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MINIMAL IMMERSION OF PSEUDO-RIEMANNIAN MANIFOLDS

By
Liu Hui-L1

1. Preliminares.

Let E7 be the n-dimensional Pseudo-Euclidean space with metric tensor
given by

g=— N(dx+ 3 (dx,)
t=1 J=q+1

where (xi, xg, -, x.) is a rectangular coordinate system of Ef. (Ef, g)isa flat
Pseudo-Riemannian manifold of signature (¢, n—g).
Let ¢ be a point in EZ*' (or E3f) and »>0. We put

S, r)={x=E*': g(x—c¢, x—c)=r"}

HXc, r)={x€E}N!: g(x—c¢, x—c)=—r"}.
It is known that SX(c, r) and H2(c, r) are complete Pseudo-Riemannian manifolds
of signature (g, n—¢q) and respective constant sectional curvatures r~* and —r~"
S*(¢, r) and Hp{c, r) are called the Pseudo-Riemannian sphere and the Pseudo-
hyperbolic space, respectively. The point ¢ is called the center of S(c, r) and
H(c, 7). In the following, S(0,r) and HZ(0, ) are simply denoted by Sg(r)
and Hp(r), respectively. N7 denotes the Pseudo-Riemannian manifold with
metric tensor of signature (p, n—p). The Pseudo-Riemannian manifold, the
Pseudo-Euclidean space, the Pseudo-Riemannian sphere and the Pseudo-hyperbolic
space are simply denoted by the P—R manifold, the P—E space, the P—R
sphere and the P—h space. The P—R manifold N7 is called the Lorentz mani-
fold and the P—E space E? is called the Minkowski space.

Let f: M?—N" be an isometric immersion of a P—R manifold M} in
another P— R manifold N?. That is f*g=g, where g and g are the indefinite
metric tensors of M7 and N7, respectively. T(M7) and T+(MZz) denote the
tangent bundle and the normal bundle of M7. V¥, ¥ and V- denote the Rieman-
nian connections and the normal connection on M7, N7 and T*(M}), respectively.
Then for any vector fields X, Y €T(MZ), veT (M%), we have the Gauss formula

VxY=VxY+B(X,Y),
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the Weingarten formula
Trv=—A"X)+$v,

where B is the second fundamental form of the immersion, A° is the Weingarten
map with respect to v, and

g(AX), Y)=§(B(X, Y), v).

Let N7 be a P—R manifold with the metric tensor 3. A tangent vector x to
N is said to be space-like, time-like or light-like (null) if g(x, x)>0 (or x=0),
&(x, x)<C0 or g(x, x)=0 (and x=+0), respectively.

Let M} be a submanifold of N?. If the Pseudo-Riemannian metric tensor
g of N7 induces a Pseudo-Riemannian metric tensor, a Riemannian metric tensor
or a degenerate metric tensor on M7, then M7 is called a P— R submanifold, a
Riemannian submanifold or a degenerate submanifold, respectively. For the
nondegenerate submanifold, we have the direct sum decomposion

T(N$)=T(M})DT(M3)
and T*(M7) (the normal bundle) is also nondegenerate. In the following, we
assume that the submanifold is nondegenerate.
A normal vector field v&T+(M7) is said to be parallel if V=0 for any
vector XeT(MD).
Let M7 be a nondegenerate submanifold in N} and ey, ¢, -+, ¢, be an

orthonormal local basis on M7. The mean curvature vector H of Mp in N2 is
defined by

H“—‘-'% .W_EZEtB(et: ey, e;=g(e;, e;)==+1.
The nondegenerate submanifold M2 of N7 is said to be minimal if the mean
curvature vector H of My in N} vanishes identically.
For any real function f on M7, the Laplacian Af of f is defined by
Af=—g"VVif=— Beiewef ~Veeif)
(cf. [2]).

LEMMA 1. ([3], [4]) An isometric immersion x of a P—R manifold Mz in
a P—E space E} salisfies
Ax=—mH
where H is the mean curvature vector of the immersion and A is the Laplacian
of M,

LEMMA 2. ([3], [4]) Let M} be isometrically immersed in a P—R sphere
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S§** Y, r) or a P—h space H™* (¢, r) of the P—E space Ertk. Then the
mean curvature vector H of M} in EJ** and the mean curvature vector H, of
M3 in SPHE- or HIME' satisfy

H=H,—¢e(x—c)/r*.

Where x is the immersion of MT (as the vector field in EI*) and e=-=+1, if
x: M@—SPt*Ye, r), then e=1, if x: Mp—H*"\(c, r), then e=—1,

2. The minimal immersion in SI**~'(») or HIV*~'(r).

LEMMA 3. Let M} (n=22) be a nondegenerate submanifold of a P—E space
Eg and H be the mean curvature vector of M7 in E}. x denotes the position
vector field of My in E7. If x=aH for some a+0 on MZ, then g(H, H)+0 on
My, where g is the metric tensor of EP.

PROOF. Suppose g(H, H)=0 and x=aH for some a+#0 on Mp. Then
g(x, x)=a*g(H, H)=0. Since Ax=-—-mH, so

0=Ag(x, x)=28(Ax, x)—25(Vx, Vx)
=-—-2mg(H, x)—2g(Nx, Vx)
=—28Nx, Vx),

that is g(Vx, VYx)=0. It is impossible because My (m=2) is nondegenerate.
Q.E.D.

THEOREM 1. If an isometric immersion x: Mp—EM* of a P—R manifold
M3 (m=2) in a P—E space EI** satisfies Ax=bx for some constant b+0

(1) when b>0, then x realizes a minimal immersion in @ P—R sphere
S+ =Y (~v'm/b) of the sectional curvature b/m in ET™**; conversely if x realizesa
minimal immersion in a P—R sphere of the sectional curvature r~*r>0) in EI**,
then x satisfies Ax=bx up to a parallel displacement in the P—E space E*** and
b=m/r%

(2) when b<0, then x realizes a minimal immersion in a P—h space
HER-Y(~'m/—b) of the sectional curvature b/m in ER*®; conversely if x realizes
a minimal immersion in @ P—h space of the sectional curvature —r*(r>0) in
EP**, then x satisfies Ax=bx up to a parallel displacement in the P—E space
EP** and b=—m/r%

PROOF. Let Ax=bx, b+0, then we have bx=—mH by Lemma 1. Since
Xg(x, x)=2g(X, x)=0, where g is the metric of E**, it yields that g(x, x)=
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constant#0 by Lemma 3. So x realizes an immersion in SJ** '(c,7) or
Hr4%-'(¢, r). And by Lemma 2 and bx=—mH, we have H,=0. Thus x realizes
a minimal immersion in SZ***i(c, r) or HPi*~'(c,r) in EJ** and r=~'m/eb
(e==1).

Conversely, if x realizes a minimal immersion in SP+*~!(c, r) or H{*~'(c, 7)
in E**, then by Lemma 2, we have

H=—¢(x—c)/r? (e==x1)
and Ax=—mH. Thus, we obtain
AMx—c)=—m(—e(x—c)/r*)=em(x—c)/7r*

b=em/r? (e==£1). Q.E.D.

COROLLARY 1. An isometric immersion x: M3—EI** of a P—R manifold
Mp in @ P—E space E7** is minimal if and only if Ax=0.

COROLLARY 2. If an isometric immersion x: My—E3** of a P— R manifold
Mp in a P—E space ET** satisfies Ax=bx for some constant b#0, then b 1s
necessarily positive and x realizes a minimal immersion of a P—R manifold M3
in @ P—R sphere Sp**~Y(v'm/b) in the P—E space E}**.

PrOOF. For any isometric immersion x: Mp—E3**, the vectors of the
normal space of M in EZ** are space-like. Then by Lemma 2, e=-+1.
Q.E.D.

COROLLARY 3. If an isometric immersion x: My—E3# of a P—R manifold
M7 in a P—E space ET{f satisfies Ax=bx for some constant b+0, then b is
necessarily negative and x realizes a minimal immersion of a P— R manifold My
in @ P—h space H3iE-N(~v'm/—b) in the P—E space ET.

PROOF. By the condition, we know the vectors of the normal space of M7
in Epft are time-like. So in Lemma 2, e=-—1. Q.E.D.

3. The spectrum of SF(r) and HI (7).

In this section we consider the Laplacians A of ST(r) and Hj,(») acting on
functions. We obtain the constant b that satisfies Af=bf, [0, where A is
the Laplacian of SP(r) or Hi.(r).

Let M be a P—R manifold. The Laplacian of My has various expressions
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Af=—g"IN.f
=—trace (Vdf)
=—trace (Hess f),

where Hess f denotes the Hessian of the function f. Let e;, ¢, -+, en be an
orthonormal local basis on M7, then

Af:“ésf Hess fles, i)  (ei=g(ei, e)==%1).

For each point y=Mp, pick an orthonormal set of geodesics (v;) parameterized
by arc length and passing through y=M™ at s=0 and satisfying v{(0)=e..
Then we have

Af)== Bera s (F+00X0)

(cf. [2] P. 33, P. 86).

For the P—R sphere S7(1) and the P—h space HZ,(1) in the P—FE space
E3*, let yeSH(1) or HY (1) be a point. Then y determines a unit vector e,
in Ep*'. For S3(1) e, is a space-like vector and for H (1) ¢, is a time-like
vector. Let e,, e, -+, en.1 be an orthonormal basis of T',(Sp(1)) or T ,(HE,(1)).
Then e, e, -+, en, ens: form an orthonormal basis of T ,(E7+),

If (e, e))g(es, e))=1 (i=2) on Sp(1) or H3 (1), the geodesic v; (/=2) through
y with velocity vector e; at v is given by

v4(s)=(cos s)e,+(sin s)e; =2, 3, -, m+1)
where s is arc length parameter.

If glei, e))gles, e)=—1 (7=22) on SP1) or Hp ,(1), the geodesic v, (:=2)
through vy with velocity vector ¢; at v is given by

vy(s)=(cosh s)e,+(sinh s)e; =2, 3, -, (m+1).

Let f be a function on EZ** and %!, x%, .-, x™*! be the Euclidean coordinates
associated with ey, e, -+, en,;. Consider the functions (fe-v,)(s)=f(v(s)). By
using the chain rule, we have

d(fevd) _ of
ds

ax'

of
oxt

—(sin s) ~+(cos s)

if gle, e))g(es, e)=1 (1=22);
d(f-vs)
d

—(sinh .97 of
=(sinhs) P +(cosh s) e

if g(els el)g(eix ei):—l (122).
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Therefore, for y=v,0), we have

d (f°v ) o’ f

f
T(»+ Gxy »

)=

if 2(e, engles, e)=1 (122);
d (f°vi)
d 2

if F(e, e)g(es, e))=—1 ((=2).
Let e=—g(e,, e))g(e;, ;) (122). Then

of af
0)= o (y)+ G ()

Asg“’(f/sy(l))(y):—?:_};“; d(f v’)(O)
m+1 f azf
=— B e 5 O+ G )
_ m+1 f _ f
— DS @5y (¥ 2 sie +— ()
_ m+1 azf f
P o 3 )
AT f g )= 3 e TS 0)
e f *f
- i>=-|g ( (a i)g (y))
m+1 af f (y)

2 Saeron (- maT
But
m+1 _ mi1 azf o _Qi
(AEp f)(y) 2 Ei AT (a i)z (Y> &1 (axl)z (y)

If we denote by » the “distance” function from a point in EJ*' to the origin,

then we obtain
m+1 m aZ 0
@ D spy=aF U sga) -5/ smf"’%’/ SO

m+1 - m af
(AEp f>/HgL;(1)—AHp_lu)(f/Hm 1(1))+ 5 /Hm 1(1) 3?/H;“_1(1)
Consider a homogeneous polynomial Q of degree k=0 on Ep*. Let Q=
Q/S;"(l) or Ho (1) Then §J=#*Q. Thus we find

aQ 1 aQ k-2
So=krTQ, SR =k(E-Drt Q.

*)

Therefore,



Minimal immersions of Pseudo-Riemannian manifolds 7

(AE;»H@)/S;,(DzAsz‘mQ—k(k-l)Q—ka
=ASTDQ— k(k+m—1)Q

(A% Q)/ g (1y=A"FADQ+ k(k—1)Q+mkQ
=ATP1OQ 4+ k(k+m—1)Q.

If  satisfies A5 (=0, J is called the harmonic-like homogeneous poly-
normial. So we have

ASTOQ=k(m+k—1)Q,
ATP1OQ = — k(m+-k—1)Q .

Let 4, be the vector space of harmonic-like homogeneous polynomials of
degree k on E7*'. With the same method of [5] P.238-P.240, we can prove

m+k m+k—2
dim uﬂ[k'-:( - ).
k k—2

Here, we give out another proof about dim .%,.

Assume
m+1 g2 p 0 m+1 g2
A=-— tgl _(a)c‘)2 tz (0xh)? “—:=§+1 (0x4)?’

they are the Laplacians of E™*' and Ep*!, respectively. A denotes the vector
space of complex coefficient harmonic homogeneous polynomials of degree k
about A. A denotes the vector space of complex coefficient harmonic-like homo-
geneous polynomials of degree £ about A’. Let F(x?, x2, -, x™*)e=4. We have

0=AF(x!, x2, -, xm+1)

m+1 azF
= & xy

p. 9*F mi1 Q2R
= R T2 ory

b —g’F  miz Q°F
tzx (10x*)? +z=2p+1 (0x*)?

H

#=-1)

». g° mit g? cr . p
:(‘ PIYF PO G >F<_“‘ P TRy A,
xp+l’ xp+2’ e, xm+1)
=A'F(—ix', —ix® -, —ixP, xP+, ..., xm*1y),

Therefore, F(—ix*, —ix?, -, —xi?, xP*}, ..., ™" 4 and
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oy, ¥% o, ™M)

a(xx’ X%, -, x™H) l:if’;&o
where, y'=ix!, y?=ix?, -+, yP=ix?, yPH'=xP*, ., ymHi=xm*1 Thus we obtain
. . ., (mt+k m+k—2
dim A=dim 4. But dlmJl—( P ) ( b9 ) So
m-+k m+k—2
dim A= —( .
k k—2

THEOREM 2. The spectrum of the Laplacians of the P—R sphere S3(1) and
the P—h space HI (1) in the P—E space E7.' is given by

br=k(m+k—1) (kz0)
by=—hk(m+k—1) (k=0)

and

respectively. And the multiplicity j(b) of by is given by
].(bo)zl ’ j(bl):m"!_l s

mk m+hk—2
o (H
k k—2

_ (m+k—2Ym+k—3)---(m+1Dm

k!

Since SP(r) with S7(1) and Hp .(») with Hp (1) are homothetic, we have

(m+2k—1).  (k22).

THEOREM 3. The syectrum of the Laplacians of the P—R sphere S7(r) and
the P—h space HP,(r) in the P—E space E}™' is given by
br=r-tk(m+k—1)
and (=0, r>0),
br=—7r"k(m+k—1)
respectively. And the multiplicity j(bs) of b is given by
jbo)=1,  jb)=m+1,
m-+ k) (m+k—2

j(bh):(
k k—2

) (k=2).
4. The minimal immersions of the P— R sphere and P—h space.

THEOREM 4. Let M=S%(r) or Hp-i(r). M is isometrically minimally im-
mersed in SP(1) or H2,(1). Then for k=0, 1,2, ---, we have
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(m+k—2)!
Rl m—1)! °

_ m
T k(m+k—1)’

-2

r n=(m+k2—1)

ProoF. By Theorem 1, for the immersion f,
Af=bf, b>0; f: M—> Sy(vm/b)=Sx(1)
b<0; f: M —> H2(Vm/—b)=H? (1),

Then, b=m or b=—m for S}1) or H? (1), respectively. With Theorem 3, we

have
br=k(m+k—1r? for S3r)
by=—hk(m+k—1)r"* for HP ,(r).
So
m=b=k(m+k—1r?* or m=—b=—(—k)m+L—1)r2,
Therefore
a__om < _plmtk—2)!
r Rt k1) n<(m+2k—1) Rim—D1 Q.E.D.

REMARK. By Theorem 1 and Theorem 3, we have

(1) Mp(r) (r<0 is a constant) can not be isometrically minimally immersed
in Sp(1).

(2) The Riemannian manifold M™(r) with the constant sectional curvature
r<0 can not be isometrically minimally immersed in the Riemannian sphere
S™(D.
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