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Introduction.

A Kaehlerian manifold of constant holomorphic sectionalcurvature c is

calleda complex space form. The complete and simply connectedcomplex space

form of complex dimension n consistsof a complex projectivespace PnC, a

complex Euclidean space Cn or a complex hyperbolicspace HnC, according as

c>0, c=0 or c<0.

Many subjectsfor real hypersurfaces of a complex projectivespace PnC

have been studied [1],[4],[5] and [6]. One of which, done by Kimura [6],

assertsthe followinginterestingresult.

Theorem K. There are no real hypersurfaces of PnC with parallel Ricci

tensor on which J$ is principal, where £ denotes the unit normal and J is the com-

plex structure of PnC.

A Riemannian curvature of a Riemannian manifold M is said to be harmonic

if the Ricci tensor S satisfiesthe Codazzi equation, that is,

(0.1) !XS(Y, Z)-1YS{X, Z)=0

for any tangent vector fields X, Y and Z, where 7 denotes the Riemannian con-

nection of M. This condition is essentially weaker than that of the parallel

Ricci tensor [2]. From this point of view, Kwon and Nakagawa [5] extends

recently the following:

Theorem K-N. There are no real hypersurfaces with harmonic curvature of

PnC on which JB is principal.

Now we are interested in these problems in the case of c<Q, that is, the

ambient space is a complex hyperbolic space HnC. Montiel [7] stated that there

are no Einstein real hypersurfaces in HnC, and classified the pseudo-Einstein

real hypersurfaces of HnC. In this paper, we will prove
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Theorem. There are no real hypersurfaces with harmonic curvature of HnC

on which /£is principal.

We also obtain Kimura's theorem when the ambient space is a complex

hyperbolic space as a corollary.

1. Preliminaries.

We begin with recalling fundamental formulas on real hypersurfaces of a

complex hyperbolic space. Let M be a real hypersurface of a complex hyper-

bolicspace HnC (n2>2), endowed with the Bergman metric tensor g of constant

holomorphic sectional curvature ―4, and let / be the complex structure of HnC.

For any X tangent to M, we put

(1.1) JX=PX+a>{X)%,

where PX and <o(X)t-are, respectively, the tangent and normal components of

M. Then P is a tensor field of type (1,1) and o) a 1-form over M. We denote

by E the tangent vector field ―/£. Then it is well known that M admits an

almost contact metric structure (P, E, o>,g). Let <; be a second fundamental

form of M and A a shape operator derived from £. The covariant derivative

lxPof the structure tensor P is denoted by 1 XP{Y)=1 X{PY)-P1 XY. Then it

follows from the Gauss and Weingartan formulas that the structure (P, E, m, g)

satisfies

(1.2) VxP(Y)=-g(AX, Y)E+o){Y)AX,

VXE=PAX

for any tangent vectors X and Y on M, where 7 denotes the Riemannian con-

nection of the hypersurface.

Since HnC is of constant holomorphic sectionalcurvature ―4, the Gauss and

Codazzi equations are respectively given:

(1.3) R(X, Y)Z=-{g{Y, Z)X-g{X, Z)Y+g{PY, Z)PX-g(PX, Z)PY

+2g(X, PY)PZ}+g{AY, Z)AX-g(AX, Z)AY,

(1.4) lxA{Y)-lYA{X)=-{G){X)PY-G){Y)PX+2g{X, PY)E＼.

By the Gauss equation, The Ricci tensor S of M is given by

(1.5) S(X, Y)=-{(2n+l)g(X, Y)-3o)(X)a)(Y)}+hg(AX, Y)-g{AX, AY),

where h denotes the trace of the shape operator A.

From now on, we assume that the structure vector field E is principal,
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thot is, E is eigenvector of A associated with eigenvalue a. Then equation (1.2)

implies that

(1.6) !xA{E)=da{X)E+aPAX~APAX,

which together with (1.4) yields

(1.7) 2APA=a(AP+PA)-2P,

fi(AP+PA)=Q, da = po),

where ^―da{E). Taking account of (1.4) (1.6) and (1.7),it is easy to see that

(1.8) lxA(E)=a(PA-AP)X/2+PX+pa){X)E,

lFA(X)=a(PA-AP)X/2+Ba){X)E.

2. Proof of the Theorem.

At first we determine the hypersurface M satisfying (0.1). Using (1.5),we

see that (0.1) is equivalent to

(2.1) h{g{lxA{Y)-lYA{X), Z)+g{lxA{Y)-lYA{X), AZ)-g{l XA{Z), AY)

+gC7YA(Z), AX))+{lxh)g{AY, Z)-(lYh)g{AX, Z)+3{g(PAX, Y)w(Z)

+g(PAX, Z)a)(Y)-g(PAY, X)o){Z)-g{PAY, Z)o)(X)}=0

for any vector fields X, Y and Z tangent to M. Putting Z = E in (2.1) and

taking account of (1.8), we have

(2.2) a{PA2+A2P)/2+2(PA+AP)-aAPA-2(a-h)P=0.

Similarly, putting X―E in (2.1), we also obtain

(2.3) -(3PA-AP)+a(PA-AP)(a-A)/2-(h-a)P+rA-adhRE=0,

where y=dh(E).

Now firstof all we prove that the principal curvature a is constant. Sup-

pose that there exist points x at which /3(x)^0. Then we have AP+PA―0

and APA=―P by means of (1.7). Taking a principal vector X orthogonal to E

with principal curvature 1, we find ^=±1 and ―X is also a principal curvature.

This implies that h―a and hence aP=0 at x by means of (1.7) and (2.2), which

together with (2.3) yields A=0. A contradiction. So we have p-=da(E)=Q on

M. Moreover using (1.7), we have da(X)―0 for any X orthogonal to E. Con-

sequently, we can say that a is constant. Moreover it is non-zero. In fact,

suppose that a=0. Then we can verify, making use of (2.2) and (2.3), that it

follows that

-4PA-2hP+rA=0.
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Let X be a principal vector with principal curvature X which is orthogonal to

E. Then by means of above equation, we have (4X+2h)PX―yXX=0, which

implies that 2X+h=0 and yX=0, because X and PX are mutually orthogonal.

This implies that the trace of A satisfies h=a+(2n ―2)X= ―(n―l)h, which

means that X―h=0, and hence M is totallygeodesic. Thus itis a contradiction.

Next, the constancy of the mean curvature h will be proved. Replacing X

and Z by E and making use of (1.8), equation (2.1) becomes

(2.4) a(rw-dh)=Q

Since a is non-zero constant, equation (2.4) yields

grad h=yE,

from which we have

dr(XMY)-dr(YMX)=-rg((PA+AP)x,Y)

for any X and Y, because of the fact that g(Vxgrad/z, F)=g(Vrgrad/z, X).

Suppose that there exist points x at which y(x)^0. Putting Y―E in the above

equation, we have dj―dy(E)o) and hence it implies that PA+AP= 0. Making

use of the same discussion as above, we get P― 0, which is a contradiction.

Thus r vanishes identically and bv (2.A) h must he constant.

Lemma. Let M be a real hypersurfaces with harmonic curvature of HnC.

If the structure vector E is principal, then all principal curvatures are constant

and the.number of distinctt>rincit>alcurvatures is at most 5.

Proof. Let X be a principal vector orthogonal to E with principal curva-

ture X. Then it follows from (1.7) that

(2.5) (2X-a)APX=(aX-2)PX.

Fix any point q of M such that

Uq)= ･･･=Ug)=a/2, Xs+1(q)^a/2, ■■■,X2n.2(q)^a/2,

where 0^s^2?i―2. Then there exists a neighborhood Wx of q such that Xri^-

a/2 on Wx, where r^s + 1. For X=Xr, Y―PX is also a principal vector on the

open set Wx and its corresponding principal curvature is given by p.―{aX―2)l

(2X―a). Hence (2.3)is reduced to

(2.6) (3X~fi)-a2(X-f*)/2+a(X-tn)X/2+(h-a)=0.

Accordingly the principal curvature X=Xr is the roots of the following cubic
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(2.7) ax3-2(a2-3)x2+(a3-5a+2h)x-(ah-2)=0.

It means that the number of distinctprincipal curvatures for any fixed point q

is at most 5 and Xr are constant on Wx-

Next we will show that all principal curvatures are constant. Suppose that

there exist a point y in Wx and an index a at which Xa{y)^ot/2, a^s. Then

y is a distinctpoint from q. Let Wa be the set consisting of points of Wx at

which Xa^a/2. By the same discussion as above Xa are constant on Wa and

hence the continuity of Xa shows that Wa is closed. Without loss of generality,

we may assume that Wx is connected. In fact, we may take a connected com-

ponents of Wx if necessary. Since Wa is open and closed in the connected set

Wx, we conclude Wa is empty, that is, Xa―a/2 for any a^s on Wx- Accord-

ingly all principal curvatures are constant in Wx and hence Wx is equal to M,

that is, all principal curvatures are constant on M.

Finally, we are going to prove the main theorem mentioned in the Intro-

duction. Let X be a principal vector orthogonal to E with principal curvature

X(^a/2). Then PX is also a principal vector with principalcurvature p={aX―2)/

{21―a). It follows from (2.7) that X satisfies

aX3-2(a2-3)X2+(a3-5a+2h)X-(ah-2)=0.

Suppose that X=£fi.It follows from (2.6) that

(2.3) aX2-2(a2-A)X+a(a2-5)=-0.

From two equations obtained above it follows that

(2.9) 2X2-2hX+ah-2=0.

We assert that the operator P commutes with the shape operator A. If

s=2n―2, then the property PA―AP is trivial. So suppose that 0<s<2n―2.

Since there exists at least one principal vector associated with principal curva-

ture all by means of the supposition, the equation (2.5) emplies a = ±2 and

hence we get X^ft for the principal curvature X different from a/2. In fact, if

X=p, we see X2―aX+l=0, which means that X―±l―a/2. Then, from (2.8)

and (2.9) we have h=2(a2―4)/a=0 and X=―ft=±l. On the other hand, h is

given by /i=(s+2)a/2, a contradiction. Accordingly we may only consider the

case of s=0. Now, for a real hypersurface M of a complex hyperbolic space

HnC, one can construct a Lorentzian hypersurface N of an anti-de Sitter space

S?ra+1which is a principal S'-bundle over M with totally geodesic fibersand the

projection iz: N-+M in such a way that the diagram
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M ―+HnC

is commutative (z and i' being respective isometric immersions). Let ptu ■･■,fjt2n-i

be principal curvatures of M at any point x such that fii=a. Since the struc-

ture vector E is assumed to be principal, let Eu ■■･, E2n~i be an orthonormal

basis of TXM with AEx―aEx and AEa=/uaEa(a=2, ･･･, 2n ―1). Then horizontal

lift Ea* and a unit vector E' form an orthonormal basis of T2N, n(z)=x, with

respect to the shape operator A' of ./Vis represented by

where the firstsubmatrix corresponds to the restrictionof A' to the Lorentzian

plane spanned by {£',Ei*}. See Montiel [7]. This means that N is an iso-

parametric hypersurface of Sfn+i and hence a theorem due to Hahn [3] implies

Xfi= l. Thus the principal curvatures X and pi satisfy j(p=a2―5 and X+fi―i/a

from (2.8),which implies that An―2=0 by the definitionof the mean curvature,

a contradiction. Hence we have I―p., which implies PA=AP.

Therefore, we obtain A=(a―h)/2 by means of (2.6) and hence, in spite of

s―0 or s>0, we have a=h, which enables us to obtain X=0. Making use of

(2.5) again, we have PA=AP=0 and hence P=0 by means of (1.7), which is a

contradiction. Thus the theorem is completely proved.

Corollary. There are no real hypersurfaces of HnC with parallel Ricci

tensor on which the structure vector E is principal.
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