NOTE ON THE TAYLOR EXPANSION OF SMOOTH FUNCTIONS DEFINED ON SOBOLEV SPACES

By

Atsushi YOSHIKAWA*

§1. Introduction

It is well-known that the Sobolev spaces $H^{\sigma}(\mathbb{R}^n)$ (with norm $\|\cdot\|_{\sigma}$) are multiplicative algebras when $\sigma > n/2$. Let $u \in H^{\sigma}(\mathbb{R}^n)$ be real valued. If f is a rapidly decreasing function on the real line, i.e., $f \in \mathcal{S}(\mathbb{R})$, then we may speak of the composite function f(u), which again belongs to $H^{\sigma}(\mathbb{R}^n)$ provided \mathbb{Z} f(0)=0 (See Rauch and Reed [1]). As for more precise results including higher order Taylor expansions, we have the following

THEOREM. Suppose $\sigma > (n/2)+1$, and u and $v \in H^{\sigma}(\mathbb{R}^n)$ are real valued. Let $f \in S(\mathbb{R})$. Consider the m-th remainder

(1.1)
$$R_{m}(f)(v; u) = f(v+u) - \sum_{k=0}^{m-1} \frac{1}{k!} f^{(k)}(v) u^{k}$$

of the Taylor expansion of f(v+u) around u=0 $(m=1, 2, \cdots)$. Then $R_m(f)(v; u) \in H^{\sigma}(\mathbb{R}^n)$ and, for $0 \leq s \leq \sigma$,

(1.2)
$$\|R_{m}(f)(v; u)\|_{s} \leq A_{m,s}(1+\|v\|_{\operatorname{Max}(s,\sigma-1)}+\|v\|_{0}\|\nabla v\|_{\sigma-1}^{\operatorname{Max}(s,\sigma-1)}) \\ \times \Big(\frac{1}{m!}\|u^{m}\|_{s}+\frac{1}{(m+1)!}\|u\|_{(2m)}^{m}\|\nabla u\|_{\sigma-1}^{\operatorname{Max}(s,1)}\Big),$$

where $A_{m,s}$ is a positive constant independent of u and v. In the above, ∇ stands for the gradient operator, and $\|w\|_{(p)} = \left(\int_{\mathbf{R}} |w(x)|^p dx\right)^{1/p}$ is the L^p -norm of a function w on \mathbf{R}^n , p > 0. Note $\|w\|_{(2)} = \|w\|_0$, for $H^0(\mathbf{R}^n) = L^2(\mathbf{R}^n)$.

REMARKS. (i) $\|u\|_{(2m)}$ makes sense for $u \in H^{\sigma}(\mathbb{R}^n)$ since $\sigma > (n/2)+1$ and $H^{\sigma}(\mathbb{R}^n) \subset H^{n(m-1)/2m}(\mathbb{R}^n) \subset L^{2m}(\mathbb{R}^n)$ by the Sobolev embedding theorem.

(ii) The constant $A_{m,s}$ admits the estimate

$$A_{m,s} \leq C_s \frac{1}{2\pi} \int_{R} |\hat{f}(\tau)| |\tau|^m (1+|\tau|^{s*}) d\tau,$$

^{*} Supported in part by Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japanese Government, No. 62460005.

Received February 8, 1990. Revised June 1, 1990.

 $s^*=1+Max(s, 1)+Max(s, \sigma-1)$. Here $\hat{f}(\tau)$ is the Fourier transform of f and C_s a positive constant independent of m and of f.

(iii) Similar results are valid when $\sigma > n/2$ and $\sigma \ge 1$. Then we have to replace (1.2) by

(1.3)
$$\|R_{m}(f)(v; u)\|_{s} \leq A_{m, s, \epsilon} (1 + \|v\|_{\sigma} + \|v\|_{0} \|\nabla v\|_{\sigma-1}^{\sigma/\epsilon}) \\ \times \left(\frac{1}{m!} \|u^{m}\|_{s} + \frac{1}{(m+1)!} \|u\|_{(2m)}^{m} \|\nabla u\|_{\sigma-1}^{\mathrm{Max}(s/\epsilon, 1)}\right)$$

where

$$A_{m,s,\varepsilon} \leq C_{s,\varepsilon} \frac{1}{2\pi} \int_{\mathbf{R}} |\hat{f}(\tau)| |\tau|^m (1+|\tau|^{s*(\varepsilon)}) d\tau ,$$

 $s^*(\varepsilon) = 1 + (\sigma/\varepsilon) + Max(s/\varepsilon, 1), \ 0 < \varepsilon < \sigma - (n/2), \ \varepsilon \le 1.$

The proof of Theorem is carried out by extending the idea of Rauch and Reed [1] where they discussed the case of m=1 and v=0, f(0)=0. Observe

$$R_{m}(f)(v; u) = \frac{1}{2\pi} \int_{\mathbf{R}} e^{iv\tau} \left(e^{iu\tau} - \sum_{k=0}^{m-1} \frac{(i\tau u)^{k}}{k!} \right) \hat{f}(\tau) d\tau ,$$

where $\hat{f}(\tau) = \int_{R} e^{-i\tau t} f(t) dt$ is the Fourier transform of f(t). Then, for $0 \le s \le \sigma$

$$\|R_{m}(f)(v; u)\|_{s} = \frac{1}{2\pi} \int_{R} \left\| e^{iv\tau} \left(e^{iu\tau} - \sum_{k=0}^{m-1} \frac{(i\tau u)^{k}}{k!} \right) \right\|_{s} |\hat{f}(\tau)| d\tau.$$

Therefore, in order to prove Theorem, we only have to verify the estimate:

(1.4)
$$\left\| e^{iv\tau} \left(e^{iu\tau} - \sum_{k=0}^{m-1} \frac{(i\tau u)^k}{k!} \right) \right\|_{s} \\ \leq C_s (1 + \|v\|_{\operatorname{Max}(s, \sigma-1)} + \|v\|_0 \|\nabla v\|_{\sigma-1}^{\operatorname{Max}(s, \sigma-1)}) \\ \times \left(\frac{1}{m!} \|u^m\|_s + \frac{1}{(m+1)!} \|u\|_{(2m)}^m \|\nabla u\|_{\sigma-1}^{\operatorname{Max}(s, 1)} \right) (1 + |\tau|^{s*}) |\tau|^m ,$$

for real τ provided $u, v \in H^{\sigma}(\mathbb{R}^n)$, $\sigma > (n/2)+1$, are real valued. Here $s^* = 1 + \max(s, 1) + \max(s, \sigma-1)$ and C_s is a positive constant independent of u, v, τ and m.

For a verification of (1.4), we appeal to the following

LEMMA 1.1. Suppose $\sigma > (n/2)+1$, and m a positive integer. Let $w \in H^{\sigma}(\mathbb{R}^n)$ be real valued. Then $e^{iv} - \sum_{k=0}^{m-1} (iw)^k / k ! \in H^{\sigma}(\mathbb{R}^n)$ and

(1.5)
$$\left\| e^{iw} - \sum_{k=0}^{m-1} \frac{(iw)^k}{k!} \right\|_s \le C_s \left(\frac{1}{m!} \|w^m\|_s + \frac{1}{(m+1)!} \|w\|_{(2m)}^m \|\nabla w\|_{\sigma-1}^{\operatorname{Max}(s,1)} \right),$$

146

for $0 \leq s \leq \sigma$. Here C_s is a positive constant independent of m and w.

A proof will be given in the next section.

Let us derive (1.4) for $\tau = 1$ from (1.5), since then (1.4) for general τ follows via an elementary inequality:

$$(1+r^{a}X+r^{a+b}Y)(r^{d}Z+r^{c+d}W) \leq r^{d}(1+r^{a+b+c})(1+X+Y)(Z+W),$$

for all r>0. Here a, b, c, d, X, Y, Z, W are all positive. Observe the identity:

$$\begin{split} e^{iv} & \left(e^{iu} - \sum_{k=0}^{m-1} \frac{(iu)^k}{k!} \right) \\ &= & (e^{iv} - 1) \left(e^{iu} - \sum_{k=0}^{m-1} \frac{(iu)^k}{k!} \right) + \left(e^{iu} - \sum_{k=0}^{m-1} \frac{(iu)^k}{k!} \right). \end{split}$$

In view of Lemma 1.1, we only need to show

(1.6)
$$\|(e^{iv}-1)w\|_{s} \leq C_{s}(\|v\|_{\operatorname{Max}(s, \sigma-1)}+\|v\|_{0}\|\nabla v\|_{\sigma-1}^{\operatorname{Max}(s, \sigma-1)})\|w\|$$

for all $w \in H^{s}(\mathbb{R}^{n})$, $0 \leq s \leq \sigma$, when v is real valued. Now by Lemma 1.1 and the Sobolev embedding theorem,

$$\|(e^{iv}-1)w\|_{0} \leq C \|e^{iv}-1\|_{\sigma-1} \|w\|_{0} \leq C(\|v\|_{\sigma-1}+\|v\|_{0}\|\nabla v\|_{\sigma-1}^{\sigma-1}) \|w\|_{0}$$

while, for $\sigma \geq s \geq \sigma - 1$,

$$\|(e^{iv}-1)w\|_{s} \leq C \|e^{iv}-1\|_{s}\|w\|_{s} \leq C(\|v\|_{s}+\|v\|_{0}\|\nabla v\|_{\sigma-1}^{s})\|w\|_{s}.$$

(1.6) then follows by interpolating $0 \leq s \leq \sigma - 1$.

REMARK. We also have $||(e^{iv}-1)w||_0 \leq 2||w||_0$ since v is real valued. Thus, when $||v||_{\sigma-1} + ||v||_0 ||\nabla v||_{\sigma-1}^{\sigma-1}$ is very large, we have

$$||(e^{iv}-1)w||_{s} \leq C(||v||_{\sigma-1}+||v||_{0}||\nabla v||_{\sigma-1}^{\sigma-1})^{s/(\sigma-1)}||w||_{s}$$

for $0 \leq s \leq \sigma - 1$.

§ 2. Proof of Lemma 1.1

Our proof of Lemma 1.1 is based on the following simplified analogue of Proposition 4.1 of Rauch and Reed [1].

LEMMA 2.1. Suppose $g \in H^{\sigma}(\mathbb{R}^n)$ is real valued. Let $0 \leq s \leq \sigma$. Then

(2.1)
$$|\operatorname{Re}(i\langle D\rangle^{s}M_{g}\langle D\rangle^{-s}w, w)| \leq B_{s} \|\nabla g\|_{\sigma-1} \|w\|_{-1} \|w\|_{0},$$

for all $w \in H^0(\mathbb{R}^n)$ provided $\sigma > (n/2)+1$. Here B_s is a positive constant independent of w and g and (,) the inner product of $H^0(\mathbb{R}^n)$. Recall M_g is the multi-

147

plication operator by the function g, and $\langle D \rangle^s$ is the pseudo-differential oterator with the full symbol $\langle \boldsymbol{\xi} \rangle^s = (1+|\boldsymbol{\xi}|^2)^{s/2}, \ \boldsymbol{\xi} \in \mathbb{R}^n$.

PROOF. Since g is real valued,

Re $i(\langle D \rangle^s M_g \langle D \rangle^{-s} w, w) = \text{Re } i([\langle D \rangle^s, M_g] \langle D \rangle^{-s} w, w)$.

Then (2.1) is shown by the classical estimate (See, e.g., [2]):

$$\begin{split} &|(v, [\langle D \rangle^{s}, M_{g}]u)| \leq C \|\nabla g\|_{\sigma-1}(\|v\|_{0}\|u\|_{s'} + \|v\|_{-t'}\|u\|_{s}), \\ &s' \geq s-1, \ 1 \geq t' \geq 0, \ \sigma - \frac{n}{2} > t', \ \sigma - \frac{n}{2} > s-s', \ \sigma \geq 1, \ s > 0 \end{split}$$

We can choose s'=s-1, t'=1 if $\sigma > (n/2)+1$. If we merely have $\sigma > n/2$, $\sigma \ge 1$, then we choose $s'=s-\varepsilon$, $t'=\varepsilon$ for $\sigma - (n/2) > \varepsilon > 0$, $1 \ge \varepsilon > 0$.

Now let us proceed to a verification of Lemma 1.1. The case when m=1 is essentially due to Rauch and Reed [1]. By slightly modifying their ideas, a proof of Lemma 1.1 for general m is obtained. Thus, to verify (1.5), we first reproduce a part of the discussions of Rauch and Reed [1], and then indicate our modification. Let

$$E_m(w) = e^{iw} - \sum_{k=0}^{m-1} \frac{(iw)^k}{k!}, \quad m = 1, 2, \cdots,$$

and

$$W_m(t) = \langle D \rangle^s E_m(tw)$$

A straightforward computation yields to

$$\frac{d}{dt}W_m(t) = i\langle D\rangle^s M_w \langle D\rangle^{-s} W_m(t) + \frac{t^{m-1}}{(m-1)!} \langle D\rangle^s (iw)^m,$$

with $W_m(0)=0$. Taking the inner product of the both hand sides with $W_m(t)$, and using Lemma 2.1 we have,

(2.2)
$$\frac{d}{dt} \|W_m(t)\|_0 \leq B_s \|\nabla w\|_{\sigma-1} \|W_m(t)\|_{-1} + \frac{t^{m-1}}{(m-1)!} \|w^m\|_s.$$

Our idea is to employ the logarithmic convexity of the Sobolev scale. Thus, suppose s>1. Then

$$||W_{m}(t)||_{-1} = ||E_{m}(tw)||_{s-1} \leq ||E_{m}(tw)||_{0}^{1-\theta} ||E_{m}(tw)||_{s}^{\theta},$$

 $\theta = 1 - 1/s$. Therefore, for any $\delta > 0$,

$$\|W_{m}(t)\|_{-1} \leq \delta^{\theta} \frac{t^{m}}{m!} \|w\|_{(2m)}^{m} + C_{\theta} \delta^{\theta-1} \|W_{m}(t)\|_{0}.$$

Here we have used the fact $||E_m(tw)||_0 \leq (t^m/m!) ||w||_{(2m)}^m$, which is also a con-

sequence of realness of w. It follows

$$\frac{d}{dt} \|W_{m}(t)\|_{0} \leq C_{\theta} B_{s} \|\nabla w\|_{\sigma-1} \delta^{\theta-1} \|W_{m}(t)\|_{0} + B_{s} \delta^{\theta} \|\nabla w\|_{\sigma-1} \frac{t^{m}}{m!} \|w\|_{(2m)}^{m} + \frac{t^{m-1}}{(m-1)!} \|w^{m}\|_{s}.$$

Since Lemma 1.1 is trivial when w=0, we assume $w\neq 0$ so that $\forall w\neq 0$. Choose $\delta = \|\forall w\|_{\sigma=1}^{s}$. Then

$$\begin{aligned} \frac{d}{dt} \|W_m(t)\|_0 &\leq C_\theta B_s \|W_m(t)\|_0 \\ &+ B_s \|\nabla w\|_{\sigma-1}^s \|w\|_{(2m)}^m \frac{t^m}{m!} + \|w^m\|_s \frac{t^{m-1}}{(m-1)!}. \end{aligned}$$

Therefore, integrating from t=0 to t=1, we have

$$||E_{m}(w)||_{s} = ||W_{m}(1)||_{0} \leq B_{s}e^{C_{\theta}B_{s}}\frac{1}{(m+1)!}||w||_{(2m)}^{m}||\nabla w||_{\sigma-1}^{s} + e^{C_{\theta}B_{s}}\frac{1}{m!}||w^{m}||_{s}.$$

On the other hand, if $s \leq 1$, then

$$\|W_{m}(t)\|_{-1} = \|\langle D \rangle^{s-1} E_{m}(tw)\|_{0} \leq \|E_{m}(tw)\|_{0} \leq \frac{t^{m}}{m!} \|w\|_{(2m)}^{m}.$$

Thus, (2.2) yields to

$$\frac{d}{dt} \|W_m(t)\|_0 \leq B_s \frac{t^m}{m!} \|\nabla w\|_{\sigma^{-1}} \|w\|_{(2m)}^m + \frac{t^{m-1}}{(m-1)!} \|w^m\|_s,$$

whence

$$\|E_{m}(w)\|_{s} \leq \frac{B_{s}}{(m+1)!} \|\nabla w\|_{\sigma-1} \|w\|_{(2m)}^{m} + \frac{1}{m!} \|w^{m}\|_{s}.$$

References

- [1] J. Reed and M. Rauch, Nonlinear microlocal analysis of semilinear hyperbolic system in one space dimension, Duke Math. J., **49** (1982), 337-475.
- [2] A. Yoshikawa, On expansions of commutators acting in the Sobolev scale (preprint).