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§1. Introduction and results.

Fedii [1] studied hypoellipticityfor operators of the form L = D＼+<f>(xiyDt

in R2, and proved that L is hypoelliptic in R2 if 0(xi)eC°°(.ft)and ^(xj)>0

for Xi^O. Hormander's results in [2] can not be applicable to L when <f>(xi)

has a zero of infinite order. Compared with higher dimensional cases, the

problem in R2 becomes much simpler. So one can expect that one investigates

hypoellipticityfor more general operators in R2. In this paper we shall give

sufficientconditions of hypoellipticity for operators of the form P(x, D)=D＼+

a(x)Dl+P(x, D) in R2, where x = (x1} x2)<=R2, a(x)^C°°(R2) is non-negative

and j8(x,D) is a properly supported classical pseudodifferential operator of

order 1. In doing so, we need general criteria for hypoellipticity, which are

improvements of ones obtained by Morimoto [5] (see Theorem 1.1 below).

Let us define the usual symbol classes S i,locand Sl%. We say that a

symbol />(*,£)belongs to ST,hoc (resp. SJ%) if p(x, £)eC°°(T*i2n)and if for

any compact subset K of Rn and for any multi-indices a and /3 (resp. for any

multi-indices a and /3 there is Ca^ = CK-aip>0 (resp. Ca,p>0) such that

!/><#(*,£)I^Ca./K£>m-|a| for xGEifand ^Rn (resp. for (x, ^)^T*Rn), where

ttkbR, p＼%(x, &=d$Dlp(x, a Dx=-idx, <£>=(1+|£I2)1/2and T*Rn isidentified

with RnxRn. We denote by Lxm0 the set of the pseudodifferential operators

whose symbols belong to Sj%loc. Let P(x, D)eL^0 be a properly supported

pseudodifferential operator, and let z°=(x°,f°)eT*J2n＼0 ( = Rnx(Rn＼{0})). It

is said that P(x, D) is microhypoeliiptic at z°if there is a conic neighbourhood

cv of 2° in T*Rn＼0 such that WF(u)r＼(=V=WF(Pu)ncV if ue=3)f,(Rn). We

also say that P(x, D) is microhypoeliipticin a conic in a conic set cv(cT*J2n＼0)

(resp. in Q(cRn) if P(x, D) is microhypoeliiptic at each (x, ^)ef (resp. at
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each (x, £)e£?x(.Rre＼{0})). We may assume that the symbol p(x, £) of P(x, D)

belongs to SJ%. Assume that

(H) £°=(0, ■･･, 0, l) Ei2n and there are a conic neighborhood C of z in

T*i2"＼0, a conic smooth manifold I in T*Rn＼R, n'<=N and a

vector subspace V of R71'1 such that z°^I, n'^Ln, P(x, D) is

microhypoelliptic in C＼I and T,o2r＼W={Q}, where W={(dx,d$',0)

(ETzo(T*Rn)＼dxj=0(n'<j^n) and d$'=(d^, ■･･, 3^-0^7}

and 8x=(dxi, ■■■, 8xn).

Denote by r)(8t;f) the orthogonal projection of d^'eiS""1 to the orthogonal

complement V1- of V, and choose a real-valued symbol <p(x", |)eS?,0 such that

<p(x", f) is positively homogenous of degree 0 for |£|^1 and <p(x", £)= ＼x" ― x°"＼2

+ ＼i}<£')＼*/Vn near Cn{＼%＼^l＼, where x" = (xn.+1, ■■■, xn), jc°"=(*°.+1, ･･･ , x°n),

and x"=Q if n'=n. Let A(l-) be a real-valued symbol in S＼<0 such that X($)=

<fn> if e≪^ 1^1/2^1 and <D/4^^)^2<O. We put

A(x, $)=A6x", £)=A8{xfl, $; a, N, s)

= {-s+a<p(x>', $)} log X(£)+Nlog (1+8XG))

for O^a^l, a^O, A^O and sg/2. Note that ＼A＼%(x",£)＼ ^Ca,^yaix

log(l+<6≫ and ^^IgU^S!,,.

Define P^x, I>) by

P^x, U)―2-＼x", D)P{x, D)eA{x", D).

where e±A(x"', D) are pseudodifferential operators with symbols e±A<-x"-^.

Theorem 1.1. Assume that the condition (H) is satisfied, and assume that

there are lk(x, £)eS?,0 (k = l, 2), lk(ER (l^k<^3), a^O, JVo^0, and so^R such

that Xk(x, £)(k = l, 2) are positively homogeneous of degree 0 for |£|^1, lk{z)―＼

near z° and for any a^a0, any N^N0 and any s^s0 there are W{x, ^)eSJ,0,

5o>O (do^l) and C>0 such that W(x, $) is positively homogeneous of degree 0

for |£|^1, supp Wr＼Z=0 and

(1.1) IIZjU, D)v＼＼lx^C{＼＼PA{x,̂ l^+lbll^-,

+ ||(l-Z,(x, D))v＼＼h+＼＼＼(x,D)v＼＼h}

if v(eC and 0<d^d<>, where ||M||J=||<Z)>iM|| and ＼＼u＼＼denotes the L2 norm of u.

Then z°&WF(u) if ueeW and z°mWF(P(x, D)u).

Remark. When one applies Theorem 1.1, one must choose W in the con-
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dition (H) suitably. Whether (1.1) can be shown or not may depend on the

choice of W.

Next let us restrict our consideration to operators of second order in R2.

We assume that P(x, D)=D＼+a{x)D＼+f}(x, D) is a properly supported classical

pseudodifferential operator in R2 such that a{x)^C°°{R2)is non-negative and

j8(jc,D) eL1,0. Let x*<=R2, and let I, be a subset of I22 such that xoeJo and

F(x, D) is microhypoelSiptic in U0＼I0 for some neighborhood £/0of x°.

Theorem 1.2. (i) Assume that Ior＼Uo―{x0}. If there are a neighborhood

U of x00 and C>0 such that

(1.2) (RejSiU, 0, ±l))2^Ca(x) for x^U ,

then P(x, D) is microhypoelliptic at x°, where /3i(x,£) denotes the principal

symbol of /3(x,D) which is positivelyhomogeneous of degree 1. (ii) Assume thai

2Iont/oC{xeJR2|/(x)=O}, where f(x)(EC＼R2) is real-valued, f(x°)=Q and

df/dxl{x°)^Q. If there are a neighborhood U of x°,1<=N and C>0 such that

(1.3) (RejSxU, 0, ±l))2+(Im^1U, 0, ±l))2lSCa(x) forx^U,

then P(x, D) is microhypoellipticat x°.

Denote by ^B(R2) the power set of E2. We define the mapping r: £P(i22)―>

3>(R2) as follows: For A(=s>(R2), t(A) is a subset of A and x°(eA＼t(A) if

and only if a(x°)>0 or there are a neighborhood U of x° and f(x)^C1(R2)

such that (i) /(x°)=0, df/dx^x0)^ and ^nf/c{xe!22|/(x)=0} and (ii)(1.2)

holds if Ar＼U={x0} and (1.3) holds if AnUi={x0}. The following Corollary

is an immediate conseouence of Theorem 1.2.

Corollary 1. P(x, D) is microhypoelliptic in R2＼C＼%xtj{S), where S―

{x(BR2＼a(x)=0＼.

Remark. We note that r(J22)cS. So we have n"=ir'(/22)=r＼?=ir'(S).

Define S=＼Ja<zs.z<.a-)=aA,where S={x^R2＼a(x)=0}. Then itis easy to see

that t(S)=S and that AdS if AdS and r(A)=A. Using transfiniteinduction,

we can prove the following

Corollary 2. P(x, D) is microhypoellipticin R2＼S. In particular,if there

is not a non-empty subset A of S satisfying t(A)=A, then P(x, D) is microhy-

pollipticin R2.
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Next assume that ≪(0)=0 and that Sr＼U(Z{x<BR2＼x1=O} for some neigh-

borhood U of the origin in R2, where S={xei22|a(x)=0}. Put

A(t)='mf{a(s, x2) I (s, x2)e[― c0, co]X[―c0, c0]

and ±(s-0^0} for co^±f^O,

B(0=sup{|Rej8!(s, x2, 0, 1)| | (s, x2)e[-c0, co]X[―c0, c0]

and ±t>(t-s)^O} for co^±^0,

r(0=sup{|Imj8i(s,
xt, 0, 1)| | (s, x2)e[-c0, co]X[―c0, c0]

and ±^(f-s)^O} for c^±^0,

where c0 is a positive constant satisfying [―c0, c0] X [― c0, co](s^7. Here y4(s5

means that the closure A of A is included in the interior B of
-6. It is easy

to see that A(t), B(t) and F{t) are Lipschitz continuous functions defined on

[―Co, Co]. Under the above assumptions Theorem 1.2 can be improved as

Theorem 1.3. (i) Assume that Sr＼U―{0}. If (1.2) holds or if there is ZeiV

(1.4) ^o-limsup^oUr7^(O<TO,

(1.5) flo= limsupt_oUl1-I£(O<°°,

(1.6) 21+5{1+21+2/1(1+1)} A0Bl/1(1+1X1,

then P(x, D) is microhypoelliptic at the origin, (ii) Assume that (1.2)is valid or

(1.4)-(1.6)are valid. If (1.3) holds or if Y＼mt_<fr(t)log
^4(0=0, then P(x, D) is

microhvvoellibticat the orein.

The remainder of this paper is organized as follows. In §2 we shall give

the proof of Theorem 1.1. Theorem 1.2 and Corollary 2 will be proved in §3.

In §4 we shall prove Theorem 1.3. Further remark will be given in §5.

The author would like to express his gratitude to Professors M. Matsumura,

S. Wakabavashi and T. Hoshiro for helpful discussions.

§2. Proof of Theorem 1.1.

Theorem 1.1 is a variant of Theorem 1.2 in [4]. For completeness we

give the proof of Theorem 1.1 in this section. Let u^£)'(Rn) and put /=

P(x, D)u. We may assume thatu^efr＼Hs> forsome s'e/2, where H'(=H*(Rn))
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denotes the Sobolev space of order s. Let C＼be a conic neighborhood of z°

such that dn{ 161=l}<m{(x, £)eC＼l,{x,£)=XtQL,£)=1}. Assume that there is

a conic neighborhood C2 of z° such that C2(sCx and WF(f)r＼C2=0, where

C2(<=Cimeans C2r＼{＼£＼= l}<£=LCl.Then it follows from the assumytion (H) that

WF(u)r＼dCtr＼W=0, where W={(x0, #o)＼X>Q＼+W={(x°+x, ^°+f)IU, 6)ePy,

-}>Q} and dC2 denotes the boundary of C2, modifying C if necessary. Choose

X(x, 6)gS2,0 so that X(x, £)is positively homogenenous of degree 0 for |£|^1.

X(z)=l near 2°,suppXn{ |£|= l}<^d and WF(/)nsuppZr＼{ |£|=1} = 0. Then

we have W7?(w)nfiV>＼suppdZn{|$|=l} = 0. Therefore there is s>0 such that

(x,$)GWF(u) if (x, $)(EsuppdX, l^l^l and <p(x",$)£2e. For a fixed o>s'

we can choose a^a0 and s^s0 so that as ―s>l2+m― 1―s' and ae/2―s</x―a.

Moreover choose N^N0 so that N>s― s'+max{/2+m, /x―1,/3}. It follows from

calculusof pseudodifferentialoperators that there is Qs(x",^) (=Qd(x",%; a,N, s))

such that

＼＼eA(x",D)Qd(x", D)e-＼x", D)g-g＼＼p£Ca,N,s,p(g)

for p<=R and g^H~°°(=＼Ji&RHl). Here and after the constants do not depend

on d (d^l) if not stated. Put

v8(x)=Qs(x", D)e-A(x", D)X{x, D)u .

Then we have

＼＼e＼x",D)vd-X(x, D)u＼＼p^Ca,N,s,P(u),

＼＼PA(x,D)v8-e-A{x", D)X(x, D)f-e~A(x＼ D)[P, X~]u＼＼p^Ca,N,s,p(u)

for any p^R, where [P, X＼u= {P({x, D)X(x, D)-X(x, D)P(x, D))u. Since u is

in C°°near {{x, £)＼<p(x"',̂)^3s, (x, |)esupprfZ and |||^1} and -s+a<p(x",£)

>l2+m―l―s' if ^(x'',|)^£, we have

＼＼Pa(x,D)vS＼＼l2-£Ca,N,s(u).

Noting that Vs(EEHm*xllz+m-l*-ulz]for a>0 and that (1.1)is also valid for v^e

^max|!2+m,l2-l,!3l(we ^ave

＼＼Xx(x,D)vs＼＼lx^Ca,N.s(u) for 0<8<d0,

where 80>0 is as in Theorem 1.1. In fact, we have ||(1―X2{x,D))v8＼＼i3^

C'a,N,s(u),since supp(l―X2(x, ^))nsupp%n{ ||| ^1} = 0. We have also

＼＼W(x,D)vs＼＼h^CZ,N,s(u),

since u is in C°°near supp Fnsupp Xn {If I^1} by the assumption (H). There-

fore, we have Wvsh^Ca.N.siu) for 0<d^80. This implies that Vd~^v0weakly

in Hlz as 5-^0 and that vn<=Hl2. Let X(x. B) is oositivelv homogeneous of de-



222 Michiharu Suzuki

gree 0 for |£|^1 and suppfc £)n{|£|^l}<^{(*, £)| Z(*, £)=1 and <p(x＼$)

^s/2}. Then, noting that ―s+a<p)x", £)<li―a if <p{x",$)^e/2, we have

X(x. D)u^H". This oroves Theorem 1.1.

§ 3. Proofs of Theorem 1.2. and Corollary 2.

In this section we shall prove Theorem 1.2, applying Theorem 1.1, and

Corollary 2 by transfinite induction. Recall that P(n, D)=D＼+a(x)Dl+fi(x, D)

is an operator in R2, a(x)2>0 and fi(x, D)<=L{
0.

We may assume that ≪(x)e

&"(&) and fj(x,£)eSi>0. Let x°(=R2, and let Io and Uo be as in § 1. Assume

that IonUod{xGR2＼f(x)=0}, where f(x)(EC1(R2) is real-valued, /(jc°)=0 and

df/dxt(x°)^0. It is sufficient to prove that P(x, D) is microhypoelliptic at z°=

(x°; 0, ±1). We shall show that P(x, D) is microhypoelliptic at (x°; 0, 1). Note

that microhypoelliptic at (x°;0, ―1) can be similarly proved. Choose a real-

valued <p(t)<E$°°(R)so that <p(t)=O when Ior＼Uo={x0}, and (p(t)=(t-x°2y near

t―x＼ when IonU0^{x0}. We put

A(x, ^)=Ad(x, $)=A£x, $; a, N, s)={-s+a(p(x2)}log
>?(|)+7Vlog (l+^O

for O^a^l, a^O, N^O and s(ERf where ^(f) is defined in §1. Then there

is a conic neighborhood C of (x°.0. D in T*R2＼0 such that

r -siog<£8>+wiog(i+a<&≫ if lonUo^ix"},
A(x, f)=

{ {-s+a(x2-xl)2}log<%2y+Nloga+d<£2≫ if Zor＼Uo*{x0}

near cn{|£|^2}. Write p?2=p^2(x, %)=dp/d£2(x, £),･･･. A simple calculation

yields

Pa(x, $)=(l+q(x, $))p(x,$)-＼-i(Az2pX2-AX2p$2)+AX2A^2pX2

+Az2AXzX2pi:2+As2AX2pz2X2-(A2X2+AX2X2)Ps2S2]

+ Ri(x,%)+R2(x,£),

where q(x, $)=iAXtAit-(A^-A^t)(Axl+AXiXs)/2GSTS+/> (p>0), fl^*, £)eS?.o,

and Ra(x, f)eS?.o, supp/?xncn{|f |^2} = 0, |/?i$(*, £)I^CaiiS<£>8-|ttland

^2(?K^≫^)l^Ca,^<|>"|al. Hereafter the constants do not depend on d if not

stated. Since ＼l+q(x,1)1^1/2 for |£|^CB.Ar.≪≫l,there is O(i,^)gS?,0 such

that Q(x, ^)(1+^(jc,≪)=1 for |£|^Ca.*... Define ftu, D)=Q(x, D)PA(x, D).
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Pa(x, ^=^=a(x)$l-＼-Refi1(x, £)+v4X2Im &(*, £)+2AStAXiXta(xfa

+2AhAXsaXs(x)£i―(Axl+AXtXs)a(x)-2iAX2a(x)Gt

+ir(x,$)+R'l(x,$)+R'2(x,$) for |£|^1,

where fii(x,$) denotes the principal symbol of fi(x,$), r{x, f)eSi,0 is real-

valued, ＼r[%{x,£)＼^Ca.fi<Zy-ia＼and /?{(*,£)and R'2(x,£)have the same pro-

perties as Ri(x, £) and R2(x, £),respectively. Write /3i(x,̂ )=^1(x, 0, 1)£2+

i3o(x,Dli, where /30(x,$) is positively homogeneous of degree 0. Then we

have

(3.1) PA(x, £)=$?+a(*)£§+Rei81(jc,0, l)|2+e0(x, %)^+el{x, $)a(x)logA^)

+ e,{x,$)a{x)(＼ozX(g)y+et{x, $)lm^(x, 0, 1)log *(£)

+ Ux, &aXi{x) log K£)+ieB(x, %)a(x)$2log A(f)

+2>U-, $)+R'1(x, &+R&X, |) for HI ^1,

where ej(x,|)eS?,0 (0^/^5) are real-valued, ek(x, £)=Q if 1^&^5 and Jonf/≪

= {x0}, and e3(x,£)^ea(x) does not depend on £.

Lemma 3.1. Assume that there are X(x, £)eS?,0, W(x)(E$~(R2), qo^Q, iVo^0

and sosi2 such that X{x, £) is positively homogeneous of degree 0 for |||^1,

X(x, t-)=l near (x0, 0, 1), supp^Fni/o^1^ and the hollowing property holds; for

any a^ao, any iV^A^o and any s^s0 there are do>0 (<5o^l), Co> and C>0

such that (3.2) Re(P^(x, D)v, v)^Ci＼＼DlvV-C{＼＼v＼＼i+＼＼0--1{x,D))v＼＼＼+W(x)v＼＼＼}

if yeC^ and 0<d£d0. Then (x°, 0, l)^WF(u) if uee$' and Qe°,0, l)e

WFCPix. D)u).

Proof. Note that the condition (H) in §1 is satisfiedwith I={(x,^)&

T*R*＼0 ＼x(=2o and £1==0} and W={(8x, 8^, Q)eT,0(T*R2) | 8x2=0}, where

2°rr:(x0,0, 1). Applying the implicit function theorem, we can write {x^U ＼

f(x)=0} = {(g(x2),x2)―＼x2―x＼＼^c], where U is a neighborhood of x°,g(t)^

C＼x＼-c, x＼+c) and c>0. Choose W(t)^C°S(R) so that 0£＼(t)£l, W(t)=l if

＼t＼£l/2and supp＼(t)(Z{＼t＼£l}.For d>0, write v=v1+v2+v3> where veC^,

v^WKxt-gixJVdW((x2-x2°)/c)y, v2= (l-^((x1-^(x2))/rf))r((x2-x§)/c)v, y3=

{l―W{(x2―xl)/c))v. Applying Poincare's inequality to vu we have Ikill^

VTrfllDivll. Since supp(l-F{{xy-g{x2))/d))W((x2-xl)/c)r＼Z<>=0, there are

Fd(x)£Ejr°(/22)and Cd>0 such that suppFdn2To=0 and H^II^CdH^Cx^ll!.

Therefore, for any s>0 there are rf>0 and C>0 such that

(3.3) Wvf^WD.vf+CiWil-Wiix.-xD/c^vr+W^xMW} for yeC?.
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Since Re(PA(x, D)v, v)£C＼＼PA(x, £)t;||2+IMI2, it follows from (3.2) and (3.3) that

＼＼v＼＼^Cd{＼＼PA(x,Z))i;||+ ||(1-Z(jc, D))vh+＼＼a-W((x2-x°2)/c))vh

+ ＼＼＼(x)v＼＼2+＼＼＼d(x)v＼＼i}

if yGCo and Q<d^do, where 0<d<l. So we can apply Theorem 1.1 and

prove the lemma.

Next we shall prove that (3.2) holds in the cases (i) and (ii) in Theorem

1.2, respectively. We need the following

Lemma 3.2. For any s>0 there exists C£>0 such that

|Re(gl(x, D)a(x)(logX(D))v,v)＼

£s(a(x)D2v, D2v)+Ce{＼＼v＼＼2+＼＼a-Ux, D))v＼＼＼) for yeC?

Proof. Choose X(x, £)eS?,0 so that suppX<mcr＼{ I£1^2}. Then we can

write

ex(x, L>)a(x)log;(L>)= T1(-1+^a(x)Z>2+T^)(l-Z(x, D)) mod L"^

if 0<|O<l, where Tj*) (/=!, 2) means the pseudodifferential operators with the

symbols in Sf|0. Hence, for any £>0 we have

|Re(ei(x, Z))a(x)(loĝ (Z)))v,v)|

^|Re(T^1+^a(x)D,i;,v)| + |Re(Tni-Z(x,/?))i;, v)|+C||t;||-1+/,||i;||

^£||a(x)JD2y||2+C£||i;||2+C||(l-Z(x,Z?))v||^

$C'(a(x)D2v, D2v)+C'A＼＼v＼＼2+＼＼(l-l(x,D))v＼＼l} for yeC^.

The proof is complete.

Remark. By the same method, we can show that

Re {elx, D)a(x)(log X(D))2v,v) and Re (et(x, D)aX2(x)(log X{D))v, v)

have the estimates of the same form as the above. To estimate

Re (e4(x, D)aX2(x)(log X{D))v, v), we must use the well-known fact for non-nega-

tive functions that ＼aXz{x)＼<XVa(x) near the origin. Moreover we can prove

that Re (ieb(x,D)a(x)(log X(D))v,v) has the estimate of the same form as the

above, since ie5(x,£)a(x)log X(t-)is purely imaginary.

From (3.1) and Lemma 3.2 we obtain



Hypoellipticity for a class of degenerate elliptic 225

(3.4) Re(PA(x, D)v, v)^{l-^){＼＼D1v＼＼2+{a{x)D2v, D2v)}+Re (Re^1(x,05 l)Dav, v)

+ Re (es(x, D) Im ^(x, 0, l)(log X{D))v, v)

-C£{||y||2-H|(l-Z(x, D))v＼＼＼) for veeC^ ,

where e>0.

From now on, we shall prove (3.2) in the cases (i) and (ii) of Theorem 1.2

respectively, by using (3.4).

Assume that Zor＼Uo={x0}. Then we have ek(x, g)=0 (l^>k^5). Hence

the third term in the right hand side of (3.5) vanishes. It follows from (1.2)

that for £>0 there exists C£>0 such that

(3.5) Re(ReiS1(x, 0, l)Dav, v)+Ce(a(x)D2v, D2v)^-Cs＼＼v＼＼2 for yeC?.

Therefore (3'2) holds.

Next assume that Sor^Uo^ix"}. First we note that

(3.6) | Re (e3(x, D) Im ^{x, 0, l)(log X{D))v, v) ＼

^{IllmjS^, 0, l)(log;(D))y||2+||e3(x, £>)*i;||2}/2 for vzeC , .

Then we have the following

Lemma 3.3. // (1.3) is valid, then for any s>0 there exists C$>0 such that

Hlm^Oc, 0, l)(log X(D))v＼＼2^e(a(x)D2v, D2v)

+ Ce{|b||2+||(l-Z(x, D))v＼＼＼) for ve.CS.

Proof. Let us first prove that for any e>0 there exists C£>0 such that

(3.7) ＼＼h(x)(logX(D))v＼＼2

^s{(h(xyk+1X(D)v, X(D)v)+Ck+1＼＼v＼＼2}+ Cs＼＼v＼＼2-U2for v^C^ ,

where /z(x)=Im fii(x, 0, 1). Let p be a positive number. Nyting that

h{x) log X(D)=(＼og X(D))X{D)-i>h{x)X(Dy+{_h{x), (log X(D))X(D)-P]X(Dy ,

we have

||/z(x)(logX{D))vV^＼＼h{x)X{D)Pvf+CM＼2-m for yeC? .

If p satisfies 2jo^l, we have

||/i(x)^(£>)^||2^||/i(x)^JD)2^||2+Cb||2.

Moreover if p satisfies 2*,o^l, where k is any positive integer, then there

exists Ck>0 such that

||/i(x)^(£>)^||2^||/z(x)2^(Z))2^i;||2+CA||y||2 for v(eC°S .
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Taking 2kp―1, we have (3.7). Next we shall prove that

(3.8) (h(x)tk+1X(D)v, X(D)v)£(h(x)2k+'D2v, Dav)+C＼＼v＼＼2

+ C*+1||(l-Z(;t, D))v＼＼＼ for v<=C°5

Choose pt(x,£)eSj,0 so that pt{x,£)is positively homogeneous of degree 0 for

If1^1 and ft(x,£)=1 near suppX(x, |). We may assume that suppXC

Ux{$^R |£8^2|£|/3^2}, where £/ is some neighborhood of *°. Write

(h(x)2k+ll{D)v, X(D)v)=(h(x)2k+1D2v, Dtv)+{KD)[t{x, D)*[p(x, D), h{x)2k+^X(D)v, v)

+ (h(xyk+＼fi(x, D)k(D)-D2)v, fi(x,D)X(D)v)+(h{xfk+1Dzv, (pt(x,D)X(D)-D2)v)+

(X(D)a~ft(x, D)*fi(x, D))h(x)2k+1X(D)v, v)
~

(h{xfk+1D,v, D2v)+h+h+h+h.

Hence it is sufficientto prove that ＼lj＼<,Ck+1{＼W+＼＼{l-l{x,D))a＼＼＼)(1^;^4).

Since suppa([fi(x, D), /z(x)2i+1])MsuppZ=0, where a(R) denotes the symbol of

R(x, D), we have

|/il^C*+1{||y||2+||(l-ZU, D))v＼＼＼＼.

Noting that (fi{x,£)X($)-$*)X(x,f)=0, we have

＼h＼£ck+1{＼＼vr+＼＼a-ux,D))v＼＼t＼.

Concerning Li} the proof is similar to the above one. Since supp(l―ft(x, f)2)M

suppZ(x, ^)=0, we have

ihi^iWvr+wa-Kx, d)(v＼＼i＼.

This proves (3.8), which completes the proof.

From (3.4), (3.6) and Lemma 3.3 it follows that (3.2) holds. Lemma 3.1

gives (x°,0,l)GWF(u) if u<e,3)'and (x°,0, l)t£WF(P(x, D)u). When Ior＼Uo

^{x0}, applying the same argument with x° replaced by xx(E.2or＼Uo,we can

prove Theorem 1.2, where Uo is a small neighborhood of x°.

Next let us prove Corollary 2 of Theorem 1.2. Put &5=card (£P(/22)),i.e.,

w is the cardinal number of S'iR2). For any ordinal number £<<y we define

the mapping rc: &(R2)^£P(R2) by to(A)~A and

where AdR＼

nc<crc(^) if C is a limit ordinal number

t(tq,(A)) if C=C' + 1,

Lemma 3.4. Let A be a subset of R2, and A=＼JBcAiVlB^BB. Then (i) z(A)

= A. (ii) There exists£(<£>)such thai t^{A)=-tq+1{A). (iii)There exists Co(<<5)

such that r＼^T^{A)=^T^{A). Moreover, we have A = f＼^<%c^{A)=Tc,{A).

Proof, (i) Let B be a subset of ^"satisfying c{B)=B. Then we have
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Be A. Therefore, it follows from r(A)3r(B)=5 that Az2v(A)Z)＼Jbca.?u≫=bB

= A. (ii) We assume thai rr(A)^zr+1(A) for any £,<&. Then for any C<<3

there exists x^rc(A)＼Ti+1(A). It is obvious that xri^x^, if £=££'.Hence

card ({xr＼C,<w})―(o. On the other hand, {xj|C<oi}C;4, which leads the con-

tradiction, (iii) From the assertion (ii) there exists Co<<3 such that r^a(A)=

t^0+i(A) Then we can show that

(3.9) rc(A)=rCo(i4) if Co^C≪S)

In fact,if C=Co, (3.9)is trivial. Now if we assume that t^(A)=t^0(A) if Co^

C<Ci, it follows from the definition of r^(A) that t^{A)=t^{A). Transfinite

induction gives (3.9). Hence z^{A)―r＼Q<mT^{A). We can also prove that r^A)

DA for any £<o> by transfiniteinduction. Then we have Adr＼-<mT^A)=r^(A).

On the other hand, we have also T^{A)aA in view of the definition of A.

Hence A = ^<aft^A)=Tio(A).

Now we can prove Corollary 2. We note that if P(x, D) is microhypo-

llip}icin R2＼S, so is P(x, D) in i?2＼r(S)in view of Theorem 1.2. Hence if

sufficesto prove that P{x, D) is microhypoelliptic in U2＼r^(S) for £<<*>･ We

can prove the above assertion by transfiniteinduction. In fact, the assertion

is trivialif C=Q. Now we assume that P(x, D) is microhypoelliptic in R2＼r^(S)

for C<C- When there exists C such that C=C' + 1≫it follows from rc(S)=

r(r^(S)) and the above argument that P{x, D) is microhypoelliptic in R2＼t^(S).

Assume that £ is a limit ordinal number. If xer^S), then it follows from

rr(S)=r＼r'<^>(S) that there exists C<£ such that %erc<(S). Hence P(x, £>)is

microhypoelliptic at x. Therefore P{x, D) is microhypoelliptic in R2＼rc,(S).

The proof is complete.

§4. Proof of Theorem 1.3.

First we shall prove the following

Lemma 4.1. // (1.2) holds or if there exists /eiV such that (1.4)-(1.6)are

valid, then there exist constants h>Q, Co>0 (CO<1) and 00 such that

(4.1) C0{||ZV||'+(a(;t(£>2i;,D2v)}+Re (Re pt(x, 0,l)D2v, v)

^-C{b||2+||(l+X(x, D))v＼＼＼)

if yGCj and suppyC{x I ＼x1＼<h), where l(x,$) is positively homogeneous of

degree 0 for |£|^1 and suppZ(x, £)dUX {$＼^2＼$＼/3^l2}.

We have already proved in §3 that (4.1)is valid if (1.2) holds. Therefore,
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we now assume that there exists /eiV such that (1.4)-(1.6)are valid. Let

Fi(|)eSf,0 be a real-valued symbol such that Wi(£)is positively homogeneous

of degree 0 for |£|^1, 0^(£)^l, ^i(£)=l if £8^|£|/3 and |£|^1, and

supple{£|&^|£1/6 and |£|^l/2}. Set y2(£)=l-?F1(£). We need several

lemmas to Drove Lemma 4.1.

Lemma 4.2. Write p(x)=Re(3i)x, 0, 1). Then we have

Wx)Dav, v)＼^mx)D2W1(D)v> Wi(D)v)＼

+ C{||z;||2+||(l-Z(x, D)v＼m for y£tt

Proof. Since R2Xsupp＼z($)r＼suppX(x, £)=0, the lemma easily follows.

Let ^eSJ.o be a real-valued symbol such that ＼($) is positively homo-

geneous of degree 0 for |£|^l/2, W(£)=l on supp^and snpp＼d{$＼$2^＼$＼/7

and |f| ^1/3}. Note that W1(D)=W(D)W1(D). Put 0(£)=££'8TO ESifS.

＼^(x)D2＼1(D)v,W1(D)v)＼

^＼(P(x)<D(D)Wi(D)v, 2){D)W1{D)v)＼+C＼＼vr for ugC;

Proof. Since DaW1(D)=W(D)iW1(D), we have

^(x)D2W1(D)v> Wl(D)v)=(^xMD)W1(D)v, W(D)＼1(D)v)

+([j8(x),3KDy]3)(D)＼1(D)v, ＼,{D)v).

It is obvious that [/3(x),S>(D)]^L-＼% which proves the lemma.

We may assume that B(t) is defined on R. For example, we define B(t)=0
i

f U|>Co

(4.2)

Lemma 4.4. Set v=＼ exp(―ixz%2)v(x)dx2> where y<=C~. Then we have

＼(P(x)D2v,v)＼^2＼^([b(x1)^＼v(xu£2)＼2dXiy%

+ C{|MI2+||(l-Z(x, D))v＼＼l＼ for vt=CZ

where dB2=^(27v)~1d$2

(4.3)

Proof. By Lemma 4.2 and 4.3 we have

mx)D2v, v)＼<＼(^x)W(D)W1(D)v, 3){D)W1(D)v)＼

+ C{|MI2+||(l-2(x, D))v＼＼＼}.
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Modifying U if necessary, we may assume that ＼^{x)＼-^B{xl)for xe[/. Since

mppXaUxR2, it is easy to see that

＼(^(x)W(D)＼1(D)v,3){D)W1{D)v)＼^{B{xl)3){D)Wl{D)v, S){D)Wl{D)v)

+ C{＼＼v＼＼2+＼＼(l-X(x,D))v＼＼＼}.

From Parseval's formula it follows that

(4.4) (B(x1)3)(D)W1(D)v, ^)(D)W1(D)v) =
^B(x1)$2＼w1(x1,

^)＼2dx^,

r
where w＼(x)=W＼(D)v(x)and Wi(xu ?2)=＼ exp(―ix2^2)w1(x)dx2. In fact, we have

£)(£)=(&)+aTO, where (£2)+=max{£2,0}. Therefore we have

j
exp(-ix2^)W(D)＼1(D)v(x)dx2=(^2w1(x1, &)

Put w2(x)=W2(D)v(x) and w2(xlf£2)=＼exp(―ix£2)w2{x)dx2. Then we have

^C'||u/a||?/8

<C≫{＼＼v＼＼2+＼＼a-Ux,D))v＼＼l＼,

since R2X$uppW2($)r＼mppX=0. This, together with (4.3) and )4.4),gives

(4.2).

From now on, we shall estimate E=＼ (＼BOi)|2|£(*i,$2)＼2dxl)dg2. Put

E(£s)=＼B(xl)£Mx1, ^)iVx,. We fix £2>1 and take Zx(0eCj(i2) so that 0^

Zi(0^1, Zi(O=l if Ul^l, andZ!(O=O if Ul^2. By the assumption, there exists

h>0, AtX), B,>0 such that [tl^/Ait^A, for U|^/i, Ul1-1^)^^ for ＼t＼^h

and 2j+5{1+2'+7/(/+1)}^i-B?//(/+1)<1. Put ^(0=Zi(A'-1(f8/(^i5x))1'CI+1)0,where

/f={(22+2J+V/(/+l))1/<'+1)+(2MlJB?//(/+l))-1^'+1V2}/2. Hereafter we assume

that sappvC{x＼ ＼xi＼<h＼. Write

+
[5U1)f8|9>U1)3(^i,^)l2dJ:i}=2(£1(^)+£1!(^)).

Since s＼ipp(l-<p(x1))(Z{x1jK-＼^/(A1B1)Y"l+1'＼ Xl＼̂1} and l^l1-^^)^^ for

＼xi＼<Lh, we have

S(x1)<JB1|xir-1</r-(i+1M71£2|x1|<+1 xA^^K-^Aix^
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in supp(l―(p(xr)) if IxjI^/j. In the last inequality we have used ＼xl＼xA{x1)~^

t^Ai for ＼xi＼t*h. Hence we have

To estimate £2(£2), we take a>0, which depends on $2, such that

aK-＼^/{A1Bl)y^l+^=2. Then we obtain

fa＼
n
B(x1)£2＼(p(xl)v(x1,$2)＼2dx!

mK)l+1A1Bmi+l)＼-1＼~＼D1(<p(x1)v(xu&Wdxl

We have also

＼°'

o
＼Dl(<p(x1)i)(x1,$tWdx

^2{c?/C-2a+1)(^ifiD
[CaA(xl)＼£2＼*＼v＼*dx1+

Jo
fjZWdx,}

where put Ci=supp|ZJ(OI ･ In fact, we have

(K-Kh/^BW^rAtAdttel if <p'dt)±O.

Here we note that we can take d(>l) so that Cx is close enough to 1. In the

qnmp manner wp hflvp fhp qimilnr psfimates fnr

f°
B(x1)$2＼<p(x1)v＼2dx1 and

J-o
I ＼D1(<p(x1)v)＼2dxi. We may assume that h^c0

Summing up the above estimates, we have the following

Lemma 4.5. Assume that ueC and suppt>d{ I |xi|</z}. Then we have

(4.5)

^K-<l+≫a+2l+2/l(l+l)^A(Xl) I& 121£>Cjc≫,^2) 12d*itf&

+2(2/Ol+M1fif{/(/ +1)}-1
(I

DjKx≫ |2) 12dxj$2.

Now we can prove Lemma 4.1. Note that

(>K*i)l&Hi>(*i,
^)＼1dxld^<{a{x)D,v, D2v)

^IDMxu
h)＼zdxld^^＼＼DlvV

where suppt;C{x I ＼xA<h}. Therefore, it follows from (4.2) and (4.5) that
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(4.1) holds. In fact, we have

{22(i+2l+2/l(l+lWa+1'<K<(23AlBl/l(l+l)yi'(l^/2.

This gives 22K-<l+1＼l+2l+2/l(l+l)≪l and 2s(2K)l+1A1B21/l(l+l)<l.

Let us prove the assertion (i) of Theorem 1.3. Now take <p(0e.c°°in

A8(x, £) so that <p(t)=O. Note that e,(x, £)=0 in (3.6). (3.6) and (4.1) show that

(3.1) holds. This proves the assertion (1) of Theorem 1.3.

Lemma 4.6. // (1.3) holds or lim^o^AO log ,4(0=0, then for any s>0 there

exists C£>0 and W(x)<= $°°(R2) such that supp＼n{x＼ x1=O} ― 0 and

(4.6) | Re (e3(x, D) Im ^(x, 0, l)(log l(D))v, v) ＼

^e{＼＼D1v＼＼z+(cx(x)D2v, D,v)} + C£＼＼v＼＼iJrC{＼＼(l-l{x,D))v＼＼＼+W{x)v＼＼＼)

for v<E.C , where X(x, ^) is the same as in Lemma 4.1.

In Lemma 3.3 in § 3 we have already proved that (4.6) holds under the

assumption (1.3). Therefore, from now on we shall prove that (4.6) holds if

lim^ofTCO log 4(0=0. We may assume that U<^{x＼＼x1＼<c0}. Lh=D＼+A(x1)&.

A simple modification of the proof of Proposition 3.1 in [3] gives the following

Lemma 4.7. For any s>0 there exists n0>0 such that

＼f(x1)(＼og＼$2＼)＼v(xl>
$t)＼tdx1^eL?2f)(x1, &H(*i,&)d*i.

for v<bC°Z(U) and for all f2^n0, where v(x1}$2)= ＼exp(―ix^2)v(x)dx2

Proof. Assume that supp£(-, &)c:{;t1e/2|j4(*1)|£2|1'i^l/2}. Let e>0. If

|£2|>e"S then we have

Jr(*1)(iog|&
di *>(*!,^)＼adx1^c^t＼i"＼v(x1, $2)＼2dXl

^2C£^(x1)ie2|2|yUi, &)＼*dXl

<,2Ce
＼L^v(xu

|2)-y(x!, $2)dx1

Next assume that suppv(-, ^dx^R | /K>i)|£2|1/2^2}. Choose a = a($2) so

that A(a)＼$2＼1/2=2. Noting that z?(x,,62)=-T dv/dx1(s, %2)ds, we have
JX9.

ra r

I Fix^lvixu |:2)|2rfx1^r(a)a22-1＼Lf2i;(x1, &) ･#(*!, %z)dx1

JO J
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By the assumption we can see that

r(a)G2log|^|^£(log|e2|)(log^(a))-1^C£

if £2>1. In fact, we have lim^ 0a(^)=0. Therefore, we obtain

rrUOClogI&l)!&(*!,
^)＼2dx^Ce＼LS2v(xu &H(*i, £t)dx

Now we can prove the lemma for general i;gC", repeating the same argument

as in the proof of Proposition 3.1 in [3].

Finally, if we prove

(4.7) IRe (es(x, D) Im ^(x, 0, l)(log X{D))v, v) ＼

^2jr(x1)dog <&≫＼iKxlf eordx^+coyf+a-zu, dmd

for v<^C (U), then we will obtain (4.6) in view of Lemma 4.7. Note that

es(x, $)=et(x) does not depend on £. Lst us prove (4.7).

Write

Re (es(x) Im £,(*, 0, l)(log ^(D))t;,v)

= Re (e,(x) Im ^^x, 0, l)(log X(D)y<2v, (log X(D)yi*v)

+ Re([es(x) Im ^x(x, 0, 1),(log ^(Z)))l/2](log^(O))1/2y, v)

= /!+ /2.

Since [e3(x) Im j8,(x, 0, 1),(log X(D)Y'2Xlog W2eLSi0, we obtain

|i2l^C||y||2 foryGQU).

Next we shall consider /x. For simplicity, set

(log ^(D))1/Si;=(log ^(JD))1/2y+{(log ^^^^-(log {D^'^v

where (log<Z)2≫1/2y=
jexp(ijcg&)(log

<g2yy/2v(xu £s)d&. Recall that llm^^x, 0,1)|

^LfiXi). Therefore, we have

l/ll^
＼e3(x)lm^(x,

0, 1)＼(log X(D)Y'2v＼2dx

^C^U^nx^UjixWdx^dx,

It is easy to see that
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A*i)j＼IMa(^)I*dx2Ydxi

^c＼＼u2(x)＼"dx£Cf＼^Xl~^))＼vm2d$:
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where F(£)eS?,0 is positively homogeneous of degree 0 for |£|^3, 0^W($)^.l,

W(£)=l if ^^2|||/3^2, and suppF(£)c:{fei?2|£2> |£|/2>1}. Note that

suppXnJ22Xsupp(l―＼(£))= 0, thus we have

fe)a-wm＼mm£C{＼＼a-i(x,D))v＼＼i+＼＼vr},

which proves (4.7).

Now take <p(t)&$°°(R2)in As(x, £)so that <p(t)=f. Then from the estimate

(3.6),Lemma 4.1 and 4.6, we obtain (3.1)in the same manner as in the proof

of Theorem 1.2. So we can apply Lemma 3.1,and prove that (0, 0, 0, l)^WF(u)

if mgS' and (0, 0, 0,l)^WF(P(x, D)u), applying the same argument with the

origin replace by a point in Sr＼Ud{x<=R2＼ Xi=0}, we can prove the assertion

rii n̂f Thpnrpm 1.3.

§ 5. Further remark.

In this section we consider the operator of the form Px{x), D)=D＼+a(x)D＼

+${x)D2, in R2, where a(x)GEC°°(≪2)is non-negative, ≪(0)=0, and /3(x)3C°°(/£2)

is complex-valued. Put S={x<=R2＼a(x)―0}. In what follows we consider the

various types of S, and always assume that there exist a positive integer / and

a constant C>0 so that

(Re /3(x))2+(Im B(x))u^Ca{x).

Example 1. Assume that S={* 1/00=0}, where d/(0)=£0,df/dxl(Q)=O,

and df/dx1(x)=£Qif x^O. Then Px is microhypoellipticin R2. In fact,since

r2(S)=0, from Corollary1 of Theorem 1.2 it follows that Pi is microhypo-

ellipticin R2.

Example 2. Assume that S=S^JS2, where Sj={x＼sj(x)=O}, dsj/dxi(x)^Q

for x^O (/=1, 2) and S!r＼S2={0}. Then in the same manner as in Example
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1, Pi is microhypoellipticin R2.

Example 3. Assume that S=U5=i5jUS0, where Sj={x＼Sj(x)=0},dsj/dx^x)

^0 for any x^R*(j=0, 1,2,･･■),Sjr＼Sk=0 if ;, jfe^land j=tk, and So=

Uf=iSj＼U =i5j- Then Pt is microhypoellipticin .R2. In fact, since r(S)cS0

and r2(S)CZr(So)=0, in view of Corollary1 of Theorem 1.2,Pt is microhypo-

ellipticin R2.

Example 4. Assume that S=＼J"=S^vjSoU＼J"=iT1*uTo, where Sj={x＼sj{x)

=0}, dsj/dxM^O for any jce/28(/=l, 2,■■■),S0=}x＼ so(x)=O}, 3so/9x1(x)^0 if

x^O, so(0)=ds0/d*i(0)=0, rJk={xU*(x)=0}> dtk/dXiix^O for any x^R＼k =

1, 2, ･･･)･T0={xU0(x)=0}, 3?o/9x1(x)^O if x^Oand to(O)=dto/dXl(Q)=R, SjnSr =

Tkn.Tk- = 0＼fj^jr, k^k', j,j',k.k'^＼,So=Uj^S'j＼KJT=iSi, To=a£jr*＼UL1T,

and Sjr＼Tk={ajik} (/, ^^1). Then Px is microhypoelliptic in R2. In fact

since r(S)C(Sowro)U{a^|/, fe^l}, T8(S)Cr(SoUToU{aJi4 |j, k ^ 1})CSOWTO,

r3(S)Cr2(50WT0W{G;,A})c:r(SoWTo)C{0} and T＼S)=0, P, is microhypoelliptic

in R2 in view of Corollary 1 or Theorem 1.2.
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