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Introduction.

Throughout this paper, we will work over a fixed algebraically closed field
k. Let A be a finite dimensional basic algebra. We may consider 4 as a
locally bounded k-category. As well known, any locally bounded k-category A
is given by a quiver with relations, that is, there is a locally finite quiver @
such that A=kQ/I, where kQ is the path-category and [ is an ideal of kQ
generated by linear combinations of paths of length =2 (see [3] for details).
A module over a locally bounded k-category A is a k-linear functor from A to
the category of k-vector spaces, nemely, a representation of the quiver satisfying
the relations if 4 is given by a quiver with relations. We will denote by
mod A the category of all finite dimensional left 4-modules.

In the present paper, we are interested in two-point algebras, namely, alge-
bras which have just two non-isomorphic simple left modules. Our aim is to
classify two-point algebras of certain classes according to their representation
types. An algebra A is said to be representation-finite if there are only a finite
number of pairwise non-isomorphic indecomposable objects in mod 4, to be wild
if there is an exact embedding mod k2—mod 4, where £ is the path-algebra
of the quiver £:C-0), which is a representation equivalence with the corre-
sponding full subcategory of mod 4, and to be tame if A is neither representa-
tion-finite nor wild. There has been given the complete list of the maximal
representation-finite two-point algebras [3].

Covering techniques ([1], [3], [5] and [6]) will play an indispensable role
in deciding the representation type of a given algebra. For a certain class of
algebras, by taking appropriate Galois coverings, the problem can be reduced to
the calculation of vector space categories, which have been classified in [12]
(see also [9]). On the other hand, we will come across an algebra which can
be obtained as a quotient of a suitable Galois covering of the tame local algebra
tC+Do with ¢®?=7¢*=0 [11], thus is tame. The similar argument will also
apply to the situation that there is a Galois covering of a given algebra which
has a wild algebra as a finite quotient.
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1. Main Results.

In the present paper, we will consider two classes of two-point algebras,
one is the class of the triangular matrix algebras, namely, the algebras of the

form [64 1\;’] with A, B local, and the other is that of the distributive algebras
of ordinary quiver «*—=-0 (cf. [1]).
THEOREM A. Let A be a finite dimensional two-point triangular matrix alge-

bra. Then A is tame if and only if A is isomorphic to one of the algebras (0)-
(4, in Table T or their duals.

THEOREM B. Let A be a finite dimensional basic distributive algebra of
ordinary quiver +<—=+). Then A is tame if and only if A is isomorphic to one
of the algebras (5,)-(11,) in Table T or their duals.

During the preparation of the paper, the authors noticed that the algebra
(4, in Table T is shown to be tame [15].

Table T

) —t5eDa  with a*p=a’=0
2) BC-—seDa with a?=p'=0

2% with apf=a’=3*=0
32 with  ap—pf=a'p=a'=p=0, ¢=2,3
4,) with ap—pf=alpy=a*=8'=0, ¢=2,3,4

5) —Da with py—a’=vap=a?=0, ¢=3,4,5

50) with my—a’=vap=va’p=a'=0, ¢=3,4,5
54) with w—a’=vap=a’p=a’=0, ¢=3,4
59 with py—a*=vap=a’y=va’*=a?=0, ¢=3,4
6,) with p—a’=vap—va’p=a'=0, ¢=4,5
(only if char £=3)
7 with py—a’=vpu=ap=0
8y with pwy—al=yvp=a’p=va’=a'=0, ¢=3,4,5
89) with my—a’=yp=rvap=a*p=va’=a’=0, ¢=3,4,5
9 with gwyv—a’=vp—vap=a’p=va’=a’=0

(only if char £=3)
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10) with pyv=vpu=vap=a’=0

10”) with  ww=yp=vap=rvalp=a’=0

107) with pv=yp=vap=a’p=a’=0

11, with mwy—a'=apu=va*=a?=0, ¢=4,5

EXAMPLES. In Section 5, as an example, we will show that the following
is tame [12]:

12) -;;—’u-Qa with  a’=py=0,

this is not distributive (cf. (W-11)).
There are several other algebras which have been known to be tame [4]
(see also [7] and [117]):

13) ==:Dea with  a*=yp=0

13

4) BC-—+Da with a’=pg=m=yp=0

15) with ap=pf=va=pv=0
“#1
N .
16) = with g = gravs=v, =, 4, =0
2/
i
17) with /llylzﬂsz:Vl[lz:Vz#l:O-

In particular, one can easily determine the finite dimensional basic tame

algebras of ordinary quiver .——-.

In order to prove the “only if” parts of the theorems, we need the list of
minimal wild algebras and that of maximal representation-finite algebras.

PROPOSITION 1. The algebras (0)-(18) in Table W are wild. They are mini-
mal, with the possible exception of (11), in the sense that no proper quotient of
them is wild.

PROPOSITION 2 (see [3]). The algebras (1)-(15,) in Table F are representation-

finite. They are maximal in the sense that any finite dimensional basic represent-
ation-finite two-point algebra can be obtained as a quotient of one of them or their

duals.
Table W
0) . E .

1) ng with ap=pBp=af=Ba=a*=F"=0



2)

3
4)

6)
7
8)
9
10)
11)

12)
13)
14)
15)
16)
17)
18)

D

29)
39
49
5)
6)

79

8)
9
10)
11)
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with ap=av=a’=0

with a’p=a"=0

with a’p=a'=0

with pf=a’=4'=0

with a’u=pB=a’*=p*=0

with a*p=pf=a*=p*=0

with a’p=apf=a’=p"=0

with ap—pf=a’p=a’=p'=0

with ap—pf=a’p=a"=F=0

with m—a’=a’p=a’=0

with m—a’=pp=rap=a’*p=a'=0

with w=ap=a®=0

with pv=vp=a’p=a’=0

with w=vap=a’p=va*=a’=0

with py=vp=ap=va’=a'=0

with pyv=yvp=vap=a®p=va*=a*=0

with my=vp=ap=va’=a’*=0
Table F

with a*p=a’=0

with ap=pf=a?'=p7=0, ¢=2

with pf=a’=p=0, ¢=2

with ap—pf=a?=p'=0, ¢=2

with ap—pf=a’=p*=0

with a?p—pf=a’=p*=0

with  (u)'=(p)=0, ¢=1

with pv—a’=ap=0

with pyv—a’=yu=0

with py—al=vp—vap=a*=0 (only if char k=2)

with pyv=vap=a*=0
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12) with wy—a’=ap=va*=0

13) with pyv=yp=ap=a’=0

14) with wy—a*=vp=ap=va’=0
15,) with mwy—al=ap=va=0, ¢=4.

REMARK 1. For an integer m=1, denote by P™ the linearly ordered set
with m elements, and for m, n=1, consider P™XP" as a partially ordered set
by componentwise order. Then the representation type of P™XP™ is finite if
1/m+1/n>1/2, tame if 1/m+1/n=1/2 and wild if 1/m+1/n<1/2 (cf. [14]).

This is also the case with the algebra ﬁC-—#—»-Qa with ap—pf=a™=pg"=0.

REMARK 2. Let A be a local Nakayama algebra of length ¢=2. Then the
triangular matrix algebra [gl jﬂ can be given by the quiver ﬁC-—ﬂ—»-Qa
with relations apg—pB=a?=8=0. This is tame if and only if g=4. In general,

for a connected self-injective algebra A, the triangular matrix algebra [61 j]

is tame if and only if A is representation-finite of Dynkin class A, (see [8]
and [15]).

2. Preliminaries.

In this section, we will recall some basic definitions and results (see [1],
(3], [5], [6], [10], [12] and [13]).

2.1. Locally Bounded Categories.

A locally bounded category A is a k-category such that: a) distinct objects
are not isomorphic; b) for each x4, the algebra A(x, x) is local; c) for each
x€A, ByealA(x, y): k] and Z,cu[A(y, x): k] are finite [1]. The support
supp M of a A-module M is the full subcategory of A consisting of the objects
x€ 4 such that M(x)#0. The dimension vector of a J4-module M is the family
dim M={[M(x): k]}ses. Let I'; G€I) be a family of full subcategories of .
Denote by \U:e/I's the full subcategory of A consisting of the objects of the I,
For a family of objects x;e4 ({I), we denote by {x;}ic, the full subcategory
consisting of the objects x;,. A is said to be locally support-finite if for each
x€ A, \Usrczrzo Supp M is finite [5].

MecindA
2.2. Galois Coverings.

Let A be a connected locally bounded category and G a group of k-linear

automorphisms of 4. Then G acts naturally on mod A by the left. We assume
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that the action of G on A is free, namely, gx#x for any g&G-{1} and any
x&A. Following [6], we can consider the quotient A/G and the Galois cover-
ing F: A—>A/G. Then we have the push down functor F,:mod A—mod 4/G
which is left adjoint to the induced functor F.:mod 4/G—mod 4. If G acts
freely on ind 4, namey, éM=M for any g=G~\{1} and any Mcind 4, then F,
preserves the Auslander-Reiten sequences. We will freely use the following
results.

PROPOSITION 3 (see [6]). Let S be a quotient category of A with the natural
embedding mod S—mod 4, and L={M<cind S|tM&ind S for any g&G~{1}}. Then
there exists a set-theoretic injection L—ind A/G. In particular, in case L is co-
finite in ind S, the following hold.

(L) If A/G is tame, so is S unless it is representation-finite.

(2) If S is wild, so is A/G.

PROPOSITION 4 ([5]). If A is locally suppori-finite and if G acts freely on
ind 4, then the push down functor F;: mod A—mod A/G is dense. In particular,
if A is tame, so is A/G.

In what follows, we will deal only with a full subcategory A of a Galois
covering U which is in fact a quotient category, thus we may consider mod A
as a full subcategory of mod U by the natural embedding.

2.3. Vector Space Categories.

A vector space category K is an additive k-category together with a faith-
ful functor ||: K—mod £ such that every idempotent in K splits. Given a
vector space category K, its subspace category U(K) is defined as follows: its
objects are triples of the form (U, X, ¢), where U is a k-space, X is an object
in K and ¢: U—|X| is a k-linear map. A homomorphism from (U, X, ¢) to
(U, X’, ¢’) is given by a pair (a, 8), where a: U-U’ is k-linear, §: X—X' is
a morphism in K such that |B|¢=¢’a. Given a poset S, considered as a cate-
gory, addkS is a vector space category. Conversely, assume that K is a
vector space category consisting only of l-dimensional indecomposable objects,
then K is of the form add £S for some poset S.

Let 4 be a one-point extension algebra of R by M, then a A-module
is given by a triple (U, rX, ¢: sMK,U—rX). It is well known that
UMHom (M, mod R)) is representation equivalent to the full subcategory of mod A
consisting of the A-modules without non-zero direct summands of the form
(k,0,0) or (0,7, 0) with Hom (M, Y)=0. In case R is tame, if the vector space
category Hom (M, mod R) is tame, so is A.
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3. Classification.

In Section 4, we will prove that the algebras in Table W are wild, and in
Section 5 we will prove that the algebras in Table T are tame. We have only
to consider the algebras of ordinary quiver «——-0), Ce——+D) or ).
Given an algebra A of the classes stated in the theorems, we will show that
one of the following cases occurs: 1) A is isomorphic to a quotient of one of
the algebras in Table F or their duals; 2) A is isomorphic to one of the algebras
in Table T or their duals; and 3) 4 has a quotient isomorphic to one of the
algebras in Table W or their duals. These are clearly pairwse inconsistent.

I) A of ordinary quiver »——+Da.
Suppose a™pu=a"=0, m=n.
i) If m=1, then A4 is a quotient of (F-2,).
ii) If m=2 and n<5, then 4 is a quotient of (F-1).
iii) If m=2 and n=6, then A=(T-1).
iv) If m=2 and n=7, then 4 has (W-3) as a quotient.
v) If m=n=3, then A4 is a quotient of the dual of (F-13).
vi) If m=3 and n>=4, then 4 has (W-4) as a quotient.

1) A of ordinary quiver BCb—F—mQa.

Suppose a™=f"=0. Let A=k[a], B=Fk[B] and M=A(b, a). We may
assume dim Ap=dim pB. Note that if M+ Ay then pf&Ap.
1) If dim M=1, then A4 is a quotient of (F-2,), ¢g=max{m, n}.

2) Suppose dim M=2. Then M=Ay, and pf=xap for some x<k.
2.1) The case x=0:

i) If m=2, then A=(F-3,).

ii) If m=3 and n=2, then A4 is a quotient of (F-6).

iii) If m=3 and n=3, then 4 has (W-6) as a quotient.

iv) If m=4, then A has (W-7) as a quotient.

2.2) The case x+0: Replacing a with xa, we can assume ap—pfS=0. We
may also assume m=n.

i) If n=2, then A=(F-4,).

i) If n=3 and m<5, then A is a quotient of (F-5).

iii) If n=3 and m=6, then A=(T-3,).

iv) If n=3 and m>=7, then A4 has (W-10) as a quotient.

v) If n=m=4, then A=(T-4,).

vi) If n=4 and m=5, then 4 has (W-9) as a quotient.
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3) Suppose dim M=3, M=+ Ap and mn>4. Then, as a quotient, A has either
(W-8) or its dual.

4) Suppose dim M=3, M+ Ay and m=n=2.
i) If dim M=3, then A=(T-2").
i) If dim M=4, then A=(T-2).

5) Suppose dim M=3 and M=Ap. Then pf=xap+ya’y for some x, yEk.
5.1) The case x=y=0: A has (W-5) as a quotient.

5.2) The case x=0 but y#0: Replacing g with y~'8, we can assume a’zt—pufB
=0.

i) If m=3 and n=2, then A=(F-6).

ii) If m=3 and n=3, then A has (W-6) as a quotient.

iii) If m=4, then 4 has (W-7) as a quotient.

5.3) The case x#0: Replacing a with xa+ya®, we can assume ap—pf=0.
We may also assume m=n.

i) If n=3 and m<5, then A is a quotient cf (F-5).

ii) If n=3 and m=6, then A=(T-3;).

iii) If n=3 and m=7, then A has (W-10) as a quotient.

iv) If n=m=4, then A=(T-4,).

v) If n=4 and m=5, then 4 has (W-9) as a quotient.

6) Suppose dim M=4 and M=Ap. Then pf=xep+ya’p+tza’p for some
x, ¥, z€k.

6.1) The case x=0: /A has (W-7) as a quotient.

6.2) The case x#0: Replacing @ with xa+ya’+za’, we can assume ap—upfB
=(0. We may also assume m=n.

i) If m=n=4, then A=(T-4,).

ii) If m=5 and n=4, then A has (W-9) as a quotient.

7) Suppose dim M=5 and M=Ap. Then pB=3¢ x;ay, where d=dim M—1,
for some x;=k, 1=<i<d.

7.1) The case x,=0: /A has (W-7) as a quotient.

7.2) The case x,#0: Replacing a with 3%, x:a’, we can assume ap—pf=0.
Then A has (W-9) as a quotient.

1) A of ordinary quiver béa@a.

Suppose a™=0. Let A=k[al. We may restrict ourselves to the case
Ala, a)=A. Thus A, a)=Ap and A(a, b)=vA. We may also assume dim Ap
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<dimvA. In case pv+0, there are some f(x)=k[x] with f(0)+0 and some
m=1 such that pyv=f(a)a™. Replacing ¢ with f(a) 'y, we can assume pyv—a™
=0.
1) Suppose dim Ap=dimyvA=1. Then 4 is a quotient of (F-8), (F-12) or
(F-15,).

In what follows, we assume dim yvA=2.

2) Suppose py—a®=0.
2.1) If dim Apg=1, then A is a quotient of (F-8).

2.2) Suppose dim Ap=2.

2.2.1) The case dimvAp=0: A is a quotient of (F-9).

2.2.2) The case dimvApg=1: We have xyp+yvap=0 for some x, yEk with
with (x, )#0. In case xy=+0, by replacing a with —x"'ya and ¢ with (x7'y)y,
we can assume yp—vapu=0.

i) If yp=0, then 4 is a quotient of (F-9).

ii) If vap=0 and n=2, then A=(F-11).

iii) If vap=0 and n=3, then A=(T-52) or (T-5}").

iv) If yp—vap=0, then A is a quotient of (F-9) or (F-10).

2.2.3) The case dimyvAp=2: A is not distributive. Notice however that A
has (W-11) as a quotient if dimvA=3.

2.3) Suppose dim Ag=3. Then vué(kvap+kva’y).

2.3.1) The case dimvAp=1: A=(T-57).

2.3.2) The case dimvAp=2: We have xvap-+yva’p=0 for some x, yck with
(x, y)+0. In case xy+0, by replacing @ with —x7'ya and g with (x7'y)’g,
we can assume vag—va®u=0.

i) If vap=0, then A=(T-5,).

ii) If va’p=0, then A has (W-11) as a quotient.

iii) If vag—va®p=0 and n=3, then A=(T-5,).

iv) If vap—va®p=0 and n=4, then A=(T-5,) or (T-6.).

v) If vap—va’p=0 and n=>5, then A=(T-5;) or (T-6s).

2.3.3) The case dimvAp=3: A has (W-11) as a quotient.

2.4) Suppose dim Ag=>4. Then, dim (bvp+kvap)=2 and (kvp+kvap)N(kva’p
+kyva*u+ --)=0. Thus, 4 has (W-11) as a quotient.

3) Suppose pyv—a®=0 and n=3.
3.1) Suppose dim Ap=1.
3.1.1) The case dimvA=2: A is a quotient of (F-12).



74 Mitsuo HosHINO and Jun-ichi MIYACHI

3.1.2) The case dimvA=3:

iy If n=3 and dimvAp=0, then A=(F-13).

iiy If n=4 and dim vAp=0, then A=(T-7).

iii) If dimvAp=1, then 4 has (W-13) as a quotient.

3.2) Suppose dim Ap=>2, dimvA=>3 and n=4. Then A has (W-12) as a quotient.

3.3) Suppose dim Ap=2.

3.3.1) The case dimvAp=0:

i) If dimvA=2, then A=(T-8}).

ii) If dimvA=n=3, then A=(T-10").

3.3.2) The case dimyAp=1: We have xyp+yvap=0 for some x, ySk with
(x, v)#0. In case xy#0, by replacing a with —x~'ya and g with —(x7'y)°g,
we can assume vy—yap=0.

i) If yp=0 and dimvA=2, then A=(T-8,).

ii) If yp=0 and dimvA=n=3, then A=(W-14).

iii) If vap=0, then 4 has (W-15) as a quotient.

iv) If yp—vap=0 and dimvA=2, then A=(T-8,) or (T-9).

v) If yp—vap=0 and dimvA=n=3, then A=(W-14).

3.3.3) The case dimvAp=2: A has (W-15) as a quotient.

3.4) Suppose dim Ap=dim vA=n=3.

3.4.1) The case dimvAp=0: A=(T-10").

3.4.2) The case dimyAp=1: Consider first the case vpu=0. Then xvap+
yva?p=0 for some x, yek with (x, y)#0. In case x+#0, by replacing a with
xa+va®, we can assume vapu=0. Next, suppose vp#0. In case vap+0, we
have vu+xvap=0 for some x=k\{0}. Replacing p with pg+xap, we can
reduce the case to yp=0. Also, in case va’pz+0, we have vu+xva’y for some
x<k\{0}, and by replacing ¢ with g+xa’p, we can reduce the case to yu=0.
iy If yp=vap=0, then A=(T-10).

ii) If yu=va®p=0, then A has (W-14) as a quotient.

iii) If vap=va?p=0, then A has (W-15) as a quotient.

3.4.3) The case dimvAp=2: We have xvp+yvapu+zva’p=0 for some x, y, z
=k with (x, v, 2)#0. In case (xy, xz)#0, by replacing ¢ with p4x"'yap+
x 'za’p, we can assume yp=0.

i) If vu=0, then 4 has (W-14) as a quotient.

ii) If vpu=0, then 4 has (W-13) as a quotient.

3.4.4) The case dimvAp=3: A has (W-13) as a quotient.

4) Suppose pyv—a*=0 and n=4.
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4.1) If dimvA>=3, then 4 has (W-16) as a quotient.

4.2) If dim Ap=dim vA=2, then A has (W-17) as a quotient.

4.3) Suppose dim Ap=1 and dim vA=2.

4.3.1) The case dimvAp=0: A is a quotient of (F-14).

4.3.2) The case dimvAp=1: A=(T-11,).

5) Sppose pyv—a™=0 and n=m=5. Then /A has (W-18) as a quotient.

4. Wild Algebras.

To begin with, let us consider the following quivers without relations:

e >0 —— >0 ——POE——0&——0
o8 l ; and
PP ——PO——D O —— POt S0
, |
.——-——).——)O——-)O—————)O——)C——-——)o(——l(——-‘
These are well known to be wild. In fact, for a representation BCV Da
of the quiver 2: C+0 by defining the representation

of the quiver «—=. we obtain a full exact embedding. Next, for a repre

o

L 3
sentation U~V of the quiver «——-+, by defining the representationn
~— _—
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of the quiver «——+—3+, we also obtain a full exact embedding. Finally, given

8

a representation U——V—=W of the quiver «—>e—3, following [2], let us
4

construct the following representations:

U-——v m W
\Wz_blz__,wz_.gz_).. ..—&aWz/[l 0] M
/ N
dH v
w
9]
we

1[5 4

UV W W W — W

R REEN

W2
11
10
10
01

RGN

W3

OO O
oco—HO~O
e O O

U—V—-Woo W W — W — W Wt —— W2
A AR
7 0 0 0 0 E, E,
of the quivers D,, E,, £, and E, respectively. It is not difficult to see that
these definitions induce full exact embeddings respectively. It should be noted

that the above constructions are due to the indecomposable representations of
the corresponding Dynkin quivers whose dimension types are the maximal roots
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R M7. .
0 k] is the one-point

extension algebra, and if Neind R has endomorphism ring %, let {a,, --- - , g}

of the corresponding Dynkin diagrams. In fact, if Sz[

be a fixed k-basis of Homgz(M, N). Then, for a representation

4,
u v
ba
—
of the quiver I': » : - (d arrows), by defining the S-module

U, eNQ.,V, 2?:1%@951' rMQU — gkNRLV),

we obtain a full exact embedding mod £/——mod S (cf. [13]).

In order to prove wildness of the algebras (W-1)-(W-18), we will show
that for each of them there is some Galois covering U having one of the above
wild algebras of their concealments as a finite quotient.

u
(W-1) b— (18% with ap=Fp=af=pa=a*=p=0.
Take the following Galois covering U with Galois group =Z:

b_l bo b1

ol I
[£ 3 [

a3 a =3 a3
[3—1 ﬁo
with aiﬂi:‘Bi‘ui:aﬁ.lﬁi:‘Bi+1ai:ai+1ai:ﬁi+1‘5i:0 for all ;7. Then, as a
quotient, U has the following:

[24) lﬂl
a, — a;

Bo

)7
(W-2) b—= aDa with ap=av=a’=0.
v

Take the following Galois covering U with Galois group =Z:

b, be b,
il sl
e G

a_, 24
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with a;pt;=aw,=a;;,@;=0 for all i€Z. Then, as a quotient, U has the follow-
ing:
by

ol

Ay — 4y
22}

7
(W-3) b— aDa with a’p=a’'=0.

The universal Galois covering with Galois group=Z has as a quotient the
following :
A bs bs

Lo |on e

AQy—> Ay —> Ay —> A3 —> Ay —> A5 —> Qg
(27 ay 24 as ay as

with asa,p,=0. This is a concealed hereditary algebra of type E,.

J
(W-4) b— aDa with a*p=a'=0.

The universal Galois covering with Galois group =Z has as a quotient the

following :
by b b,

Lo Jo o

Qo> Ay —> Ay —> Qg
ay (423 a3 .

J
(W-5) BCbh— aDa with pf=a’=pg*=0.

The universal Galois covering with Galois group ={x, ¥>, the free group
on two generators, has as a quotient the following:

by
8.
be
P

byze—by— Gy — Qe Qzm1 — bz-1.

z Uz a, Ayp-1 Uz-t

(W-6) §Ch— aDa with a*p=pf=a’=g'=0.
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The universal Galois covering with Galois group =<{x, y> has as a quotient
the following:

ar-1

| aees

byos —— bys —— by —> @y @y by —> by —> bys.
yx ﬁx Uz e e e v

(W-7) BCb—saDa with a*p=pf=a'=p=0.

The universal Galois covering with Galois group =<x, y> has as a quotient
the following:

[ 8.

by
be
|
a

byge—by— Gy — Qe — Qz-1— Asz-2 .
a

z Uz e Xp-1 Ay-2

(W-8) BCh - aDa with a*u—auf—a'=F=0.

The universal Galois covering with Galois group =<x, y> has as a quotient
the following :

a b-lz ’bz > Qg ¢ Qe < be—>by—>ay.

y iz y
Hy-14 ﬁy—lx Hz Ae HMe Be Hy

o
(W-9) ﬁCb—sza with a’p-—pﬁ:azl,z:as:‘@‘izo_

The universal Galois covering with Galois group =Z has as a quotient the
following :

Bs B. Bs

bs_"b4_’b5_’be

o L

Qo —> A, —> Az —> A3 > Ay
(44} (24} (22} a3

with a;ps—p,B8,=0. This is a concealed hereditary algebra of type FL.

(W-10) ,BCbi)aQa with ap—pB=a’=p*=0.



80 Mitsuo HosHINO and Jun-ichi MIYACHI

The universal Galois covering with Galois group =Z has as a quotient the
following :

Bs Bs

bs-’“’bs_’_’bf;

o |n

ao—'_’al_"az_'_’a3—_)a4_’a5—_’as
a, ay a, [24] a, as;

with asps—ps85=0. This is a concealed hereditary algebra of type E,.
u
(W-11) b ——=ala with py—a’*=a’p=a*=0.
)2
The universal Galois covering with Galois group =Z has as a quotient the

by b b, b,
{ / Vs
2N 27X
a, a, @ a,

following :

(12}

with ptwe—a,,=0. This is a concealed hereditary algebra of type Ds.

2
(W-12) b — aDa with pp—a’=vp=vap=a*p=a'=0.
v

The universal Galois covering with Galois group =Z has as a quotient the
following :

with gvo—azaiae=vyp,=0. This is a concealed hereditary algebra of type 5‘6.

)
(W-13) b — aDa with py=ap=a*=0.
y

The universal Galois covering with Galois group =<x, y> has as a quotient
the following:
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¢
(W-14) b— aDa with pp=yp=a*p=a*=0.
v

The universal Galois covering with Galois group =<x, y)> has as a quotient
the following:

be by
-
[£ 391 29
Qo — Qe — Qg
.
by by by

=

with vep.=v p,=0. This is a concealed hereditary algebra of type E..
7
(W-15) b == aDa with pv=vap=a’u=va*=a*=0.
v
The universal Galois covering with Galois Group =<{x, y> has as a quotient
the folltwing:

b, bz

a1 a,

Q1 >0 — Uy

[

by

)7
(W-16) b= aDa with py=vp=ap=va*=a*=0.
¥

The universal Galois covering with Galois group =<{x, y> has as a quotient
the following:

b.»
Ha2
(£ Qe Ay v
(lx—l > Qe —> Ay —> axZ

L |

by, byz

7
(W-17) b — aDa with py=yvp=vap=ao*p=va’*=a*=0.
y

The universal Galois covering with Galois group =<{x, y> has as a quotient
the following:
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bz ba2

b
a, -y Qe Qx

e Pl e

B

by

Q.1

7
(W-18) b—alDa with py=vp=ap=va’*=a’=0.
v

The universal Galois covering with Galois group =<x, y> has as a quotient
the following :
by b b

z z3

e | e l#m

a1 [+ ¥ l’ Az v Qg2
Qpoy — > Qe > 0y —> Q2 — a.s

[or |

b b,

yz-1

with @ ft;=a.p,2=0. This is a concealed hereditary algebra of type E,.

5. Tame Algebras.

In this section, we will show that the algebras in Table T are tame. In
dealing with extensions of algebras, we will always calculate vector space cate-
gories. In fact, we have to deal with extensions of algebras which are not
tublar extensions.

It is easy to see that no algebra in Table T is representation-finite, and it is
well known that the algebra (T-0) is tame. Thus, it suffices to prove the tame-
ness of the algebras (T-1), (T-2), (T-3,), (T-4,), (T-5;), (T-65), (T-7), (T-8s),
(T-9), (T-10) and (T-11;), since any other algebra in Table T can be obtained
as a quotient of one of them. As an example, we will show also that the
algebra (T-12) is tame.

o
(T-1) b— ala with a’p=a’=0.
Take the universal Galois covering U with Galois group =Z2:

b be by
PP

— a4, — 4y —> a4y —
Ay (24}
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with @si@ipti=ass -+ aina;=0 for all /€Z. For each n=Z, let A, be the
following full subcategory of U:

bn+3 bn+4 bn+5

Lol

Qn —> Qp41 = > Qpi2 — > Qpe3 7> Qpyg — > Anys

this is a concealed hereditary algebra of type EN,;, and for [, meZ with [Zm,
let A,  be the full sucategory of U consisting of the objects of the A,, /[Sn=<m.
Notice that A, .+ is the one-point coextension of A, U{b.+s} by the module
D(N,BN,), where N,=,,}%° with restriction to A, being preprojective and
N7=0035'. The vector space category Hom (mod (A,\U{b.+¢}), N.BN;) is of
the following form:

This is a poset of tame type (see [9] and [12]). Thus, A, .+ IS tame. For
l, meZ with [<m, A, n+ is the one-point coextension of A; ,\U{bn+¢} by the
module with support in A,\J{bm+s} and with restriction to it being D(N,EBN).
The vector space category Hom (mod (A; »\U{bms+e}), Nu@PN1,) is isomorphic to
Hom (mod (An\J{bm+s}), Nu®N;), and as a set ind A; ns1—=ind A, nUind An, mer.
Therefore ind U=\,cz ind A,, »+:, in particular, U is locally support-finite and
tame. Thus, (T-1) is tame by Proposition 4.

(T-2) 8Ch— aDa with a*=g*=0,

o
This is a quotient of the following tame algebra: BCbh——aDa with a’=p*

=vap=pBv=vpu=pv=0 (see [4] for details). Thus, (T-2) is tame.

REMARK. Given a representation ¢CV D¢ of the quiver tC+Do¢ with rela-

tions ¢?=1%=0, by defining the representation gbCV—l—»VngS, we obtain a full
exact embedding. Since the above algebra is a Galois covering of the algebra
tC+Do with e*=r*=r07r=0, with Galois group =Z/2Z, by Proposition 3, the
category of the finite dimensional representations of the quiver (Do with
relations ¢*=t?=0 is similar to that of the quiver (<)o with relations ¢’=
t?=rgr=0. Note that the latter is a finite dimensional algebra.

(T-3) BCb— aDa With ap—pf=as=p=0,
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Take the universal Galois covering U with Galois group =Z:

}9—1 /30

—-»b_l——>b0———>b1————>

e Lo L

Ay —> Qo —> A} —>

a_y (28

with agpti— i fi=aus - @410 Bis2fi1:18:=0 for all 7&€Z. For each n&Z,
let A,, be the following full subcategory of U :

bnis — bnys — bays

Lo

AQp — > Qpy1 — > Qpas — > Qpys > Qpta 7> Apys
and let A,,., be the following full subcategory of U:

bn+3 > bn+4 > bn+5

Lo

Qp — > Qpy1 — > Apya > Qpys > Qpys — > Apys

these are concealed hereditary algebras of type ES, and for [, meZ with [<m,
as before, let A, » be the full subcategory of U consisting of the objects of the
A,, [£n<m. Then, as an algebra, As,_( 2n+: IS iSOmorphic to

kB DN,, 0
0 AZn Mzn
0 0 k

where M,,=o00li® and N,,= 11" are regular modules belonging to the same

tube :
NZn ° $

M,, -
\/\/\/\/\/g

NN NN AN

NAVAVAVAS

The vector space categories Hom (M,,, mod A,,) and Hom (mod A,,, N,,) belong
to the pattern (Eg, 5), and ind Azn-1,2n41=Pon\J R3,\JQs,, Where P,, consists of
the objects of ind A;n, 2041 With restriction to A, being preprojective, ;. con-
sists of the objects of ind As,_, ., With restriction to A,, being preinjective and
R,, consists of the regular objects of ind A,, except that the above tube changes
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to the following:
/\f\/\
NS AN AN AN A
V\/\/\/\/\/\

Thus, Asn_12ns: IS tame.
Similarly, Aj,_»:, 1S isomorphic to

kB DNy, 0
0 Aeney Monoy |,
0 0 k

where M,,_;=1,:%% and 1’\/2,1_1:00082,5 are regular modules:

'\/\/\ \/'
./\/\/\/\/v
\/\/\/\/\A

e

The vector space categories Hom (M,,_;, mod A,,_,) and Hom (mod Aszn-1, Nan-1)
belong to the pattern (Ej, 5), and ind Asn-s 20 =Pon-1\YR2n-1\JQsn_., Where P,,_,
consists of the objects of ind A,,-,,., With restriction to A,,., being preprojec-
tive, Q... consists of the objects of ind Asn_s2,_: With restriction to Asn_,
being preinjective and R,,_; consists of the regular objects of ind A,,_; except
that the above tube changes to the following :

/\/\
\/\f\/\/ SN
/\/\/\/\/\/»

———————————

Thus, Asn_s,2, 1S tame. .

For I, meZ with [<m, A,_; m+: is the one-point extension of A, n4; by the
module with support in A; and with restriction to it being M,. The vector
space category Hom (M;, mod A; n+,) is isomorphic to Hom (M,, mod A4,), and
ind A;-1, m+r=ind A;_y,,4,Vind A;, m+,.  Therefore ind U=\J,ezind Au_y n+1, in
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particular, U is locally support-finite and tame. Thus, (T-3;) is tame.

2
(T-4,) BCb— aDa with ap—pf=a'=g'=0.
This has been proved to be tame [15], so we omit the proof.

7
(T-55) b— aDa with py—a’*=vap=0.
v
Take the universal Galois covering U with Galois group =Z:

HHEEA:

a.; - 24}

with pmyi—amai:umaim_lzo for all ;7€Z. For each n€Z, let A, be the

following full subcategory of U:

bn bn+l bn+2

A, —> QApt1 —>0n+2 »
this is a concealed hereditary algebra of type D, let B, and B% be the full
subcategories of U obtained from A, by adding a._; and a,.; respectively,

these are tilted algebras of type E,, and let C, be the full subcategory of U
consisting of the objects of B, and B, this is isomorphic to

kE DL, k

0 A, L.|,

0 0 k

where L,=!! is a regular module:

v Ly V
NN
I . ° :
YAWAN
ANVARNYS
1 :

The vector space categories Hom (L,, mod A,) and Hom (mod A,, L,) belong to
the pattern (Ds, 2), and ind C,=P,\JR,\JQ., where P, consists of the objects
of ind B* with restriction to A, being preprojective, Qn consists of the objects
of ind B, with restriction to A, being preinjective and R, consists of the regular
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objects of ind A, except that the above tube changes to the following :

7\

M, N,
AV
N/ N/

.S

Thus, C, is tame.
For I, meZ with (<m, define A, , and B, » as before. Then, A,-1 741 i

isomorphic to
k DL, k

0 Cn. Ly,
0 0 k
where L,=,1% is a regular module:

; L,

VA
' ° L]

/NN
h ‘ $
N AN
i . t

The vector space categories Hom (L}, mod C,) and Hom (mod C,, L7) belong
to the pattern (Es, 2), and ind A,_, n s =Pi\JR,\JQ7, where P, consists of the
objects of ind A, .+; Wwith restriction to C, lying in P, Q3 consists of the
objects of ind A,-,,» with restriction to C, lying in @, and R; coincides with
R, except that the above tube changes to the following:

7\

M. N
NZANANS
° L_’n e
VAN ANV

.
|
!
|
i
!
i
[
'
1
[

Thus, A,y .+ IS tame.

For I, meZ with [<m, B, m+: is the one-point extension of A, m4; by the
module with support in BF and with restriction to it being M,. The vector
space category Hom (M, mod A, n+,) is isomorphic to Hom (M, mod Bf) and
belongs to the pattern (55, 2). Next, A;_,m+ is the one-point extension of
B, m+1 by the module with support in B, ;+; and with restriction to it being M.
The vector space category Hom (M, mod B, m+1) is isomorphic to Hom (M, By, 1+1)
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and belongs to the pattern (ENIG, 2), and ind A,_y, me1=ind A,_,,;+;\Vind A}, 1.
Therefore ind U=\_,eczind A,_; .+, in particular, U is locally support-finite and
tame. Thus, (T-5;) is tame.
I .
(T-65) b——=aDa with p—a’*=vap—va®p=a’*=0.
v
This is self-injective and the quotient by the socle is isomorphic to (T-5;).

o
(T-7) b — aDa with pw—a’=ypu=au=0.
Y

Take the universal Galois covering U with Galois group =Z:

With fie1Vi— Quealin @i =V ftioi =i, =0 for alli€Z. For each neZ, let A,
be the following full subcategory of U :

bn+1 bn+2 bn+3
/ V
/ /s
a, Ap+1 Aniz An+s ’

this is a concealed hereditary algebra of type E,, and let B, be the full subcate-
gory of U obtained from A, by adding b,, this is a tilted algebra of type E..
Then B, is the one-point extension of A, by the regular module M,=,, and
the vector space category Hom (M,, mod A,) belongs to the pattern (ﬁfs, 3).
For [, meZ with [<m, define A, . and B, as before. Then A,_;, is
— 1110

the one-point extension of B, by the preinjective module M;=}}i}, and the
vector space category Hom (M, mod B,) is of the form:

Thus, A,_,, . is tame.

For [, meZ with I<m, B, » is the one-point extension of A; . by the
module with support in A4, and with restriction to it being M;. The vector
space category Hom (M), mod A, ) is isomorphic to Hom (M;, mod 4,;). Next,
Ay_;.m is the one-point extension of B, » by the module with support in B, and
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with restriction to it being M{. The vector space category Hom (M}, mod By, »)
is isomorphic to Hom (M}, mod B,) and ind A,_; n=ind A;_;,,ind A, ». There-
fore ind U=\_nezind A,_, ., in particular, U is locally support-finite and tame.
Thus, (T-7) is tame.

)z
(T-8) b=—ala with w—a*=vp=a’p=va’*=0.
v

Take the universal Galois covering U with Galois group =Z:

with ‘Ui+1)}i—“ai+2ai+1ai:Ui+2ﬂi:ai+3ai+2#i:!Ji+2a1;+1ai=0 for all 7€ Z. For each
neZ, let A,, be the following full subcategory of U:

b, / b /bn+2

Y

ap An+1 Ay A+

and let A,,_, be the following full subcategory of U:

ba-1

»

these are concealed hereditary algebras of type E,, and for {, meZ with (<m,
define A, . as before. Then A,,_ 24+ is isomorphic to

k DL,, &k
0 Asn Lo,
6 0 k

where L,,=J)% is a regular module:

i L;,
NN/

FAWAN

]

AV
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The vector space categories Hom (L,,, mod A,,) and Hom (mod A;,, L,,) belong
to the pattern (Ey, 2), and ind Asn-y.2041=Pon\IR32\JQsn, Where P,, consists of
the objects of ind A, 2n+1 With restriction to A,, being preprojective, @,, con-
sists of the objects of ind A;,_, ., With restriction to A,, being preinjective and
R,, consists of the regular objects of ind A,, except that the above tube changes
to the following:
7\
M;n Nia

/N7 N7

N L
/N /NN

ThuS, Azn_1,2n+1 iS tame.
Similarly, Asn-22. 1S isomorphic to

k DLy, k
0 Aen-v Lonoa |,
0 0 k

where L,,.,=°1 is a regular module:

The vector space categories Hom (L,,.;, mod A,,-,) and Hom (mod Azn-1, Lan-1)
belong to the pattern (ENIS, 2), and ind Asn-2.00n=Pon-1\JR2n_1\Qsn_,, Where Pp,_,
consists of the objects of ind Asn_1., With restriction to A,,-; being preprojec-
tive, Qs.-, consists of the objects of ind As,_s 2,-; With restriction to A,,-, be-
ing preinjective and R,,_, consists of the regular objects of ind A,,_, except
that the above tube changes to the following:
7\
M2n—1 N2n—1
NN N/

¢ LG-l
VAANWARNIARN

Thus, Asn-2,2n IS tame.
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For [, meZ with [<m, A,., m+: i the one-point extension of A; »+: by the
module with support in A, ,+; and with restriction to it being M,. The vector
space category Hom (M,, mod A;, n+,) is isomorphic to Hom (M;, mod A, ;+1), thus
belongs to the pattern (E,, 2), and ind A;_;, ms1=ind A;_;,;4,\Uind A, m+;. There-
fore ind U=\ ,czind A,_; »41, in particular, U is locally support-finite and tame.
Thus (T-8;) is tame.

o
(T-9) b——=ada with pr—a*=vp—vap=a’y=va’=0.
v
This is self-injective and the quotient by the socle is isomorphic to (T-89).

7
(T-10) b—= aDa with gyv=vp=vap=a’=0.

v
The relation py=0 is splitting-zero, thus it suffices to prove the tameness
of the following algebra:
a

. O

b———sa———>c¢  with vp=vap=a’=0.

Take the universal Galois covering U with Galois group =Z:

with vt =vim@iti=aisaa;=0 for all /i€Z. For each neZ, let A, be the
following full subcategory of U :

bn-H bn+2

Lo

Ap, — Ap4y — Qp+2,

I

Cn Cn+1
this is a concealed hereditary algebra of type E‘g, let B, and B¥% be the full
subcategories of U obtained from A, by adding b, and c,.+. respectively, these are

tilted algebras of type E, and let C, be the full subcategory of U consisting of
the objects of B, and B¥, this is isomorphic to
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k DL, k
0 A, L.|,
0 0 k

where Ln:},g? is a regular module:
i L, ° T
'\ / \ /N
/ \ / \ / \
'\ , \ / \ /

[
!

The vector space categories Hom(Ln, mod A,) and Hom (mod A,, L,) belong to
the pattern (Es, 3), and ind C,=P,\JR,\JQ,, where P, consists of the objects
of ind B} with restriction to A, being preprojective, Q, consists of the objects
of ind B, with restriction to A, being preinjective and R, consists of the regular
objects of ind A, except that the above tube changes to the following:
/7 \
M, M. N, N, M;
‘\ 7\ /' NN\ /:

o
/\f\/\/\i
i i
Thus, C, is tame.

For I, meZ with [Zm, define A, ., and B, , as before. Let C4 be the
full subcategory of U obtained from C, by adding ¢,_, and b,+s Then, A, i 2t
is isomorphic to

k. D(NZDN7Y) 0
0 Ch MM,
0 0 k

000 4 0000 , __ 0110 4 0001 .
where M;= 1%3, M7i= 0" Nj= 1" and N7= e’ The vector space categories

Hom (M;@®M?, mod C,) and Hom (mod C,, N4BNZ) belong to the pattern (£, 4)
Wi{-}, and ind A, 1, .0 =Ps\JR,\JQ,, where P, consists of the objects of
ind A, ,+1 with restriction to C, lying in P, Q} consists of the objects of
ind A,_,,, with restriction to C, lying in @, and R} coincides with R, except
that the above tube changes to the following:
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M/'\

7 N ” ”
'\/\/\/\/N M\"/
/\/\/\/\ /w

\/\/\/\/\/’\/
RASEANVANFANFANPAN

Thus, A,_1 .+ IS tame.

For [, meZ with I<m, B, m+ is the one-point extension of A, ., by the
module with support in B¥ and with restriction to it being M,. The vector
space category Hom (M, mod A, n+,) is isomorphic to Hom (M,, mod B¥) and
belongs to the pattern (Ee, 3). Next, A;_1,m+ Iis the one-point extension of
B, m+1\J{c,.,} by the module with supportin C; and with restriction to it being
Mi@®M7?. The vector space category Hom (M|PMY, mod (B mi\J{c;-1})) is
isomorphic to Hom (M{PM7, mod C;), and ind A,_; m+;=ind A;_;, 15, ind A, i1
Therefore ind U=\_J,ezind A,y 441, in particular, U is locally support-finite and
tame. We are done.

(T-115) béa@a with py—a'*=ap=va’=0.
v
Take the universal Galois covering U with Galois group =Z :

o>

a, Qs
ay

\Vith pﬁzui—ai+3ai+gaiﬂaiZai+zpi:vi+2a’i+1ai=O for all ZEZ For each T’LEZ,
let A,, be the following ful subcategory of U:

by bnﬂ/ /_,bmuz/j,by7
/ // —

an Ania Ant2 Ants

bn+4

and let A,,_; be the following full subcategory of U:

bn—l bn bn+1 bn+2 bn+3
/
/ /
/ /
— —

a, (42 Anie An+s :
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these are concealed hereditary algebras of type Es, and for [, meZ with [Zm,
let A, » be as before. Then, Azn-i,2n+: iS iSomorphic to

k DN,, 0
0 AZn MZn ’
0 0 k

where M,,=388°, N,,=!1 are regular modules:
v 2ﬂ Nzn .

\/\/\/ /\ﬁ
/\/\/\/\/\

\/\/\/\/\/

The vector space categories Hom (M,,, mod A;,) and Hom (mod Asn, Nin) belong
to the pattern (E~3, 5), and ind Asp-1,2041=Pen\JR2s\JQ2n, Where P,, consists of
the objects of ind As, 2q+; With restriction to A., being preprojective, (2, con-
sists of the objects of ind Ay,_y,., With restriction to A,, being preinjective and R,,
consists of the regular objects of ind A,, except that the above tube changes

to the following:

/\/\
\/\/\/\/\/\ﬁ
/\/\/\/\/\/v

Thus, Asn-12n+1 1S tame.
Similarly, Asn-2,2n 1S isomorphic to

[k DNy, 0
0 A27;..1 1M2n—1 y
0 0 k

where M,,_;="12 and N,,_,="1%5 are regular modules:
* Nopoy T
l\/\ NSANTNT
'/'\/‘\/‘\./\/‘\‘
l\ / \/ \ / \ / \ /‘
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The vector space categories Hom (M,,-,, mod A,,_,) and Hom (mod Az._1, Non_1)
belong to the pattern (Es, 5), and ind Asno,0n=Pin-1\ I Rsp_1\JQs,_,, Where Ps,_,
consists of the objects of ind As,.,,2» With restriction to A,,., being preprojec-
tive, Q.,-, consists of the objects of ind A;,_s »,-; With restriction to A,,.,; being
preinjective and R,,.; consists of the regular objects of ind A,,_, except that
the above tube changes to the following:

AYATAY
;\/\/\/\/\/\/
7\/\/\/\/\/\

Thus, Azn_s:, IS tame.

For [, meZ with I<m, A, , m+ is the one-point extension of A; ,+; by the
module with support in A, and with restriction to it being M,. The vector
space category Hom (M,, mod A, n+) is isomorphic to Hom (M,, mod A4,;), and
ind A;-1, m+1=ind 4;_,,;+:\Vind A; 4. Therefore indU=\U,ezind A,_; n+;, in
particular, U is locally support-finite and tame. Thus, (T-11;) is tame.

o
(T-12) b= aDa with pyv=a?=0.
y
Since the relation pv=0 is splitting-zero, it suffices to consider the algebra
a

e ()

v .
b——a——>c¢ with a®=0.

This can be considered as a full subcategory of the algebra obtained from the
tame one-relation algebra [12]:

B
TS

%> 02— ¢” with a’a’=0,

VAR
b c
by shrinking the arrow 8. Therefore (T-12) is tame.
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