R-SPACES ASSOCIATED WITH A HERMITIAN SYMMETRIC PAIR

By

Hiroyuki TASAKI and Osami YASUKURA

1. Introduction.

The linear isotropy representation of a Riemannian symmetric pair (G, K) is defined as the differential of the left action of K on G/K at the origin. Every orbit of the linear isotropy representation of (G, K) is called an *R-space associated* with (G, K), which is an important example of equivariant homogeneous Riemannian submanifolds in a Euclidean sphere (See Takagi-Takahashi [2] and Takeuchi-Kobayashi [3]).

This paper is concerned with the linear isotropy representation of a Hermitian symmetric pair (G, K). Its restriction to the center of K defines an S¹-action on the associated R-spaces. We determine all R-spaces associated with Hermitian symmetric pairs (G, K) on which the semisimple part of K acts transitively. In particular, we know all irreducible Hermitian symmetric pairs such that each of the associated R-spaces has such a property. This result is utilizable for the classification of orthogonal transformation groups by their cohomogeneity (See the forthcoming paper [4] concerned with this problem in low cohomogeneity).

The authors are profoundly grateful to Professor Ryoichi Takagi for his helpful suggestion and critical reading of a primary manuscript.

2. Statement of the result.

Let (G, K) be an irreducible Hermitian symmetric pair of compact type and \mathfrak{g} [resp. \mathfrak{k}] the Lie algebra of G [resp. K]. Then \mathfrak{g} has the canonical direct sum decomposition:

$$g = t + m$$
,

where m is the subspace of g satisfying

 $[\mathfrak{k},\mathfrak{m}]\subset\mathfrak{m}$ and $[\mathfrak{m},\mathfrak{m}]\subset\mathfrak{k}$.

The tangent space of G/K at the origin can be naturally identified with m. Then

Received October 15, 1985

the linear isotropy representation of (G, K) is nothing but the adjoint action Ad of K on m.

Let K_s be the analytic subgroup of K corresponding to the semisimple part $\mathfrak{f}_s = [\mathfrak{f}, \mathfrak{f}]$ of \mathfrak{f} and \mathfrak{f} be the 1-dimensional center of \mathfrak{f} . We can take an element H_0 in \mathfrak{f} such that

$$(\mathrm{ad} H_0|_{\mathfrak{m}})^2 = -id_{\mathfrak{m}}$$
,

because (G, K) is a Hermitian symmetric pair.

Take a maximal Abelian subalgebra \mathfrak{h} in \mathfrak{k} . Then \mathfrak{h} is also a maximal Abelian subalgebra in \mathfrak{g} and the complexification \mathfrak{h}^c of \mathfrak{h} is a Cartan subalgebra of \mathfrak{g}^c . Let \varDelta denote the set of all non-zero roots of \mathfrak{g}^c with respect to \mathfrak{h}^c . For each $\alpha \in \varDelta$, define a subspace \mathfrak{g}_{α} of \mathfrak{g}^c by

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}^{\mathbf{C}}; [H, X] = \alpha(H) X \text{ for all } H \in \mathfrak{h}^{\mathbf{C}} \}$$

and choose a non-zero vector $X_{\alpha} \in \mathfrak{g}_{\alpha}$ such that

$$X_{\alpha} - X_{-\alpha}, \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{g} \text{ and } [X_{\alpha}, X_{-\alpha}] = \frac{2}{\alpha(H_{\alpha})} H_{\alpha},$$

where H_{α} in $\mathfrak{h}^{\mathbf{C}}$ is the dual vector of α with respect to the Killing form \langle , \rangle of $\mathfrak{g}^{\mathbf{C}}$. The set of all compact [resp. noncompact] roots in \varDelta is denoted by $\varDelta_{\mathbf{c}}$ [resp. \varDelta_{n}]:

$$\mathfrak{f}^{c} = \mathfrak{h}^{c} + \sum_{\alpha \in \mathcal{I}_{c}} \mathfrak{g}_{\alpha} \quad \text{and} \quad \mathfrak{m}^{c} = \sum_{\alpha \in \mathcal{I}_{n}} \mathfrak{g}_{\alpha} .$$

Fix the lexicographic ordering in the dual space of the real vector space $\sqrt{-1}\mathfrak{h}$ with respect to an ordered basis

$$\sqrt{-1}H_0(=Y_1), Y_2, \cdots, Y_m; m = \dim_{\mathbb{R}}(\sqrt{-1}\mathfrak{h})$$

in $\sqrt{-1}\mathfrak{h}$. Let \mathcal{A}^+ [resp. \mathcal{A}_n^+] denote the set of all positive roots in \mathcal{A} [resp. \mathcal{A}_n]. There is a direct sum decomposition of \mathfrak{m} :

$$\mathfrak{m} = \sum_{\alpha \in \mathcal{J}_n^+} \{ \boldsymbol{R}(X_\alpha - X_{-\alpha}) + \boldsymbol{R}\sqrt{-1}(X_\alpha + X_{-\alpha}) \} \,.$$

According to Harish-Chandra [1, § 6], there exists a subset $\Gamma = \{\gamma_1, \dots, \gamma_r\}$ of \mathcal{A}_n^+ such that $\gamma_i \pm \gamma_j \notin \mathcal{A}$ $(1 \leq i, j \leq r)$ and

$$\mathfrak{a} = \sum_{i=1}^{r} \mathbf{R} \sqrt{-1} (X_{r_i} + X_{-r_i})$$

is a maximal Abelian subspace of \mathfrak{m} , where r is the rank of the symmetric pair (G, K).

Consider the automorphism, so-called Cayley transformation,

R-spaces associated with a Hermitian symmetric pair

$$v = \exp{\frac{\pi}{4}}$$
 ad $(\sum_{i=1}^{r} (X_{r_i} - X_{-r_i}))$

of the Lie algebra \mathfrak{g}^{c} . We have $\upsilon(\mathfrak{a}) \subset \mathfrak{k}$, since

$$\nu(\sqrt{-1}(X_{\tau_i} + X_{-\tau_i})) = \frac{2\sqrt{-1}}{\gamma_i(H_{\tau_i})} H_{\tau_i} \qquad (1 \le i \le r) \,.$$

Let — denote the restriction of a linear form on \mathfrak{h}^{c} to $\nu(\mathfrak{a}^{c})$. The sets of all non-zero elements in \overline{A} , $\overline{A^{+}}$, \overline{A}_{c} , \overline{A}_{n} , and $\overline{A_{n}^{+}}$ are denoted by R, R^{+} , R_{c} , R_{n} , and R_{n}^{+} respectively. R is isomorphic to the restricted root system of the Hermitian symmetric pair (G, K). By Harish-Chandra [1, § 6], there are only two possibilities:

Case i) R is of type C;

$$R = \{\pm \bar{\gamma}_i\} \cup \left\{\frac{1}{2}(\pm \bar{\gamma}_i \pm \bar{\gamma}_j); \ i \neq j\right\},$$
$$R_c = \left\{\frac{1}{2}(\bar{\gamma}_i - \bar{\gamma}_j); \ i \neq j\right\},$$
$$R_n = \{\pm \bar{\gamma}_i\} \cup \left\{\pm \frac{1}{2}(\bar{\gamma}_i + \bar{\gamma}_j); \ i \neq j\right\},$$

Case ii) R is of type BC;

$$R = \{\pm \bar{\gamma}_i\} \cup \left\{ \frac{1}{2} (\pm \bar{\gamma}_i \pm \bar{\gamma}_j) ; i \neq j \right\} \cup \left\{ \pm \frac{1}{2} \bar{\gamma}_i \right\},$$
$$R_c = \left\{ \frac{1}{2} (\bar{\gamma}_i - \bar{\gamma}_j) ; i \neq j \right\} \cup \left\{ \pm \frac{1}{2} \bar{\gamma}_i \right\},$$
$$R_n = \{\pm \bar{\gamma}_i\} \cup \left\{ \pm \frac{1}{2} (\bar{\gamma}_i + \bar{\gamma}_j) ; i \neq j \right\} \cup \left\{ \pm \frac{1}{2} \bar{\gamma}_i \right\}.$$

Then our result is the following:

THEOREM. Let M be an R-space associated with an irreducible Hermitian symmetric pair (G, K). Then the following two conditions are equivalent.

- 1) The action of K_s on M is transitive.
- 2) The restricted root system R of (G, K) is of type BC or there exists a γ_i in Γ such that $\gamma_i(v(M \cap \mathfrak{a})) = \{0\}$.

In particular, K_s acts transitively on each of the associated R-spaces if and only if R is of type BC.

REMARK. Suppose that M is an R-space of the highest dimension among those associated with a given irreducible Hermician symmetric pair (G, K), i.e., M is a maximum dimensional K-orbit of the linear isotropy representation of

167

(G, K). Then $M \cap \mathfrak{a}$ contains a regular element H, which satisfies $\gamma_i(v(H)) \neq 0$ for all *i*. Then the transitivety of K_s on M is equivalent to the condition that the restricted root system R is of type BC.

3. Proof of Theorem.

Fix an Ad(G)-invariant inner product on g, which is a negative multiple of the restriction of the Killing form \langle , \rangle of g^c to g.

Let H be any fixed element of $M \cup \mathfrak{a}$ and \mathfrak{k}_H denote the centralizer of H in \mathfrak{k} :

$$\mathfrak{t}_{H} = \{ T \in \mathfrak{t} ; [T, H] = 0 \} . \tag{1}$$

The orthogonal complement of \mathfrak{f}_H in \mathfrak{k} is denoted by \mathfrak{f}_H^{\perp} .

Since f_s is the orthogonal complement of \mathfrak{z} in \mathfrak{k} , the kernel of the orthogonal projection p of \mathfrak{k} to \mathfrak{z} is equal to \mathfrak{k}_s .

Since K and K_s are compact and connected, the condition 1) in Theorem is equivalent to

$$\dim \mathfrak{k} - \dim \mathfrak{k}_H = \dim \mathfrak{k}_s - \dim (\mathfrak{k}_H \cap \mathfrak{k}_s),$$

that is,

$$\dim \mathfrak{k}_H = 1 + \dim (\mathfrak{k}_H \cap \mathfrak{k}_s),$$

which is equivalent to $p(\mathfrak{t}_H) = \mathfrak{z}$, because dim $\mathfrak{z} = 1$.

On the other hand, $p(\mathfrak{f}_H) = \{0\}$ if and only if $\mathfrak{f}_H \subset \mathfrak{f}_s = \mathfrak{z}^{\perp}$, that is, $\mathfrak{f}_H^{\perp} \supset \mathfrak{z}$. If we take $H_1 \in \mathfrak{f}_H$ and $H_2 \in \mathfrak{f}_H^{\perp}$ such that

$$H_0 = H_1 + H_2$$
, (2)

then $H_1 = 0$ is equivalent to $\mathfrak{t}_H^{\perp} \supset_{\mathfrak{d}}$.

So the condition 1) in Theorem is equivalent to $H_1 \neq 0$ in the equation (2). Therefore the following lemma completes the proof of our theorem.

LEMMA. $H_1 \neq 0$ if and only if either the restricted root system R of (G, K) is of type BC or there exists a γ_i in Γ such that $\gamma_i(v(H))=0$.

PROOF of Lemma. Let b be the orthogonal complement of $v(a) = \sum_{i=1}^{r} R \sqrt{-1} H_{r_i}$ in $\mathfrak{h} = \sum_{a \in A} R \sqrt{-1} H_a$.

Put $\Gamma_H = \{\gamma_i \in \Gamma; \gamma_i(\upsilon(H)) = 0\}$, $\mathfrak{a}_H = \sum_{\tau_i \in \Gamma_H} R \sqrt{-1} H_{\tau_i}$, and $\mathfrak{a}_H^{\perp} = \sum_{\tau_i \notin \Gamma_H} R \sqrt{-1} H_{\tau_i}$. Then \mathfrak{a}_H^{\perp} is the orthogonal comlement of \mathfrak{a}_H in $\upsilon(\mathfrak{a})$. We have an orthogonal direct sum decomposition of \mathfrak{h} :

$$\mathfrak{h} = (\mathfrak{b} + \mathfrak{a}_H) + \mathfrak{a}_H^{\perp} \,. \tag{3}$$

As the first step, we claim that the decomposition of H_0 with respect to the decomposition (3) is the same as the equation (2). In fact, $\mathfrak{t}_H \supset \mathfrak{b} + \mathfrak{a}_H$, since $[\nu(\mathfrak{b} + \mathfrak{a}_H), \nu(H)] = \{0\}$ by

$$\nu \left[\frac{2\sqrt{-1}}{\gamma_i(H_{\tau_i})} \right] = -\sqrt{-1}(X_{\tau_i} + X_{-\tau_i}) \quad (1 \le i \le r),$$

$$\nu|_{\mathfrak{b}} = \mathrm{id}_{\mathfrak{b}} \quad \mathrm{and} \quad \nu(\mathfrak{b} + \mathfrak{a}) = \mathfrak{h}.$$

We also have $\mathfrak{t}_{H}^{\perp} \supset \mathfrak{a}_{H}^{\perp}$, since $\langle \upsilon(\mathfrak{t}_{H}), \upsilon(\mathfrak{a}_{H}^{\perp}) \rangle = 0$ by

$$\upsilon(\mathfrak{k}_{H})\subset\mathfrak{h}+\sum_{\substack{\alpha\in\mathfrak{a}\\\alpha\in(\upsilon(H))=0}}(\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha})\,,\qquad \upsilon(\mathfrak{a}_{H}^{\perp})\subset\sum_{\tau_{i}\notin\Gamma}(\mathfrak{g}_{\tau_{i}}+\mathfrak{g}_{-\tau_{i}})\,.$$

Therefore $\mathfrak{h} \cap \mathfrak{k}_H = \mathfrak{b} + \mathfrak{a}_H$ and $\mathfrak{h} \cap \mathfrak{k}_H^\perp = \mathfrak{a}_H^\perp$. In particular,

$$H_2 = -\sum_{\tau_i \notin \Gamma_H} \frac{\sqrt{-1}}{\gamma_i(H_{\tau_i})} H_{\tau_i}, \qquad (4)$$

because we have

 $\gamma(H_0) = -\sqrt{-1}$ for all $\gamma \in \mathcal{A}_n^+$

by the definition of Δ_n^+ . As a result, we obtain

$$H_1 = H_0 + \sum_{\tau \in \mathcal{F}_H} \frac{\sqrt{-1}}{\gamma_i(H_{\tau_i})} H_{\tau_i}.$$
(5)

As the second step, we claim that $H_1 \neq 0$ in the equation (5) if and only if either R is of type BC or $\Gamma_H \neq \phi$. We may assume that $H \neq 0$. Then there exists $\gamma \in \Gamma - \Gamma_H$.

If R is of type BC, then there is a compact root α such that

$$\bar{\alpha} = \frac{1}{2}\bar{\gamma}$$
.

In this case, by the equation (4) and $\alpha(H_0)=0$ for all $\alpha \in \mathcal{A}_c$, we have

$$\alpha(H_1) = \alpha(-H_2) = \frac{1}{2}\gamma(-H_2) = \frac{\sqrt{-1}}{2} \neq 0$$
,

especially $H_1 \neq 0$.

Now suppose that R is of type C. If $\Gamma_H \neq \phi$, we can take $\gamma_j \in \Gamma_H$. There exists a compact root α such that

$$\bar{\alpha} = \frac{1}{2} (\bar{\gamma} - \bar{\gamma}_j) \, .$$

In this case, by the equation (4),

Hiroyuki TASAKI and Osami YASUKURA

$$\alpha(H_1) = \alpha(-H_2) = \frac{1}{2}\gamma(-H_2) = \frac{1}{2}\sqrt{-1} \neq 0$$
,

especially $H_1 \neq 0$. Here we have used the fact

$$\gamma_j(\mathfrak{a}_H^{\perp}) = \{0\}$$

which follows from the orthogonality of elements in Γ . If $\Gamma_H = \phi$, then

$$\beta(H_1) = \beta(H_0) + \beta(-H_2) = -\sqrt{-1} + \beta(-H_2) = 0$$

for all $\beta \in \mathcal{A}_n^+$, by the equation (4) and $R_n^+ = \left\{ \frac{1}{2} (\bar{\gamma}_p + \bar{\gamma}_q); 1 \leq p, q \leq r \right\}$. On the other hand

$$\alpha(H_1) = \alpha(-H_2) = 0$$
 for all $\alpha \in \mathcal{A}_c$,

by $R_c = \left\{ \frac{1}{2} (\bar{r}_p - \bar{r}_q); p \neq q \right\}$. So $H_1 = 0$. This completes the proof of Lemma.

References

- [1] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math. 78 (1956), 564-628.
- [2] Takagi, R., and Takahashi, T., On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.
- [3] Takeuchi, M., and Kobayashi, S., Minimal imbedding of R-spaces, J. Differential Geometry 2 (1968), 203-215.
- [4] Yasukura, O., A classification of orthogonal transformation groups of low cohomogeneity, to appear in Tsukuba J. Math. 10 (1986).

Hiroyuki Tasaki	and	Osami Yasukura
Department of Mathematics		Institute of Mathematics
Tokyo Gakugei University		University of Tsukuba
Koganei, Tokyo		Sakura-mura, Ibaraki
184 Japan		305 Japan
		Current Address (O. Yasukura)
		Ibaraki College of Technology
		866 Fukayatsu, Nakane, Katsuta
		312 Japan

170