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A NOTE ON REAL HYPERSURFACES OF A COMPLEX
HYPERBOLIC SPACE
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Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature ¢ is
called a complex space form. The complete and simply connected complex space
form of complex dimension n consists of a complex projective space P"C, a
complex Euclidean space C™ or a complex hyperbolic space H"C, according as
¢>0, ¢=0 or ¢<0.

Many subjects for real hypersurfaces of a complex projective space P"C
have been studied [1], [4], [5] and [6]. One of which, done by Kimura [6],
asserts the following interesting result.

THEOREM K. There are no real hypersurfaces of P*C with parallel Ricci
tensor on which J& is principal, where € denotes the unit normal and J is the com-
plex structure of P"C.

A Riemannian curvature of a Riemannian manifold M is said to be harmonic
if the Ricci tensor S satisfies the Codazzi equation, that is,

0.1 VxS(Y, Z2)—VeS(X, Z)=0

for any tangent vector fields X, Y and Z, where V denotes the Riemannian con-
nection of M. This condition is essentially weaker than that of the parallel
Ricci tensor [2]. From this point of view, Kwon and Nakagawa [5] extends
recently the following:

THEOREM K-N. There are no real hypersurfaces with harmonic curvature of
P*C on which J& is principal.

Now we are interested in these problems in the case of ¢<0, -that is, the
ambient space is a complex hyperbolic space H*C. Montiel [7] stated that there
are no Einstein real hypersurfaces in H"C, and classified the pseudo-Einstein
real hypersurfaces of H*C. In this paper, we will prove
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THEOREM. There are no real hypersurfaces with harmonic curvature of H*C
on which J& is principal.

We also obtain Kimura’s theorem when the ambient space is a complex
hyperbolic space as a corollary.

1. Preliminaries.

We begin with recalling fundamental formulas on real hypersurfaces of a
complex hyperbolic space. Let M be a real hypersurface of a complex hyper-
bolic space H*C (n=2), endowed with the Bergman metric tensor g of constant
holomorphic sectional curvature —4, and let J be the complex structure of H*C.
For any X tangent to M, we put

(LD JX=PX+o(X),

where PX and w(X)& are, respectively, the tangent and normal components of
M. Then Pis a tensor field of type (1,1) and w a 1-form over M. We denote
by E the tangent vector field —J& Then it is well known that A admits an
almost contact metric structure (P, E, w, g). Let ¢ be a second fundamental
form of M and A a shape operator derived from & The covariant derivative
VxP of the structure tensor P is denoted by VxP(Y)=Vx(PY)—PV;Y. Then it
follows from the Gauss and Weingartan formulas that the structure (P, E, o, g)
satisfies

(1.2) VxPY)=—g(AX, V)E4+w(Y)AX,

VxE=PAX
for any tangent vectors X and Y on M, where V denotes the Riemannian con-
nection of the hypersurface.

Since H"C is of constant holomorphic sectional curvature —4, the Gauss and
Codazzi equations are respectively given:

1.3) RX,Y)Z=—{g¥, Z)X—g(X, Z)Y +g(PY, Z)PX—g(PX, Z)PY
+2g(X, PY)PZ}+g(AY, Z)AX—g(AX, Z)AY ,

(1.4) VxAY )=V AX)=—{a(X)PY —w(Y)PX+2g(X, PY)E}.
By the Gauss equation, The Ricci tensor S of M is given by
(1.5  SIX, V)=—{@2n+1)g(X, Y)-3o(X)w(Y)} +hg(AX, Y)—g(AX, AY),

where h denotes the trace of the shape operator A.
From now on, we assume that the structure vector field E is principal,
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thot is, E is eigenvector of A associated with eigenvalue a. Then equation (1.2)
implies that

(1.6) VxA(E)=da(X)E+aPAX—APAX,
which together with (1.4) yields
1.7 2APA=a(AP+PA)-2P,
B(AP+PA)=0, da=fw,
where B=da(E). Taking account of (1.4) (1.6) and (L.7), it is easy to see that

(1.8) VxAE)=a(PA— AP)X/2+PX+Bu(X)E,
VeAX)=a(PA—AP)X/2+ Bo(X)E.

2. Proof of the Theorem.

At first we determine the hypersurface M satisfying (0.1). Using (1.5), we
see that (0.1) is equivalent to

@2.1) h{g(VxAY)—Vr AX), 2)+e(Vx AY)=Vr A(X), AZ)—g(VxA(Z), AY)
+g(VAZ), AX)}+(Txh)g(AY, Z)—(Urh)g(AX, Z)+3{g(PAX, Y)o(Z)
+g(PAX, Z)w(Y)—g(PAY , X)a(Z)—g(PAY, Z)w(X)}=0

for any vector fields X,Y and Z tangent to M. Putting Z=F in (2.1) and
taking account of (1.8), we have

(2.2) a(PA*+ A*P)/2+2(PA+ AP)—a APA—2(a—h)P=0.
Similarly, putting X=EFE in (2.1), we also obtain
(2.3) —(3PA— AP)+a(PA— AP)a—A)/2—(h—a)P+yA—adhQE=0,

where y=dh(E).

Now first of all we prove that the principal curvature @ is constant. Sup-
pose that there exist points x at which f(x)#0. Then we have AP+PA=0
and APA=—P by means of (1.7). Taking a principal vector X orthogonal to E
with principal curvature A, we find 2=%1 and —2 is also a principal curvature.
This implies that A=« and hence aP=0 at x by means of (1.7) and (2.2), which
together with (2.3) yields 2=0. A contradiction. So we have B=da(E)=0 on
M. Moreover using (1.7), we have da(X)=0 for any X orthogonal to E. Con-
sequently, we can say that a is constant. Moreover it is non-zero. In fact,
suppose that a=0. Then we can verify, making use of (2.2) and (2.3), that it
follows that '

—4PA—-2hP+7yA=0.



454 He-Jin Kim

Let X be a principal vector with principal curvature 2 which is orthogonal to
E. Then by means of above equation, we have (4A+2h)PX—y2X=0, which
implies that 22+A=0 and y2=0, because X and PX are mutually orthogonal.
This implies that the trace of A satisfies h=a+@2n—2)2=—(n—1)h, which
means that A=h=0, and hence M is totally geodesic. Thus it is a contradiction.

Next, the constancy of the mean curvature £ will be proved. Replacing X
and Z by E and making use of (1.8), equation (2.1) becomes

2.4) a(yo—dh)=0
Since a is non-zero constant, equation (2.4) yields
grad h=yE,
from which we have
dr(X)e(Y )—dy(Y)o(X)=—rg(PA+AP)X, Y)

for any X and Y, because of the fact that g(Vygrad#, Y)=g(Vygrad h, X).
Suppose that there exist points x at which 7(x)#0. Putting Y=F in the above
equation, we have dy=dy(E)w and hence it implies that PA-+ AP=0. Making
use of the same discussion as above, we get P=0, which is a contradiction.
Thus y vanishes identically and by (2.4) A must be constant.

LEMMA. Let M be a real hypersurfaces with harmonic curvature of H"C.
If the structure vector E is principal, then all principal curvatures are constant

and the number of distinct principal curvatures is at most 5.
PROOF. Let X be a principal vector orthogonal to F with principal curva-
ture 4. Then it follows from (1.7) that
(2.5) (22—a)APX=(ald—2)PX.
Fix any point ¢ of M such that
A= =A=a/2,  An(@Fa/2, o, Dnos(q)E /2,

where 0<s<2n—2. Then there exists a neighborhood W; of ¢ such that A, #
a/2 on W;, where r=s+1. For 2=2,, Y=PX is also a principal vector on the
open set W, and its corresponding principal curvature is given by p=(ai—2)/
(24—a). Hence (2.3) is reduced to

(2.6) (34— p)—a®(A— )/ 2+ alA— )3/ 2+ (h—a) =0,

Accordingly the principal curvature 1=2, is the roots of the following cubic
equation with constant coefficients:
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2.7 ax?—2(a?*—3)x*+(a’*—ba+2h)x —(ah—2)=0.

It means that the number of distinct principal curvatures for any fixed point ¢
is at most 5 and 4, are constant on W ;.

Next we will show that all principal curvatures are constant. Suppose that
there exist a point y in W; and an index a at which 2,(y)#a/2, a<s. Then
y is a distinct point from g. Let W, be the set consisting of points of W, at
which 1,#a/2. By the same discussion as above 2, are constant on W, and
hence the continuity of 2, shows that W, is closed. Without loss of generality,
we may assume that W ; is connected. In fact, we may take a connected com-
ponents of W, if necessary. Since W, is open and closed in the connected set
W, we conclude W, is empty, that is, A;=a/2 for any a<s on W,. Accord-
ingly all principal curvatures are constant in W,; and hence W; is equal to M,
that is, all principal curvatures are constant on M.

Finally, we are going to prove the main theorem mentioned in the Intro-
duction. Let X be a principal vector orthogonal to F with principal curvature
A(#a/2). Then PX is also a principal vector with principal curvature g=(ai—2)/
(2A—a). It follows from (2.7) that A satisfies

al*—=2(a* =3P +(a*—Sa+2h)A—(ah—2)=0.
Suppose that 1#p. It follows from (2.6) that
(2.3) alt—2(a*—4)2+ala®*—5)=0.
From two ejuations obtained above it follows that
2.9 22 —=2hi+ah—2=0.

We assert that the operator P commutes with the shape operator A. If
s=2n—2, then the property PA=AP is trivial. So suppose that 0<s<2n—2.
Since there exists at least one principal vector associated with principal curva-
ture a/2 by means of the supposition, the equation (2.5) emplies a==+2 and
hence we get A1+ p for the principal curvature A different from «/2. In fact, if
A=p, we see A*—ald+1=0, which means that A=+1=a/2. Then, from (2.8)
and (2.9) we have h=2(a’—4)/a=0 and 2==—p=+1. On the other hand, & is
given by h=(s+2)a/2, a contradiction. Accordingly we may only consider the
case of s=0. Now, for a real hypersurface M of a complex hyperbolic space
H"C, one can construct a Lorentzian hypersurface N of an anti-de Sitter space
S27+1 which is a principal S'-bundle over M with totally geodesic fibers and the

projection 7 : N—M in such a way that the diagram
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N _r Szn+t

e

M ——> H"C
is commutative ( and 7’ being respective isometric immersions). Let g, =+, ftan_y
be principal curvatures of M at any point x such that g#,=a. Since the struc-
ture vector E is assumed to be principal, let E;, -+, E:,-, be an orthonormal
basis of T .M with AE,=akFE, and AE,=p.E.(a=2, ---, 2n—1). Then horizontal
liftt E,* and a unit vector E’ form an orthonormal basis of T,N, n(z)=x, with
respect to the shape operator A’ of N is represented by

0 —1
{ 0

Yo l
',Uzm /

where the first submatrix corresponds to the restriction of A’ to the Lorentzian
plane spanned by {E’, E,*}. See Montiel [7]. This means that N is an iso-

parametric hypersurface of S2"*!' and hence a theorem due to Hahn [3] implies
Ap=1. Thus the principal curvatures 2 and p satisfy Ap=a’—5 and 2+p=4/a
from (2.8), which implies that 4n—2=0 by the definition of the mean curvature,
a contradiction. Hence we have A=p, which implies PA=AP.

Therefore, we obtain A=(a—h)/2 by means of (2.6) and hence, in spite of
s=0 or s>0, we have a=h, which enables us to obtain 2=0. Making use of
(2.5) again, we have PA=AP=0 and hence P=0 by means of (1.7), which is a
contradiction. Thus the theorem is completely proved.

COROLLARY. There are no real hypersurfaces of H"C with parallel Ricc

tensor on which the structure vector E is principal.
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