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NORMAL HIGHER WEIERSTRASS POINTS

By

R. F. Lax

Let X denote a compact Riemann surface of genus g>l and let Q denote

the sheaf of sections of the canonical bundle on X. Put Dn=dimcH°(X, QRn)

=(2n―l)(g―l)+dln. An integer r is called an n-gap at P if there exists <?e

H＼X, QRn) such that ord.Pa=y―l. At each point Pel there is a sequence of

Dn re-gaps

l=UP)<UP)< - <TDn(P)^2n(g-l)+l

and P is called a Weierstrass point of order reif yDn>Dn (cf. [1, 2]). The re-

weight of P, denoted PT≪(P),is defined by JFB(/>)=2f=iG'i(/J)-0 and one has

HWi(F)=g*-g and HWn(F)=gD*n forn^2.

A Weierstrass point P of order n is called normal if the sequence of n-gaps at

P is 1, 2, ･･･,Dn―1, Dn+l or, equivalently, if the re-weight of P is 1.

The "classical" Weierstrass points are the Weierstrass points of order 1

and it is well-known that a generic Riemann surface has only normal classical

Weierstrass points. The analogous statement for higher order Weierstrass points

failsfor genus two by virtue of the following result.

Proposition 1. Let X be a hyper-ellipticRiemann surface ofgenus g^2 and

let P denote one of the 2g+2 (hyperelliptic) classical Weierstrass points on X.

Then Wn(P)=g(g+l)/2 for all n^2.

Proof. Til

It follows from the Proposition that if X is any compact Riemann surface

of genus two, then X must have weight three Weierstrass points of order n

for all n^2. Our goal in this note is to show how one may use results of H. B.

Laufer [3] to show that if X is a generic compact Riemann surface of genus

g>2, then X has only normal Weierstrass points of order n for all n.

Following Laufer, for PeX, let dn(P) denote the maximal order of a zero

at P of sections in H＼X, QRn) and let wn(P) denote the smallest nonnegative
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integer such that there does not exist aGH°(X, QRn) with a zero at P of order

wn(P). Thus, dn(P)-＼-lis the largest n-gap at P and wn(P)+l is the smallest

positive non-n-gap at P. Then Laufer [3] proved the following important result.

Theorem 1. Let X be a compact Riemann surface of genus g^2. Let

■k'.T-^T be the complete effectivelyparametrized deformation of X. Let PeX

Put

G^iQtEl, Q near P: d1(Q)=d1(P)}.

Fix n^l.

(1) Put G={Q^X,Q near P: dn(Q)=dn(P)}. If n^2, dn(P)=2n(g-l) and

dl(P)=2g―2, then G coincides with Gu In all other cases, G is a submanifold

of 1 of dimension 3g―3+Dn ―dn(P).

(2) Put W={Q(El, Q near P: wn(Q)=wn(P)}. Suppose wn(P)^Dn-l. If

n^2, u/B(P)=(2n-2)(g-l)―1 and d1(P)=2g-2, then W coincides with Gx. In

all other cases, W is a submanifold of 1 of dimension 3g―2―Dn-＼-wn(P)-

Let V―>T denote the "universal" curve over the Teichmiiller space para-

metrizing Teichmiiller surfaces of genus g. In [4], we defined complex sub-

spaces Wrk{Kn) of V. Although we only considered k^Dn in [4], the definition

makes sense for any value of k and we make no restrictionhere. (Also, we

take this opportunity to point out that the two "+3"s on page 3 of [4] should

be "―3"s.) It is easy to see, as in [5], that the underlying sets of the W＼{Kn)

satisfy the following:

(1) If k£Dn, then

＼Wrk(Kn)＼= {(t,P): at FgF,, there are at least r non-n-gaps £k}.

(2) If k^Dn, then

＼Wrk(Kn)＼= {(t,P): at PgeF£, there are at least r n-gaps >k}.

We will write Wk(Kn) for W＼(Kn). As a consequence of Laufer's Theorem,

we have

Theorem 2.

(1) Suppose k£Dn and k±(2n-2)(g-l). Then W k(Kn)＼W u-^K11), if non-

empty, is smooth of pure dimension 3g―3―Dn-＼-k. If k=2(n―2)(g―l), then

W'k{Kn)＼(W'k.1(Kn)＼JWtg-t,(K))tif nonempty, is smooth of pure dimension 3^-3-

Dn+k, while if a component of Wk(Kn)＼Wk-i(Kn) is contained in Wzg-z{K), then

that component has dimension 2g―l.

(2) Suppose k^Dn and k±2n(g-l). Then Wk(Kn)＼Wk+l(Kn), if nonempty,
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is smooth of pure dimension 3g-3+Dn-k. If k=2n(g-l), then Wk(Kn)＼{Wk+1{Kn)

＼jWZg-2{K)),if nonempty, is smooth of pure dimension 3g―3+Dn―k, while if a

component of Wk(Kn)＼Wk+i(Kn) is contained in W2g-2(K), then that component

ha.5i?dimension 1o―1.

PROOF. The only point which may not be obviousis the observation that

Wo.e-iiK)has oure dimension 2a―1 bv T5, Thm. 21.

Corollary 1. Suppose g^3. If k^Dn, then dim Wk(Kn)<3g~-3.

Proof. Suppose k=(2n-2)(g-l)<Dn and a component of Wk(Kn)＼Wk-^K71)

is contained in WZg-z(K). By Theorem 2, this component has dimension 2g―l

and thisis less than 3g―3 since g is greater than two. Now, every component

of W2(Kn) has dimension less than 3g―3. It follows from this and Theorem 2

that every component of W3(Kn) has dimension less than 3g―3 and, continuing

this reasoning, it is then easy to see that every component of Wk{Kn) for k<Dn

has dimension less than 3g―3.

Similarly, if k=2n(g―1) and a component of Wk(Kn)＼Wk+i(Kn) is contained

in WZg-z(K), then that component has dimension 2g―l<3g―3. Now, every

component of W2ntg-i>(Kn) has dimension less than 3g―3. It follows from this

and Theorem 2 that every component of Win(.g-i)-i(Kn)has dimension less than

3g―3 and, continuing in this manner, every component of Wk(Kn) for k~>Dn

has dimension less than 3s―3. M

Our main result is

Theorem 3. Suppose g^3. Then a generic Riemann surface of genus g has

only normal Weierstrass points of order n for all n^l. In particular, for all

n^l and all g^3, there exist compact Riemann surfaces of genus g with normal

Weierstrass toints o f order n.

Proof. By Corollary 1, no component of Wk(Kn)＼Wk-＼(Kn), for k<Dn can

dominate the Teichmiiller space. Hence on a generic Riemann surface of genus

g, the firstnon-n-gap at each Weierstrass point of order n must be Dn. Also,

for k>Dn, no component of Wk(Kn)＼Wk+i(Kn) can dominate the Teichmiiller

space. Hence on a generic Riemann surface of genus g, the last n-gap at each

Weierstrass ooint of order n must he /).+]. ■

We now consider the case g―2.

＼Wz(Kz)＼= ＼W2(K2)＼ = ＼Wt(K)＼ (and we

In this case, as we observed in [4],

showed that W3(K2) is not reduced).
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The key observation,in terms of Laufer's Theorem, when g=2 is that now

2^―l=3g―3. Now, if n^2, then each of the six classicalWeierstrass points

on a curve of genus 2 has weight 3 as a Weierstrass pointof order n and the

total weight of Weierstrass points of order n on such a curve is 2(2n―I)2.

Note thatif n^3, then the totalweight of Weierstrass points of order n is

greater than 18 and so there must be Weierstrasspoints of order n which do

not belong to WZ{K). By applying Laufer's Theorem as in the proof of Corol-

lary 1, one may see that dimWk(Kn)＼W2(K)<3g-3=3 if k^Dn, and so by

reasoning as in the proof of Theorem 3 we obtain

Theorem 4. For n^3, a generic Riemann surface of genus 2 has six Weier-

strass points of order n of weight 3 each and 2(2n―I)2―18 normal Weierstrass

points of order n.

To conclude, we will indicate how the theory of Weierstrass points on

singular curves may also be used to demonstrate the existence of normal higher

order Weierstrass points. Suppose Xo is an irreducibleprojective curve of arith-

metic genus g with only nodes and cusps as singularities. Let a) denote the

sheaf of dualizing differentialson Xo. By [9] there exists a flat proper map

tt: S―>C from a smooth surface S to a smooth curve C and a point cgC such

that Xo is the fiber of it over c. Restricting to a neighborhood of c we may,

and will, assume that all other fibers of it are smooth curves. Then S is a

family of Gorenstein curves over C and there exists a bundle Q)S/C of relative

dualizing differentialswhose restrictionto Xo is o>.

Now suppose there exists a point PgX0 which is a normal Weierstrass

point of a)71in the sense of [6]. Then by [7] for all points c'^C sufficiently

close to c, there will be a (normal) Weierstrass point of weight one of the n th

tensor power of the canonical bundle on the smooth curve which is the fiberof

x over cr.

The idea here is that if Xo is a simple curve, for example a rational curve,

then the higher order Weierstrass points on Xo will be computable, at least in

theory. To illustrate this, let Xo denote a rational curve with three simple

cusps. Then it was shown in [8] that each of the cusps is a Weierstrass point

of order 2 of weight 35 and that there are three normal Weierstrass points of

order 2. By the reasoning described above, this gives an alternate proof of

the existence of normal Weierstrass points of order 2 on a smooth curve of

genus 3.
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