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(Dedicated to Professor Hisao Tominaga on his 60th birthday)

A noetherian ring is called 1-Gorenstein if it has the self-injective dimension at most

one on both sides. A well known example of artinian QF-3, 1-Gorenstein rings is the

triangular matrix ring over a QF ring, which is QF-2, that is, every indecomposable projec-

tive module has the simple socle. Conversely Sumioka [11] characterized such a ring as an

artinian QF-3, 1-Gorenstein ring with QF maximal quotient ring. But an artinian QF-3, 1-

Gorenstein ring has not necessarily the QF maximal quotient ring (see §4).On the other

hand, Sumioka's result is a generalization of Harada's characterization of artinian QF-3

hereditary rings, which states that a connected artinian ring is QF-3 hereditary if and only

if it is Morita equivalent to a triangular matrix ring over a division ring (cf. [3]). Our

results in the present paper are closely related to their results mentioned above.

First we shall deal with artinian QF-3 hereditary rings, which were investigated by

Harada [3] and Iwanaga [41. Our result is as follows.

Theorem I. Let A be a connected artinian ring which is not a QF ring. Then thefollow-

ing conditions for A are equivalent.

(1) A is a QF-3 hereditary ring.

(2) A is Morita equivalent to a triangular matrix ring over a division ring.

(3) A is a (leftand right) serial 1-Gorenstein ring.

(4) A is a QF-3, 1-Gorenstein ring with a simple projectiveleft module.

(5) A is a QF-3, 1-Gorenstein ring with a simple injectiveleft module.

Next we shall deal with the following problem:

(*) To investigate the length of the socle of an indecomposable projective module

over an artinian QF-3, 1-Gorenstein ring.

It is well known that every indecomposable projective module over A is distributive in

the sense of [1] if A is a representation-finite algebra over an algebraically closed field(cf.

[6]). So it seems that it is worth studying artinian QF-3, 1-Gorenstein rings over which

every indecomposable projective module is distributive. Our answer to the problem (*) is

given by the following theorem.
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Theorem II. Let A be an artinian QF-3, 1-Gorenstein ring, and P an indecomposable

projective A-module. If P is distributive,then |soc (P) ＼S-2.In particular if |soc (P) | =2,

then P has the smallest loose waist X such that top (X) =soc (E(P)/P).

Here a submodule X of a module P is called a loose waist if X satisfiesthe following

properties:

(i) X is local and essential in P.

(ii) If a submodule Y of P is local and essential in P, then either Yd XorXdYholds.

Note that we do not assume that X is non-trivial. By definition a local waist is a loose

waist, but the converse does not hold even under the assumption of Theorem II (see §4).

Moreover we shall construct a QF-3,1-Gorenstein algebra with a non-distributive indecom-

posable module P such that ]soc (P) I =3 (see §4).

The proof of Theorem I will be given in §2. Theorem II will be deduced from a more

general result which will be shown in §3. The finalsection §4 is devoted to some examples.

In particular we shall construct examples of QF-3, 1-Gorenstein algebras whose maximal

quotient rings have the self-injective dimensions equal to any given m for 2Sm^<x>.

Throughout the present paper, a ring means an artinian ring with identity whose

radical is denoted by N, modules are always unitary, and an algebra means a finitedimen-

sional algebra over a field unless otherwise specified. For a module M, we shall denote the

iniective hull of M by E(M), the socle of M by soc CM) and the top of Mby top CM).

§1. Preliminaries

In the present section we shall give general remarks which will be used in the follow-

ing sections.

The following was obtained by Iwanaga [4, Theorem 1] and Sumioka [12, Theorem 5].

Lemma 1.1. Let A he an artinian ring. Then the following conditions are equivalent.

(1) A is QF-3 and 1-Gorenstein.

(2) E(AA) is projective and E(AA) c [E(AA)/A] is an injective cogenerator.

Lemma 1.2. Let A he an artinian QF-3,1-Gorenstein ring, and Pan indecomposable pro-

jectivenon-injective A-module. Then E(P)/P is an indecomposable injective non-projective A-

module, and the canonical surjection:E(P)-*E(P)/P is the projective cover.

PROOF. See [13, Lemma 8.1] and recall the definition of 1-Gorenstein rings.

Let A be an artinian QF-3, 1-Gorenstein ring, and {Pi,- ■-,Pn} a complete set of non-

isomorphic indecomposable projective left yl-modules. Let S(=top (Pi), and /= {1,･ ･･, n).

We can define a map a=aA of / into / as follows:

If Pi is injective, then o(i)=j where S,=soc (Pi).

If Pi is non-injective, then a(i)=j where S,~soc {E (Pi)I Pi).
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The followinglemma willplay an important rolein§2.

Lemma 1.3. The map aA is a permutation for any artinianQF-3, 1-Gorensteinring A.

Proof. Let /'={ie/|i>,-=E(P,-)} and I" =1-1'. By Lemma 1.2 we have E{Sa(i))

=E(Pi)/Pi for iel". If a(i)ea(r)f)a(I"), then E(Sa{i)) is projective and we have a

decomposition E(Pi)=E(Saii))RPi, which is impossible. Therefore we see a(F)no(I")

= 0. In order to show our statement, itis sufficient to verify that the restriction maps a＼I'

and a＼I" are injections. The verification for a＼T is trivial.By Lemma 1.2 itis clear that

a＼r is an injection.

In the following sections we shall encounter the following type of exact sequences:

(･) 0 ―* P
A
^ Gic---0G≪

n

L ―> 0

So we shall let the following notation for the above sequence and we shall keep it

throughout the present paper. Let A,:P-*G,- be the composite map of A and the canonical

projection: dR ■■･ cG≫-≫G,-, and let 7r,-:G,―*L be the composite map of n and the

canonical inclusion: Gf―≫Gic ･･ ･ RGn. Furthermore let ^,=A,-^-: P-≫L, and W(P) =

n?=1Kerfofc).

Definition 1.4. We callW{P) the negligiblesubmodule of P with respect to the ex-

act sequence (*).

The followingis a key lemma for the proofs of Theorem I and Theorem II.

Proposition 1.5. Let A be an artinian ring. Consider the following exact sequence of

nonzero finitelygenerated A-modules.

(･) 0 -+P-±> Gi@---RGH -^ L ―* 0

where m^2 and k is an essentialmonomorphism. Assume thatP islocaland L is colocal.

Let S=soc (L), and V='n?=1 (Sif/f1)-Then the following statements hold.

(i) soc {PI W) = VI W=S(tl) for some /*^ 1.

(ii) The sequence (*)induces the following exact sequence.

0-* VlW^(VkJWkl)R---@{VknlWkn) -S-*0

Here we let ^=1^^).

Proof. Let Wt= Wkh V{= VkifW= S?=1c W{ and F= Ef=1c F,,Since P islocaland

k is an essentialmonomorphism, we have immediately,

(1) y/^0 for each /.

By the definitionof W and V, we have easily,
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(2) wk=w= wc＼vx=wnpk,
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(3) VX=Vf＼PX.

We have the epimorphism 7r=(7r,)which makes the following diagram commutative.

can. ＼ / n

(Gl/W1)R-R(GJWn)

Here can. means the canonical surjection.By (2) we have the exact sequence below.

0 -+P/W-++ (G1/W1)R---R(GJWn) -*+ L ―* 0

Let n: VI W^L be the restriction map of n. By the definition of Fand by the assumption

for L, we have NVjC Wt for each / where N denotes the radical of A. It follows from (1)

that {Vil Wi)ni=S for some /.Therefore it':V/ W-^S is an epimorphism. By (2) and (3) we

see Ker (n) = (PXnV)/W= Vk/WX. This shows our statement (ii).

It remains to show (i). Since L is colocal and S=soc (L), we have 0^V/W=

soc {PI W) by (1). Let A = (A,).Then we have the following commutative diagram for each

i.

A;

p

V "I
Tti

P/W-^Gi/Wi^L

Here p and pt are the canonical surjections.Suppose that VIW contains a simple sub-

module S' with S'£S. Let X=S'p~＼ Then Q=S%ni=XXini=X＼i/i for each i.This shows

Xc W and hence S' = 0, which isimpossible. Thus we have justproved our statement (i).

§2. Proof of Theorem I

In the present section we shall give the proof of Theorem I stated in the introduction.

Now Harada [3] established the equivalence of the conditions (1) and (2) in Theorem I.

Iwanaga [4] proved the condition (3) implies the condition (1). Thus the conditions (1), (2)

and (3) are equivalent. It is trivialthat the condition (1) implies the conditions (4) and (5).

Therefore we have only to show the implications (5) =*(4) and (4) =>(1). In the remainder of

the present section we assume that A is a connected basic artinian ring which is QF-3 and

1-Gorenstein, and we denote the radical of A by N.

From Lemma 2.1 up to Lemma 2.4 we assume moreover that A has a simple injective

left module /i= Si.

Lemma 2.1. Let P^I^O be the projective cover. Then we have HomA (Ph Q) = 0for

any indecomposable projectiveleft module Q which is not isomorphic to Pi.
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Proof. Obvious.

Lemma 2.2. Let I be an indecomposable direct summand ofE(AA)/A, and Q-*P'->P(I)

-≫/-≫0the projective cover. Then P' is indecomposable protective and E(P') =P(I).

Proof. By [5, Proposition 1],F is projective. Since /is a summand of E(A)/A, P(I)

is a summand of E(A). Hence P(I) is injective. Therefore we have E (P') =P(I) and P' is in-

decomposable by Lemma 1.2.

Lemma 2.3. Consider the exact sequence below

0-+S-* V->/-≫0

where S is simple, V is colocaland I isinjectiveindecomposable. If S is embedded into L, then S

is projective.

Proof. We have the following commutative diagram with exact rows:

0―>S― V ―≫ / ―> 0

I
'

･

O-+S^E(S)^E(S)/S―≫ 0

Since S is essential in V,/is a monomorphism and so is g. Since A is QF-3, E(S) is projec-

tive.It follows from [13, Lemma 8.1] that E (S)/S is indecomposable. Since /isinjective in-

decomposable, g is an isomorphism and so is/. Thus Vis projective. By [5, Proposition 1]

we conclude that S is projective.

Now we define indecomposable projective modules P,-and indecomposable injective

modules /,-inductively so long as S,-_i=top (P,-i) can not be embedded into A, as follows.

Let/!=Si=£(Si).

For i>l, we take the projective cover:

0 - Pt-* Ptf-i) - I*-i ^ 0.

Let ii=£(S() where S,-=top (P,-).

In fact,Pi is indecomposable projective by Lemma 2.2, and hence S,is simple and /,-is in-

decomposable injective. We assume that Hom^ (Sk, A)^0 and Horn,, (S,, vl)= 0 for each

i<k. Then it follows from Lemma 1.3 that Pi=P(/i), P2,･ ･･, P* are not isomorphic each

other, and we have J?(P,-)=P(i,--i)by Lemma 2.2 for 2-^iSk.

Next we define left modules V2, V3,･ ･･, V* as the pushout in the following diagrams.
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0 ->p.-^p(/._j)-^/.
1_^

o

p.o.

I

o _*$._* Vi ->/,_!― o

Here can.:P,―S,-is the canonical surjection.

Lemma 2.4. /≫ tte notation above, we have P(/!)=P1 /or lSi<k, F,=/,- awd

/,/soc(Ii)=Ii-ifor2^i<k. Moreover Viis uniserialfori^k.

PROOF. We assume that our statement holds forlSi<k― 1.Then we hsvePj+l=NPj

for iSi by the following commutative diagram with exact rows:

Ij) ―
I

―≫ 0

0― Pj -^P(/;-l)― /;-!― 0

Therefore Vi+i=PxlNPi+i is uniserial,and hence we have Ii+i=E( Vi+i). Thus the epimor-

phism: Vi+i^-Ii induces an epimorphism: /!+i-*/,-,and hence Pi is isomorphic to a direct

summand of P(Ii+1).

Suppose that Ii+＼is not local. Since P(/,+i) is injective projective by Lemma 2.2, we

have a decomposition

P(Ii+i) = QiR---RQs (s^2)

where Q{ is indecomposable projective and (?i=-Pi- Applying Proposition 1.5 to the exact

sequence below:

o -≫pi+2 - QiR ■■■RQS - i;-+i-≫o,

we see that S,-+i(= soc (Ii+i))can be embedded into Pi+2/W(Pi+2) where W(Pi+2) is the

negligible submodule with respect to the above exact sequence. So we have a nonzero map

g:Pi+i->Pi+2. Let if be the pushout of g and the canonical inclusion k: Pi+i->E(Pi+i). Since

E(Pi+1)=P(Ij)=Pi and E(Pi+2)=P(Ii+i) by Lemma 2.2, we have the following diagram

with exact rows.

0 ―- Pi+1

･

I

0 ― PM

K

p.o.

K

p _^ J _^0

I
'

H

I-

―>0

0― PM -^E(Pi+2)-≫Ii+1 -+0

Since /,has no composition factor which is isomorphic to S,-+1= soc (/!+i),we have ^ = 0
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Thus there exists a map ft:H-*P1+2 such that /?=/iv. So we have v―k'^iv. Since v is a

monomorphism, we have k'ju= lP.+2.Thus we have a decomposition H― (P,-+2/c')c/where

/=/;. Then we have Hom^ (Ph H) ^Hom^ (Pi, J) by Lemma 2.1, and hence gK' = Kg'=0.

Since k is a monomorphism, we see g―0, which is a contradiction. Therefore /!+iis a local

module.

On the other hand, T^+iC/!+i induces a monomorphism: /;= F,+i/Si+i-^/i+i/S,+i. Since

li+i/Sj+i is local, we have Ii=Ii+1/Si+i, which shows /,+1=V,-+1. Furthermore we have

Pi=P(Ii+i) by the fact that Ii+1 is local. It remains to show that Vk is uniserial. We have

already shown Ik-ilSk-＼=Ik-2 and P(Ik-i)=P(Ik-2) =Pi- Thus we have the following com-

mutative diagram with exact rows.

0 -≫Pk -*P(
I

/*- l)―>/*-!―0
I

0 ―P*-,―>P(A_2) ― /*-2―'0

Therefore we have Pk=NPk-1. Since we have already shown P,+i = iVP,-for 1 ^ i^ k―2, we

see that Vk=Pi/NkPi is uniserial.

Proof of the implication (5) =≫(4).

We keep the notation in the preceding argument. Then itfollows from Lemma 1.3 that

there exists an index k>l such that Hom^ (Sk, A)^0 and Hom^ (SJ9A) = 0 for j<k. By-

Lemma 2.4 we have the following exact sequence:

0 -S* - V* - /*_! - 0

where F* is colocal and 7*_i is indecomposable injective. Thus it follows from Lemma 2.3

that Sk is projective.

Next we shall that the condition (4) implies the condition (1). So in the remainder of

the present section we assume that A is an artinian basic connected QF-3, 1-Gorenstein

ring with a simple projective left module Pi = S＼.

Proof of the implication (4) =>(1).

If Pi is injective, we have AA=Pi because A is connected. So yt= End (Pi) and itis a

division ring. Hence we can assume that Pi is not injective.

Let a―aA be the permutation in Lemma 1.3, and let a(i) = i+l for i^k―2. Then we

assume that we have a series of uniserial projective non-injective left modules P＼,P2,- ･･,

Pk-i such that NPj=Pj-i for 2^iSk―l. Then k―Kn because A is QF-3 and A has an in-

decomposable injective projective module, where n is the number of non-isomorphic in-

decomposable projective modules. Let k=a(k― 1). In other words we let S*=

soc (E(Pk-t)lPk-i). Then S&St for ISiKj^k by Lemma 1.3.
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We shallprove NPk=Pk-i, which shows thatPk is alsouniserial.Now we take the pull

back of the canonical surjection:E{Pk-＼)-*E(Pk-i)IPk-i and the canonical inclusion:

S*-£(ft-,)/P*-,.

(*)

0 ―^P*-!-^
I I

― 0

0 ^/Vi―･ECPi.,)―SfA-!)/^, ―* 0

If Uk is not uniserial, then there exists i,2^i^k―l, such that NP{=Pt■-x is uniserial andP,-

is not uniserial. This gives a contradiction that £'(P,_i)/P!_i is not colocal. Thus £4 is

uniserial. Take the projective cover of Uk.

0 ― Wh -> Pk -^ Uk ― 0

Take the pull back of n and k.

0 ―* wk ―* F

(..)

0 _ w _^ p

I

― Uk ― 0

Then Pk/Y=Uk/Pk-i^Sk and hence Y=NPk. Therefore NPh2=Wk@Pk-1. Suppose

Wk3=Q. Then neither Pk nor Wk is injective because Pk is local. Hence E(Pk)/Pk^0 and

EiW^/Wk^O. Moreover we have the following exact sequence:

0 ― Pk/NPk
{^l

[£(Wi)/WJc[£(P*-1)//J*-1] ― £(P*)/P≫ ― 0.

Since E{Pk)/Pk is colocal and Pk/NKk=Sk, it follows from Lemmas 1.2 and 1.3 that Ai = 0

and hence Sk=E(Pk-i)I'Pk-i- In view of the diagram (*), Uk=E{Pk~＼) and itis projective.

This shows Wk=0, which is a contradiction. Thus we have P*= Uk, and NPk=Pk-i by the

definition of Uk. Since A has at least one indecomposable projective injective left module,

we have by induction a series of uniserial projective left modules Plt- ･ -,Pk with

Pi-i=NPi(2^i^k) such that P1;- ･ -,Pk-i are non-injective and Pk is injective.

We shall show that P＼R---RPk forms a block of A. We have only to show

Horn,! (Pit Q) = 0 and Hom^ (Q, P{) = 0 for any indecomposable projective module Q which

is not isomorphic to P, for l^z'^&. Suppose that there exists a nonzero map/: Pj-*Q. If

Ker (/)=£(),then soc (Im (/))=5; for some;>l. Since /Iis QF-3, E(Sj) is projective. On

the other hand, we see S;=soc (E(Pj-1)/Pj-1) and hence E(Sj) is a direct summand of

It(vl)M. It is impossible by Lemma 1.3. Therefore such a map/is a monomorphism. Since

we have shown E(P{) =Pk, there exists a nonzero map g which makes the diagram below

commutative.
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Therefore we have only to show Hom^ (Q, P,)=0. Suppose Hom^ (Q, P^O. Then we

have Hom^ (Q, Pk) i= 0 because P,-is embedded into P*. Let g be a nonzero map of Q into P^

Since every nonzero submodule of Pk is isomorphic to some P,, we have Q=Pi for some

i^k because Q is indecomposable. It contradicts our assumption Q£Pi for each /.

Therefore we see that Pic ･ ･■RPk is a block of A. Since A is connected, we have

A=P＼R ■･■RPk which shows that A is left hereditary. Since A is an artinian ring, A is

hereditary.

§3. Proof of Theorem II

It followsfrom Lemma 1.2 that Theorem II statedin Introductionis a specialcase of

the following.

Theorem IF. Let A be an artinian ring. Let

(*) 0 ―>P -*≫ Gi0---0G, -^ L ―≫ 0

be an exact sequence of nonzero finitelygenerated yl-modules satisfying the following pro-

perties.

(i) I is an essential monomorphism.

(ii) P is local and distributive.

(iii) L is colocal.

(iv) d is colocal for each /.

Then we have |soc (P) ＼̂2. In particular if |soc (P)＼=2, then the following statements

hold.

(1) P has the smallest loose waist X so that top (X) =soc (L).

(2) P/ Wis isomorphic to a submodule of L where Wis the negligible submodule of P

with respect to the sequence (*).

(3) W is the sum of all colocal submodules of P.

Remark 3.1. As is easily seen by our proof, we have n Hk2 without the hypothesis (iv).

In this setting, however, |soc (P) | ^2 need not hold.

In the sequel we keep the above setting and denote soc (G,-)by S,-and soc (L) by S. We

let Xu 7t{,y/i,W, V, Wi, V,, Wand Vbe the same ones in the proof of Proposition 1.5. In

order to show our statements, we can assume n ^2 and we have only to show n = 2 and that

our statements (1), (2) and (3) hold.
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Lemma 3.2. VI W= soc (PI W)=S.

Proof. Since P is distributive,we have S= VI W=soc (PI W) by Proposition1.5 and

n. Theorem 11.

Lemma 3.3. n=2 and PI W can be embedded intoL.

Proof. By Proposition 1.5,the following sequence is exact.

0 ―≫ VIW -^ (Vl/W1)@---@(VJWJ -^ S―* 0

By Lemma 3.2 we can assume Vi/W1=V2/W2=S and VJW^O for /^3. On the other

hand we have the following commutative diagram.

VIW-+VkJWkl

I I

PIW-^PlJWXx

Here the verticalmaps are canonicalinclusions.Hence the map: P/W^PXilWli is an

isomorphism. So we have PI W=Pk＼lWki=PX2l WX2. We define a A -module L' and a A-

map: L'-*L in the following commutative diagram with exact rows in which PXilWX^

GJWi is the canonicalinclusionsfor each i.

O-≫P/W ―* {PXllWXl)R---R{PXJWXn)

0 ―>P/W
A

I

(Gi/PTi) c･･･c

I

(GJWJ
n

L'―* 0

I

L―*■ 0

Then L' is nonzero because P is local and PA,7 WA,-=£0for *= 1, 2, and L'-*L is a monomor-

phism. Therefore L' is colocal and soc (L')=soc (L)=S. Since we have

{PktlWh)R- ■■R(PXnIWXn) = {PIW)i@{PX2lWk2)R- ･ -c{PknlWln),

we have L' = (PA2/lRrA2) 0 ･ ･･ 0 (PXJWXJ. Since L' is colocal and PX2/WX2=P/ W*Q,

we have L'=PX2/WX2=P/Wand PXi/WXi=Q for each /^3. Since we have shown y/^0

for each fin Proposition 1.5, we have PA, = WA,-=0 for each f^3. This completes the proof.

Lemma 3.4 W is the sum of all colocalsubmodules of P. In particula we have soc (W)

=soc(F)=soc(P).

Proof. In the proof of Proposition 1.5, we have already shown that W is a sum of

some colocal submodules of P. So we have only to show that every colocal submodule X of

P is contained in W. It is obvious that soc (X) is isomorphic to Si or S2 by Lemma 3.3. Let

soc (X)=Si for instance. Since P is distributive, it follows from [1, Theorem 1] that A,:
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X^Gi is a monomorphism. Furthermore we have XX2=0. For, S2A-1=S2 because A is an

essential monomorphism, and hence XA2=£0 implies X+S2X~1=XR(S2X~1)inP, and con-

sequently we have a monomorphism

S20S2 - (XR(S2X~1))/(XnKer (A2)),

which is impossible because P is distributive. By the formulae if/i+ y/2= 0 and XA2=0, we

have easilv W^X.

Lemma 3.5. Take two elements x and y in V so that x0W, y0W and top (Ax) =

top (4y)=S. Then Ax=Ay.

Proof. Suppose Ax4=-Ay. Then we can assume AxDAycNx where N denotes the

radicalof A. Since VIW is simple by Lemma 3.2, we have V=Ax+ W=Ay+ W. Let

x=cy + w for some ceA and some weW. Since P is distributive,we have WC＼(Ax+Ay)

= (Wf)Ax) + (Wf)Ay) cNx+Ny. Hence we have

w=x―cy=― ax+hy for some aeN and heN.

Thus we have x+ax=by+cyeAxf)AycNx and hence xeNx, which is impossible.

Lemma 3.6. Take an element x in Vsuch thattop (Ax) =S andx0 W. When Ax is the

am/iUpst.Innsp.waist,in P.

Proof. We assume PC G＼R G2 in the following discussion. Now x 0 Wimplies xk＼=£0

and xA2^0. This shows that Ax is essential in P. Take any element yeP such that Ay is

local and essential in P. We have only to show AyDAx. Now suppose yi//i=0. Then ye W

because of the formula y/1+ y/2= 0. Hence we have

Ay=Ayf＼ (Wx 0 W2) = (Ayf) W1) R (AyH W2).

Since Ay is indecomposable, either Ayf) Wi = 0 or AyD W2 = 0 holds. But itis impossible

because Ay is essential in P. Thereforeyy/^O. Since L has the simple socle S, there exists

an integer h^O such that Nhyt//i= S. This shows that there exists an element a in Nh such

that aye V, ay0Wand top (Aay)=S. By Lemma 3.5, we have Ax=AayCAy.

Theorem II'is a conclusion of the above Lemmas from 3.2 up to 3.6.

§4. Remarks

In the present section we shall give some remarks and examples related to our

theorems.

We have not yet had any examples of artinian left 1-Gorenstein ring which is not right

1-Gorenstein, that is,an artinian ring A such that id^A) = 1 and id(AA) = oo (cf. [14, Lem-

ma A]). In case of artin algebras we have the following, which is easily obtained by making
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use of elementary properties of the tiltingtheory. (See [2] for the tiltingtheory.)

Proposition 4.1. Let A be an artin algebra over a commutative ring R, and D(A)

= Hom# (A, ER(top (R)). Then the following conditions are equivalent.

(1)
AD(A)A

is a tiltingmodule.

(2) ≪/(^l)= l.

(3) id(AA) = l.

Compare the above proposition with Lemma 1.1 in the present paper.

We denote a connected basic serial ring with left admissible sequence (fli,･･ ･, an) by

Ser {fl＼,■■-,an). A similar argument as in [10] shows the following, which will be applied

in Examples 4.5 and 4.6.

Proposition 4.2. Let r=Ser (au ･･･,≪,)with the propertiesthat a1=2Sai^3=an

and fl,= 3 implies ai+＼=2. Let {io<ii< ■■■<it} = {0} U {/|a,=3} and m=max

{ij-ij-i11-^j^t}. Then gl.dim r=m.

Proposition 4.3. For any given m, 2ikm^ooy thereexistsa QF-3,1-Gorenstein algebra

with maximal quotientring A such thatid(AA) = id{AA) =gl.dim A = m.

In factwe shallconstruct such examples in Examples 4.5,4.6 and 4.7.We begin with

Definition 4.4. Let Q be a bounden quiver. A vertex i in Q is called a node if^o;=0

for each arrow a: j->i and each arrow /?:i-*k.

In the sequel let if be a field,and K (Q) the bounden quiver algebra over K for a

bounden quiver Q.

Example 4.5. Let Q be the following bounden quiver:

2 1

0

3

with the relations that the vertex 1 is a node and ay=S0. Then K (Q) is a QF-2, l-Gorens-

tein algebra whose maximal quotient ring A is Morita equivalent to the ring Ser (2, 3).

Therefore gl.dim^4 = 2 by Proposition 4.2.

Example 4.6. Let Q be the following bounden quiver:
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(≫£2)
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in which the vertices 1, 2,･ ･･, n are allnodes and the commutative relation ya=dfi holds.

Then K(Q) is a QF-2, 1-Gorenstein algebra whose maximal quotient ring A is Morita

equivalent to the ring Ser (2, 2,-･ ･, 2, 3) in which the term=2 occurs just n times.

Therefore gl.dimyl = n + l by Proposition 4.2.

Example 4.7. Let Q be the following bounden quiver:

1

3
|≪

4;
dfi=py,

Sfia= adfi=yaS=fiocp=0

2

Then K(Q) is a QF-3,1-Gorenstein algebra by Proposition 4.9 below, and its maximal quo-

tient ring A coincides with the following bounden quiver.

1

6/ ＼"

3 4
Sfi=py,

2

Then it is easy to show id(AA) = id(AAei) = 00.

As is well known, a finiteposet can be regarded as an ordinary quiver in a natural way.

Such a quiver is called a poset quiver in the present paper. Let G be a poset. An element

x e G is said to be regular ifx is comparable with any element in G. Otherwise x is said to be

irregular.

Definition 4.8. A finiteposet G is said to be admissible ifit satisfies the following

conditions.



212 Hideo Sato

(1) For any element xeG, there exists at most one element in G which is incom-

parable with x.

(2) Let {x,y] be a pair of incomparable elements in G.

(2-1) There exists the least upper bound x＼Jy of {x,y}, which is regular.

(2-2) If there exists the largest lower bound xf＼y of {%,y), then itis regular. If there

does not exist xf)y, then both x and y are minimal elements.

Proposition 4.9. Let G be an admissible poset, and r=K(G). Let T=F^D(F) be the

trivialextension of F by D(F) = HomK (F, K). We letl = lT='ExeG ex,the decomposition of

identity 1T into a sum of primitive orthogonal idempotents. Let A ―

T/soc (SxeCxrreguiarTex). Then the ring A is a QF-3, 1-Gorenstein algebra.

Proof. We denote the canonical surjection: T-*A by # and let <P(ex)=ex. We can

view mod (A) as a full subcategory of mod (T) through <P.If xeG isirregular, then Aex is

identified with Tsx and hence AAex is injective because T is a symmetric algebra. When

xeG is regular, we let £/(*)= {jyeG|jv>Ar} and divide the situation into the following two

cases:

(1) The case where U(x) has the smallest element jy.

(2) The case where U(x) is empty or U(x) has not the smallest element.

First we consider the case (1). Then Aex has the simple socle which is isomorphic to

top (Aey). It is quite easy to show that AexcEA (Aex) <zEr{Aex) and ET(Aex)/Aex is a simple

T-module where, for a A -module M, EA(M) or Et(M) is the injective hull of M as A-

module or T-module respectively. Here ET(Aex) cannot be a yl-module by definition.

Therefore Aex=EA(Aex) and hence it is an injective /l-module.

Next we consider the case (2). Then, by considering the convering of F, we can

assume U{x)i^4> by replacing G into another admissible poset G' poset G' so that

T=K(G')＼XD(K(G')). So we can assume that U(x) has two minimal elements a and b

which are incomparable each other. By the definition of admissible posets, there exists

c=aUh. Now we have soc (Px)=top (Pc)Rtop (Pb) where Py=Aey foryeG. Since both a

and b are irregular, we have it (top (Pa))=Pa and E(top (Pb))=Pb and hence EA(PX)

=Pa@Pb. Combining results proved above, we see that A is QF-3. On the other hand we

have immediately Px/soc (Pfl)=rad (Pa)/soc (Pa)=rad (EA(PX)/PX), which has the simple

socle isomorphic to top (Pc). As is easily seen, Y=EA(PX)/PX can be embedded into

iir(top (Pc)) = Tec as T-module and Tec/ Y is a simple T-module. Since Tec cannot be a

A -module by definition, we see that EA(PX)/PX is an injective /l-module. Therefore A is

1-Gorenstein.

Note that the algebra in Example 4.7 is obtained by means of the abobe proposition by

letting G as follows.
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<
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Remark 4.10. A triangularmatrix ring over a QF ring has a QF maximal quotient

ring,and we have shown in [8] thatany 1-Gorenstein ring which is itsown maximal quo-

tientringis QF.

Remark 4.11. In contrast with Proposition 4.3, any QF-3, 1-Gorenstein ring with

zero socle has the QF classical quotient ring (cf. [9]). Here a ring R is said to be left QF-3 if

every finitelygenerated submodule of E(RR) is torsionless. See [7], [8] and [12] for the

related topics.

Example 4.12. Theorem II does not necessarilyhold without the assumption thatP

is distributive,as the following example shows.

Let Q be the following bounden quiver:

1 2

I

5

b

―>

"*
d

v x

3

I-

6

a

c

■ 4

u yI

a
4<― -i:

c

V

<

d'

relations:

va=a'u, vd=d'w, ac=xv=db,

uc=c'v, wb=b'v, a'c'=d'b' = vx,

ba=cd―ca=bd=0 = b'a'=cd'=ca= b'd',

yv=vy=by=ya=0=cx=xd'=xvx.

Then it is verified that K(Q) is a QF-3, 1-Gorenstein algebra with a non-distributive in-

decomposable projective left module P5 such that |soc (P5) I =3.

Proposition 4.13. Let AbeaQF algebraoverK, and B a QF-3, 1-Gorensteinalgebra

overK. Then ARKB is a QF-3, 1-Gorensteinalgebra.

Proof. An easy exercise.

Example 4.14. Smallest loose waists are not necessarily waists, as the following ex-

ample shows.

Let A be the if-algebra in Example 4.7, and I?=Ser (2, 2) as if-algebra. Then it

follows from Proposition 4.13 that F=BRKA is a QF-3,1-Gorenstein algebra. Let etbe the

primitive idempotent of A corresponding to the vertex iin the quiver in Example 4.7. Also
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let fi be the primitive idempotent of B. As is easily shown, every indecomposable projec-

tive /"-module is distributive. But the smallest loose waist in r(f＼Re＼) is not a waist in it.

Example 4.15. There arises an analogous question to Theorem I whether an artinian

1-Gorenstein ring with a simple projective or an injective module is hereditary or not. The

following example tellsus that the statement mentioned above does not hold.

Let Q be the bounden quiver below.

Q: 1 " > 2
＼y;

y0=Sy=fiS=O.

^

4

Then K (Q) is a left serial 1-Gorenstein algebra with a simple injective left module and with

a simple projective right module, which is neither QF-3 nor hereditary.
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