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SOME PROPERTIES ON TESTS BASED ON

THE BAYESIAN CONFIDENCE INTERVAL

By

Michikazu Sato

Abstract. In testing statisticalhypotheses, quite generally, if we

admit the result of Neyman-Pearson (apart from the interpretation of

them) in case that we specify n in advance and admit the likelihood

principle, the stopping rule that "continue the experiments until

rejecting the null hypothesis" is closed. As a matter of fact, a

stronger phenomenon happens, and we shall show it with some

examoles.

1. Introduction

Let Xi,X2,... be independently and identically distributed (i.i.d.)random

variables with a normal distribution N(0,1). We observe them in the order

XVX2,... Let the prior distributionof 0 be the Lebesgue measure (improper in

this case). When we observe X],...,Xn, the posterior distributionis N{Xn,＼lri),

where Xn = X"=iX} In. Let 0 < a < 1 and define k by P{＼Z＼> k) = a , where Z is a

random variable with a normal distribution7V(0,l).Then, the Bayesian 100(1 -a)

percent confidence interval is given by [Xn -(k14n),Xn + (k14n)]. Consider a

significance testof a hypothesis Ho :0 - 0 .The Bayesian test with a significance

level (X is that we accept Ho if 0 = 0 fallsinto the confidence interval and that

we reject Ho otherwise. Note that the significance level here is not in the sense

of Neyman-Pearson's. In this case, the criticalregion is {|X,J> k14n), so if we

specify n in advance, the result coincides with that of Neyman-Pearson. In

application,it usually holds. Note thatin the standpoint of usual Bayesian, we do

not have to specify n in advance (Akaike [1], however, mentions this respect

critically.).Tests like this method are described in Lindley [10], [11] and

Shigemasu [15]. In [12], [13], however, Lindley seems to have abandoned this

standpoint and have taken the standpoint of Bayesian tests of Jeffreys [7]. In
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Shigemasu [15], both standpoints are described. Tests of Jeffreys are free from

the problem as will be mentioned later(Cornfield [5] p. 581).

Now consider the stopping rule that "continue the experiments as long as

＼X＼<kl4n holds and stop when it is violated." Then, since this stopping rule is

closed (for the definition,see Section 2), if we take sufficiently small (X and

make these experiments, we can make the supporters for thistest believe that Ho

is not true, with probability 1 irrespective of Ho being true or not. This fact is

described in Robbins [14], Lindley [9] (There is a mistake in this paper. See

Bartlett [2].), Cornfield [5], Berger and Wolpert [4], Basu [3]. As a matter of

fact,quite generally, if we admit the result of Neyman-Pearson (apart from the

interpretation of them) in case that we specify n in advance and admit the

likelihood principle, such a phenomenon happens. We call this fact WSC as will

be mentioned later.Moreover, a stronger phenomenon happens. We see from the

above that the result of the test in the standpoint of Neyman-Pearson and the

likelihood principle are quite incompatible. Note that thisis not the difference of

interpretations on the same result.

2. Main concepts

Let X,,X2,... be a sequence of random variables. They are not necessarily

real-valued nor i.i.d.Assume that the distributionof (X,,X2,...) is defined for

each parameter 8 and we observe them in the order X,,X,,.... We denote

X* :=(X,,...X(I).A stopping rule G is said to be closed at 6 = 0O if

Pe ("the random stopping time based on (J " < <≫)=1.

When we say only "(J is closed," it means that <T is closed for all 0, and when

we say "(7 is not closed," it means that G is not closed for some 0. Similar

usage is adopted for the following WSC, SSC and ASC. In the sequel, we denote

a null hypothesis by Ho and an alternativehypothesis by H,. We assume that, for

each n, a criticalregion Rn is given when we observe X*. When we consider a

randomized test,we transform it to a nonrandomized testby introducing random

numbers. Then we take the following definitions.

Definition 2.1. A sequence of tests{RJ is said to be weakly sophistically

closed (or WSC for short) at 6 = 9Q if

Pa (X* e R,, for some n)=＼.
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Definition 2.2. A sequence of tests {RJ is said to be strongly sophistically

closed (or SSC for short) at 9 = 0O if

^(X;e/?,, i.o.)=l,

where "i.o." means "infinitelyoften."

The reader might think that SSC is an empty, abstract and only theoretical

concept because we cannot experiment infinitely.But, there is a sophistical

meaning in SSC as follows:

Now, I want to insist that Ho is not true but there have already been a

predecessor's experiments. Even if the results are unfavorable for me, I cannot

ignore them, but I can make supplementary examinations. So, if Ho is rejected by

the results of the predecessor's, I myself do not experiment, and insist, " Ho is

rejected by the resultsof a predecessor's experiments". If Ho is accepted by the

results of the predecessor's, I make supplementary examinations. I continue to do

them until Ho is rejected, and insist " Ho is rejected by the results of my

supplementary examinations added to a predecessor's experiments." Then it

raises a question whether I succeed (that is, end finitely)or not. As for this

question, the following assertion holds.

Let X be a family of closed randomized stopping rules which satisfiesthat

there exists a sequence {cry}°°=lc X such thatif we denote the random stopping

time based on a} by Mj (generally a random variable), by appropriately

determining a conditionaljoint probability distributionof stopping the experiments

for any given observed value,

(2.1) Mm M
■

oo

Pe -a.e.

holds. Then, the following (1) and (2) are equivalent.

(1) {/?,} isSSCat 0 = 6O.

(2) For any stopping rule of a predecessor's in X ,1 succeed in the above with

P6a probability 1.

In particular, let n, < /?, < ...,ny. e ^Vand let o^. be the stopping rule

corresponding to experimenting exactly rij times. Put £ = {cr/ JJl,, then (2.1) holds.

Note that the assertion above does not only clarify the sophistical meaning of

SSC, but also is used in order to show SSC.

For n, < n-, <...,ni e N, let

K
r (n = *;)

(n ± n- for all j)
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Let us denote {/?*}~=1by {/?* }°°=1and call it a subsequence of {/?,}. We can

also regard it as a sequence of tests based on YpK,,... where

Definition 2.3. A sequence of tests {/?n} is said to be all-subsequentially

sophistically closed (or ASC for short) at 0 = 0O if all subsequences of {RJ are

SSC at 0 = 6n.

Itis easily derived from the assertion above that thisis equivalent to that all

subsequences of {RJ are WSC at 9 = 6Q.

By definition,ASC implies SSC, and SSC implies WSC.

In the subsequent discussion we shall not explicitly distinguish between a test

and a sequence of testsunless there is a possibilityof misunderstanding.

3. An exact test and an asymptotic test

In the following discussion, we assume 0 < a < 1.

Definition 3.1. Fix n. A test that satisfies the following assumptions (3a) and

(3b) is called a left-sided exact test based on Tn with Neyman-Pearson

significance level (X.

(3a) Tn = gn(Xl,...Xn) is a real-valued random variable, and the distribution of Tn

does not depend on 9 under Ho.

(3b) There exists tn such that,

■ (i) We reject Ho if Tn <tn, and accept Ho if Tn >?,.

(ii) We reject Ho with a constant conditional probability independent of

observed values if Tn =tn.

(iii) For 9 under Ho, Pe (reject H0)=a.

Then t is called a critical point.

Definition 3.2. Fix n. A testthat satisfies(3a) and (i),(iii)of (3b) is called

a left-sided exact test based on Tn except on a critical point with Neyman-

Pearson significancelevel (X .

Definition 3.3. A test that satisfies (3a) for each n and the following (3c)

and (3d) is called a left-sided asymptotic test with an open critical region based

on Tn with Neyman-Pearson significance level OC.

(3c) The distribution of T, under Hn converges weakly to a probability
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distribution A whose distributionfunction is continuous.

(3d) There exists t^ such that,

(iv)We reject Hoif Tn<tx, and accept Ho if Tn > C

(v) A((-°°,O)= ≪.

Then t^is called a criticalpoint.

81

Definition 3.4. In Definition 3.3, when we replace (iv) by the following

(iv)', the testis called a left-sided asymptotic test with a closed criticalregion

based on Tn with Neyman-Pearson significance level OC.

(iv)' We reject Ho if Tn<tx, and accept Hn if T>tx.

Usually, so far as SSC or ASC is concerned, the testsof Definition 3.1 to 3.4

are equivalent, but there are delicate problems. We shall now clarify them.

THEOREM 3.1. Under the assumption (3a), the following (1) and (2) are

equivalent.

(1) For any (X, any left-sided exact test based on Tn with Neyman-Pearson

significance level (X is SSC at 0 = 60.

(2) For any (X, there exists a left-sided exact test based on Tn with Neyman-

Pearson significance level (X that is SSC at 0 = 00 .

Proof. It is obvious that (1) implies (2). To prove the converse, we have

only to compare a criticalregion of level (X with that of level OC/2 of (2).

It is noted that the similar results to Theorem 3.1 hold for ASC and WSC.

THEOREM 3.2. Under the assumptions (3a) and (3c), (1) and (2) in Theorem 3.1

and the following (3) to(8) are equivalent.

(3) For arcy a, any left-sided exact test based on Tn except on a criticalpoint

with Neyman-Pearson significance level (X is SSC at 6 = 0O.

(4) For any (X, there exists a left-sided exact testbased on Tn except on a critical

point with Neyman-Pearson significance level (X that is SSC at 6 = 60.

(5) For any CC, any left-sided asymptotic test with an open criticalregion based

on Tn with Neyman-Pearson significance level (X is SSC at 9 = 60.

(6) For any (X, there exists a left-sided asymptotic test with an open critical

region based on Tn with Neyman-Pearson significance level (X that is SSC at

e = e0.

(7) (5) where "open" is replaced by "closed" holds.
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(8) (6) where "open" is replaced by "closed" holds

Proof. The proof that (5) and (6), (7) and (8) are equivalent, respectively,

is similar to Theorem 3.1.It is obvious that (6) implies (8), (3) implies (1), and

that(2) implies (4). If we show that(4) implies (5) and (8) implies (3), the proof

is completed. First, we shall prove that(4) implies (5). We take a criticalpoint

tn{a) and t^ia) of (4) and (5), respectively. For 0 under Ho,

(3.1) limPe(Tn <too(a/2)) = a/2

holds. Hence, there exists v such that

a 13 < PJTn < c(a /2)) < a forn>v

Hence,

(3.2) C(a/3)<C(≪/2)<C(≪) forn>v

and we get (5). We get that(8) implies (3) by noting

tn(a/3)<tOB(a/2)<tn(a) forn>v

The similar result to Theorem 3.1 holds for ASC.

Remark 1. In order to prove non-WSC, we cannot disregardcriticalregions

of finiten's.Hence Theorem 3.2 does not hold forWSC.

Remark 2. Under only (3a), (4) does not imply (3). For a counter-example,

let X],X2,... be i.i.d.random variables with a uniform distribution£7(0,1)under

Ho and Tn =0. Then, the criticalpoint tn(a) is equal to 0. Both Rn := [Xn < a}

and Rn :- {Xt < a] are left-sided exact testsbased on Tn except on a criticalpoint

with Neyman-Pearson significance level (X. But {Rn} is ASC at Ho and {Rn} is

non-WSCat Ho.

Remark 3. In Definition 3.3, if we exclude the assumption in (3c) that the

distributionfunction of X is continuous and exclude the sign of equality in (iv)

and replace (v) by "A test function <p based on T satisfies f (p(t)X{dt)= a.",

then, we get into trouble as follows: In the assumptions of Section 1, denote the

distribution function of 7V(0,l) by O. Under Ho, O(VnXn) is distributed as

£/(0,l), hence Tn := [＼+ R(4nXn))ln is distributed as U(＼ln,2ln) which

converges weakly to the Dirac measure on 0. Hence in the definition above,

which is milder than Definition 3.3, we always accept Hn in a left-sided
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asymptotic test based on Tn, while on the other hand we always reject Ho in a

left-sided asymptotic testbased on -Tn. Note that,in the proof of Theorem 3.2,

the assumption thatthe distributionfunction of A is continuous is used in (3.1) and

the strictinequality in (3.2). Also note that when we say weak convergence,

generally, the limit is not necessarily a probability distribution,but in such cases,

(3.1) does not necessarily hold and we get into trouble, hence we exclude such

cases.

Remark 4. In Definition 3.3, the distributionfunction of Tn is not necessarily

continuous under Ho, hence the sign of equality in (iv) is not generally

nonessential. For example, under Ho, let Xi,X2,... be i.i.d.random variables with

U(0,l) and

1/2

(nXn + n-2)/2(n-l)

if X, < 1/2,

if 1/2 < X, andX,,< XIn,

if 1/2 < X. andl/n< X,,.

Then, the limiting distributionof Tn is C/(0,l) under Ho. Let Neyman-Pearson

significance level (X be 1/2. Then, the criticalpoint t^ of the asymptotic testis

equal to 1/2 and if we take the open criticalregion, which coincides with the

exact testin this case, the test is non-WSC at Ho, but if we take the closed

criticalregion, the testis SSC at Ho because

PHo(Tn<U2 i.o.)= PHq(Xl<l/2) + PHq(X, > 1 /2)PHo(Xn <l/n i.o.)

= 1.

where the last equality follows from the Borel-Cantelli lemma.

4. Criteria for SSC and ASC

In this section, we shall consider criteriafor SSC and ASC. Note that the law

of iterated logarithm (Feller [6]) is useful to judge SSC, but useless to judge

ASC.

THEOREM 4.1. For a sequence of tests {/?,},the following assertions hold.

(I) If there exist £> 0 and mo e No := TV u {0} such that for any m > mQ and

X*n = jc*n,there exists n{> m) satisfying

then {R＼ is SSC at 0 = 90.
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(2) There exist e > 0 and mo e No such thatfor any m > mo and X* = x*,

liminfP^eflJx; = *:>*£,

IIioo

then {RJ is SSC at 0 =
^

0

In this theorem, the conditional probability for m = 0 means the unconditional

probability.

Proof. Denote P = Pe and denote the sample space of Xn by (//,,,,o/n).

(1) Step 1. For m0 = 0,, we shall prove WSC at 0 = 0Q. For me No and x*,

the least n that satisfies the assumption is denoted by Nm(x*). We easily get

measurability of Nm. We can assume that j^'s are mutually disjoint by giving a

registration number to each element if necessary. Furthermore, by adding a

symbol *n which denotes a value that Xn never takes, to f?n, we identify a finite

sequence (xi,xM,...,xj)e.Y[[=i%'k with an infinite sequence (*,,*2,...,*/_1,jc;,jc/+1,

x. *
■

,
7+1' /+2 ' ･ ･ ･ )^TVk=i^k- *n t^e subsequent discussion, we shall not explicitly

distinguish between a random variable and its value. Let

Nm=NJXZ) for meN0

M() := 0, Mn := NM
(

for n e N.

We easily get Il~=1=3/-measurabilityof Mn. Define a sequence of random

variables{Yn} by

^i:=(^M,,_,+P^A/,,_l+2'---'^Mn)'

where Yn takes values of 0,7=1̂ ,- Note that Mn_, depends on X,,...,XM . We

easily get that Yn is IT^r^ ~^^X,=＼K -measurable, that is, ^,~'(n~=1.^)

cll:=1^. Denote Y* :=(Y{,...,Yn).Then Y*=X*Mu. Regard {/?Mb}"=1 as a

sequence of testsbased on 1^*. Then,

P(X* e Rn forsome n) > P(Y* e RMu forsome n).

Hence, we need only prove

P(Y e RM forsome n) = l.

Generally, for {A(I}~=I,if

/>(A,,|Al'n---riA;,_1)>£>0 for all n
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then P(＼J~=iAn) = ＼,where the left-hand side in case of n = 1 means unconditional

probability and if P(B) = 0, define P(A＼B) arbitrarily. We easily get it by

considering the complementary event. Fix n and denote

B:={Y*£Rt,...,Y*£R^,},

then we need only prove

(4.1) PtfeRM＼B)>e

We can assume P(B) > 0. Since

m,. Let

M, is constant by the definition,we denote it by

Btl,2,..,,,n-={M2 =m2,...,M,, =m,,X tRMl,X *rmh)-

Then 5 = Xm,, ,,Bm, ,,
■>
where X means the direct sum, and the summation is

taken over allpossible values of (M2,...,M ). Generally,

PU＼lBk)

k

= ZP(A＼Bk)/lBk
k / k

holds if ^kP(B.)>0. Hence, in order to prove (4.1), we need only prove

(4.2)

We get

(4.3)

P(Y,*eRMn＼Bm2, ,)>£

P(Y* e RM) B,lh_mn) = />(< e Rm) fl
Mb

)

= E[p(X:nGRl>Jxlj＼Bnh_mii]

The last equality holds because Bm^
m

is a set determined only by X* . It is

essentially the definition of the conditional probability.From the assumption and

the definitionof M , we get

E＼P(X* e Rm | X*
_,)

| 5m2
,,

]
> E[e ＼Bm_ ,,,

]
= e

From (4.3) and the above, we get (4.2), hence {RJ is SSC at 9 = 0O.

Step 2. For arbitrary m0, we shall prove that {RJ is SSC at 0 = 0Q. We need

only prove that, for any fixed i(>m0), if a predecessor experiments exactly £

times, I can reject Ho by making supplementary examinations (Peo-a.e.). In

order to show the above, we need only prove that there exists m0 > i such that

{RA
+(I_,}"=|

is WSC at 0 = 0O. In the notation of Step 1, the possible values of Af,

are 1 + 1J + 2,..., hence we can take m0 > £(> m0) such that

6:=P(N,=mQ)>0.
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Denote e := eS(> 0). Consider {/?,}:= {/?,-
+(,_,}~=i,

which is a subsequence of {/?,}.

We can regard it as a sequence of tests based on Z, := X* ,Z2 := X. +1,Z3 :=

X. ,, Denote the indicator of A by I.. Then, we get

P(Z,eR,) = P(X.tev=£h<eR.X)i

£

where the second inequality follows from the assumption and the definition of TV,.

Hence, for m = 0, if we let n = 1, P(Z, e /?,)>£ holds. For m = 1,2,...,for any

given value of Z* := (Z,,...,Zm) = X*
+m_,,

if we let n = A^(.
+m_,

―m0 +1, we get

>£>£.

Hence, for a sequence of tests {Rn} based on {ZJ, the assumption holds for s

instead of £ and mo=O. Hence, from Step 1, we get {RJ is WSC at 6 = 90.

This completes the proof of (1).

(2) For any subsequence of {RJ , the assertion of (1) for ell instead of £ is

satisfied.Hence we get (2).

THEOREM 4.2. Let Xl,X2,... be indepedent random variables and let

Tn = gn(Xn) be real-valued and Rn z>{Tn < t0}, where t0 is independent of n.

Assume the following (4a) and (4b).

(4a) There exists t{< t0 such that

UmmfP9o(Tn<tl)>O

71―>°o

(4b) There exists m0 e No such thatfor any m>m0 and xvx2,...,xm( x> is a value

that Xj can take),

gH(xl,...,xm,Xm+l,...,XH)-Tn->0 (PeJ (/i->oo)

holds in the sense of convergence in probability

Then, {RJ is ASC at 0 = 60.

Proof.

Pen(Tn<tQ＼X{=xl,...,Xin=xJ = Pe()(gn(xl,...,xm,Xm+l,...,Xn)<t0)

>Pel(Tn<ti)-Pe(gn(xl,...,xm,Xm+l,...,XJ>t0-ti)
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holds. Take lim inf and we can reduce it to Theorem 4.1.

Remark. We must not replace(4a) by

(4a)' lim MPeo(Tn <tQ)>0

n―±00
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For a counter-example, X,,X,,... be independent random variables and let

Pg (X, eA) = ae(0,l) and

H
-＼ln

0

if X, e A

otherwise,

fo:=O, Ra:=[Tn<0).

Then, (4a)' and (4b) hold but itis non-WSC at 0 = 90 because

Pe (Tn < 0 for some n) = a.

Example 4.1. (1)

assumption (4b) holds.

Tn = an X"=i Xj and lim,,^^ an = 0 implies that the

(2) Let Xl,X2,... be i.i.d. and Rn z>{4nXn < tQ} and assume that one of the

following (4c) to (4e) holds at 0 - 0O.

(4c)

(4d)

Ef)oX] <0<VareoX, < <~

-oo<EflX,<0.

(4e) X{ is distributed as a Cauchy distribution.

Then, {/?,} is ASC at. 0 = 0O.

(3) The example in Section 1 is ASC.

(4) Let Xi,X2,... be i.i.d. and Rn = {4nXn <f0} and assume 0<Ee Xy <<*>. Then

{Rn} is non-SSC at 0 = 0Q. For further details, this example satisfies

P9o(4nXH<to i.o.) = 0.

(5) In the assumptions of (4), if X{ is distributed as a normal distribution at 9 - 90

and E0()X] >?0,then {RJ is non-WSC at 0 = 0O.

Indeed, we can easily get (1) to (4) by using the central limit theorem, the

strong law of large numbers, and the reproducibility of a Cauchy distribution. We

shall prove (5). Let X{ be distributed as N(%0,cf2) at 6 = 90. We may assume

(7 = 1 and tQ > 0. Let Zy.:= Xf -£,,<[;,:= £0 - r0(> 0), Yi := Z,.- £ Then, we get

Rn ={4nZn < tQ --Jn^0] cz{4nYn < 0}. Since F.'s are i.i.d. random variables with

N(6,l), we need only prove that, if X- 's are i i.d. random variables with
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W(0,l),and

then R =

then
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Ho:0 = eo, H,:0 = -0o (0O>O),

[4nXn < 0} is non-WSC at Ho. Let the prior distributionbe

Rn =
{p(9=e0

ix,,)<l}

holds. Hence, from Cornfield [51 p. 581, itis non-WSC at Hn

Example 4.2. In multinomial trials,if we specify Neyman-Pearson

significancelevel a, the usual j2-testis ASC. We can get it from Theorem 4.2

or Koike [81.

Theorem 4.3. Let X,,X2,... be i.i.d.and

Ho : X, is distributed as v0, H, : X, is distributed as v,,

where v0 ^ v,,v0 and v, are mutually absolutely continuous and assume

(4f) jdv0(logdv{/dv0)2 <~

Then, if we specifyNeyman-Pearson significancelevel (X and Rn be one of the

most powerful tests,then {R} is ASC.

Proof. Let Yn:=log(dv0/dv])(Xn). Then, the most powerful test is a

likelihood ratio test,hence it is a left-sided exact testbased on Yn except on the

criticalpoint. By using Theorem 3.2, we can easily reduce it to Example 4.1 (2).

Remark. It is not clear whether (4f) is necessary or not, but we must not

omit the assumption that v0 and v, are mutually absolutely continuous. For a

counter-example, let Ho : 0 = 1,H, :6 + 1. Then, the most powerful test with

Neyman-Pearson significance level (X is essentiallyunique and itis

R,,={Tn <V^ or KTJ

where Tn := maxlsj&i Xj. (Note thatif H, is composed of only one point,it is not

generally essentially unique.) If the prior distributionis dO/0 and take the

shortest Bayesian confidence interval, the test based on it coincides with Rn.

Since
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Pe=](X eR for some n) = a
j

1 + 1(1 -a1'"'-0

I n=l

1-a)"-1 =1,

{RJ is non-WSC at Ho. Also we easily get thatitis ASC at H,

89

The following theorem assures us thatin order to judge SSC or ASC when

thereis a nuisance parameter, we can reduce the problem to the case that the

nuisance parameteris known under some regularityconditions.

THEOREM 4.4. Denote the parameter space by Q = O' xQ2 and a parameter

by 6 = (£,?]).Regard J] as a nuisance parameter and consider the test

Fa ^0 an J ?]0.

(I) Assume that the following (4g) an^f(4h) ZioW.

(4g) Q2czRk and i)n=fln(X*) is a strongly consistent estimator of 7] at

7]= ?j0.Let ?) eO2*,112cO2*c^.

(4h) Tn =gn(X*) is independent of %,rj and real-valued, and if we fix 7], the

distributionof Tn is independent o/^eflj, and itsasymptotic distribution exists as

a probability distribution whose distributionfunction is continuous and we can

take t^:(0,1) x Q2* -≫R such that

V(-~, *..(<*,?;)))

and 77h-≫t^ia,!]) is continuous on Q,2*.

= a for all t]gQ2

Then, the following (1) and (2) are equivalent.

(1) For any (X, when 7]= T]0 is known, a left-sided test based on Tn with

Neyman-Pearson significance level (X is SSC at £= £0.

(2) For any a , the test Rlna):= {7; < t^a,^)} is SSC at £ = £0,rj= 7]0.

fllj In (I), if "a strongly consistent estimator", "SSC" are replaced by "a

(weakly) consistent estimator", "ASC", respectively, then the similar result

holds.

and

Proof. We shall prove that (1) implies (2). Fix a , then,

Jim c (a, r＼n)= /M(a, ?]), F^iIJo- a.e.

C(a/2,r|n)<c(a,?j0)
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hold.Hence,
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lim P^nn ( for all n > v, tx{a 12, r]0) < tx(a, fjn)) = 1

And we get

P^^T"<t^a^o) i-o.)

^P^Tn<t^<X/2^o) ^

- P4 ( not for alln > v, tx(a 12, T]o)< tx(a, fjn))

= P^ nu( for alln > v, t (̂a 12, rjQ)< tx(a, rjn))

-* I as v^> oo.

We can similarly prove that(2) implies (1).

(II) Fix (nJciV, n, < n9 <･･･. Then, there exists a subsequence {≪ } such that

and we can reduce it to (I).

limfj ->%, P£ , -a.e.,
Ik SI).'?!)

Remark. In (I),we must not replace "a strongly consistent estimator" by "a

consistent estimator". For a counter-example, let X,,X2,... be i.i.d. random

variables with N(%,(J2) where £<Q,<7>1 and Ho :£= 0,H, :£< 0. Let O be the

distributionfunction of N(0,l) and

if O(XJ<l/n,

otherwise.

Then, in the notation of Theorem 4.4, where rj= o,

A#I((-oo,r))= O(O-1(0/ff) for 0<f<l,

and

hold. Fix £,<7.Then, for a sufficientlylarge n,

Rj,a'G)z>{(Xfl- £)/cr< O"1 (1 /≪)}

holds. Hence, from the Borel-Cantelli lemma, {Rj,"^} is SSC. On the other hand

let 6" be a strongly consistent estimator of O and

if O(Xn)<l/n,

otherwise.
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Then, a* is a consistent estimator of (T and i?,<a):= {Tn < t^ia,^*)} is non-SSC at

£= 0 and any (7 if 0<a<＼/2 [By Chebyshev's inequality and the Borel-

Cantellilemma, we need only consider the case O(XH) > 1/n.].

EXAMPLE4.3. Let X,,X2,... be i.i.d.random variables with 7V(£,cr2).Then,

if we specify Nevman-Pearson significance level (X . Student's tests

(1)

(2)

Ho : £ = 0, H, : £ * 0 (the two - sided test)

Ho : £ = 0, H, : £ < 0 (the left - sided test)

are ASC. Note that the interpretation of the left-sided test is more realistic to

(3) H0:£>0, H,:£<0

than (2). This is ASC at £< 0, non-SSC at all £> 0 ,a > 0. We can prove it by

reducing it to the case that (7 is known (Example 4.1) by using Theorem 3.2 and
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