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SOME RESULTS ON PSEUDO-VALUATION DOMAINS

By

Akira OKABE

Introduction. In [7], Hedstrom and Houston defined a pseudo-valuation
domain (for short, a PV D) to be an integral domain in which every prime ideal
P has the property that whenever x and y are elements of the quotient field with
xy<P, then either xP or y=P. As the terminology suggests, these domains
are closely related to valuation domains. In [7, Prop. 1.1], they showed that
every valuation domain is a pseudo-valuation domain. They also showed, in
[7, Theorem 2.10], that a PVD which is not a valuation domain is characterized
as a quasilocal domain (D, M) with the property that M~'=D: M is a valuation
overring with maximal ideal M, where K is the quotient field of D.

If 7 is an ideal of an integral domain R with quotient field K, then [: /=
{xeK|xI<I} is an overring of R. We shall call I: gl the “conductor overring”
of R with respect to /. In [12], we investigated conductor overrings of a valua-
tion domain. In that paper, we introduced the notion of “recurrent closure”: If
I is an ideal of an integral domain R with quotient field K, then the ideal
R:p(I: xI) is called the “recurrent closure” of I and is denoted by I.. In [12,
Theorem 137, we proved that if I is an ideal of a valuation domain V with
quotient field K such that I: xI#V, then I, is a prime ideal of V and I: xI=V, .
An ideal I of an integral domain R is said to be “recurrent” in case I=I.. We
also showed, in [12, Theorem 137, that every nonmaximal prime ideal P of a
valuation domain V is recurrent. The main purpose of this paper is to study
conductor overrings of a pseudo-valuation domain and to extend some results
obtained in [12] to a pseudo-valuation domain.

Throughout this paper, D will be a pseudo-valuation domain with maximal
ideal M, and K will denote its quotient field. Any unexplained terminology is
standard, as in [5] and [10].

Let R be an integral domain with quotient field K and let PCI be ideals of
R with P prime. Then we cannot in general expect that P is also prime in
I: I, as showed in [12, Example 15]. But we showed in [12, Corollary 16]

Received December 7, 1983.



334 Akira OKABE

that if PCI are ideals of a valuation domain V with P prime, then P is also
prime in I:xIl, where K is the quotient field of V. We show here that this
result is also valid for a PVD.

THEOREM 1. Let PCI be ideals of D. If P is prime in D, then P is also
prime in I: gl

Proor. By [11, Corollary 1.5], it suffices to prove that P=P:xl. Since
PSP il is clear, we need only show that P: xISP. To see this, let x&P: gl.
-If we choose an element t<I\P, then we have xt=P. Then, since P is strongly
prime (cf. [7, Definition, p.138]), xt&P and 1¢ P implies that x< P, which shows
that P: IS P.

COROLLARY 2. Let I be an ideal of D and let P be a prime ideal of I: gl
If PN\DCI, then P is also a prime ideal of D.

Proor. If we set Q=PN\D, then, by hypothesis, @ is properly contained in
I and so, by [11, Proposition 1.3 (3)], we have P=@Q: /. But then, by Theorem
1, Q=0 : ¢l and consequently P=Q, which implies that P is also a prime ideal
of D as required.

In [7, Theorem 2.10], Hedstrom and Houston showed that M™'=D: M isa
valuation overring with maximal ideal M. Since M'=M: M by [9, Proposi-
tion 2.3], it then follows that M is the unique maximal ideal of M : xM. In this
paper it will be shown that if P is a prime ideal of D, then P is the unique
maximal ideal of P: xP.

We first establish the following lemma.

LEMMA 3. Let P be a prime ideal of D. Then

(1) P is also a prime ideal of P: gP.
(2) Any proper ideal I of P: P is also an ideal of D.

Proor. (1) First, it is well known that P is an ideal of P: xP. Then it
is easily seen that P is also a prime ideal of P: P, since P is strongly prime.

(2) Let I be any proper ideal of P: xP. It then suffices to show that /& D.
Assume the converse and choose an element x<I\D. Then, by [7, Proposition
1.27, x"'eP:xP. Hence l=xx'eI(P:xP)=I, which implies that I=P: gP.
But this contradicts our assumption, and consequently /& D as we wanted.

THEOREM 4. If P is a prime ideal of D, then P is the unique maximal ideal
Of PZKP.
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PrOOF. Let I be any proper ideal of P:xP. Then it is sufficient to show
that [ is contained in P. First, by Lemma 3, I is contained in D. Suppose that
I< P and choose an element sI\P. Then s/p=K\D for each nonzero p=P.
Therefore, by [7, Proposition 1.27, p/seP: xP. Then, since P is strongly prime,
s(p/s)e P and s& P implies p/s< P and therefore pesP. Thus we have PSsPEP,
and consequently P=sP. But then, by [12, Lemma 18], s is a unit of P: xP
and so /=P : xP, a contradiction. This completes the proof.

In {12, Theorem 13], we showed that every nonmaximal prime ideal P of
a valuation domain V is a recurrent ideal, as stated in Introduction. We can
now prove, as an easy consequence of Theorem 4, that this result is also valid
for any nonmaximal prime ideal of a PVD.

COROLLARY 5. If P is a nonmaximal prime ideal of D, then P is a recurrent
ideal.

Proor. First, by [11, Lemma 1.1], P,=D: ,(P: zP) is an ideal of P:yP.
Then, by Theorem 4, P, is contained in P. But, by definition, the converse
inclusion PSP, is always valid and thus P=P, as we wanted.

In [12, Theorem 1], we showed that if P is a proper prime ideal of a valua-
tion domain V, then P: P=V, where K is the quotient field of V. We shall
next show that this fact is also true for any nonmaximal prime ideal P of a
PVD.

We begin by proving the following lemma.

LEMMA 6. Let R be an integral domain with quotient field K. If P is a
prime ideal of R such that Rp is a valuation domain and PRp=2P, then we have
P: KP:RP.

Proor. First, if we take any element xR\P, then p/x=PRp=P for any
pEP, and consequently pexP. Thus PExPZP, and therefore P=xP. Then,
by [12, Lemma 18], x is a unit of P: P. Hence x'€P: P for any x=R\P.
Now take any element /s of Rp with reR and s€R\P. Then, by the result
shown above, sT'eP: P and accordingly r/s€P: xP. Therefore we have RpS
P:xP. Next, we shall show that P:xPZRp Suppose not. Then we can
choose an element t=P: xP\Rp. Since Rp is a valuation domain, t& Rp implies
that t'ePRp=P. Then we get 1=tt"'=(P: xP) PSP, a contradiction, whence
we must have P: PSS Rp.  Thus our proof is complete.

THEOREM 7. If P is a nonmaximal prime ideal of D, then P: xP=Dp.
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PrROOF. By [7, Proposition 2.6], Dp is a valuation domain. Next, any PVD
is a divided ring, as noted in [3, p. 560], and consequently PDp=PF. Thus any
nonmaximal prime ideal P of D satisfies the two conditions descrived in Lemma
6, and therefore our assertion follows from Lemma 6.

REMARK 8. Following [6], a prime ideal P of an integral domain R is called
an “F-ideal” if Rp is a valuation domain and PRp=P. Using this terminology,
Lemma 6 says that if P is an F-ideal of an integral domain R with quotient
field K, then P: xP=Rp. Furthermore, the proof of Theorem 7 is based on the
fact that any nonmaximal prime ideal P of a PVD is an F-ideal.

In [11, Corollary 2.5], we showed that if P is a prime ideal of an integral
domain R with quotient field K, then dim(P:gP)=rankP. The following
corollary is an immediate consequence of Theorem 7.

COROLLARY 9. If P is a nonmaximal prime ideal of D, then we have
dim (P : xP)=rank P.

It is well known that if J is an ideal of a valuation domain V, then nf:\ll "
is a prime ideal of V (cf. [5, Theorem (17.1) (3)]) and furthermore if P is a
prime ideal of V properly contained in I, then PS fjl[ » (cf. [5, Theorem (17.1)
(4)]). In [7, Proposition 2.4], Hedstrom and Houston showed that if I is an ideal
of a PVD, then [:\11 " is a prime ideal. By virtue of [7, Theorem 1.4, it is
easily proved that [5, Theorem (17.1) (4)] is also valid for a PVD.

PROPOSITION 10. Let I be a proper ideal of D. If a prime ideal P of D is
properly contained in I, then PS (0311 n,

PrROOF. If not, then PZI™ for some integer m>>0. Then, by [7, Theorem
1.4], MI"SP. Now, since PCISM, there is an element t€M\P. Then{I"SP
and (&P implies that /™S P, and accordingly ISP, a contradiction. This com-
pletes our proof.

In [11, Lemma 1.1 (5)], we showed that if I is an ideal of an integral
domain R and R’ is a proper overring of R, then I: R’ is an ideal of R and is
contained in I. It is natural to ask that if P is a prime ideal of R, does this
imply that P:rR’ is a prime ideal of R? In general, P: xR’ need not be a prime
ideal of R (Example 12), but in the case R is a PVD, the answer is yes.

THEOREM 11. Let D’ be a proper overring of D and let P be a prime ideal
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of D. Then

(1) P:pD’ is also a prime ideal of D and is contained in P.

(2) If D’SP: P, then we have P: D’ ==P.

(3) If P:xP is properly contained in D’, then P:pD’ is properly contained
in P. Moreover, D’—P:pD’" gives a one-one correspondence between the set of all
prime ideals P’ properly contained in P and the set of all overrings D’ of D
properly containing P: gP.

Proor. (1) By [11, Lemma 1.1 (5)], P:,D’ is an ideal of D and is con-
tained in P. Hence we need only show that P:pD’ is a prime ideal of D.
Suppose that rseP: D', séP:pD’ with », s€D. Since s&P:pD’, sti&P for
some t<D’. But then, we have (»s)(tD")SrsD’S P, since tD’SD’. Then (st)(rD’)
S P and st¢& P implies that »D’S P, whence r<P:pD’. Thus P:pD’ is a prime
ideal of D, and our proof is over.

(2) By [11, Lemma 1.1 (6)], we always have P=P:,(P:xP). Hence, if
D'SP: xP, then P=P:,(P:xP)SP:,D'SP, whence P=P:,D’.

(3) If P:xPCD’, then there exists an element x=D'\P:xP. Since x&
P: P, we can find an element p=P such that xp&P. Then xp&EP and xeD’
implies that p&P:pD’, whence pP\P:p,D’. Thus P:,D’#P as we wanted.
Next, we shall show that if D’ is any overring of D properly containing P: P,
then D’ is of the form P’: P’ with some prime ideal P’ properly contained in
P. TFirst, we note that P:xP is a valuation domain by [7, Proposition 1.2].
Moreover, by Theorem 7, we have P: xP=Dp. Hence, we get D'=(Dp)ppp=Dp
with some prime ideal P’ properly contained in P. Using Theorem 7 again, we
have D’=Dp =P’ : gP’, as we required. Next, we shall show that if D'=P’: P’
with P'CP, then P:pD’=P’. By [11, Lemma 1.1 (6)], P'=P’: ,(P’: xP’) and
moreover, by Corollary 5, D:p(P’:xP’)=P’. Hence it follows that P’'=
P':p(P': gPY=P" : ,D'SP:,D'SD: (P : xP)=P, whence P:p,D'=P’. Con-
versely, if P’ is a prime ideal of D properly contained in P, then, by Theorem
7, P': xP'=Dp is an overring of D properly containing P:xzP=Dp, and fur-
thermore we have P'=P: ,(P’: ¢ P’), as shown above. This completes our proof.

ExaAMPLE 12. Let R=F[ X3, X*]CR'=Fk[X? X?], where k is a field and X
is an indeterminate over k. Then the quotient field of R is the field 2(X) and
so R’ is an overring of R. Set P=RX*+RX* and note that P is a prime ideal
of R since R/P=Fk. We claim that P: R’ is not a prime ideal of R. To see
this, first observe that X®&P: zR’. In fact, X*X*=X°¢&P. But X°cP: R’ since
X X?=(X*?eP and X°X?*=(X®*<P. Thus we have X?*&P: xR’ and (X?)?2e
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P:pR’, and our claim is established.
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