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TAME TWO-POINT ALGEBRAS

(Dedicated to Professor Tosiro Tsuzuku on his sixtieth'sbirthday)

Introduction.

By

Mitsuo Hoshino and Jun-ichiMiyachi

Throughout this paper, we will work over a fixed algebraically closed field

k. Let A be a finite dimensional basic algebra. We may consider A as a

locally bounded /^-category. As well known, any locally bounded ^-category A

is given by a quiver with relations, that is, there is a locally finite quiver Q

such that A=kQ/I, where kQ is the path-category and / is an ideal of kQ

generated by linear combinations of paths of length ^>2 (see [3] for details).

A module over a locally bounded ^-category A is a ^-linear functor from A to

the category of ^-vector spaces, nemely, a representation of the quiver satisfying

the relations if A is given by a quiver with relations. We will denote by

mod A the category of all finitedimensional left J-modules.

In the present paper, we are interested in two-point algebras, namely, alge-

bras which have just two non-isomorphic simple left modules. Our aim is to

classify two-point algebras of certain classes according to their representation

types. An algebra A is said to be representation-finiteif there are only a finite

number of pairwise non-isomorphic indecomposable objects in mod A, to be wild

if there is an exact embedding mod kQ-^mod A, where kQ is the path-algebra

of the quiver Q: C *O, which is a representation equivalence with the corre-

sponding full subcategory of mod A, and to be tame if A is neither representa-

tion-finitenor wild. There has been given the complete list of the maximal

representation-finitetwo-point algebras [3].

Covering techniques ([1], [3], [5] and [6]) will play an indispensable role

in deciding the representation type of a given algebra. For a certain class of

algebras, by taking appropriate Galois coverings, the problem can be reduced to

the calculation of vector space categories, which have been classifiedin [12]

(see also [9]). On the other hand, we will come across an algebra which can

be obtained as a quotient of a suitable Galois covering of the tame local algebra

tC*O<7 with (t2=tz=0 [11], thus is tame. The similar argument will also

apply to the situation that there is a Galois covering of a given algebra which

has a wild algebra as a finitequotient.
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1. Main Results.

In the present paper, we will consider two classes of two-point algebras,

one is the class of the triangular matrix algebras, namely, the algebras of the

form with A, B local,and the other is that of the distributivealgebras

of ordinary quiver ≫"
>≪Q

(cf. [1]).

Theorem A. Let A be a finitedimensional two-point triangular matrix alge-

bra. Then A is tame if and only if A is isomorphic to one of the algebras (0)-

(4g)in Table T or their duals.

Theorem B. Let A be a finite dimensional basic distributivealgebra of

ordinary quiver ･; >tQ. Then A is tame if and only if A is isomorphic to one

of the algebras (5g)-(llg)in Table T or their duals.

During the preparation of the paper, the authors noticed that the algebra

(4g) in Table T is shown to be tame [15].

Table T

1) ―^Oa

2) BC-^'Oa

20

3,)

4,)

5,)

50

5?)

5?)

6g)

7)

80

9)

with a2fi=ae=0

with a2=p*=0

with a{ip=a2=p2=0

with a{i-{ip=a'ijii=a6=p3=0, q―2y3

with au-aB=a9u=ai=B*=O, q=2, 3,4
a

･~< "'Qa with

with

with

with

with

fiv―a2=vafi=aq=O, q=3, 4, 5

fjv―a2=va[i=va2[i=a9=0, q=3, 4, 5

fiv―≪2―vctfi=a2ti=:aq―O,q―3, 4

fiv―a2=vafi=a2fi=va2=aq=0, q=3, 4

{iv―a2=va/Jt―va2fi=aq=0, q=A, 5

(only if char £=3)

with fiv―az=vpt=api=^

with pv―as=vfi=a2{i=va2=aq=0, #=3, 4, 5

with fiv―a3=vfi=vafi―a2fi=vai=aq=0, q=3, 4, 5

with fiv―as=vfi―va[i=azfn=va2=a5=0

(only if char &=3)



=ap=pa=a2=B2=O
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10) with ptv=vfjt=vapt=a3―0

100 with ptv=vfi―vafi=va2fi―a3=0

10") with [tv=vpi=va{i=a2[i=a3=0

llg) with fiv―a4=a{i=va2=aq=0, q=4, 5

Examples. In Section 5, as an example, we willshow that the following

is tame [12]:

12) .^zl.Qa with a2=ftv=O,

thisis not distributive(cf.(W-ll)).

There are several other algebras which have been known to be tame [4]

(see also[7] and [11]):

13) -i'Oa with a2=vfi=0

14) /3C

15)

16)

a

v
Qa with a2=p2=fjiv=v{ji=0

with ap.―n^―va―^v―^

with filv1=HzV2=v1ftl ―v2fiz=§

17) with //1v1=i≪2v2=v1^2=v2/a1=0.

In particular, one can easily determine the finitedimensional basic tame

algebras of ordinary quiver ･-―>≫.

In order to prove the "only if" parts of the theorems, we need the list of

minimal wild algebras and that of maximal representation-finitealgebras.

Proposition 1. The algebras (0)-(18)in Table W are wild. They are mini-

mal, with the possible exception of (11),in the sense that no proper quotient of

them is wild.

Proposition 2 (see [3]). The algebras (l)-(15a)in Table F are representation-

finite. They are maximal in the sense that any finite dimensional basic represent-

ation-finitetwo-point algebra can be obtained as a quotient of one of them or their

duals.

Tflhie W

0)

1)
f

･-^->≪3n with ap=Pti
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2)

3)

4)

5) fiC

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

V
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Qa with au=av=a2=O

(1 yQa with aifi=a'!=O

with asu=a4=0

.A.Qa with fiB=as=B2^0

with a2u=uB=as=B3=0

1)

2,) /3C

3g)

4,)

5)

6)

v

with a2fi=fi^=ai=^2=0

with a*fi=anP=as=pz=O

with afi―fi^=a2fi=a5=^4=0

with afi―p^=azfi=a'J=^z―O

with fiv―a2=:azfi=as=0

with fiv―as=vfi=vapt=aifi=ai=O

with f/v=afi=as=O

with ptv=vpi=a2fX=as=O

with ptv=vaft=a2fi=uaz=as=0

with fiv=v/jt=aft=vas=ai=O

with fin=vfi=vafi=a2fj^=va2=ai=0

with uv=vu=aa=va2=:a5=0

Table F

･-^-･Qa with a*ju=a5=0

―^-*>Oa with au=uB=aq=&=0, o^2

f
7q) -^

f
8) .7=1

9)

10)

11)

o≪

with fip=a2=pq=0, q^l

with afjt-fip=aq=p2=0, q^2

with aii-{ip=a5=p3=0

with a2ft-fi^=as=^=0

With (/*y)≪=(y≪)9= 0, ^1

with ftv―a2=aft=O

with fiv―a2=:vfjt=0

with iiv―a^―vyi―vaft=a4=0 (only if char k=2)

with uv―vafji―a2=O



12)

13)

14)

15g)
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with

with

with

with

fiv―a3=aft―va2―O

uv―aq=au=va―O, g^4.
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Remark 1. For an integer m^l, denote by Pm the linearly ordered set

with m elements, and for m, n^l, consider pmxPn as a partially ordered set

by componentwise order. Then the representation type of pmxPn is finiteif

l/m + l/n>l/2, tame if l/m+l/n=l/2 and wild if l/m+l/n<l/2 (cf. [14]).

n
This is also the case with the algebra fiC- >*Q≪ with afji―fift=am= fin=O.

Remark 2. Let A be a local Nakayama algebra of length o^2. Then the

triangular matrix algebra . can be given by the quiver $0―>#O≪

with relations aft―fi^=aq―^q=0. This is tame if and only if q―＼. In general,

for a connected self-injectivealgebra A, the triangular matrix algebra .

is tame if and only if A is representation-finiteof Dynkin class A% (see [8]

and riFTlY

2. Preliminaries.

In this section, we will recall some basic definitions and results (see [1]

r31. T51. T61. riOl T121 and T131).

2.1. Locally Bounded Categories.

A locally bounded category A is a ^-category such that: a) distinctobjects

are not isomorphic; b) for each iSvl, the algebra A(x, x) is local; c) for each

xeJ, Hvi=a[_A(x,y): k~]and 'Hy&ALMy, x): k~] are finite [1]. The support

supp M of a yf-module M is the full subcategory of A consisting of the objects

xej such that M(x)^0. The dimension vector of a J-module M is the family

dim M= {[M(x): k~]}x(Ea-Let Ft (/g/) be a family of full subcategories of A.

Denote by Uie/A the full subcategory of A consisting of the objects of the rt.

For a family of objects Xi&A (/g/), we denote by {xi}i(BIthe fullsubcategory

consisting of the objects xt. A is said to be locally support-finiteif for each

x^A, {Jmcx^o supp M is finite[5].

2.2. Galois Coverings.

Let A be a connected locally bounded category and G a group of ^-linear

automorphisms of A. Then G acts naturally on mod A by the left. We assume
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that the action of G on A is free, namely, gxi^x for any ^eG＼{l} and any

x^A. Following [6], we can consider the quotient A/G and the Galois cover-

ing F: A-^-A/G. Then we have the push down functor Fx : mod A^-mod A/G

which is left adjoint to the induced functor F. : mod A/G^-mod A. If G acts

freely on ind A, namey, gM^M for any gGG＼(l} and any M&'mdA, then Fx

preserves the Auslander-Reiten sequences. We will freely use the following

Proposition 3 (see [6]). Let S be a quotientcategory of A with the natural

embedding mod S^mod A, and L={M<^indS＼8M(£indS for any g<=G＼{l}}. Then

there existsa set-theoreticinjection L―nnd A/G. In particular, in case L is co-

finitein ind 5, the following hold.

(1) // A/G is tame, so is S unless it is representation-finite.

(2) // 5 is wild, so is A/G.

Proposition 4 ([5]). // A is locally support-finiteand if G acts freely on

ind A, then the push down functor Fx: mod A^-mod A/G is dense. In particular,

if A is tame, so is A/G.

In what follows, we will deal only with a full subcategory A of a Galois

covering U which is in fact a quotient category, thus we may consider mod A

as a full subcategory of mod U by the natural embedding.

2.3. Vector Space Categories.

A vector space category K is an additive ^-category together with a faith-

ful functor ||: K^mod k such that every idempotent in K splits. Given a

vector space category K, its subspace category U(K) is defined as follows: its

objects are triplesof the form (U, X,§), where U is a &-space, X is an object

in K and <j>:U-+＼X＼ is a ^-linear map. A homomorphism from (U, X, <f>)to

(£/',X'',0') is given by a pair (a, /3),where a: U->U' is ^-linear,/3: X-*Xf is

a morphism in K such that |i8|^=0/a. Given a poset S, considered as a cate-

gory, add&S is a vector space category. Conversely, assume that if is a

vector space category consisting only of 1-dimensional indecomposable objects,

then K is of the form add &S for some poset 5.

Let A be a one-point extension algebra of R by M, then a yl-module

is given by a triple (kU, RX, (f>:RM^kU-^RX). It is well known that

£/(Hom (M, mod R)) is representation equivalent to the full subcategory of mod A

consisting of the vi-modules without non-zero direct summands of the form

{k, 0, 0) or (0, Y, 0) with Horn (M, Y)=Q. In case R is tame, if the vector space

category Horn (M, mod R) is tame, so is A.
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3. Classification.

In Section 4, we will prove that the algebras in Table W are wild, and in

Section 5 we will prove that the algebras in Table T are tame. We have only

to consider the algebras of ordinary quiver ･ >≪Q, C* >*O or ･< "≪Q.

Given an algebra A of the classes stated in the theorems, we will show that

one of the following cases occurs: 1) A is isomorphic to a quotient of one of

the algebras in Table F or their duals; 2) A is isomorphic to one of the algebras

in Table T or their duals; and 3) A has a quotient isomorphic to one of the

algebras in Table W or their duals. These are clearly pairwse inconsistent.

I) A of ordinary quiver --^―>≫Qa.

Suppose amfi=an=Q, m^n.

i) If m ―＼,then A is a quotient of (F-2n).

ii) If m=2 and n^5, then A is a quotient of (F-l).

iii) If m=2 and n=6, then J^(T-l).

iv) If m=2 and n2>7, then J has (W-3) as a quotient.

v) If m―n=3, then ^ is a quotient of the dual of (F-13).

vi) If m^3 and w2^4, then J has (W-4) as a quotient.

II) A of ordinary quiver fiCb-!―>aC)a.

Suppose am = /3n=Q. Let 4=fc[a], £= &[/3] and A4=A{b, a). We may

assume dim Ap^dim fiB. Note that if Mi^Ap. then ft^Afi.

1) If dimM=l, then i is a quotient of (F-2g), q―max{?n, n}.

2) Suppose dim M―2. Then M^A^, and p$―xap for some xgj^.

2.1) The case x=0:

i) If m=2, then ^=(F-3B).

ii) If m=3 and n=2, then J is a quotient of (F-6).

iii) If m=3 and n^3, then yi has (W-6) as a quotient,

iv) If m^4, then J has (W-7) as a quotient.

2.2) The case x^O: Replacing a with xa, we can assume afi―fifi=0. We

may also assume m^n.

i) If n=2, then ^=(F-4m).

ii) If n=3 and ra^5, then J is a quotient of (F-5).

iii) If n=3 and m=6, then J^(T-32).

iv) If n=3 and m^7, then A has (W-10) as a quotient.

v) If n=m=4, then A = (J-i2).

vi) If n^4 and m^5, then J has (W-9) as a quotient.



72 Mitsuo Hoshino and Jun-ichi Miyachi

3) Suppose dim M=3, M=tAfi and mn>4. Then, as a quotient, A has eithe

(W-8) or its dual.

4) Suppose dim M;>3, M=tAft and m=n=2.

i) If dimM=3, then A=*(T-2').

ii) If dimM=4, then A = (T-2).

5) Suppose dim M―2> and M=Apt. Then p>fi=xapt+ya2pi for some x, ;ye&.

5.1) The case x=y=0: A has (W-5) as a quotient.

5.2) The case x=0 but 3>=£0: Replacing $ with y'1^, we can assume a2pt―///

i) If m=3 and n=2, then Js(F-6).

ii) If ra=3 and n^3, then A has (W-6) as a quotient.

iii) If m^4, then A has (W-7) as a quotient.

5.3) The case x^O: Replacing a with xa+j/a2, we can assume apt―pt^―0

We may also assume ra^n.

i) If n=3 and m^5, then vi is a quotient of (F-5).

ii) If n=3 and m=6, then J=(T-33).

iii) If n=3 and m^7, then A has (W-10) as a quotient.

iv) If n=m=4, then A=(T-43).

v) If n^4 and m^5, then yl has (W-9) as a quotient.

6) Suppose dim M―A and M=^4//. Then fi^―xapi+ya2fi+za3pi for some

jc,y, 2Gfe.

6.1) The case x―0: A has (W-7) as a quotient.

6.2) The case x=£0: Replacing a with xa+3>a2+za3, we can assume apt―pt^

=0. We may also assume m^n.

i) If m=n=A, then J^(T-44).

ii) If ra^5 and n^4, then A has (W-9) as a quotient.

7) Suppose dim M^5 and M―Api. Then pi^―YlUi^ia1^, where d^dimM― 1,

for some xt^k, lt^i^d.

7.1) The case Xi=0: A has (W-7) as a quotient.

7.2) The case *i=£0: Replacing a with 2?=i*iaf, we can assume ap>―pifi=0.

Then J has (W-9) as a quotient.

u
III) J of ordinary quiver b~< >aQa.

Suppose an=0. Let A=k＼_a~＼.We may restrict ourselves to the case

A{a, a)―A. Thus A(b, a)―An and A(a, b)―vA. We may also assume dim Apt
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^dimvA In case ftv=£O,there are some /(x)e&[.x] with /(0)=£0and some

m^l such that fiv=f(a)am. Replacing p. with /(a)"1//,we can assume pv―am

=0.

1) Suppose dim Afi=dim ^^4=1. Then yf is a quotient of (F-8), (F-12) or

(F-15,).

In what follows, we assume dimvi4^2.

2) Suppose {xv―≪2=0.

2.1) If dimAp=l, then A is a quotient of (F-8).

2.2) Suppose dim Apz―2.

2.2.1) The case dimv4/i=0: J is a quotient of (F-9).

2.2.2) The case dimv;4/*=l: We have xv[i+yvafi=§ for some x, y<=k wit!

with (x, y)i=0. In case xjy^O, by replacing a with ―x"1^ and ftwith (x~ly)2[i

we can assume vpt―vapt=0.

i) If v//=0, then J is a quotient of (F-9).

ii) If va/*=0 and n=2, then ^s(F-ll).

iii) If vaju=0 and n^3, then ^^(T-52) or (T-5;").

iv) If vfi―vafi=0, then A is a quotient of (F-9) or (F-10).

2.2.3) The case dim vAfi=2: A is not distributive. Notice however that A

has (W-ll) as a quotient if dim v^4^3.

2.3) Suppose dim Apt―3. Then v[i^{kva[x+kva2{i).

2.3.1) The case dimvAfi=l: As*(J-5'n).

2.3.2) The case dimvA{i=2: We have xvaft+yva2fi=0 for some x, ^e^ with

(x, 3≫)^0. In case x^^O, by replacing a with ―x~lya and /i with {x~lyfp.i

we can assume vafi―vazpt=O.

i) If va^=0, then J^(T-5n).

ii) If va2fjt=0, then J has (W-11) as a quotient.

iii) If vaft―va2ft=0 and n==3, then yi= (T-53).

iv) If vafi-va2ii=Q and n=4, then J^(T-54) or (T-64).

v) If va/£-v≪2/i=0 and n=5, then A = (T-55) or (T-66).

2.3.3) The case dimv^=3: A has (W-ll) as a quotient.

2.4) Suppose dim A[x^4. Then, dlm(kvft+kvajn)=2 and (kvfi+kvafi)r＼(kva2fi

-＼-kvaz[i-＼-･･･)=0. Thus, A has (W-ll) as a quotient.

3) Suppose jUu―≪3=0 and n^3.

3.1) Suppose dim Apt―1.

3.1.1) The case dimv,4=2: J is a quotient of (F-12).
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If n=3 and dimvA[t=Q, then A = (F-13).

If n=4 and dimvAp=O, then A = (T-7).

If dimvAfi=l, then A has (W-13) as a quotient.

3.2) Suppose dim Ap.^2, dim vA>Z and n^4. Then A has (W-12) as a quotient,

3.3) Suppose dim Aft=2.

3.3.1) The case dim vAft=0:

i) If dimvA=2, then A = (T-8'n).

ii) If dimvA=n=3, then ^ = (T-10").

3.3.2) The case dimvAfi=l: We have xvft+ yvaft=O for some x, y^k with

(x, y)=tO. In case xy=tO, by replacing a with ―x~x;yaand pt with ―{x~1yfft,

we can assume vfi―va[t=0.

i) If 1^=0 and dim y.4=2, then J = (T-8J.

ii) If v/i=0 and dimv^l=n=3, then ^l^(W-14).

iii) If vafJt―0,then ^4 has (W-15) as a quotient.

iv) If vfi―va/ji=0 and dim v^=2, then J = (T-8re) or (T-9).

v) If vfi~vaft=0 and dimv^4=n=3, then ^ = (W-14).

3.3.3) The case dimv^4^=2: A has (W-15) as a quotient.

3.4) Suppose dim A/j.―dim vA―n―3.

3.4.1) The case dim vAp=0 : J^(T-lO').

3.4.2) The case dim vApt=l: Consider first the case vpt―0. Then xva//+

yva2fi=0 for some x, je^ with (x, j)^:0. In case x=£0,by replacing a with

xa+ya2, we can assume va/z=0. Next, suppose v/u^O. In case vapti=0, we

have vju+jd;tf//=0 for some xg^＼{0}. Replacing ft with pi+xan, we can

reduce the case to v^e=O. Also, in case va2fjt^0, we have vpt+xvoffj. for some

x6h{0}, and by replacing p. with n+xcfn, we can reduce the case to vpt―Q.

i) If vfi=^vafi=0, then J^(T-IO).

ii) If vpi=vai[i―^, then J has (W-14) as a quotient,

iii) If vafjt=va2fi=0, then yl has (W-15) as a quotient.

3.4.3) The case dimv^.^^2: We have xv[i+yvafx+zvazp.=Q for some x, jy,^

<s& with (x, y, e)^0. In case (xy, xz)^0, by replacing a with ≪+x"1va≪+

x xzaz[i,we can assume vpt―Q.

i) If vfi―O, then A has (W-14) as a quotient.

ii) If vfi^O, then A has (W-13) as a quotient.

3.4.4) The case dim vA^i―^: A has (W-13) as a quotient.

4) Suppose ftv―a4=0 and n^4.
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4.1) If dimv.4^3, then A has (W-16) as a quotient.

4.2) If dim Afi=dim vA―2, then A has (W-17) as a quotient.

4.3) Suppose dim Ap.=l and dim vA=2.

4.3.1) The case dimvy4^=0: A is a quotientof (F-14).

4.3.2) The case dim vAp=l: A=(T-Un).

5) Sppose av―am=0 and n^m^5. Then A has (W-18) as a quotient

4. Wild Algebras.

To begin with, let us consider the following quivers without relations

as

Dn

E6

£

7

E8

＼

/

I

I

i

I

and

75

These are well known to be wild. In fact, for a representation ftCVQa

of the quiver Q: C *O by defining the representation

a

y-JL+y

1

of the quiver

a

sentation U *V

7

we obtain a full exact embedding. Next, for a reore

of the quiver ≫ >≪,by defining the representationn

u

LrJ

Vs

m
ZZZtF4

r°i
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of the quiver ･―->≪zzz£≫,we also obtain a fullexact embedding. Finally, given

a b
^a representation U >V ~^W of the quiver ･ >* ^≪,following [2], let us

r
construct the following representations:

wz

w＼

u

u

a

a

V

V

u

E,

a
V

[f]

ifl

wz

[f]

W2 ―+

W2

Et _

W2

[

W3

W*

E2

0

ra

w

^->W2

im
W2

is

ws

]

W2

＼f

Wl

1]
0
1

≪―W2

r°i

IE,}

1 1
1 0
1 0
0 1

IE,}

W3

W5

m

s

m

/

w

[1

w

w

W2

W3

(1

0

1

0

1

s.lO

W6

[]

0]

1]

W: and

0 0

1 0

0 1

1 1

0 1

0 1

W4 W2

[°1
lEJ

H
IE,]

y

of the quivers Dn, Ee, E7 and E8 respectively. It is not difficultto see that

these definitionsinduce full exact embeddings respectively. It should be noted

that the above constructions are due to the indecomposable representations of

the corresponding Dynkin quivers whose dimension types are the maximal roots



fr

z

Tame Two-point Algebras

of the corresponding Dynkin diagrams. In fact, if S=L

77

is the one-point

extensionalgebra,and if A^emd R has endomorphism ring k,let{au , ad}

be a fixed&-basisof HonWM, A^). Then, for a representation

of the quiver F: ･

u V

･ (d arrows), by defining the S-module

(kU, RNRkV, HUm^i: RMRkU ―> RNRkV)

we obtain a full exact embedding mod kF >mod S (cf. [13]).

In order to prove wildness of the algebras (W-1)-(W-18), we will show

that for each of them there is some Galois covering U having one of the above

wild algebras of their concealments as a finitequotient.

(W-l) b > fljjjwith a[i=Pii=ap = Pa=a2=p2=0

Take the followingGalois covering U with Galois group

b. 1

-1

a-i

b

o

I

≪0

G-i > a0

Pi

z

0-i j30

with aii≪i= /3j//j=≪i+li8i=/3i+1ai=≪i+1ai =
i8i+liSi=0

for all z'eZ. Then, as a

quotient, U has the following:

(W-2) b

V

a0

a0

aQa with afi=av―a2=0.

I"

Take the following Galoiscovering U with Galois group

b.

-
a

b

0

P-i ≫o

1

#-,

bx

a0 *■a1
a0
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with aifii―aiVi―ai+lai=^O for all f<=Z. Then, as a quotient, U has the follow-

ing:

a0 > at

(W-3) b >aQa with ≪2//=a7=0.

The universal Galois covering with Galois group = Z has as a quotient the

following:

bi b5 b6

with a5a4j≪4

(W-4) b

^

Go

(X0

dx

≪1

a2

≪2

az

≪3

a4

at

a5―>
a.

ae

0. This is a concealed hereditary aleebra of tvoe E≪,

aQa with a3/*=a4=0.

The universal Galois covering with Galois group

following:

(W-5) fiCb

p

aa

#1

aQa with [tfi=

The universal

on two generators,

Galois

has as

byX

I
*

fli ―*■

a2

a2 >

≪3

a*=p*=O.

a3

= Z has as a quotient the

covering with Galois group = <x, y}, the free group

a quotient the following:

(W-6) PCb

I*

bx
fix

0-x

ae

by

J/3e

be

ae <―- ax~＼

aQa with a2n=n8=a3=p3

<―bx-i
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The universal Galois covering with Galois group = <x, y} has as a quotient

the following:

| Oix~1

by2X byX bx
fix

ax

ae

ae

fie

be

7T
by by2

(W-7) fiCb > aQa with a2fi=fip=al=p2=0.

The universal Galois covering with Galois group = <*, y} has as a quotient

the following:

K

be

byx bx
fix

ax

ae

[ft

Q-e* Q-x-l * Q-x-2

(W-8) fiCb > aQa with a2fi=afiP= a3=p2=0.

The universalGalois covering with Galoisgroup =O, y> has as a quotient

the following:

Vi*

ax-i

* by-lx > bx > ax < ae <

Py-ix Py-ix Px a* V*

be ~x

(W-9) fiCb ―-*flQa with afi-/a^=a2ft^a5=^=0.

The universalGalois covering with Galois group =

following:

do

a0

a

OCi

a2

≪2

b3

I

A

t*>

a3

a3

h―>

G4

b5

by
J"≫

ay

Z has as a quotient the

1＼
b6

with azfxz―jU4i83=0. This is a concealed hereditary algebra of type E7.

(W-10) BCb

p

aQa with aa―aB―a7―B3=0.
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The universalGalois covering with Galois group =Z has as a quotientthe

following:

flo * Q-i

≪1

a2 *■a3 > a4

≪2 ≪3

I

a4

a5―>

be >

a6

bn

with aB/*5―/*6J85=0. This is a concealed hereditary algebra of type Es.

(W-ll) b7=±aOa with fiv-a2=a*fi=as~0.
v

The universalGalois covering with Galoisgroup =Z has as a quotientthe

following:

b0 bx b2 b3＼y ＼ y y

Xx y＼ y
00 > dI ZZ *■≪2

with ftiVo―ai<xo=Q. This is a concealed hereditary algebra of type D5

(W-12) b ; " aQa with fw―as=vfi=vafi―a2{i=ai=0.
v

The universalGalois covering with Galoisgroup =Z has as a quotientthe

following:
bo

do

b3

7v
* fll 7v *" °2 ^ *

≪o Ctl ≪o
a3

with HiVQ―a2≪i≪o=V2i≪o=O. This is a concealed hereditary algebra of type E6

(W-13) b z±±aDct with ftv=afi=a'=O.
v

The universal Galois covering with Galois group =<x, y} has as a quotient

the following:

b.

ae

I

b

ae

Ve

y

fix

V

ax

I-

byX
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aQa with fiv=vft=a2u ―az=0

The universal Galois covering with Galois group

the following:

≪*-!

ax

with vefxe=vxfix

K^

(W-15) b
V

be

t*e

> ae

ae

by

bx

fix

ax

byx

= <x,

81

3>> has as a quotient

=0. This is a concealed hereditary algebra of type E6

aQa with fjtv^=vafi―a2ft―va2 a%=Q

The universal Galois covering with Galois Group = {x, y} has as a quotient

the folltwing:

(W-16) b
V

ax

be

* a

I

b

Me

e *

Ve.

y

fix

V
a.

aQa with uv=vn―afx = va^―ai―(d

The universal Galois covering with Galois group =<x, y} has as a quotient

the following:

G*-l ―-> ae >

by

ax

ax

> a

Px*

X2
I

b

Vx

yx

(W-17) h - -≫rtQ/r with fjtv=vfx=vafi=a2fi=va2―ai=0.
v

The universal Galois covering with Galois group =<x, ;y> has as a quotient

the following:
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(W-18) b
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ax-l " ae

OCe

I-

by

bx

fix

0-x

bX2

fix*

>ax*

aQa with jnv=vfi=afi=va2=a5=0

The universal Galois covering with Galois group =<#, y} has as a quotient

the following:

with axux OLX2UX2 =

ax
I

1

Vx

ax-;

-1

hyx~i

ae *■

I*

by

bx

fix

ax

ax

a,.

1"-

a x2 * axz

0. This is a concealed hereditary algebra of type E*

5. Tame Algebras.

In this section, we will show that the algebras in Table T are tame. In

dealing with extensions of algebras, we willalways calculate vector space cate-

gories. In fact, we have to deal with extensions of algebras which are not

tublar extensions.

It is easy to see that no algebra in Table T is representation-finite,and it is

well known that the algebra (T-0) is tame. Thus, it sufficesto prove the tame-

ness of the algebras (T-l), (T-2), (T-3,), (T-44), (T-55), (T-6B), (T-7), (T-85),

(T-9), (T-10) and (T-11B), since any other algebra in Table T can be obtained

as a quotient of one of them. As an example, we will show also that the

algebra (T-12) is tame.

(T-l) b > aQa with a2pt=ae=0.

Take the universalGalois covering U with Galois group =Z:

1≪-

a

bo

i Go > a, ―->

a_i a0
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with ai+laipii=ai+5 ･･･ai+1ai=O for all z<=Z. For each n^Z, let An be the

following full subcategory of U:

I I I

O-n * Q-n+l * #7i+2 > Qn +3 ^ #n+4 * #n +5 >

thisis a concealed hereditary algebra of type E8, and for I, m^Z with Z^m,

let ^4i>mbe the fullsucategory of U consisting of the objects of the An, l^n^m.

Notice that An>n+1 is the one-point coextension of An＼J{bn+6＼ by the module

D(NnQ)Nn), where Afre=Oiml°with restriction to An being preprojective and

A^oooooo1- The vector space category Horn (mod {An＼J{bn+G}), Nn(BNn) is of

the following form:

This is a poset of tame type (see [9] and [12]). Thus, An,n+＼is tame. For

/,wigZ with l<Lm, ALm+1 is the one-point coextension of ALm＼J{bm+ti} by the

module with support in Am＼J{bm+6} and with restriction to it being D(Nm(±)Nm)-

The vector space category Horn (mod (Ai:Vl＼J{bm+e}),NmRN'm) is isomorphic to

Horn (mod (AmU{bm+6}), Nm^N'm), and as a set ind ;4,,m+1=ind ^4j,mWind Am,m+1.

Therefore ind U={Jn<EZ ind An,n+1, in particular, U is locally support-finiteand

tame. Thus, (T-l) is tame by Proposition 4.

(T-2) /3C& > aQa with ≪2=/32=0.

This is a quotient of the following tame algebra : fiCb'*, >aQa with a2

= vafi =/j8v=i>£t=£tv=0 (see [4] for details). Thus, (T-2) is tame.

/32

Remark. Given a representation <pCVQ<f> of the quiver rC'Qa with rela-

tions a2=t2―0, by defining the representation <pCV ≫VQ0, we obtain a full

exact embedding. Since the above algebra is a Galois covering of the algebra

^C*O<7 with a2=T2=T(TT―0, with Galois group =Z/2Z, by Proposition 3, the

category of the finite dimensional representations of the quiver rC'Qa with

relations a2=v2―0 is similar to that of the quiver rC*O<7 with relations o2=

T2=Tar―0. Note that the latter is a finitedimensional algebra.

(T-33) &Cb > aQa with au-uB = ae=B'=0.



＼ /!

The vector space categories Hom(M2n, mod AZn) and Horn (mod A2n, N2n) belong

to the pattern (£8,5), and ind A2n^,2n+1=P2n＼jR2n＼jQ2n, where P2n consists of

the objects of ind A2n,2n+1 with restrictionto A2n being preprojective, Q2n con-

sists of the objects of indA2n.lf2n with restrictionto A2n being preinjectiveand

R2n consists of the regular objects of ind A2n except that the above tube changes

≫
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Take the universalGalois covering U with Galois group =Z:

b-,

jfU

I"

a-i

bo > bx―>

I*

a_! a0

with ctifii―pi+ipi = ai+5 ■■■≪t+i<Xi=J8i+2JSi+iiSi=0 for all feZ. For each n<=Z,

let A2n be the following full subcategory of U:

I

*■bn+5 bn+e

I

dn * Qn +1 *■dn + 2 * O-n+ S *■O-n+i * &n+5

and let Ain-X be the following full subcategory of U:

bn+z *bn+i *■bn+5

i I I

Q-n >O-n+l * CLn+2 *■dn +3 * Cln+i * &n +5 >

these are concealed hereditary algebras of type Es, and for /,m^Z with l^m,

as before, let AUm be the full subcategory of U consisting of the objects of the

An, l^nf^m. Then, as an algebra, AZn-i,2n+iis isomorphic to

where M2n=0oom°

tube:

k DN2n 0

0

0

Aon Min

0

＼A A A

A / ＼A /

＼ / ＼ / ＼ / 271＼ /＼ /

e

M2n ･ N..

modules belonging to the sameand Nin=oniii1 are regular

k

/＼/＼/＼/＼/＼

i

i



to the following:

0

!
1/
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/ ＼

M2n
/ ＼ /

≪ ･

/ ＼ /
*

＼

N2n
.

/ ＼ /

＼ / ＼ / ＼ / ＼

Thus, A2n-i,2n+iis tame.

Similarly, A2n-2,2n is isomorphic to

where M2n

~k DNZn.x 0

0 Ain^ M2n_x

.0 0 k

e

=niiio and A^2re-i=oooSooare regular modules:

･

V

' ＼ / ＼ / ＼/ ＼ / ＼

A /＼ /＼ /＼

A
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The vector space categories Hom(M2n_!, modA2n-l) and Horn (mod A2n-i, N2n-i)

belong to the pattern (Es, 5), and ind742n_2>2n=.P2n-iWi?2n-iWQ2n--i, where P2n-i

consists of the objects of mdA2n-i,zn with restriction to A2n-X being preprojec-

tive, Q2n-＼ consists of the objects of ind A2n-z,in-i with restriction to A2n^

being preinjective and R2n-i consists of the regular objects of ind
^42n-i

except

that the above tube changes to the following:

･ ･

/ ＼ / ＼
･

＼ A
M2n

＼ / ＼ / ＼

I

I

I

l/＼/ rA A

/＼ / ＼ / ＼/＼A A

Thus, A2n-2,2nis tame.

For /,raeZ with l£m, Al-1,m+1 is the one-point extension of Aum+1 by the

module with support in At and with restriction to it being Mt. The vector

space category Horn (Mu mod ALm+1) is isomorphic to Horn (Ml} mod At), and

mdiAl-um+1=mti.Al-lil+l＼jmd.Al,m+l. Therefore ind U=＼Jn<=z'md 'An-un+i, in
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particular, U is locally support-finiteand tame. Thus, (T-33) is tame.

(T-44) fiCb > aQa with apt-ptp=ai=pi=O.

This has been proved to be tame ["151. so we omit the proof.

(T-55) b ~K* aQa with (iv―a2=va^=O.
v

Take the universalGalois coverincrII with Galois oronn ^Z:

1 a., >

bo

Go
_

>
≪0

k DLn k

where Ln

0 An

0 0

In is a regular module:

＼

/

＼

L

k

/ ＼ /

＼ /＼

A /

n

bx

a.

with jMf+1vf-ai+xai=vi+1aiiUi-i=O for all jgZ. For each n^Z, let 4B be the

following full subcategory of U:

bn
*bn

+l
*)n+Z

this is a concealed hereditary algebra of type D6, let Bn and B% be the full

subcategories of U obtained from An by adding an-1 and an+z respectively,

these are tilted algebras of type E6, and let Cn be the full subcategory of U

consisting of the objects of Bn and B%, this is isomorphic to

The vector space categories Hom(Lre, mod An) and Horn (mod An, Ln) belong to

the pattern (D&, 2), and ind Cn―Pn^jRn＼jQn, where Pn consists of the objects

of ind Bt with restrictionto An being preprojective, Qn consists of the objects

of ind Bn with restrictionto An being preinjectiveand Rn consists of the regular
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objects of ind An except that the above tube changes to the following:

･

Mn Nn ?

＼ / ＼ / ＼ /|

/ ＼/ ＼ / ＼|

i
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Thus, Cn is tame.

For /,raeZ with l<m, defineAUm and BLm as before. Then, An.un+i is

isomorphic to

wnere L,n―omo

~k DL'n k ~

0 Cn L'n

_0
0 k

is a regular module:

i＼/

V

!＼

i

X

A

/

＼

/

The vector space categories Horn (L'n, mod Cn) and Horn (mod Cn, L'n) belong

to the pattern (Ee, 2), and mdAn-Un+1=Pn＼:JRn'^lQn, where Pn consists of the

objects of m&An,n+l with restriction to Cn lying in Pn, Q'n consists of the

objects of ind^4n_!,rewith restrictionto Cn lying in Qn and R'n coincides with

Rn except that the above tube changes to the following:

＼ / ＼ / ＼ /j

/ ＼/ ＼/ ＼;

Thus, An-i,n+1 is tame.

For /,m^Z with l^m, Biim+1 is the one-point extension of A,m+i by the

module with support in Bf and with restriction to it being Mt. The vector

space category Horn (Mt, mod Al>m+1) is isomorphic to Horn (Mu mod Bf) and

belongs to the pattern (D5, 2). Next, Ai-um+i is the one-point extension of

Bi,m+i by the module with support in Bl?i+1and with restrictiontoit being M＼.

The vector space category Horn (M'l} mod BLm+1) is isomorphic to Horn {M[, BLi+1)
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and belongs to the pattern (Ee,2), and ind Ai-ltm+1~'md A-i,mWind Ai,m+1.

Therefore ind U ―＼JnGZind An^un+1, in particular,U is locally support-finiteand

tame. Thus, (T-55) is tame.

(T-65) b
<

> flQa with ptv―a.2=va[i―va2pt=as―0.
v

This is self-injectiveand the quotient by the socle is isomorphic to (T-54).

P-
(T-7) b^n^aOa with p.v―as=vpt―api=0.

v

Take the universal Galois covering U with Galois group ^Z:

=≫<2-i ;≫<30 >

with fii+1Vi―ai+zai+1ai=Vi+1fii-1=ai+2fJii=0for alli^Z. For each n^Z, let An

be the following full subcategory of U:

an

bn
+ 1

bn
+ 2

bn
+ 3

Q-n+l **■̂n +2 ^fln +3

this is a concealed hereditary algebra of type E6, and let Bn be the fullsubcate-

gory of U obtained from An by adding bn, thisis a tiltedalgebra of type E7.

Then Bn is the one-point extension of An by the regular module Mn=0oio, and

the vector space category Horn (Mn, mod An) belongs to the pattern (E6, 3).

For /,m^Z with l<Lm, define ALm and Bt m as before. Then An-X n is

the one-point extension of Bn by the preinjective module Mn=＼＼＼l,

vector space category Horn (Mn, mod Bn) is of the form:

and the

Thus, An-Un is tame.

For /,m<BZ with l^m, Bltm is the one-point extension of AUn by the

module with support in AL and with restrictionto it being Mt. The vector

space category Horn(Mj, mod Ai,m) is isomorphic to Horn(Mi, mod At). Next,

Ai-Um is the one-pointextensionof Bum by the module with support in Bt and
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with restrictionto it being M＼. The vector space category Horn (MJ, mod BLm)

is isomorphic to Horn (MJ, mod Bt) and ind ^4i_1,m=ind Ai-ul＼Jind ALm. There-

fore mdU=＼Jnmz'mdAn-un, in particular,U is locally support-finiteand tame.

Thus, (T-7) is tame.

J"
(T-85) b~< * aQa with ptv―a3=v/jt―a2/ji=va2―O.

v

Take the universal Galois covering U with Galois grouo = Z:

a_i ― *■flo ―*･
a

≪l

*"

with fii+iVt―ai+zai+1ai=Vi+2fii=ai+s(Xi+2fii=Vi+2ai+1ai=0for allfeZ. For each

neZ, let A2n be the following full subcategory of U:

bn

an

bn
+ 1

bn
+ 2

an +i > dn+2 >0n+3

and let An_, be the followingfullsubcategory of U:

bn-l bn
bn

+ 1 bn+2

an >O-n+i ^Qn +2 t

theseare concealed hereditaryalgebrasof type E6, and for l,m^Z with l^m

defineA, m as before. Then ^42re_i2n+iis isomorphic to

where LZn―l＼%is a regular module:

V
≪
!＼

I

L>Zn

/ ＼ /

＼/＼

･

*

i
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The vector space categories Horn (L2n, mod A2n) and Horn (mod A2n, L2n) belong

to the pattern (E6, 2), and ind A2n.U2n+l=P2n＼jR2n＼jQ2n, where PZn consists of

the objects of mdA2n,2n+i with restriction to A2n being preprojective, Q2n con-

sists of the objects of ind^2n-i,2n with restriction to A2n being preinjective and

R2n consists of the regular objects of ind A2n except that the above tube changes

to the following:

･

A

M2n N2n ;

L2n ･ !

/＼ /＼ / ＼!

ii

Thus, A2n-i,2n+i is tame.

Similarly, A2n-2,2n, is isomorphic to

~k DL2n-i k

0 A.2n-i L2n

0 0 k

where L2n-i
― 0110

― Ill is a regular module:

I

i＼

!/

!

＼

i
i

■
L>2n-1 *

/ ＼ A＼

The vector space categories HomCLa^, mod^42n_i) and Horn (mod A2n-i, L2n-i)

belong to the pattern (E6,2), and ind A2n-2i2n=P2n-1＼jR2n-1＼jQ2n-u where P2n-i

consists of the objects of ind^42n_i,2n with restriction to A2n-i being preprojec-

tive, Q2n-i consists of the objects of ind/I2n_2,2n_iwith restrictionto An_, be-

ing preinjective and R2n-i consists of the regular objects of ind ^42n_iexcept

that the above tube changes to the following:

A

≪

/

1 N2n-1 1

/ ＼/i
LI

271-1 ･ I

＼ / ＼ /＼s
I

I

Thus, A2n-2,2n is tame.
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For /,m&Z with l<m, Ai-Um+1 is the one-point extension of Aitm+1 by the

module with support in ALi+1 and with restrictionto it being Mt. The vector

space category Horn (Mlt mod ALm+i) is isomorphic to Hom(M^ mod Ai,i+1),thus

belongs to the pattern (E6, 2),and ind Ai.um+1='md ^4j_i>H.iWindALm+1. There-

fore ind£/=WnGzindi4n_1>n+1, in particular,U islocally support-finiteand tame.

Thus (T-85) is tame.

(T-9) b ~< *aQa with ptv―a3=vfi―va/jt=^a2fi―va2―0.
v

This is self-iniectiveand the quotient by the socle is isomorphic to (T-84).

(T-10) b
<

*aQa with ftv―vpt―vafi=^as=O.

v

The relation //v=0 is splitting-zero,thus it suffices to prove the tameness

of the following algebra:
a

h――>a >c with vfi―vap=a5=0.

Take the universal Galois covering U with Galois group =Z:

b-i b0 b,.

a

I

1 ^0

-i * Go

■0

(Xo

V-i I-

dl
I

Vl

C-i Cq C＼

with Vifii=Vi+laifti=ai+2ai+1ai=0 for all zeZ. For each n^Z, let An be the

following fullsubcategory of U:

an

I

bn
+ l

I

a

I

bn+2

1

n + 1 * Q-n + 2 >

Cn + i

this is a concealed hereditary algebra of type E6, let Bn and B% be the full

subcategories of U obtained from An by adding bn and cn+2respectively,these are

tiltedalgebras of type En, and let Cn be the full subcategory of U consisting of

the objects of Bn and Bt, thisis isomorphic to



C'n

0

Let C'n be the

Then, An-un+i

0

k

. ,,, 0000 , ,, 0000 AT, 0110 , ,,-., 0001 ,-r,,where Mn-^
^

M £=^00
?
iV'≫=ooii and A^=o°°°. The vector space categories

Horn (MZQMZ, mod C'n) and Horn (mod C'n, NU&N'fi belong to the pattern (£7> 4)

W{-}, and ind^4n_lin+1==P^wi?5,WQB, where Pn consists of the objects of

ind/ln,re+i with restriction to Cn lying in Pn, Q'n consists of the objects of

mdAn.un with restriction to Cn lying in Qn and R'n coincides with Rn except

that the above tube changes to the following:
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k

0

0

00
where Ln=JJ1 is a regular module:

DLn

0

|＼ / ＼/

k ~

Ln

k

＼

≪

/

＼

/

＼

/

The vector space categories Hom(Ln, mod An) and Horn (mod An, Ln) belong to

the pattern (E6, 3), and ind Cn―Pa＼jRn＼jQn, where Pn consists of the objects

of ind B% with restriction to An being preprojective, Qn consists of the objects

of ind Bn with restrictionto An being preinjectiveand Rn consists of the regular

objects of ind An except that the above tube changes to the following:

/

rn Nn

＼ / ＼
Mn Nn N^ M'

Ln ･
i

/

＼

/ ＼ /･･

Thus, Cn is tame.

For I, m&Z with l^m, define AUm and Bi,m as before,

full subcategory of U obtained from Cn by adding cn.xand bn+3

is isomorphic to

~k

0

0



9

I

I

i

I

I

I
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Mn Nn ･ NZ

Ln ･

/＼/ ＼/ ＼/

＼

＼

M'i

＼/

/＼

I

I

I

I

I

I

I

I

I

A A A A A /!
/＼ / ＼ A .A A / ＼ ■'
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Thus, An-Un+1 is tame.

For /,?n^Z with l^m, Blim+1 is the one-point extension of ALm+1 by the

module with support in Bf and with restriction to it being Mt. The vector

space category Horn (Mi, mod ALm+1) is isomorphic to Horn (Mlf mod Bf) and

belongs to the pattern (E6, 3). Next, -4j_i,m+i is the one-point extension of

Bi,m+i＼J{ci-i}by the module with support in C＼ and with restrictionto it being

MIOM'/. The vector space category Horn (M'^M'/, mod (^.m+iWl^-i})) is

isomorphic to Horn (M[RM", mod CD, and ind A^um+1=ind Ai-Ui+1＼Jmd Ai,m+1.

Therefore indf/=＼Jreezind An-lin+i, in particular,U is locally support-finiteand

fnmp Wp arp rlnnp

(T-11B) b

V
aQa with p.v―a4=a;i=va2―0

Take the universal Galois coveri

(X-2

ng U with Galoisgroup =Z

with fii+2Vi―ai+3ai+2ai+lai―ai+ipii=vi+2ai+).ai=Qfor all zeZ. For each n<^Z,

let A2n be the following ful subcategory of U:

bn +2 -.Un+3 -p Un+i

CLn ^Q-n +l *■#n+ 2 *"ttn+3

and let A2n-i be the following full subcategory of U:

bn-1
bn

+ l
bn

+ Z
bn

+ 3

an > dn + l >fln + 2 >CLn + 3
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these are concealed hereditary algebras of type E8, and for /,?n^Z with l<km

let ALm be as before. Then, A2n-i,zn+iis isomorphic to

wVipt-a A/f ―00010 AT ―00
wnere ivi2n―0100 , iV2ra―n

I

I

I

I

I

I

I

I

I

ii°are regular modules:

＼

/

i

M2n 7I

i

＼ A A/ ＼/ ＼

/＼ /＼ /＼ /＼ /

The vector space categories Horn (M2B, mod A2n) and Horn (mod Ain, N2n) belong

to the pattern (E8, 5), and ind A2n-1,2n+1=P2nyjR2n＼jQ2n, where P2n consists of

the objects of indA2ni2n+1 with restrictionto A2n being preprojective, Q2n con-

sistsof the objectsof ind A2n-U2n with restrictionto A2n being preinjectiveand R2n

consists of the regular objects of ind A2n except that the above tube changes

to the following:

･

1

I

I

I

A /
M2n ･

A A A/

Thus, An-i.sn+i is tame.

Similarly, ^42n_2,2reis isomorphic to

＼

N2n ･
/ ＼/

＼
/ ＼

k DNm-! 0

0

0

Azn-l M-zn-i

0 k

where M2re_1-=°?i11?and N2n

A

i=°oiioare regular modules:

Mtn-l '

＼/＼ /＼/

/

＼

＼

/

A/

Ntn-i'
＼

A

≪

i

I

I

I

i

I

i

i

i
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The vector space categories Horn (M2n-i, mod A2n-i) and Horn (mod A2n-i, N2n-i)

belong to the pattern (E8, 5),and indi42n_2l2n=.P2n_1W/?2n-iW(?2re-i,where P2n-i

consists of the objects of ind-42n-i,2n with restrictionto A2n-i being preprojec-

tive, Q2n-i consists of the objects of ind A2n-2t2n-1with restrictionto A2n-i being

preinjective and R2n-i consists of the regular objects of ind^42n_1 except that

the above tube changes to the following:

･

I

I

I

I

/ ＼ A A

M2n-i ･ ･
i

/ ＼ / ＼ A A A A
I

I

I

I

Thus, A2n-2,2nis tame.

For /, m&Z with /^m, Ai^um+1 is the one-point extension of Ai,m+i by the

module with support in At and with restriction to it being Mt. The vector

space category Horn (Mh mod Ai,m+1) is isomorphic to Horn (Mlt mod At), and

indi4i_1,m+1=indy4i_1,i+1Uind^4j,ro+1. Therefore indf/=＼JreeZindy4n_i,n+i, in

particular,U is locally support-finiteand tame. Thus, (T-ll6) is tame.

ft
(T-12) b

V

aQa with fiv=az―Q.

Since the relation ftv=O is splitting-zero

a

, fi

J< 1

V

it suffices to consider the algebra

with ≪2=0

This can be considered as a fullsubcategory of the algebra obtained from the

tame one-relation algebra [12] :

a'Xfl-^a" with ≪'V=0,

b c

by shrinking the arrow B. Therefore (T-12) is tame
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