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0. Introduction.

A long term goal of topologists has been the problem of enumerating and

computing the set of homotopy classes z(X, Y) of (pointed) continuous maps

from a space X to a space Y. MX (or Y) has a suitable structure then tz{X, Y)

acquires a group structure but the problem of computing such groups, even

when X and Y are compact polyhedra, is stillfar out of reach. Indeed even

when X and Y are spheres a complete solution to the problem has not been

achieved but much information is available[17], [19]. A more general problem

(that also promises to be relatively tractable in the sphere case) is to determine

various homotopy coherence class sets and groups.

The notion of an n-cube of spaces is due to Brown and Loday [1] while

homotopy coherence has been studied by a number of authors including Vogt

[20], Cordier [2], [3], Cordier―Porter [4], [5]. A 1-cube of spaces with

vertices X and Y is simply a continuons mapZ―>F. The corresponding homo-

topy coherence class set is the classicalhomotopy set %{X, Y). A 2-cube of

spaces with vertices (X, Y) and (E, B) is a diagram of maps
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where ht is a homotopy with ho=<f>f and h1=g(p. The homotopy coherence

class of the 2-cube 0.1(a definitionis given in [13]) is an element of the homotopy

coherence classset x( ). Instead of specifying only fixed vertices, one may

wish to fix certain of the maps. For example if we fix the maps / and g then

the corresponding homotopy coherence class set is n(f, g), the homotopy pair

set in the sense of [6], [8]. Alternatively, if we fix the vertex space X and

the maps <j>and g, then the corresponding homotopy coherence class set is the

set n(X; 0, g). It is easy to see that n(X; §, g) is in bijective correspondence

with the set x(X, Z), where Z denotes the standard homotopy pullback of the

triad determined by (j)and g.

The motivating force of this paper and its sequelae is the belief that the

problem of computing homotopy coherence class sets will be found to be man-

ageable when the vertex spaces are spheres and that the solution of such prob-

lems will be useful in (and should be undertaken as preliminary steps toward)

the solution of the problem of computing iz(X, Y) when X and Y are finite

CW-complexes. As evidence contributory to the belief we present here a dis-

cussion of the homotopy pair case. Specifically we indicate, in principle, how

the homotopy pair set 7r(/,g) can be determined when / and g are maps be-

tween spheres. For the purposes of the discussion we assume to be known (i)

the homotopy groups of spheres (ii)the resultsof the composition operation and

secondary homotopy composition operation applied to elements of the homotopy

groups of spheres (iii)the results of the suspension operation and Hopf-James

invariants applied to such elements. In brief we assume known the sort of

information yielded by Toda's "composition method" [19] and find that the

family of groups Kn{f, g)=x{Inf, g) n>0 can be determined by a kind of

extension of the composition method.

As principal computational tool we use the Mayer-Vietoris sequence

＼-g.) V (c, d)
(0.2) ■･･- rcilY, B)RnaX, E) ―> ti(IX, B) ―> 7z(f,g) ―■*n(Y, B)@n{X, E)

of [11; Proposition 3.11], but to settle group extension problems (when they
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arise) at x{f, g) we use the secondary composition operations referred to in our

title. These are discussed in section 1 and 3, They take the form of bracket

operations, generalizing the classicalToda brackets [19], but in which one or

more component may be permitted to be a homotopy pair class. They turn out

to enjoy composition, additivity and suspension properties analogous to the

classicalToda brackets and, in many cases, they can be computed either by

reduction to Toda brackets or by analogous methods. As has been indicated

elsewhere [7] the category of homotopy pairs offers a convenient setting for

the definition and derivation of properties of Toda brackets. In section 1 we

use it to define and study the new brackets.

In section 4 we present some examples in which the new brackets (with

particular elements) are evaluated in the process of computing homotopy pair

groups associated with the Hopf map S'^S2.

1. Homotopy pair brackets.

Recall that the objects of the category of homotopy pairs [8], [6] are (pointed)

continuous maps and the morphisms from / to g are equivalence classes of

diagrams 0.1. Specifically the square 0.1 is ~―related to the composite (i.e.

outer) square

X > R

(1.1)

X

I

Y

<p=(po

^ = ^0

01

E

!
･

B

where 6t and d)tare homotopies, and also to the square

X

'I

Y

* ,

>

E

I-

B
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if ht and h'tbelong to the same track (i.e. relative homotopy class of homotopies).

It is convenient to denote the homotopy pair class (i.e. ~ ―equivalence class) of

the square 0.1 by {<]>,<p, ht＼. The equalities d{$, <p,ht＼= {(p＼ and c{0, <p, ht)

= {0} define the domain and codomain restriction operators d : x(f, g)^>n{X, E)

and c: tt(/, g)-*7:(Y, B). Also basic in homotopy pair theory is the Puppe

operator P: n(f, g)-*7c(Pf, Pg). Recall that in Puppe's notation [16], Pf : Y-*Cf

refers to the inclusion of Y into the homotopy cofibre of /. As discussed in

[8], P becomes (via the formula [16; (9)]) an endofunctor of the category of

homotopy pairs of which the Puppe operator is the associated morphism func-

tion.

Let f'.X^Y, h:Y-+E, g:E―>B be maps such that /?/=* and gh^*, and

let mt: X^E and nt: Y->B be nullhomotopies of hf, gh respectively. Then

the composite square

X ―> Y > *

(1.2) -I
m

'I
＼
*B

* ≫E ― B

defines an element £ of the homotopy pair set n(X*, *B). Then the operator

cP: n(X*, *B)-^>t:(2X, B) applied to £ selects the homotopy class of the map

induced by 1.2 from the cofibre of Z* to the cofibre of *B. The Toda bracket

set

(1.3) {{*}, {h}. {f}}Qit{ZX,B)

is defined to be the set ＼cP(£) nullhomotopies mt, n,＼,which turns out to be

a double coset of the subgroups n{IY, B)°{Zf] and {g}°7z(2X, E) in n(ZX,B).

Now let a={0, <J>,ht}<=7r(f, k) and |S= {0', 0', h't}e£n(k,g) be homotopy

pair classes such that d(fi°a)=0 and c(/3°a)=0. Then there exist diagrams

X

X

(1.4) '
I

Y

I

*

6

*■

JK

k

z

w

*

0'

B
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where Xt and fitare nullhomotopies of (p'(pand $'$ respectively. If $Eztc(X*, *B)

is the element defined by the composite square 1.4 then we define the homotopy

pair bracket set

(1.5) {ft a} = {cP(£) | nullhomotopies XL, ptt}^K{X, B).

The (straightforward) proof of the following proposition is left to the reader.

1.6. Proposition. The bracket set {/3, a} as defined above is independent of

the choice of representative squares (0, <p, ht) and (0', <J>',h't),and is a double

coset of the subgroups tcCSY, B)°{Zf} and {g)°v:(IX, E).

1.7. Remark. If we choose a, fi to be the classes associated with the

squares

X

f

>'

Y

/

>

h

&.

Y

h

E

Y
h

> E

"I
.

I-

E ^―^B

regarded as commuting via constant homotopies then, in the case hf^* and

gh^*, we recover {{g}, {h}, {/}} = -{0, a}.

A disadvantage of the homotopy pair bracket operation 1.5 is that its ele-

ments B and a are homotopy pair classes. For such classes canonical notation

is not always available―at least ab initio. To remedy this difficultywe con-

sider also somewhat coarser operations of the following type. Let a&n{f, k),

B1<=n(W, B), B2(Ek(Z, E) be classes satisfying

and let

(1.8) {{g}$＼,a＼£x(ZX,B)

be the set of all elements represented by diagrams of type 1.4, where {<p/}=^2,

{0'}=/3i and a={$, <p,ht). Since we have

(1.9) {{g)lb ≪}-W{{/3, a} | dfi=pt, c^fr)

it is clear that the indeterminacy of the bracket 1.8 is larger than the indeter-

minacy of 1.5. For a detailed discussion see §5.
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2. The Mayer-Vietoris sequence.

In the sequel we shall most frequently be working with the sequence 0.2

in the region somewhat to the leftof the segment displayed. Then it takes the

form

＼-g. ) V

(2.1) ■･■- 7in(Y, B)RTcn{X, E) ―> 7tn{X,B) ―> jtn-iU, g)

(c,d)

―> nn-i(Y, B)R7cn-i(X, E)

and its exactness can be inferred from Wall's principles[21] applied to the braid

diagram [11; 3.10]. To make the argument essentially self-contained(and also

because we wish to add certain refinements to observations already in print)

we give a direct proof of exactness for the segment n ―1 shown in 0.2. As

indicated in [9], cP: tz(X*, *B)-+7:(ZX, B) is a bijection.(Actually an antiiso-

morphism if we endow n(X*, *B) with the track addition.) The operator leP

acts by appending commutative squares on the right and left:

X

/

Y

X X

leP I

X

1

*

I

B

ft

X

±

^
*

≫ B

&> E

!
･

B .

E

{･

B

Y *

^

a≫

* ≫

E

g

V

* , b

V7-f
Exactness at n(f, g) (as pointed set) is then^obvious. To check that IV J

=0 It is sufficientto observe that

E

X

g ~ f＼

Y

B

>

5.

/

Y
I

* *.

which is clear. Moreover iflcP{*, *, ht}=0 in n(f, g) then, by the ~ relation,

ht^vtf+gwt for homotopies vt:Y-^B and wt:X-+E. (Here + refers to con-

is easy to check provided one understands that (by definition)
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The exactness at Xi(Xy B) admits of some enrichment. First, by an argument

similar to one given above, one can prove the following (c.f.[12; Theorem 3.5]).

2.2. Proposition.

// they belong to the

{g＼-x(SX,E).

The images of two elements under 7 coincideif and only

same double coset of the subgroups k(2Y, B)°{2f＼ and

If the spaces X and Y are suspensions then the exactness can be further

enriched by an action of iZi{X, B) on n(f, g) enabling x{f, g) to be enumerated.

2.3. Proposition. // X=IX' and Y=IY' then there is a bisection

*(/. g) ―> U U C(a, j8,r)

aGirC^T.S)(S,per1-!") x C'/)-:1≪

where C(a, /3,y) is the cokernel of the hornomorphism

tr<r, f)＼
: ffl(K,Bmnr(X, E) ―> ^{X, B),

W(≪r,J8)7

w/^ere 7^(7",/) awrf 7(^, jS)are ^/iehomomorphisms described by Rutter [18;. 3.2,

1.2].

The bijection of Proposition 2.3 is consequence of the classificationtheorem

given [12; 3.6] in the basepoint free case (see also [12; Remark 3.9]).

When attempting to make computations using exact sequences of groups,

one soon encounters problems of group extension. Typically these have been

resolved only after resort to some secondary operation (cf. [19; Proposition

1.9]). In the case of the Mayer-Vietoris sequence 2.1, the appropriate operation

to consider appears to be the coarser homotopy pair bracket 1.8.

2.4. Proposition. Let aenif, k), ^e^GF, B), /32e7r(Z, E) be classes(as

in 1.8) satisfying p2°da=0, ^°ca=0 and {g} °i82=J81°{k}. Then in the sequence

0.2 we have ((c, dyKpi, j88))≫a=7{{^}jf, a}.

Proof. First note that applying leP to the square 1.4 has the effect of

replacing the upper rectangle by the rectangle
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X ≫ * > E

x ―z.―* z

and of replacing the lower rectangle by

w

>.

3≫

Y * * *･B .

Let fi<=7t(k,g) be a typical element of (c, flO"1^, j82). (Such elements exist

since {g} °p2=Pi°{&}･) Then {j8,a} is well-defined, and, in view of the ~

relation, P°a = l{p, a＼QV{{g}fc a). Thus ((c,d)"1^, fr)-a£V{{£}fo a}.

Applying 1.9, wehave7{{^}fe a} gw|7|^} I</£=&, ci8=i91}g((c, d)"1^,, /32))

°a, which comoletes the oroof.

2.5.Remark. We retain the usual convention with regard to secondary

operationsthatif a bracket would be undefined because of the non-vanishing

of some composition then the bracket set is empty.

2.6. Remark. We wish to apply Proposition 2.4 most frequently in the

case in which a is a multiple of an identity class so that da is a suspension

class. Then corollary 5.3 provides fullinformation concerning the indeterminacy

of {{.?}&, a}.

3. Bracket properties.

The homotopy pair brackets enjoy properties analogous to those of the Toda

brackets [19]. If {($,a) coincides with its indeterminacy we write {/3,a}―0.

Corresponding to F19: Proposition 1.21 we have:

3.1. Proposition. Given a&n(f. k), p<=n(k, g), r&nig, h),

(0) {0, a}=0 and {0, 0}=0;

(1) // d(r≫j8oa)=0 and c(r≫j8≫a)=0then

(ii) // d(/3°a)=0 and c(B°a)=0 then



(iii) // d(r°B)
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= 0 and c(j°B)=0 then

{r,P*a}2{7,P＼>2da;

(iv) // d(B≫a)=O and c(r°/3)=0then

{cj, cB, ca°{f}}Q{cj, cB°{k}, da} ^{{h}°dr, dB, da}

and

{cj, c/3,ca°{f})rM{h}°dr, dp, da}r＼{y°p,a}^0,

where the triple brackets are loda brackets.

209

Proof. (0) and (i) are obvious, (ii) The following diagram describes a

typical element of cr°{/3,a}, which also belongs to {?, fi°a}= {Y°fi,a}.

/

Y

I

*

/

> t

Y

y f

*

*

T

T

h

V

d>
>

k

z

I

w

M

s

*

&≫

h

tf>≫

(iii) Similar to (ii). The following diagram is relevant.

<P

5.

*■

: > E

k ･I

: > B

<p"

3≫

r

&,

(iv) Itis easy to check from d(P°a)=0 and c(y°(H)=0that the Toda brackets
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{cj, eft ca°{f＼}= {cr, eft {k}°da}Q{cr, cp≫{k), da),

by [19; Proposition 1.2 (ii)],and

{cy, c$o {k}, da}={cj, {^}orfft da}Q{cr°{g}, rfftrfa},

[19; Proposition 1.2 (iii)].

Since d(B°a)=0 and c(^°S)=0 there is a diagram

'I

Y
I

*

*

1

T

(3.2)

y

. ≫ z

> t

w

*

≫,

that represents an element common to the three cosets.

Next we consider analogues of Toda's brackets of type {―, ―, ―}, and

their interaction with suspension. Let ≪e7r(/, k), ^(E7i(k, g) be such that

d(fi°a)=0 in 7t{X,E) and Zc(p°a)=Q in %{IY, IB). By considering the set of

all elements of the form

IX

Stfft j*

lib

IX ' ≫

If
IZ ―>

*

I

IE

I/I J^ Sk＼ J^ Sg

IY
^―
SW ―-―> SB

1

$t J*

SB,

where <ptis a nuilhomotopy of <p'<p,ht: <f>f^k<p and h't:$'k^g<p', we obtain a

bracket

(3.3) {Zfi,la}1
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with (reduced) indeterminacy (22f)*x(ZzY, ZB)R(Ig)*Z{i:{ZX, E)). Similarly,

if a and /3 are such that 2d(p°a)=0 and c(j8°a)=0, with the obvious modi-

fication of diagram 3.2 we obtain a bracket {Zfi,Ia}x with indeterminacy

(Z2f)*Z(n(ZY, B))R(Zg)*n(Z*X, IE). More generally it is clear that brackets

of type {Zr$, Zra} (n, m£r) and of type {{Ir'g}$fc, Ira}Z can be defined.

Let Qo: n(2*X, 2B)-*ic(IX, QIB) denote the adjoint isomorphism and let

ig^nig, QIg) denote the homotopy pair class of the diagram

E

･I

B

is

>

is

3f

QSE

losg

QIB

(which commutes by the constant homotopy). An analogue of [19; Proposition

1.31is the following.

3.4. Proposition. // ae^/, k) and ^n{k, g) then

(i) 0,{2j8f 2a} = -{ig*p,a}.

(ii) {i1^, Jra} = -Z{Sr~ip, S'-WZi}.

A proof of 3.4(1) can be constructed by modifying the argument in [7;

Proof of 1.8]. The arguments required for 3.4(11)are standard. The details

are left to the reader.

We next consider additivity properties, obtaining the following analogue of

F19: Proposition 1.61.

3.5.Proposition. Let a, au a2e^(/( k); /3,plfpt(=i:(k,g).

(i) // nSgl, or f―2f and n=0 then

{Zn$, Inal}n+{Sn^) 2na2＼n^{Znp, Ena1+Ina2}n .

(ii) // n^l, or a―la' and n~0 then

{Znpu Zna}n+{Znp2, Ina}n^{Sn^+In^, Sna}n .

(iii)(i)and (Ii)with {―, ―}, replacing{―,―}n.

We shallprove (i)in the case f―If and n=0, leaving the remainder to

the reader. Suppose that the diagrams
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fr

+i

z

k (1=1,2),

W

z

>

＼

w

―＼―≫

V

E

I-

B

are representatives of the classes at (s=l, 2) and ft,respectively. Recall [8;

Lemma 1.2] that

(3.6) ai+a2={^1c^8, 0ic0≪, /i|cM},

where, for example, <piR<p2'SX'-^Z is given by

(01002X*, 5) =

0x(x,2S) (°^s^y)

(XGI', S<=I).

4>2(x,2s-l) (|^s^l)

Now let X＼,respectively pUt, i~^-,2, be nullhomotopies of (J)'(J)Urespectively

<f>'(j)i.Then the diagram

2X' > *

IX'

(3.7) /=

IY'

I

*

1"■""■ ^ ^S ■'' ^

h
k

0,c02 . 0'

I

E

g

B

represents an element of the coset {/3,≪i+≪2}- However, it can be checked

that

and hence that the element represented by 3.7 also belongs to {/3,at} + {/3,≪2}.

Since the indeterminacy of {/3,≪!+a2} is contained in the sum of the respective

indeterminacies of {/3,aj and {/3,a2}, this establishes the desired inclusion.

In the unstable range, interaction of Toda brackets with the Hopf-James

invariant is often the key to their detection. Recall that, for a connected cell

complex B, there is a homotopy equivalence B^-^QSB [15], where B^ denotes

James' reduced product space. Then, given a map s: E->B there exists a
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£oo

B^

>QIE

QSg

> QIB
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that commutes via a canonical homotopy. In view of [8; Theorem 1.3] the

diagram yields a homotopy pair equivalence g^^QHg, and hence a bijection

al n(2k, Ig) > X(k, goo)

the homotopy pair analogue of [19; (2,4)]. Since there is a commutative

diagram

£eo

fico

> (£#£).

(g##)co

* (B#B)~ ,
hB

where hE and hB are James maps, the diagram together with Qx induces an

operator

(3.8) H: it{Ik, Sg) ―≫ 7i(Ik, 2{g#g)),

the homotopy pair version of

H: 7c(Z2X, ZB)^n{rX, 2{B#B)).

position 2.3].

the Hopf-James invariant homomorphism

Then we have the following c.f. [19; Pro-

3.9.Proposition, (i) // p<=n{Zk, Zg) and a^7v(Sf, Ik) then H{p, a} g

{JJjS.ot}.

(ii) // fi^TziZW, IB), pt<ELic{2Z,ZE)and a<Bn(Zf,Zk) thenH{{2g} fact}

Q{{S(g#g)}%ll,a}.

Proof, (i) This is a consequence of Proposition 3.1(11)and the definition of

H. For (ii)we have H{{Ig}^＼, a}=H{KJ{{$, a) | dj8=j88, ^=^))g|{^, a} ＼

dHp=Hp2, cHfi = Hfil＼^{{S(g#g)}^1, a}, as required.

To obtain an analogue of [19; Proposition 2.6] we may recall [7] that

there is a partially exact sequence

- n(IX, K)

I

n{rx, ik)
H

n{rx, 2{K#K))
A*"

tt(Z,K), K=E or B
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where A" is a partial function defined (with a degree of indeterminacy) using

Toda brackets.

3.10. Proposition, (i) // ^a^n{2f, 2k), 2^n{2k, 2g) are such thai

dZ(P°a)=0 and c(j8≫≪)=Othen H{2p, Sa}1=-S{g#g}'A^(dp-da).

(li) // 2a and 2ft are such thatd(fi°a)=0 and c2(fi°a)=Q then H{2$,2a}1

=A-(cB'ca)'S*{f}.

Proof. Recall [7; §4] that if 2>=0 then

(3.11) A-fi=-Q?{0{hB}, {i＼,ft},

where i: B-^Bo* is the natural inclusion. (The little circle indicating that the

Toda bracket in 3.11 has the reduced indeterminacy consequent on the utilisa-

tion of a preferred nullhomotopy of hBi, in this case the constant homotopy).

To verify the equality in 3.10(i),firstnote that the respective indeterminacies

coincide. (The indeterminacy of A" is the image of H). Then we may observe

that the following diagrams represent elements of opposite sign.

i

/

Y

X

*

>'

w

<p

il i

E

£oo

i

i

4/

Em

hs

*

I

hm

＼-

J3co

Bm

hn

kn

> {B#B)aa

* > *

＼/

(g#g)~

(E#EU > (B#BU

Modifying 3.4(i) to its Qx version, we see that applying Q＼l to the element

represented by the firstdiagram yields an element in the coset ―H{E$, lajt.

On the other hand, 1.2 and 3.11 indicate that applying Q^1 to the element re-

presented by the second diagram yields an element of ―2{g#g] °A~(dfi°da).

Thus the cosets in 3.10(1) have a common element. In the case of 3.10(ii)we
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may again check that the indeterminacies are equal. Now the elements repre-

sented by the following diagrams coincide.

x *≫* > *

/

> t

Y

*

X

I

/

0'

E

8

i

B

Y

1

w

IlB

Bx ≫(fi#B)co

>B

i

> #

* > * > Be -―> (B#B)m.

Applying Q＼l to the element represented we see thatit belongs to ―H{2(!},2a}1

r＼―A*~(c(!}°ca)°I2{f},which completes the proof.

3.12. Corollary, (i) If a<En(f, k), p^xOV, B) and $^x(Z, E) are such

that S^2°2da=^Q and fi1°ca=0 then

H{{2g＼$i*, Sa}1=-S(g#g)oA'-(^da) .

(ii) // a<=7z{f, k), i81e^r(^, B) and /32g^(Z, E) are such that j32°da=Q and

2Pio2ca=0 then

H{{2g}$fc 2aV=&r(pl'ca)'2*{f＼.

Proof, (i) H{{2g＼§fo, 2a}1=u{H{2p, 2a}1＼ dp=pit c^fc)

= -2(g#g)'A~(pt'da).

The proof of (ii)is similar.

Finally, we have the following "reduction" property.

3.13. Proposition. // aes(/, k), /32E7r(Z, E), {g}"^^0 and p2°da=0

then ＼{g}l*,a}r＼{{g},^ da}^0.

Proof. Let y^n{g, g) be the identity classand let B^rcik, g) be such that
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dfi=^ and cj8=0. (Such £ exist since {g}°p2=Q.) Then dCjS-a^O and c(r°j3)

=0. By Proposition 3.1(iv), {{g}, fiz, da}r＼{fi, a) =£0, which implies the desired

result.

3.14. Remark. It seems to be possible to prove a (less useful) reduction of

brackets of type {{g}!L a] to matrix Toda brackets.

4. Some computations.

Let h: Ss―>S2 be a representative of the Hopf class. In this section, to

illustrate the type of argument required to apply the propositions of sections 2

and 3, we compute 7c1%= Tc{2m+nh, Imh) in the cases m=0, n=0; m―1, n = l;

m=l, n=6; m=l, n=8. These resultsindependently confirm a calculation in

[9] and partially complement corresponding results for the stable range in [101.

We use the notation

=7 and c[J =

m for an element of %t (if such exists) with dm

d. For elements of the homotopy groups of spheres we use the

notation due to Toda [19]

4.1. Proposition, (i) There is a bisection

(ii)

(iii)

(iv)

7rl~Z40Z3, with the 2-component generated by
L^73J

^s~^40^3j with the 2-component generated by
[:;]

Proof, (i) It is well-known that ―h.: ^3(S3)-^^3(S2)is an isomorphism.

By [14; Theorem 3.6], the function.h: 7r2(S2)^7r3(S2)is such that .h(rc2)=zr27]2-

It follows from Proposition 2.3 that Xo=n(h, h)*-*U(r<BZ)Cr, where Cr is the

cokernel of the homomorphism

However we claim that Cr is trivial; to check thisit is sufficientto verify

that F(rc2, h) is surjective. Since S4 and S3 are homotopy-abelian //'-spaces,

we may apply [18; Theorem 3.4.3]. Accordingly r(rcz, h){Q={Zh)%+

I(―l)n{Zw)*-l[rcif QXn°IHXn(h) where Hx?i is a Hopf-Hilton invariant asso-

ciated with the "basic pair" xn and [nr2,QXjl the associated iterated White head

product. In particular
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(Swr^trcz, QXl°2HXl(h)=±trc2, £]=0 in tt4(S2),

since £ has to be a multiple of 772and ＼_c2,572]=0. Thus A/^, h)(tr}2)=tr}i and

r(rcit h) is surjective.

(ii) It will be convenient to use the abbreviated notation Xn for the homo-

morphism /
2nf＼
(' ) in the sequence 2.1 with g―Hh. The exactness of 2.1 gives

rise to short exact sequences.

(4.2) coker Xn +1 >―> %i ―h> ker Xn .

Then ^: ^(S3)c7r5(S4)―tc,(S3) is such that X1(r]3)rj^ifj^rji-Tja-rj^O, so that

ker^!≪Z2 is generated by (rj3, t?4). Moreover 22' 7r5(S3)c7r6(S4)->7r6(S3)≪Z4cZ:

= {^'}c{ai}. Since 2v' = i)l [19; Proposition 5.6], coker ^2≪Z2cZ3 generated

by v', ai. To determine the extension we need to study {^3$£,2^2a}. By 3.12

(ii) we have H{rj3^＼,2^^2ft}1=A*"(2t72)°-375=±775. (As discussed in [7; §4], we

can here recognise A*" as Toda's A"1.) Since Hv'=r]& [19; 5.3], it follows that

v'el^J, 2<W1gW≪, 2*W. By Proposition 2.4, Vi/=2p4"Uo, so that the

extension is non-trivial.

(iii) Using information from [19] it is easy to check that ker ^6≪Z8cZ3c

Z3cZ3, with the 2-component generated by (0, vf) and that coker A7^Z2 gener-

ated by e3e7Tii(S3). To check that the extension is split we have to prove that

(4.3) £3^ {r)zV, Bcsih] W {yftt, Acsin) U {jys4o*,2iSih).

2By Proposition 3.13 {7j3iv*,2csih＼and {t}3,Av＼,2c10} have a common element and,

from information in [19], it can be checked that their respective indeterminacies

are trivial. Since Av1―f]31[19; (5.5)], we have

{r}3) Av＼,2clo}= {r]z,v±°ri＼,2≪10}2{jys, v^rfi, r)9°2c10}=0

[19 ; Proposition 1.2]. Similarly it can be checked that {??32S4,4^7ft} = {tj3,2v＼,4clo＼.

But {rjs,2v＼,4f10}Q {f]itivl, 2;10}=0 (as above). Also similarly it can be checked

2{^o4, Scs7h} = {r}3>v*> &10} = {^3, 2vl, 4^10}=0 (as above). Thus 4.3 is proved.

(iv) From [19] we may check that ker^8=Z2, generated by (s3, e4) and

that coker ^9=Z2cZ3, with the 2-component generated by e'e^13(S3). By Pro-

position 2.4, the extension is non-trivial if and only if s'e {y^t, 2c^h}. Apply-

ing 3.9(ii), we have H{rjs＼＼,2cS9h) Q {^bS≪,2czsh}. Since the image under H of

the indeterminacy of {^3||, 2^9ft} is zero, it will be sufficient to prove that £6=

Hs'^iyllz, 2cs9h＼. First note that the following diagram, in which <j>'denotes

an element of v＼and 6t, Xt and ut are nullhomotopies, represents an element
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of {V

(4.4)

lip 2cz9h]
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21.,

y
*

――* Sl≪ * s

*

･ *

*>
s ＼vh<y

*

21U

However the diagram

I(h#h)

sn ―-->s5

21,,

S12 *

* >

V
I

S5

S12 * *

＼≫y＼

represents an element of ＼v＼,f]n, 2^2}, which has zero indeterminacy, and is in

fact zero since {v＼,7)n, 2cn} S {v5, vs°r}u,2ci2}=0, [19; Proposition 5.8]. It fol-

lows that the element represented bv 4.4 can also be obtained from

I

*

I

sn

!･

* *S5,

i.e. belongs to ―{vi,2cn, oyu}. Since e6e{vl, 2cn, 7]n} [17; p. 189], this com-

pletes the proof.

5. Indeterminacy of the coarse bracket.

Let T denote the left central homotopy commutative square of diagram 1.4

and let T{fit,h't,Xt) denote the element of iz(EX, B) represented by 1.4, that is

to say the element obtained by applying the operator cP to the corresponding
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element of n(X*, *B). Let h'{ be an alternative homotopy from $'k to g<p'.

Then by a technique similar to that used in the proof of [13; Proposition 2.5]

wp. find ("hat-

(T(fttf hi' kt))'lT(/tt, hi, 20=

X ≫

1

*

fhr.t

A'k

z >

･I hi+

4>

X >

ftl-tf

> B

where the diagram is used to denote the element obtained from it by applying

the operator cP. Indeed in terms of the bracket operation defined in [13; 5.2]

we have

(5.1) T{fiu h't,Xt)^T(filt hi',Xt){£,{(!>}},

where £= {h't+ h{LL} is an element of the ^'^-based track group k＼{B; <j>''k)

[18; 1.1]. Argueing as in the proof of [13; Proposition 5.4 and Corollary 5.6],

wp nhfain :

5.2. Proposition. // X is a suspension then the bracket {{g}^＼,a) in 1.9 is

a coset of the subgroup

{g}°n(ZX, E) + n(ZY, By {If} + {*?(£ ; <j>'k),da) of n(2X, B).

Further simplificationis possible if both X and Z are suspensions and da

is a suspension class. Argueing as in the proof of [13; Proposition 5.7 and

Corollary 5.8] we obtain:

5.3. Proposition. // X and Z are suspensions and if da is a suspension

class then the bracket {{g)§＼,a} in 1.9 is a coset of the subgroup

{g＼on(SX, E) + iz(ZY, B)o{If}+7c(SZ, B)*2da .
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