifolds in Pseudo-Euclidean space and applications, Kodai Math. J. 8 (1985) 358-374.
[4] Liu Hui-L, Minimal submanifolds and harmonic maps of Pseudo-Riemannian manifold, Master paper, Northeast University of Technology, 1988.
[5] Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean space, Princeton, New Jersey, Princeton Uni. Press.

Liu Hui-Li

Department of Mathematics
Northeast University of Technology
Shen yang, Liao ning, 110006
P.R.C.

