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0. Introduction

A Riemannian curvature is said to be harmonic if the Ricci tensor S satisfiesthe so-call-

ed Codazzi equation SS=Q. Riemannian manifolds with harmonic curvature are studied by

A. Derzinski [2] and A. Gray [4], who required a sufficient condition for the manifolds to be

Einstein and constructed examples of non-parallel Ricci tensor. On the other hand, hyper-

surfaces with harmonic curvature in a Riemannian manifold of constant curvature are

recently investigated by E. Omachi [9], M. Umehara [12] and the authors [5], who deter-

mined completely the manifold structures provided that the mean curvature is constant, or

provided that the shape operator has no simple roots. The purpose of this paper is to in-

vestigate submanifolds with harmonic curvature in a Riemannian manifold of constant cur-

vature.

1. Submanifolds

Let M=MM+P(c) be an (n +^)-dimensional connected Riemannian manifold of constant

curvature c and <j>an isometric immersion of an M-dimensional connected Riemannian

manifold M into M. When the argument is local, M need not be distinguished from <j>(M).

We choose a local field of orthonormal frames {ex,･･ -,en, en+x,■･･, en+p＼in M, in such a

way that, restricted to M, the vectors e＼,･■■,en are tangent to M and hence the others are

normal to M. Let {d>i,･･ ･, d>≪,<bn+＼>''',&n+p} be the field of dual frames with respect to

the above frame field.Here and in the sequel the following convention on the range of in-

dices are used, unless otherwise stated:

A,B,-'-=l,-'',n,n + l,---,n +p,

i,j,---=l,---,n,

a, fi,-■-=n + l,- ･･, n+p.

Then the structure equations of M are given by
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dm a + ZBti)AB A d>B=0,

da>AB+2>c&>ac A a)CB―ca)A A mB,

where 6iAB denote connection forms on M. By restricting these forms <bA and 6)Ab to M,

they are simply denoted by a>A and coAb without bar, respectively. Then we have

(1.2) wa = 0.

The metric on M induced from the Riemannian metric g on the ambient space M under the

immersion <£is given by g=2S,co,co,. Then {ex,-･ -,en} becomes a field of orthonormal

frames on M with respect to this metric and {coi,■■■,con} are the canonical forms on M. It

follows from (1.1), (1.2) and Cartan's lemma that

(1.3) coa{=2;^co;-, hfj=hfj.

The quadratic form Ti^hfjCOiOijis called a second fundamental form on M in the direction of

ea and the second fundamental form a on M can be written as

a(X, Y) = ^aiiJh?jQ)i(X) oi(Y)ea

for any tangent vectors Xand Y. For the canonical forms {co,} and the connection forms

{(On). the following eauations on M are given:

(1.4)
dco{ + TijOiijA coy=0,

da>ij+ T^kWik A o}kj=Qij,

%= ~jT ^KiRm(Dk A £0/,

where Q,jand i?p/ denote the curvature form and the Riemannian curvature tensor on M re-

spectively. Moreover the forms {ojap＼which are called normal connection forms in the nor-

mal bundle N(M) of M satisfy

dcoaP+ 2yo)ay A coyfi=Qafi,
(1.5) !

@a0= ~~T^k.lRafikl^kA Oil,

where QaP and Rapu are called the normal curvature form and the normal curvature tensor on

Af. By means of the above structure equations on M and M, the Gauss equation of the sub-

manifold is obtained as

(1.6) Rijkl=c{6ildjk-Sik6jl)+ T,a{hlh%-h'}khJl).

Now, the covariant derivative hfjkof h% are defined as follows:

(1.7) T.khfjkOj^dhtj- Ylkh%jaiki-Tlkh^k(Dkj+TiphpijOiap-

By differentiating (1.3) exteriorly and by making use of (1.1),(1.4) and (1.7), the equation

dcoai=Tljdh"j A ojj+'Ejhfjdcoj



Submanifolds With Harmonic Curvature 287

is reduced to

from which the Codazzi equation on M

(1.8) hfjk-hfy=O

is yielded. By taking account of the structure equation (1.1) of the ambient space, the nor-

mal curvature form on M is also given by

which means

(1.9) Ram=^i(mhfiik-h?khii).

This is called the Ricci equation of the submanifold M.

A smooth section in the normal bundle N (M) of M is called a normal vector field on M.

When a normal vector field£,on M is given, its covariant derivative with respect to the nor-

mal connection means the normal vector field D£, which is defined as follows: If

£=SaFX, then

D^=T,aDVaea, DVa=dVa + ^wafiVp.

It is easily seen that this is well defined, namely itis independent of the choice of the nor-

mal frames on M. By means of this normal connection D and the shape operator Aa=Aea

for the normal vector ea which is defined by g(AaX, Y)=g(a(X, Y), ea), the normal cur-

vature Rapu is given by

= g((DkDl-DlDk-D([ek,ei＼))ewefi),

where D(X) Y=DX Y and Dk=D{ek).

A given normal vector field ^ on M is said to be parallelin the normal bundle if it

satisfiesD£=Q for the normal connection D [7]. For a parallel normal vector field£,we put

£=aen+i, where ≪=||^||is constant. Then a local field of orthonormal frames {en+i,-･ ･,

en+p) such that en+i is parallel may be chosen. In this case, the fact that £is parallel and

(1.10) show

(1.11) O)n+ 1B= 0, Rn +lBkl= Q-

2. Parallel mean curvature vector

Let Mhe an M-dimensional submanifold with harmonic curvature in Mn+P(c). This sec-

tion is devoted to the investigation of submanifolds with parallel mean curvature vector.

The covariant derivative of the Ricci tensor satisfies
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(2.1) Rijk=Rikj.

Let t be the mean curvature vector field.Namely, it is defined by

T=E,-cr(e,-,ei)/n = HlahaeJn,

where ha=Zih%, which is independent of the choice of the local field of orthonormal frames

{ej. Let us assume that the mean curvature vector is parallel, and we may choose a local

field ＼ea)in such a way that -c=aen+＼. Because of the choice of the local field, the

parallelism of t yields

ha=R, a^n + 2,
<2-2)

. *~=.w.

From Gauss and Codazzi equations and the definition of harmonic curvature itfollows that

(2.3) Eairhfjrhrk= Zia,rhfkrh?j.

By means of the Ricci eq. (1.10), the normal curvature on M implies

[An+1,Aa]=0

for any index a, which yields

(2.4) Zrhirh^XrkjM,

where hij=hn^x. By the straightforward calculation of the exterior derivative of the above

equation, we have

(2.5) I,r(hirkK+hirharjk)= i:r(hjrkhari+hjrharik),

from which it follows

Za,r,s{KMKj-hrskhijhZi)=2^ (h&h^-f&khirh*).

By the properties (2.3) and (2.4) the.second term in the right hand side is deformed as

follows:

~^-'a,r,s'lrskfoirh'sj=::~2->a,r,sfo%k"'ir'l'rs=~^-'a,r,s'ifsk'lsr"'ri-

This means that the right hand side is skew-symmetric with respect to indices i and j and

therefore it turns out that

On the other hand, for fixed indices k and a Yjr{hirkKj~Krhrjk)can be regarded as a

square matrix of order n. By (2.6) the norm of this matrix with respect to the usual inner

product vanishes identically, which implies

(2.7) XrhMh^XMhnk

for any indices a, i, i and k. The eqs. (2.5) and (2.7) show
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(2.8) J:rhirh^k=-Erhjrharik.

Since the matrix Ay-is diagonalizable, the local field {e,} can be specialized so that Ay-=A,-<5y.

Then, for the eigenvalues A,-the following result is proved.

Lemma 2.1. Each eigenvalue A,-is constant on M.

Proof. In the case where o:=w + l in (2.8), we get

(2.9) SrW^ = SrMn*=Sr**rV

This shows that a formula similar to that given in the case of hypersurfaces with harmonic

curvature can be derived. Namely, it is easy that dh2 = 0, where the function h2 on M is

defined by h2 = 'Zijhijhij. When a function hm for any integer m^2 is defined by

hm='£ijt...jhijhjk- ■-hn, w-times, it is easily seen that

dhm+1(X)/(m + l)=dhm(An+1(X))/m

can be derived by using the eq. (2.9). This implies inductively the fact that the function hm

for any integer m^2 is constant on M. This means that the assertion is verified.

By fii,･■■,nk mutually distinct eigenvalues of the shape operator An+i are denoted.

Let tii,-･ -,nkbe their multiplicities. Since each eigenvalue[ta (a=1,･ ･ ･, k) is constant, the

smooth distribution Ta which consists of all eigenspaces associated with the eigenvalue na

can be defined. By using the notation [i]= {j: A,-=A,-} the distribution Ta is given by

Ta= {cy( = 0 for i£[a]}. For i£[a] the structure eq. (1.4) shows

da>i= -ZkO)ik Aa)k=-Eke[a]oiik Aa)k (mod. io/. j£[a]),

which implies that the distribution Ta is completely integrable, provided that a>f*=Q (mod.

coj■;j 4 [≪]) for any index k e [a]. In particular, the distribution Ta is said to be parallel if the

connection forms <Wy satisfy co^=0 for / ^ [a] and k e [a]. The parallelism of the distribution

means geometrically that the covariant derivative of the vector field belonging to the

distribution belongs also to itself.

Lemma 2.2. Distributions Ta are mutually orthogonal and parallel.

Proof. Mutual orthogonality is trivial. Since the second fundamental form h{j can be

diagonalized, we have by (2.4) and (2.8) (A, ―A,-)/^=0 and (A,-―Xj)h"jk=O, which show that

h?j=O, hfjk=Q

for any index a provived that A,-^Ay. Accordingly we have

(2.10) hfj=Q, h?jk=O for i£[a], je[a],

from which the definition of hijk gives

(A,―A,-)tt>≪= 0 for i4[a], je[a],
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because the eigenvalues are all constant. This concludes the proof.

By means of Lemma 2.2 and the local decomposition theorem (cf. [6]) the above discus-

sion is summerized in the following way.

Proposition 2.3. LetM be an (n+p)-dimensional Riemannian manifold of constant

curvature c,and Man n-dimensional submanifold with harmonic curvature in M. If the mean

curvature vector of M is parallel in the normal bundle, then M is locallya product of Rieman-

nian manifolds.

In the case where the ambient space is a Euclidean space, the theorem due to B. Smyth

[10] is completely applied to the situation given above. Thus we have

Theorem 2.4. Let M be a compact simply connected Riemannian manifold with har-

monic curvature and 4>the isometric immersion ofM into K"+p. If the mean curvature vectoris

parallelin the normal bundle, then M is a product of Riemannian manifolds M＼ x ･ ･･ x Mk,

and <j>is a product of minimal immersions of their factors into spheres.

3. Flat normal connection

This section is concerned with the study of submanifolds with flat normal connection.

Let M be an (n +p) -dimensional Riemannian manifold of constant curvature c and M an n-

dimensional submanifold with harmonic curvature in M. The normal connection of M is

said to he flatif the normal curvature form QaP vanishes identically. As is well known [1],

the normal connection is flatif and only if there exist p mutually orthogonal unit normal

vector fieldsea such that each of the ea is parallelin the normal bundle. Of course, allof the

shape operators Aa can be simultaneously diagonalizable. These facts imply that we may

choose a local field of orthonormal frames ＼e{,ea} such that

(3.1) coaP=0, [Aa,Afi] = 0.

In addition, assume that the mean curvature vector t is parallelin the normal bundle. Itis

easily seen that the function ha is constant for any index a on M. Accordingly, under these

situations allof calculations which were done for the parallel mean curvature vector in the

previous section are considered. Consequently we have

Lemma 3.1. The second fundamental form a on M is parallel.

PROOF. Using (3.1) we have T,rhfrhi=T,rh%.h^, from which it follows

(3.2) Zrh?rkhl= Hrhlkhpri

by the similar argument to that of (2.7). Therefore it turns out that
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By differentiating the equation exteriorly and by making use of the Ricci formula, the

straightforward calculation gives rise to

Sr(hfjMir + hfjMir~ kijrhfkr- h%Mkr) = Er,s(RutM^rj- RlnMjKk

―Rurs krkh"j ―Rujs ftsrhrk)･

Because all shape operators Aa are simultaneously diagonalizable, a local field of orthonor-

mal frames {e,} may be chosen such that h"j=X"djj. This shows

(3.3) ^(hTjrhh+h!jrh&-h*jrh!kr-h!jrhf≫)=Rma?-mtthfo

for any indices a, fi,i, j, k and /. When l=j, k=i and a =0 in (3.3), it is reduced to

(3.4) Rijji(XJ-tf)2 = 2 Sr (kfirhfjr-htjrhfjr).

On the other hand, (3.2) is equivalent to (Xf―Xi)h?jk=O, which yields that for any indices /?

and k

(3.5) /4=0,

provided that there exist indices / and; such that Xf^Xf. Under this condition, (3.4) is de-

formed as Rijji(Xf―Xf)2 = 0 for any indices. In fact, for a fixed a, the same notation [i] as

that in §2, that is, [/] = {k: A£= A"} is adapted. Then J]rhijrh"jrvanishes identically, because

of Sr=Sre[i] + SrS[;]+2'^[i]U[;]. This means i?,#,■=()if Af&Af. Summing up for i,j and a in

(3.4) we have

~2 Tia>ijtkhfjkhfjk=TiijRijji£, (Xf―Xf) .

By coming back together with above two equations, the fact that the second fundamental

form of M is parallel is asserted. According to the decomposition theorem of J. Erbacher

[3], K. Yano and S. Ishihara [13] and M. Takeuchi [11], we can prove the following

Theorem 3.2. Let M be an (n +p)-dimensional complete simply connected Riemannian

manifold of constant curvature c, and let M be an n-dimensional Riemannian submanifold

with harmonic curvature in M. Assume that the mean curvature vector is parallel in the normal

bundle and the normal connection is flat. Then the second fundamental form is parallel and

moreover if M is complete, then the following properties are asserted:

(a) When c^O, Mis a product of Riemannian manifolds Mi x ･ ･ ･ x Mk, where each Ma

is a small na-dimensional sphere of M, except that one of Ma is a great sphere.

(b) When c<0, M is a product of Riemannian manifolds Af"°(co)xMi

x ■■■xMkcMno(co)xMn+p-no-Hc')cMn+p(c) with co<O, c'>0, l/co + l/c' = l/

c, where Mix ■･ ･ xMkcMn+p~m~1(c') is a submanifold as the one in the case

where c>0 and the second inclusion is the natural one.
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