HYPOELLIPTICITY FOR A CLASS OF DEGENERATE ELLIPPIC OPERATORS OF SECOND ORDER

Dedicated to Professor Mutsuhide Matsumura on his sixtieth birthday

By
Michiharu Suzuki

§ 1. Introduction and results.

Fedii [1] studied hypoellipticity for operators of the form $L=D_{1}^{2}+\phi\left(x_{1}\right)^{2} D_{2}^{2}$ in \boldsymbol{R}^{2}, and proved that L is hypoelliptic in \boldsymbol{R}^{2} if $\phi\left(x_{1}\right) \in C^{\infty}(\boldsymbol{R})$ and $\phi\left(x_{1}\right)>0$ for $x_{1} \neq 0$. Hörmander's results in [2] can not be applicable to L when $\phi\left(x_{1}\right)$ has a zero of infinite order. Compared with higher dimensional cases, the problem in \boldsymbol{R}^{2} becomes much simpler. So one can expect that one investigates hypoellipticity for more general operators in \boldsymbol{R}^{2}. In this paper we shall give sufficient conditions of hypoellipticity for operators of the form $P(x, D)=D_{1}^{2}+$ $\alpha(x) D_{2}^{2}+\beta(x, D)$ in \boldsymbol{R}^{2}, where $x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}, \alpha(x) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ is non-negative and $\beta(x, D)$ is a properly supported classical pseudodifferential operator of order 1. In doing so, we need general criteria for hypoellipticity, which are improvements of ones obtained by Morimoto [5] (see Theorem 1.1 below).

Let us define the usual symbol classes $S_{1,0}^{m, 10 c}$ and $S_{1,0}^{m}$. We say that a symbol $p(x, \xi)$ belongs to $S_{1,0}^{m}$, oc (resp. $S_{1,0}^{m}$) if $p(x, \xi) \in C^{\infty}\left(T * \boldsymbol{R}^{n}\right)$ and if for any compact subset K of \boldsymbol{R}^{n} and for any multi-indices α and β (resp. for any multi-indices α and β there is $C_{\alpha, \beta} \equiv C_{K, \alpha, \beta}>0$ (resp. $C_{\alpha, \beta}>0$) such that $\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{m-1 \alpha_{1}}$ for $x \in K$ and $\xi \in \boldsymbol{R}^{n}$ (resp. for ($\left.x, \xi\right) \in T^{*} \boldsymbol{R}^{n}$), where $m \in \boldsymbol{R}, p_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi), D_{x}=-i \partial_{x},\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and $T^{*} \boldsymbol{R}^{n}$ is identified with $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$. We denote by $L_{1,0}^{m}$ the set of the pseudodifferential operators whose symbols belong to $S_{1,0}^{m, 10 c}$. Let $P(x, D) \in L_{1,0}^{m}$ be a properly supported pseudodifferential operator, and let $z^{0}=\left(x^{0}, \xi^{0}\right) \in T^{*} \boldsymbol{R}^{n} \backslash 0\left(\cong \boldsymbol{R}^{n} \times\left(\boldsymbol{R}^{n} \backslash\{0\}\right)\right.$. It is said that $P(x, D)$ is microhypoelliptic at z^{0} if there is a conic neighbourhood \mathcal{V} of z^{0} in $T^{*} \boldsymbol{R}^{n} \backslash 0$ such that $W F(u) \cap \subset=W F(P u) \cap \varnothing$ if $u \in \mathscr{D}^{\prime},\left(\boldsymbol{R}^{n}\right)$. We also say that $P(x, D)$ is microhypoelliptic in a conic in a conic set $\subset \mathcal{V}\left(\subset T^{*} \boldsymbol{R}^{n} \backslash 0\right)$ (resp. in $\Omega\left(\subset \boldsymbol{R}^{n}\right)$ if $P(x, D)$ is microhypoelliptic at each $(x, \xi) \in \mathscr{W}$ (resp. at

Received January, 21, 1991. Revised October 7, 1991.
each $\left.(x, \xi) \in \Omega \times\left(\boldsymbol{R}^{n} \backslash\{0\}\right)\right)$. We may assume that the symbol $p(x, \xi)$ of $P(x, D)$ belongs to $S_{1,0}^{m}$. Assume that
(H) $\xi^{0}=(0, \cdots, 0,1) \in \boldsymbol{R}^{n}$ and there are a conic neighborhood \mathcal{C} of z in $T * \boldsymbol{R}^{n} \backslash 0$, a conic smooth manifold Σ in $T^{*} \boldsymbol{R}^{n} \backslash 0, n^{\prime} \in \boldsymbol{N}$ and a vector subspace V of \boldsymbol{R}^{n-1} such that $z^{0} \in \Sigma, n^{\prime} \leqq n, P(x, D)$ is microhypoelliptic in $\mathcal{C} \backslash \Sigma$ and $T_{z_{0}} \Sigma \cap W=\{0\}$, where $W=\left\{\left(\delta x, \delta \xi^{\prime}, 0\right)\right.$ $\in T_{z^{0}}\left(T * \boldsymbol{R}^{n}\right) \mid \delta x_{j}=0\left(n^{\prime}<j \leqq n\right)$ and $\left.\delta \xi^{\prime}=\left(\delta \xi_{1}, \cdots, \delta \xi_{n-1}\right) \in V\right\}$ and $\delta x=\left(\delta x_{1}, \cdots, \delta x_{n}\right)$.
Denote by $\eta\left(\delta \xi^{\prime}\right)$ the orthogonal projection of $\delta \xi^{\prime} \in \boldsymbol{R}^{n-1}$ to the orthogonal complement V^{\perp} of V, and choose a real-valued symbol $\varphi\left(x^{\prime \prime}, \xi\right) \in S_{1,0}^{0}$ such that $\varphi\left(x^{\prime \prime}, \xi\right)$ is positively homogenous of degree 0 for $|\xi| \geqq 1$ and $\varphi\left(x^{\prime \prime}, \xi\right)=\left|x^{\prime \prime}-x^{0 \prime \prime}\right|^{2}$ $+\left|\eta\left(\xi^{\prime}\right)\right|^{2} / \xi_{n}^{2}$ near $\mathcal{C} \cap\{|\xi| \geqq 1\}$, where $x^{\prime \prime}=\left(x_{n^{\prime}+1}, \cdots, x_{n}\right), x^{0 \prime \prime}=\left(x_{n^{n}+1}^{0}, \cdots, x_{n}^{0}\right)$, and $x^{\prime \prime}=0$ if $n^{\prime}=n$. Let $\lambda(\xi)$ be a real-valued symbol in $S_{1,0}^{1}$ such that $\lambda(\xi)=$ $\left\langle\xi_{n}\right\rangle$ if $\xi_{n} \geqq|\xi| / 2 \geqq 1$ and $\langle\xi\rangle / 4 \leqq \lambda(\xi) \leqq 2\langle\xi\rangle$. We put

$$
\begin{aligned}
\Lambda(x, \xi) & \equiv \Lambda_{\dot{\partial}}\left(x^{\prime \prime}, \xi\right) \equiv \Lambda_{\delta}\left(x^{\prime \prime}, \xi ; a, N, s\right) \\
& =\left\{-s+a \varphi\left(x^{\prime \prime}, \xi\right)\right\} \log \lambda(\xi)+N \log (1+\delta \lambda(\xi))
\end{aligned}
$$

for $0 \leqq \delta \leqq 1, \quad a \geqq 0, \quad N \geqq 0$ and $s \in \boldsymbol{R}$. Note that $\left|\Lambda_{(\beta)}^{(\alpha)}\left(x^{\prime \prime}, \xi\right)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-|\alpha|} \times$ $\log (1+\langle\xi\rangle)$ and $\left.e^{ \pm \Lambda\left(x^{\prime \prime}, \xi\right)}\right) \in \bigcup_{l \in R} S_{1,0}^{l}$.

Define $P_{A}(x, D)$ by

$$
P_{A}(x, D)=e^{-1}\left(x^{\prime \prime}, D\right) P(x, D) e^{A}\left(x^{\prime \prime}, D\right) .
$$

where $e^{ \pm \Lambda}\left(x^{\prime \prime}, D\right)$ are pseudodifferential operators with symbols $e^{ \pm \Lambda\left(x^{\prime \prime}, \xi\right)}$.
Theorem 1.1. Assume that the condition (H) is satisfied, and assume that there are $\chi_{k}(x, \xi) \in S_{1,0}^{0}(k=1,2), l_{k} \in \boldsymbol{R}(1 \leqq k \leqq 3), a_{0} \geqq 0, \quad N_{0} \geqq 0$, and $s_{0} \in \boldsymbol{R}$ such that $\chi_{k}(x, \xi)(k=1,2)$ are positively homogeneous of degree 0 for $|\xi| \geqq 1, \chi_{k}(z)=1$ near z^{0} and for any $a \geqq a_{0}$, any $N \geqq N_{0}$ and any $s \geqq s_{0}$ there are $\Psi(x, \xi) \in S_{1,0}^{0}$, $\delta_{0}>0\left(\delta_{0} \leqq 1\right)$ and $C>0$ such that $\Psi(x, \xi)$ is positively homogeneous of degree 0 for $|\hat{\xi}| \geqq 1$, supp $\Psi \cap \Sigma=\varnothing$ and

$$
\begin{align*}
\left\|\chi_{1}(x, D) v\right\|_{l_{1}} & \leqq C\left\{\left\|P_{A}(x, D) v\right\|_{l_{2}}+\|v\|_{l_{1}-1}\right. \tag{1.1}\\
& \left.+\left\|\left(1-\chi_{2}(x, D)\right) v\right\|_{l_{3}}+\|\Psi(x, D) v\|_{l_{3}}\right\}
\end{align*}
$$

if $v \in C_{0}^{\infty}$ and $0<\delta \leqq \delta_{0}$, where $\|u\|_{l}=\left\|\langle D\rangle^{l} u\right\|$ and $\|u\|$ denotes the L^{2} norm of u. Then $z^{0} \oplus W F(u)$ if $u \in \mathscr{D}^{\prime}$ and $z^{0} \oplus W F(P(x, D) u)$.

Remark. When one applies Theorem 1.1, one must choose W in the con-
dition (H) suitably. Whether (1.1) can be shown or not may depend on the choice of W.

Next let us restrict our consideration to operators of second order in \boldsymbol{R}^{2}. We assume that $P(x, D)=D_{1}^{2}+\alpha(x) D_{2}^{2}+\beta(x, D)$ is a properly supported classical pseudodifferential operator in \boldsymbol{R}^{2} such that $\alpha(x) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ is non-negative and $\beta(x, D) \in L_{1,0}^{1}$. Let $x^{0} \in \boldsymbol{R}^{2}$, and let Σ_{0} be a subset of \boldsymbol{R}^{2} such that $x^{0} \in \Sigma_{0}$ and $P(x, D)$ is microhypoelliptic in $U_{0} \backslash \Sigma_{0}$ for some neighborhood U_{0} of x^{0}.

Theorem 1.2. (i) Assume that $\Sigma_{0} \cap U_{0}=\left\{x^{0}\right\}$. If there are a neighborhood U of x^{00} and $C>0$ such that

$$
\begin{equation*}
\left(\operatorname{Re} \beta_{1}(x, 0, \pm 1)\right)^{2} \leqq C \alpha(x) \quad \text { for } x \in U \tag{1.2}
\end{equation*}
$$

then $P(x, D)$ is microhypoelliptic at x^{0}, where $\beta_{1}(x, \xi)$ denotes the principal symbol of $\beta(x, D)$ which is positively homogeneous of degree 1. (ii) Assume that $\Sigma_{0} \cap U_{0} \subset\left\{x \in \boldsymbol{R}^{2} \mid f(x)=0\right\}$, where $f(x) \in C^{1}\left(\boldsymbol{R}^{2}\right)$ is real-valued, $f\left(x^{0}\right)=0$ and $\partial f / \partial x^{1}\left(x^{0}\right) \neq 0$. If there are a neighborhood U of $x^{0}, l \in \boldsymbol{N}$ and $C>0$ such that

$$
\begin{equation*}
\left(\operatorname{Re} \beta_{1}(x, 0, \pm 1)\right)^{2}+\left(\operatorname{Im} \beta_{1}(x, 0, \pm 1)\right)^{2 l} \leqq C \alpha(x) \quad \text { for } x \in U \tag{1.3}
\end{equation*}
$$

then $P(x, D)$ is microhypoelliptic at x^{0}.
Denote by $\mathscr{P}\left(\boldsymbol{R}^{2}\right)$ the power set of \boldsymbol{R}^{2}. We define the mapping $\tau: \mathscr{P}\left(\boldsymbol{R}^{2}\right) \rightarrow$ $\mathscr{P}\left(\boldsymbol{R}^{2}\right)$ as follows: For $A \in \mathscr{P}\left(\boldsymbol{R}^{2}\right), \boldsymbol{\tau}(A)$ is a subset of A and $x^{0} \in A \backslash \tau(A)$ if and only if $\alpha\left(x^{0}\right)>0$ or there are a neighborhood U of x^{0} and $f(x) \in C^{1}\left(\boldsymbol{R}^{2}\right)$ such that (i) $f\left(x^{0}\right)=0, \partial f / \partial x^{1}\left(x^{0}\right) \neq 0$ and $A \cap U \subset\left\{x \in \boldsymbol{R}^{2} \mid f(x)=0\right\}$ and (ii) (1.2) holds if $A \cap U=\left\{x^{0}\right\}$ and (1.3) holds if $A \cap U \neq\left\{x^{0}\right\}$. The following Corollary is an immediate consequence of Theorem 1.2.

Corollary 1. $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \bigcap_{j=1}^{\infty} \tau^{j}(S)$, where $S=$ $\left\{x \in \boldsymbol{R}^{2} \mid \alpha(x)=0\right\}$.

Remark. We note that $\tau\left(\boldsymbol{R}^{2}\right) \subset S$. So we have $\bigcap_{j=1}^{\infty} \tau^{j}\left(\boldsymbol{R}^{2}\right)=\bigcap_{j=1}^{\infty} \tau^{j}(S)$.
Define $\widetilde{S}=\cup_{A \subset S, \tau(A)=A} A$, where $S=\left\{x \in \boldsymbol{R}^{2} \mid \alpha(x)=0\right\}$. Then it is easy to see that $\tau(\tilde{S})=\widetilde{S}$ and that $A \subset \tilde{S}$ if $A \subset S$ and $\tau(A)=A$. Using transfinite induction, we can prove the following

Corollary 2. $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \tilde{S}$. In particular, if there is not a non-empty subset A of S satisfying $\boldsymbol{\tau}(A)=A$, then $P(x, D)$ is microhypolliptic in \boldsymbol{R}^{2}.

Next assume that $\alpha(0)=0$ and that $S \cap U \subset\left\{x \in \boldsymbol{R}^{2} \mid x_{1}=0\right\}$ for some neighborhood U of the origin in \boldsymbol{R}^{2}, where $S=\left\{x \in \boldsymbol{R}^{2} \mid \alpha(x)=0\right\}$. Put

$$
\begin{aligned}
& A(t)=\inf \left\{\alpha\left(s, x_{2}\right) \mid\left(s, x_{2}\right) \in\left[-c_{0}, c_{0}\right] \times\left[-c_{0}, c_{0}\right]\right. \\
& \quad \text { and } \pm(s-t) \geqq 0\} \quad \text { for } c_{0} \geqq \pm t \geqq 0, \\
& B(t)=\sup \left\{\left|\operatorname{Re} \beta_{1}\left(s, x_{2}, 0,1\right)\right| \mid\left(s, x_{2}\right) \in\left[-c_{0}, c_{0}\right] \times\left[-c_{0}, c_{0}\right]\right. \\
& \quad \text { and } \pm t \geqq(t-s) \geqq 0\} \quad \text { for } c_{0} \geqq \pm t \geqq 0, \\
& \Gamma(t)=\sup \left\{\left|\operatorname{Im} \beta_{1}\left(s, x_{2}, 0,1\right)\right| \mid\left(s, x_{2}\right) \in\left[-c_{0}, c_{0}\right] \times\left[-c_{0}, c_{0}\right]\right. \\
& \quad \text { and } \pm t \geqq(t-s) \geqq 0\} \quad \text { for } c_{0} \geqq \pm t \geqq 0,
\end{aligned}
$$

where c_{0} is a positive constant satisfying $\left[-c_{0}, c_{0}\right] \times\left[-c_{0}, c_{0}\right] \Subset U$. Here $A \Subset B$ means that the closure \bar{A} of A is included in the interior B of B. It is easy to see that $A(t), B(t)$ and $\Gamma(t)$ are Lipschitz continuous functions defined on $\left[-c_{0}, c_{0}\right]$. Under the above assumptions Theorem 1.2 can be improved as follows:

Theorem 1.3. (i) Assume that $S \cap U=\{0\}$. If (1.2) holds or if there is $l \in N$ such that

$$
\begin{align*}
& A_{0} \equiv \lim \sup _{t \rightarrow 0}|t|^{2 l} / A(t)<\infty, \tag{1.4}\\
& B_{0} \equiv \lim \sup _{t \rightarrow 0}|t|^{1-l} B(t)<\infty, \tag{1.5}\\
& 2^{l+5}\left\{1+2^{l+2} / l(l+1)\right\} A_{0} B_{0}^{2} / l(l+1)<1, \tag{1.6}
\end{align*}
$$

then $P(x, D)$ is microhypoelliptic at the origin. (ii) Assume that (1.2) is valid or (1.4)-(1.6) are valid. If (1.3) holds or if $\lim _{t \rightarrow 0} t^{2} \Gamma(t) \log A(t)=0$, then $P(x, D)$ is microhypoelliptic at the orgin.

The remainder of this paper is organized as follows. In § 2 we shall give the proof of Theorem 1.1. Theorem 1.2 and Corollary 2 will be proved in $\S 3$. In $\S 4$ we shall prove Theorem 1.3. Further remark will be given in $\S 5$.

The author would like to express his gratitude to Professors M. Matsumura, S. Wakabayashi and T. Hoshiro for helpful discussions.

§ 2. Proof of Theorem 1.1.

Theorem 1.1 is a variant of Theorem 1.2 in [4]. For completeness we give the proof of Theorem 1.1 in this section. Let $u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n}\right)$ and put $f=$ $P(x, D) u$. We may assume that $u \in \mathcal{E}^{\prime} \cap H^{s^{\prime}}$ for some $s^{\prime} \in \boldsymbol{R}$, where $H^{s}\left(\equiv H^{s}\left(\boldsymbol{R}^{n}\right)\right)$
denotes the Sobolev space of order s. Let \mathcal{C}_{1} be a conic neighborhood of z^{0} such that $\mathcal{C}_{1} \cap\{|\xi|=1\} \Subset\left\{(x, \xi) \in \mathcal{C} \mid \chi_{1}(x, \xi)=\chi_{2}(\chi, \xi)=1\right\}$. Assume that there is a conic neighborhood \mathcal{C}_{2} of z^{0} such that $\mathcal{C}_{2} \Subset \mathcal{C}_{1}$ and $W F(f) \cap \mathcal{C}_{2}=\varnothing$, where $\mathcal{C}_{2} \Subset \mathcal{C}_{1}$ means $\mathcal{C}_{2} \cap\{|\xi|=1\} \Subset \mathcal{C}_{1}$. Then it follows from the assumytion (H) that $W F(u) \cap \partial C_{2} \cap \widetilde{W}=\varnothing$, where $\widetilde{W}=\left\{\left(x_{0}, \lambda \xi_{0}\right) \mid \lambda>0\right\}+W=\left\{\left(x^{0}+x, \lambda \xi^{0}+\xi\right) \mid(x, \xi) \in W\right.$, $\lambda>0\}$ and $\partial \mathcal{C}_{2}$ denotes the boundary of \mathcal{C}_{2}, modifying \mathcal{C} if necessary. Choose $\chi(x, \xi) \in S_{2,0}^{0}$ so that $\chi(x, \xi)$ is positively homogenenous of degree 0 for $|\xi| \geqq 1$. $\chi(z)=1$ near $z^{0}, \operatorname{supp} \chi \cap\{|\xi|=1\} \Subset \mathcal{C}_{1}$ and $W F(f) \cap \operatorname{supp} \chi \cap\{|\xi|=1\}=\varnothing$. Then we have $W F(u) \cap \widetilde{W} \cap \operatorname{supp} d \chi \cap\{|\xi|=1\}=\varnothing$. Therefore there is $\varepsilon>0$ such that $(x, \xi) \notin W F(u)$ if $(x, \xi) \in \operatorname{supp} d \chi,|\xi| \geqq 1$ and $\varphi\left(x^{\prime \prime}, \xi\right) \leqq 2 \varepsilon$. For a fixed $\sigma>s^{\prime}$ we can choose $a \geqq a_{0}$ and $s \geqq s_{0}$ so that $a \varepsilon-s>l_{2}+m-1-s^{\prime}$ and $a \varepsilon / 2-s<l_{1}-\sigma$. Moreover choose $N \geqq N_{0}$ so that $N>s-s^{\prime}+\max \left\{l_{2}+m, l_{1}-1, l_{3}\right\}$. It follows from calculus of pseudodifferential operators that there is $Q_{\dot{\delta}}\left(x^{\prime \prime}, \xi\right)\left(\equiv Q_{\dot{\partial}}\left(x^{\prime \prime}, \xi ; a, N, s\right)\right)$ such that

$$
\left\|e^{A}\left(x^{\prime \prime}, D\right) Q_{\dot{\delta}}\left(x^{\prime \prime}, D\right) e^{-A}\left(x^{\prime \prime}, D\right) g-g\right\|_{\rho} \leqq C_{a, N, s, \rho}(g)
$$

for $\rho \in \boldsymbol{R}$ and $g \in H^{-\infty}\left(\equiv \cup_{l \in R} H^{l}\right)$. Here and after the constants do not depend on $\delta(\delta \leqq 1)$ if not stated. Put

$$
v_{\dot{\delta}}(x)=Q_{\dot{\delta}}\left(x^{\prime \prime}, D\right) e^{-A}\left(x^{\prime \prime}, D\right) \chi(x, D) u
$$

Then we have

$$
\begin{gathered}
\left\|e^{\Lambda}\left(x^{\prime \prime}, D\right) v_{\delta}-\chi(x, D) u\right\|_{\rho} \leqq C_{a, N, s, \rho}(u), \\
\left\|P_{\Lambda}(x, D) v_{\dot{\delta}}-e^{-\Lambda}\left(x^{\prime \prime}, D\right) \chi(x, D) f-e^{-\Lambda}\left(x^{\prime \prime}, D\right)[P, \chi] u\right\|_{\rho} \leqq C_{a, N, s, \rho}(u)
\end{gathered}
$$

for any $\rho \in \boldsymbol{R}$, where $[P, \chi] u=(P((x, D) \chi(x, D)-\chi(x, D) P(x, D)) u$. Since u is in C^{∞} near $\left\{(x, \xi) \mid \varphi\left(x^{\prime \prime}, \xi\right) \leqq 3 \varepsilon,(x, \xi) \in \operatorname{supp} d \chi\right.$ and $\left.|\xi| \geqq 1\right\}$ and $-s+a \varphi\left(x^{\prime \prime}, \xi\right)$ $>l_{2}+m-1-s^{\prime}$ if $\varphi\left(x^{\prime \prime}, \xi\right) \geqq \varepsilon$, we have

$$
\left\|P_{A}(x, D) v_{\delta}\right\|_{l_{2}} \leqq C_{a, N, s}(u)
$$

Noting that $v_{\dot{\delta}} \in H^{\max \left(l_{2}+m, l_{2}-1, l_{3}\right)}$ for $\delta>0$ and that (1.1) is also valld for $v_{\bar{o}} \in$ $H^{\max \left(l_{2}+m, l_{2}-1, l_{3}\right)}$, we have

$$
\left\|\chi_{1}(x, D) v_{\delta}\right\|_{l_{1}} \leqq C_{a, N . s}(u) \quad \text { for } 0<\delta \leqq \delta_{0}
$$

where $\delta_{0}>0$ is as in Theorem 1.1. In fact, we have $\left\|\left(1-\chi_{2}(x, D)\right) v_{\hat{\sigma}}\right\|_{r_{3}} \leqq$ $C_{a, N, s}^{\prime}(u)$, since supp $\left(1-\chi_{2}(x, \xi)\right) \cap \operatorname{supp} \chi \cap\{|\xi| \geqq 1\}=\varnothing$. We have also

$$
\left\|\Psi(x, D) v_{\delta}\right\|_{l_{3}} \leqq C_{a, N, s}^{\prime \prime}(u),
$$

since u is in C^{∞} near supp $\Psi \cap$ supp $\chi \cap\{|\xi| \geqq 1\}$ by the assumption (H). Therefore, we have $\left\|v_{\partial}\right\|_{l_{1}} \leqq \tilde{C}_{a, N, s}(u)$ for $0<\delta \leqq \delta_{0}$. This implies that $v_{\tilde{b}} \rightarrow v_{0}$ weakly in $H^{l_{2}}$ as $\delta \rightarrow 0$ and that $v_{0} \in H^{l_{2}}$. Let $\tilde{\chi}(x, \xi)$ is positively homogeneous of de-
gree 0 for $|\xi| \geqq 1$ and $\operatorname{supp} \tilde{\chi}(x, \xi) \cap\{|\xi| \geqq 1\} \Subset\left\{(x, \xi) \mid \chi(x, \xi)=1\right.$ and $\varphi\left(x^{\prime \prime}, \xi\right)$ $\leqq \varepsilon / 2\}$. Then, noting that $\left.-s+a \varphi) x^{\prime \prime}, \xi\right)<l_{1}-\sigma$ if $\varphi\left(x^{\prime \prime}, \xi\right) \leqq \varepsilon / 2$, we have $\tilde{\chi}(x, D) u \in H^{\sigma}$. This proves Theorem 1.1.

§3. Proofs of Theorem 1.2. and Corollary 2.

In this section we shall prove Theorem 1.2, applying Theorem 1.1, and Corollary 2 by transfinite induction. Recall that $P(n, D)=D_{1}^{2}+\alpha(x) D_{2}^{2}+\beta(x, D)$ is an operator in $\boldsymbol{R}^{2}, \alpha(x) \geqq 0$ and $\beta(x, D) \in L_{1,0}^{1}$. We may assume that $\alpha(x) \in$ $\mathscr{B}^{\infty}\left(\boldsymbol{R}^{2}\right)$ and $\beta(x, \xi) \in S_{1,0}^{1}$. Let $x^{0} \in \boldsymbol{R}^{2}$, and let Σ_{0} and U_{0} be as in $\S 1$. Assume that $\Sigma_{0} \cap U_{0} \subset\left\{x \in \boldsymbol{R}^{2} \mid f(x)=0\right\}$, where $f(x) \in C^{1}\left(\boldsymbol{R}^{2}\right)$ is real-valued, $f\left(x^{0}\right)=0$ and $\partial f / \partial x_{1}\left(x^{0}\right) \neq 0$. It is sufficient to prove that $P(x, D)$ is microhypoelliptic at $z^{0}=$ $\left(x^{0} ; 0, \pm 1\right)$. We shall show that $P(x, D)$ is microhypoelliptic at $\left(x^{0} ; 0,1\right)$. Note that microhypoelliptic at $\left(x^{0} ; 0,-1\right)$ can be similarly proved. Choose a realvalued $\varphi(t) \in \mathscr{B}^{\infty}(\boldsymbol{R})$ so that $\varphi(t)=0$ when $\Sigma_{0} \cap U_{0}=\left\{x^{0}\right\}$, and $\varphi(t)=\left(t-x_{2}^{0}\right)^{2}$ near $t=x_{2}^{0}$ when $\Sigma_{0} \cap U_{0} \neq\left\{x^{0}\right\}$. We put

$$
\Lambda(x, \xi) \equiv \Lambda_{\dot{\delta}}(x, \xi) \equiv \Lambda_{\dot{\delta}}(x, \xi ; a, N, s)=\left\{-s+a \varphi\left(x_{2}\right)\right\} \log \lambda(\xi)+N \log (1+\delta \lambda(\xi))
$$

for $0 \leqq \delta \leqq 1, a \geqq 0, N \geqq 0$ and $s \in \boldsymbol{R}$, where $\lambda(\xi)$ is defined in $\S 1$. Then there is a conic neighborhood \mathcal{C} of $\left(x^{0}, 0,1\right)$ in $T^{*} \boldsymbol{R}^{2} \backslash 0$ such that

$$
\Lambda(x, \xi)=\left\{\begin{array}{l}
-s \log \left\langle\xi_{2}\right\rangle+N \log \left(1+\delta\left\langle\xi_{2}\right\rangle\right) \quad \text { if } \quad \Sigma_{0} \cap U_{0}=\left\{x^{0}\right\}, \\
\left\{-s+a\left(x_{2}-x_{2}^{0}\right)^{2}\right\} \log \left\langle\xi_{2}\right\rangle+N \log \left(1+\delta\left\langle\xi_{2}\right\rangle\right) \quad \text { if } \Sigma_{0} \cap U_{0} \neq\left\{x^{0}\right\}
\end{array}\right.
$$

near $\mathcal{C} \cap\{|\xi| \geqq 2\}$. Write $p_{\xi_{2}}=p_{\xi_{2}}(x, \xi)=\partial p / \partial \xi_{2}(x, \xi), \cdots$. A simple calculation yields

$$
\begin{aligned}
P_{\Lambda}(x, \xi)= & (1+q(x, \xi)) p(x, \xi)+i\left(\Lambda_{\xi_{2}} p_{x_{2}}-\Lambda_{x_{2}} p_{\xi_{2}}\right)+\Lambda_{x_{2}} \Lambda_{\xi_{2} \xi_{2}} p_{x_{2}} \\
& \left.+\Lambda_{\xi_{2}} \Lambda_{x_{2} x_{2}} p_{\xi_{2}}+\Lambda_{\xi_{2}} \Lambda_{x_{2}} p_{\xi_{2} x_{2}}-\left(\Lambda_{x_{2}}^{2}+\Lambda_{x_{2} x_{2}}\right) p_{\xi_{2} \xi_{2}}\right] \\
& +R_{1}(x, \xi)+R_{2}(x, \xi),
\end{aligned}
$$

where $q(x, \xi)=i \Lambda_{x_{2}} \Lambda_{\xi_{2}}-\left(\Lambda_{\xi_{2}}^{2}-\Lambda_{\xi_{2} \xi_{2}}\right)\left(\Lambda_{x_{2}}^{2}+\Lambda_{x_{2} x_{2}}\right) / 2 \in S_{1,0}^{-1+\rho}(\rho>0), R_{1}(x, \xi) \in S_{1,0}^{2}$, and $\quad R_{2}(x, \xi) \in S_{1,0}^{0}, \quad$ supp $R_{1} \cap \mathcal{C} \cap\{|\xi| \geqq 2\}=\varnothing, \quad\left|R_{1}(\alpha)(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{2-|\alpha|}$ and $\left|R_{2}(\alpha)(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-1 \alpha 1}$. Hereafter the constants do not depend on δ if not stated. Since $|1+q(x, \xi)| \geqq 1 / 2$ for $|\xi| \geqq C_{a, N, s} \gg 1$, there is $Q(x, \xi) \in S_{1,0}^{0}$ such that $Q(x, \xi)(1+q(x, \xi))=1$ for $|\xi| \geqq C_{a, N, 8}$. Define $\widetilde{P}_{A}(x, D)=Q(x, D) P_{A}(x, D)$. Then we have

$$
\begin{aligned}
\tilde{P}_{A}(x, \xi)= & \xi_{1}^{2}=\alpha(x) \xi_{2}^{2}+\operatorname{Re} \beta_{1}(x, \xi)+\Lambda_{x_{2}} \operatorname{Im} \beta_{1}(x, \xi)+2 \Lambda_{\xi_{2}} \Lambda_{x_{2} x_{2}} \alpha\left(x \left(\xi_{2}\right.\right. \\
& +2 \Lambda_{\xi_{2}} \Lambda_{x_{2}} \alpha_{x_{2}}(x) \xi_{2}-\left(\Lambda_{x_{2}}^{2}+\Lambda_{x_{2} x_{2}}\right) \alpha(x)-2 i \Lambda_{x_{2}} \alpha(x) \xi_{2} \\
& +i r(x, \xi)+R_{1}^{\prime}(x, \xi)+R_{2}^{\prime}(x, \xi) \quad \text { for }|\xi| \geqq 1,
\end{aligned}
$$

where $\beta_{1}(x, \xi)$ denotes the principal symbol of $\beta(x, \xi), r(x, \xi) \in S_{1,0}^{1}$ is realvalued, $\left|r_{\beta}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{1-\mid \alpha_{1}}$, and $R_{1}^{\prime}(x, \xi)$ and $R_{2}^{\prime}(x, \xi)$ have the same properties as $R_{1}(x, \xi)$ and $R_{2}(x, \xi)$, respectively. Write $\beta_{1}(x, \xi)=\beta_{1}(x, 0,1) \xi_{2}+$ $\tilde{\beta}_{0}(x, \xi) \xi_{1}$, where $\tilde{\beta}_{0}(x, \xi)$ is positively homogeneous of degree 0 . Then we have

$$
\begin{align*}
\tilde{P}_{A}(x, \xi)= & \xi_{1}^{2}+\alpha(x) \xi_{2}^{2}+\operatorname{Re} \beta_{1}(x, 0,1) \xi_{2}+e_{0}(x, \xi) \xi_{1}+e_{1}(x, \xi) \alpha(x) \log \lambda(\xi) \tag{3.1}\\
& +e_{2}(x, \xi) \alpha(x)(\log \lambda(\xi))^{2}+e_{3}(x, \xi) \operatorname{Im} \beta_{1}(x, 0,1) \log \lambda(\xi) \\
& +e_{4}(x, \xi) \alpha_{x_{2}}(x) \log \lambda(\xi)+i e_{5}(x, \xi) \alpha(x) \xi_{2} \log \lambda(\xi) \\
& +i r(x, \xi)+R_{1}^{\prime}(x, \xi)+R_{2}^{\prime}(x, \xi) \quad \text { for }|\xi| \geqq 1,
\end{align*}
$$

where $e_{j}(x, \xi) \in S_{1,0}^{0}(0 \leqq j \leqq 5)$ are real-valued, $e_{k}(x, \xi)=0$ if $1 \leqq k \leqq 5$ and $\Sigma_{0} \cap U_{0}$ $=\left\{x^{0}\right\}$, and $e_{3}(x, \xi) \equiv e_{3}(x)$ does not depend on ξ.

Lemma 3.1. Assume that there are $\chi(x, \xi) \in S_{1,0}^{0}, \Psi(x) \in \mathscr{B}^{\infty}\left(\boldsymbol{R}^{2}\right), a_{0} \geqq 0, N_{0} \geqq 0$ and $s_{0} \in \boldsymbol{R}$ such that $\chi(x, \xi)$ is positively homogeneous of degree 0 for $|\xi| \geqq 1$, $\chi(x, \xi)=1$ near $\left(x_{0}, 0,1\right)$, supp $\Psi_{\cap} \cap \Sigma_{0}=\varnothing$ and the bollowing property holds; for any $a \geqq a_{0}$, any $N \geqq N_{0}$ and any $s \geqq s_{0}$ there are $\delta_{0}>0\left(\delta_{0} \leqq 1\right), C_{0}>$ and $C>0$ such that (3.2) $\operatorname{Re}\left(\tilde{P}_{A}(x, D) v, v\right) \geqq C_{0}\left\|D_{1} v\right\|^{2}-C\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{2}^{2}+\|\Psi(x) v\|_{2}^{2}\right\}$ if $v \in C_{0}^{\infty}$ and $0<\delta \leqq \delta_{0}$. Then $\left(x^{0}, 0,1\right) \oplus W F(u)$ if $u \in \mathscr{D}^{\prime}$ and $\left(x^{0}, 0,1\right) \oplus$ $W F(P(x, D) u)$.

Proof. Note that the condition (H) in $\S 1$ is satisfied with $\Sigma=\{(x, \xi) \in$ $T^{*} \boldsymbol{R}^{2} \backslash 0 \mid x \in \Sigma_{0}$ and $\left.\xi_{1}=0\right\}$ and $W=\left\{\left(\delta x, \delta \xi_{1}, 0\right) \in T_{z 0}\left(T^{*} \boldsymbol{R}^{2}\right) \mid \delta x_{2}=0\right\}$, where $z^{0}=\left(x^{0}, 0,1\right)$. Applying the implicit function theorem, we can write $\{x \in U \mid$ $f(x)=0\}=\left\{\left(g\left(x_{2}\right), x_{2}\right)-\left|x_{2}-x_{2}^{0}\right| \leqq c\right\}$, where U is a neighborhood of $x^{0}, g(t) \in$ $C^{1}\left(x_{2}^{0}-c, x_{2}^{0}+c\right)$ and $c>0$. Choose $\Psi(t) \in C_{0}^{\infty}(\boldsymbol{R})$ so that $0 \leqq \Psi(t) \leqq 1, \Psi(t)=1$ if $|t| \leqq 1 / 2$ and $\operatorname{supp} \Psi(t) \subset\{|t| \leqq 1\}$. For $d>0$, write $v=v_{1}+v_{2}+v_{3}$, where $v \in C_{0}^{\infty}$, $v_{1}=\Psi\left(\left(x_{1}-g\left(x_{2}\right)\right) / d\right) \Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right) v, \quad v_{2}=\left(1-\Psi\left(\left(x_{1}-g\left(x_{2}\right)\right) / d\right)\right) \Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right) v, \quad v_{3}=$ $\left(1-\Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right)\right) v$. Applying Poincare's inequality to v_{1}, we have $\left\|v_{1}\right\| \leqq$ $\sqrt{2} d\left\|D_{1} v\right\|$. Since $\operatorname{supp}\left(1-\Psi\left(\left(x_{1}-g\left(x_{2}\right)\right) / d\right)\right) \Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right) \cap \Sigma_{0}=\varnothing$, there are $\Psi_{d}(x) \in \mathscr{B}^{\infty}\left(\boldsymbol{R}^{2}\right)$ and $C_{d}>0$ such that supp $\Psi_{d} \cap \Sigma_{0}=\varnothing$ and $\left\|v_{2}\right\| \leqq C_{d}\left\|\Psi_{d}(x) v\right\|_{1}$. Therefore, for any $\varepsilon>0$ there are $d>0$ and $C>0$ such that

$$
\begin{equation*}
\|v\|^{2} \leqq \varepsilon\left\|D_{1} v\right\|^{2}+C\left\{\left\|\left(1-\Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right)\right) v\right\|^{2}+\left\|\Psi_{d}(x) v\right\|_{1}^{2}\right\} \quad \text { for } v \in C_{v}^{\infty} . \tag{3.3}
\end{equation*}
$$

Since $\operatorname{Re}\left(\widetilde{P}_{A}(x, D) v, v\right) \leqq C\left\|P_{A}(x, D) v\right\|^{2}+\|v\|^{2}$, it follows from (3.2) and (3.3) that

$$
\begin{aligned}
\|v\| \leqq & C_{d}\left\{\left\|P_{A}(x, D) v\right\|+\|(1-\chi(x, D)) v\|_{2}+\left\|\left(1-\Psi\left(\left(x_{2}-x_{2}^{0}\right) / c\right)\right) v\right\|_{1}\right. \\
& \left.+\|\Psi(x) v\|_{2}+\left\|\Psi_{d}(x) v\right\|_{1}\right\}
\end{aligned}
$$

if $v \in C_{0}^{\infty}$ and $0<\delta \leqq \delta_{0}$, where $0<d \ll 1$. So we can apply Theorem 1.1 and prove the lemma.

Next we shall prove that (3.2) holds in the cases (i) and (ii) in Theorem 1.2 , respectively. We need the following

Lemma 3.2. For any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{aligned}
& \left|\operatorname{Re}\left(e_{1}(x, D) \alpha(x)(\log \lambda(D)) v, v\right)\right| \\
& \quad \leqq \varepsilon\left(\alpha(x) D_{2} v, D_{2} v\right)+C_{\varepsilon}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} \quad \text { for } v \leq C_{0}^{\infty} .
\end{aligned}
$$

Proof. Choose $\chi(x, \xi) \in S_{1,0}^{0}$ so that supp $\chi \Subset \mathcal{C} \cap\{|\xi| \geqq 2\}$. Then we can write

$$
e_{1}(x, D) \alpha(x) \log \lambda(D) \equiv T_{1}^{(-1+\rho)} \alpha(x) D_{2}+T_{2}^{(\rho)}(1-\chi(x, D)) \bmod L_{1,0}^{-1+\rho}
$$

if $0<\rho<1$, where $T_{j}^{(*)}(j=1,2)$ means the pseudodifferential operators with the symbols in $S_{1,0}^{*}$. Hence, for any $\varepsilon>0$ we have

$$
\begin{aligned}
& \left|\operatorname{Re}\left(e_{1}(x, D) \alpha(x)(\log \lambda(D)) v, v\right)\right| \\
& \quad \leqq\left|\operatorname{Re}\left(T_{1}^{(-1+\rho)} \alpha(x) D_{2} v, v\right)\right|+\left|\operatorname{Re}\left(T_{2}^{(\rho)}(1-\chi(x, D)) v, v\right)\right|+C\|v\|_{-1+\rho}\|v\| \\
& \quad \leqq \varepsilon\left\|\alpha(x) D_{2} v\right\|^{2}+C_{\varepsilon}\|v\|^{2}+C\|(1-\chi(x, D)) v\|_{\rho}^{2} \\
& \quad \varepsilon C^{\prime}\left(\alpha(x) D_{2} v, D_{2} v\right)+C_{\varepsilon}^{\prime}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} \quad \text { for } v \in C_{0}^{\infty} .
\end{aligned}
$$

The proof is complete.
Remark. By the same method, we can show that
$\operatorname{Re}\left(e_{2}(x, D) \alpha(x)(\log \lambda(D))^{2} v, v\right)$ and $\operatorname{Re}\left(e_{4}(x, D) \alpha_{x_{2}}(x)(\log \lambda(D)) v, v\right)$
have the estimates of the same form as the above. To estimate $\operatorname{Re}\left(e_{4}(x, D) \alpha_{x_{2}}(x)(\log \lambda(D)) v, v\right)$, we must use the well-known fact for non-negative functions that $\left|\alpha_{x_{2}}(x)\right| \leqq C \sqrt{\alpha(x)}$ near the origin. Moreover we can prove that $\operatorname{Re}\left(i e_{5}(x, D) \boldsymbol{\alpha}(x)(\log \lambda(D)) v, v\right)$ has the estimate of the same form as the above, since $i e_{5}(x, \xi) \alpha(x) \log \lambda(\xi)$ is purely imaginary.

From (3.1) and Lemma 3.2 we obtain

$$
\begin{align*}
\operatorname{Re}\left(\tilde{P}_{A}(x, D) v, v\right) \geqq & (1-\varepsilon)\left\{\left\|D_{1} v\right\|^{2}+\left(\alpha(x) D_{2} v, D_{2} v\right)\right\}+\operatorname{Re}\left(\operatorname{Re} \beta_{1}(x, 0,1) D_{2} v, v\right) \tag{3.4}\\
& +\operatorname{Re}\left(e_{3}(x, D) \operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v, v\right) \\
& -C_{\varepsilon}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{2}^{2}\right\} \quad \text { for } v \in C_{0}^{\infty},
\end{align*}
$$

where $\varepsilon>0$.
From now on, we shall prove (3.2) in the cases (i) and (ii) of Theorem 1.2 respectively, by using (3.4).

Assume that $\Sigma_{0} \cap U_{0}=\left\{x^{0}\right\}$. Then we have $e_{k}(x, \xi)=0(1 \leqq k \leqq 5)$. Hence the third term in the right hand side of (3.5) vanishes. It follows from (1.2) that for $\varepsilon>0$ there exists $C_{s}>0$ such that
(3.5) $\quad \operatorname{Re}\left(\operatorname{Re} \beta_{1}(x, 0,1) D_{2} v, v\right)+C \varepsilon\left(\alpha(x) D_{2} v, D_{2} v\right) \geqq-C_{\varepsilon}\|v\|^{2} \quad$ for $v \in C_{0}^{\infty}$.

Therefore (3.2) holds.
Next assume that $\Sigma_{0} \cap U_{0} \neq\left\{x^{0}\right\}$. First we note that

$$
\begin{align*}
& \left|\operatorname{Re}\left(e_{3}(x, D) \operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v, v\right)\right| \tag{3.6}\\
& \quad \leqq\left\{\left\|\operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v\right\|^{2}+\left\|e_{3}(x, D)^{*} v\right\|^{2}\right\} / 2 \quad \text { for } v \in C_{0}^{\infty} .
\end{align*}
$$

Then we have the following
Lemma 3.3. If (1.3) is valid, then for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that $\left\|\operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v\right\|^{2} \leqq \varepsilon\left(\alpha(x) D_{2} v, D_{2} v\right)$

$$
+C_{\varepsilon}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{2}^{2}\right\} \quad \text { for } v \in C_{0}^{\infty} .
$$

Proof. Let us first prove that for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{align*}
& \|h(x)(\log \lambda(D)) v\|^{2} \tag{3.7}\\
& \quad \leqq \varepsilon\left\{\left(h(x)^{k+1} \lambda(D) v, \lambda(D) v\right)+C_{k+1}\|v\|^{2}\right\}+C_{s}\|v\|_{-1 / 2}^{2} \quad \text { for } v \in C_{0}^{\infty},
\end{align*}
$$

where $h(x)=\operatorname{Im} \beta_{1}(x, 0,1)$. Let ρ be a positive number. Nyting that

$$
h(x) \log \lambda(D)=(\log \lambda(D)) \lambda(D)^{-\rho} h(x) \lambda(D)^{\rho}+\left[h(x),(\log \lambda(D)) \lambda(D)^{-\rho}\right] \lambda(D)^{\rho},
$$

we have

$$
\|h(x)(\log \lambda(D)) v\|^{2} \leqq \varepsilon\left\|h(x) \lambda(D)^{\rho} v\right\|^{2}+C_{s}\|v\|_{-1 / 2}^{2} \quad \text { for } v \in C_{0}^{\infty} .
$$

If ρ satisfies $2 \rho \leqq 1$, we have

$$
\left\|h(x) \lambda(D)^{\rho} v\right\|^{2} \leqq\left\|h(x) \lambda(D)^{2 \rho} v\right\|^{2}+C\|v\|^{2} .
$$

Moreover if ρ satisfies $2^{k} \rho \leqq 1$, where k is any positive integer, then there exists $C_{k}>0$ such that

$$
\left\|h(x) \lambda(D)^{\rho} v\right\|^{2} \leqq\left\|h(x)^{2^{k}} \lambda(D)^{2 k} \rho\right\|^{2}+C_{k}\|v\|^{2} \quad \text { for } v \in C_{0}^{\infty} .
$$

Taking $2^{k} \rho=1$, we have (3.7). Next we shall prove that

$$
\begin{align*}
\left(h(x)^{2 k+1} \lambda(D) v, \lambda(D) v\right) \leqq & \left(h(x)^{2 k+1} D_{2} v, D_{2} v\right)+C\|v\|^{2} \tag{3.8}\\
& +C_{k+1}\|(1-\chi(x, D)) v\|_{2}^{2} \quad \text { for } v \subseteq C_{v}^{\infty} .
\end{align*}
$$

Choose $\mu(x, \xi) \in S_{1,0}^{0}$ so that $\mu(x, \xi)$ is positively homogeneous of degree 0 for $|\xi| \geqq 1$ and $\mu(x, \xi)=1$ near $\operatorname{supp} \chi(x, \xi)$. We may assume that $\operatorname{supp} \chi \subset$ $U \times\left\{\xi \in \boldsymbol{R}\left|\xi_{2} \geqq 2\right| \xi \mid / 3 \geqq 2\right\}$, where U is some neighborhood of x^{0}. Write $\left(h(x)^{2 k+1} \lambda(D) v, \lambda(D) v\right)=\left(h(x)^{2 k+1} D_{2} v, D_{2} v\right)+\left(\lambda(D) \mu(x, D)^{*}\left[\mu(x, D), h(x)^{2 k+1}\right] \lambda(D) v, v\right)$ $+\left(h(x)^{2 k+1}\left(\mu(x, D) \lambda(D)-D_{2}\right) v, \mu(x, D) \lambda(D) v\right)+\left(h(x)^{2 k+1} D_{2} v,\left(\mu(x, D) \lambda(D)-D_{2}\right) v\right)+$ $\left(\lambda(D)\left(1-\mu(x, D)^{*} \mu(x, D)\right) h(x)^{2 k+1} \lambda(D) v, v\right) \equiv\left(h(x)^{2 k+1} D_{2} v, D_{2} v\right)+I_{1}+I_{2}+I_{3}+I_{4}$. Hence it is sufficient to prove that $\left|I_{j}\right| \leqq C_{k+1}\left\{\|v\|^{2}+\|(1-\chi(x, D)) a\|_{2}^{2}\right\}(1 \leqq j \leqq 4)$. Since supp $\sigma\left(\left[\mu(x, D), h(x)^{2 k+1}\right]\right) \cap$ supp $\chi=\varnothing$, where $\sigma(R)$ denotes the symbol of $R(x, D)$, we have

$$
\left|I_{1}\right| \leqq C_{k+1}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} .
$$

Noting that $\left(\mu(x, \xi) \lambda(\xi)-\xi_{2}\right) \chi(x, \xi) \equiv 0$, we have

$$
\left|I_{2}\right| \leqq C_{k+1}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{2}^{2}\right\} .
$$

Concerning I_{3}, the proof is similar to the above one. Since supp $\left(1-\mu(x, \xi)^{2}\right) \cap$ $\operatorname{supp} \chi(x, \xi)=\varnothing$, we have

$$
\left|I_{4}\right| \leq\left\{\|v\|^{2}+\|\left(1-\chi(x, D)\left(v \|_{2}^{2}\right\} .\right.\right.
$$

This proves (3.8), which completes the proof.
From (3.4), (3.6) and Lemma 3.3 it follows that (3.2) holds. Lemma 3.1 gives $\left(x^{0}, 0,1\right) \oplus W F(u)$ if $u \in \mathscr{D}^{\prime}$ and $\left(x^{0}, 0,1\right) \notin W F(P(x, D) u)$. When $\Sigma_{0} \cap U_{0}$ $\neq\left\{x^{0}\right\}$, applying the same argument with x^{0} replaced by $x_{\mathrm{I}} \in \Sigma_{0} \cap U_{0}$, we can prove Theorem 1.2, where U_{0} is a small neighborhood of x^{0}.

Next let us prove Corollary 2 of Theorem 1.2. Put $\tilde{\omega}=\operatorname{card}\left(\mathscr{P}\left(\boldsymbol{R}^{2}\right)\right)$, i. e., $\tilde{\omega}$ is the cardinal number of $\mathscr{Q}\left(\boldsymbol{R}^{2}\right)$. For any ordinal number $\zeta<\tilde{\omega}$ we define the mapping $\tau_{\zeta}: \mathscr{P}\left(\boldsymbol{R}^{2}\right) \rightarrow \mathscr{P}\left(\boldsymbol{R}^{2}\right)$ by $\tau_{0}(A)=A$ and

$$
\tau_{\zeta}(A)= \begin{cases}\cap_{\zeta^{\prime}<\zeta}<\zeta_{\zeta^{\prime}}(A) & \text { if } \zeta \text { is a limit ordinal number. } \\ \tau\left(\tau_{\zeta^{\prime}}(A)\right) & \text { if } \zeta=\zeta^{\prime}+1,\end{cases}
$$

where $A \subset \boldsymbol{R}^{2}$.
Lemma 3.4. Let A be a subset of \boldsymbol{R}^{2}, and $A=\cup_{B \subset A, \tau(B)=B} B$. Then (i) $\tau(\tilde{A})$ $=\tilde{A}$. (ii) There exists $\zeta(<\tilde{\omega})$ such that $\tau_{\zeta}(A)=\boldsymbol{\tau}_{\zeta+1}(A)$. (iii) There exists $\zeta_{0}(<\tilde{\omega})$ such that $\cap_{\xi \ll}^{<\tilde{\omega}} \tau_{\zeta}(A)=\tau_{\zeta 0}(A)$. Moreover, we have $\tilde{A}=\cap_{\zeta<\tau_{\omega}} \tau_{\zeta}(A)=\tau_{\zeta_{0}}(A)$.

Proof. (i) Let B be a subset of $A^{\prime \prime}$ satisfying $\tau(B)=B$. Then we have
$B \subset \tilde{A}$. Therefore, it follows from $\tau(\tilde{A}) \supset \tau(B)=B$ that $\tilde{A} \supset \tau(\tilde{A}) \supset \cup_{B \subset A, \tau(B)=B} B$ $=\tilde{A}$. (ii) We assume that $\tau_{\zeta}(A) \supsetneq \tau_{\zeta+1}(A)$ for any $\zeta<\tilde{\omega}$. Then for any $\zeta<\tilde{\omega}$ there exists $x_{\zeta} \in \tau_{\zeta}(A) \backslash \tau_{\zeta+1}(A)$. It is obvious that $x_{\zeta} \neq x_{\zeta}$, if $\zeta \neq \zeta^{\prime}$. Hence $\operatorname{card}\left(\left\{x_{\xi} \mid \zeta<\tilde{\omega}\right\}\right)=\tilde{\omega}$. On the other hand, $\left\{x_{\xi} \mid \zeta<\tilde{\omega}\right\} \subset A$, which leads the contradiction. (iii) From the assertion (ii) there exists $\zeta_{0}<\tilde{\omega}$ such that $\tau_{\zeta_{0}}(A)=$ $\tau_{5_{0}+1}(A)$ Then we can show that

$$
\begin{equation*}
\tau_{\zeta}(A)=\tau_{\xi_{0}}(A) \quad \text { if } \zeta_{0} \leqq \zeta(<\widetilde{\omega}) \tag{3.9}
\end{equation*}
$$

In fact, if $\zeta=\zeta_{0}$, (3.9) is trivial. Now if we assume that $\tau_{\zeta}(A)=\tau_{\zeta_{0}}(A)$ if $\zeta_{0} \leqq$ $\zeta<\zeta_{1}$, it follows from the definition of $\tau_{\zeta}(A)$ that $\tau_{\zeta_{1}}(A)=\tau_{\zeta_{0}}(A)$. Transfinite induction gives (3.9). Hence $\tau_{\xi_{0}}(A)=\cap_{\zeta<\sigma_{\zeta}} \tau_{\zeta}(A)$. We can also prove that $\tau_{\zeta}(A)$ $\supset \tilde{A}$ for any $\zeta<\tilde{\omega}$ by transfinite induction. Then we have $\tilde{A} \subset \cap_{\wp<\infty} \tau_{\zeta}(A)=\tau_{\zeta_{0}}(A)$. On the other hand, we have also $\tau_{\zeta_{0}}(A) \subset \tilde{A}$ in view of the definition of \tilde{A}. Hence $\tilde{A}=\cap_{\zeta<\pi} \tau_{\xi}(A)=\tau_{\zeta_{0}}(A)$.

Now we can prove Corollary 2. We note that if $P(x, D)$ is microhypollipzic in $\boldsymbol{R}^{2} \backslash S$, so is $P(x, D)$ in $\boldsymbol{R}^{2} \backslash \boldsymbol{\tau}(S)$ in view of Theorem 1.2. Hence if suffices to prove that $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \tau_{\zeta}(S)$ for $\zeta<\tilde{\omega}$. We can prove the above assertion by transfinite induction. In fact, the assertion is trivial if $\zeta=0$. Now we assume that $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \tau_{\xi^{\prime}}(S)$ for $\zeta^{\prime}<\zeta$. When there exists ζ^{\prime} such that $\zeta=\zeta^{\prime}+1$, it follows from $\tau_{\zeta}(S)=$ $\tau\left(\tau_{\zeta^{\prime}}(S)\right)$ and the above argument that $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \tau_{\zeta}(S)$. Assume that ζ is a limit ordinal number. If $x \in \tau_{\zeta}(S)$, then it follows from
 microhypoelliptic at x. Therefore $P(x, D)$ is microhypoelliptic in $\boldsymbol{R}^{2} \backslash \boldsymbol{\tau}_{\zeta}(S)$. The proof is complete.

§4. Proof of Theorem 1.3 .

First we shall prove the following
Lemma 4.1. If (1.2) holds or if there exists $l \in N$ such that (1.4)-(1.6) are valid, then there exist constants $h>0, C_{0}>0\left(C_{0}<1\right)$ and $C>0$ such that

$$
\begin{align*}
& C_{0}\left\{\left\|D_{1} v\right\|^{2}+\left(\alpha\left(x\left(D_{2} v, D_{2} v\right)\right\}+\operatorname{Re}\left(\operatorname{Re} \beta_{1}(x, 0,1) D_{2} v, v\right)\right.\right. \tag{4.1}\\
& \quad \geqq-C\left\{\|v\|^{2}+\|(1+\chi(x, D)) v\|_{2}^{2}\right\}
\end{align*}
$$

if $v \in C_{0}^{\infty}$ and $\operatorname{supp} v \subset\left\{x\left|\left|x_{1}\right|<h\right\}\right.$, where $\chi(x, \xi)$ is positively homogeneous of degree 0 for $|\xi| \geqq 1$ and $\operatorname{supp} \chi(x, \xi) \subset U \times\left\{\xi\left|\xi_{2} \geqq 2\right| \xi \mid / 3 \geqq 2\right\}$.

We have already proved in $\S 3$ that (4.1) is valid if (1.2) holds. Therefore,
we now assume that there exists $l \in \boldsymbol{N}$ such that (1.4)-(1.6) are valid. Let $\Psi_{1}(\xi) \in S_{1,0}^{0}$ be a real-valued symbol such that $\Psi_{1}(\xi)$ is positively homogeneous of degree 0 for $|\xi| \geqq 1,0 \leqq \Psi_{1}(\xi) \leqq 1, \Psi_{1}(\xi)=1$ if $\xi_{2} \geqq|\xi| / 3$ and $|\xi| \geqq 1$, and supp $\Psi_{1} \subset\left\{\xi\left|\xi_{2} \geqq|\xi| / 6\right.\right.$ and $\left.| \xi \mid \geqq 1 / 2\right\}$. Set $\Psi_{2}(\xi)=1-\Psi_{1}(\xi)$. We need several lemmas to prove Lemma 4.1.

Lemma 4.2. Write $\left.\left.\beta(x)=\operatorname{Re} \beta_{1}\right) x, 0,1\right)$. Then we have

$$
\begin{aligned}
\left|\left(\beta(x) D_{2} v, v\right)\right| \leqq & \left|\left(\beta(x) D_{2} \Psi_{1}(D) v, \Psi_{1}(D) v\right)\right| \\
& +C\left\{\|v\|^{2}+\|\left(1-\chi(x, D) v \|_{1}^{2}\right\} \quad \text { for } v \in C_{0}^{\infty} .\right.
\end{aligned}
$$

Proof. Since $R^{2} \times \operatorname{supp} \Psi_{2}(\xi) \cap \operatorname{supp} \chi(x, \xi)=\varnothing$, the lemma easily follows.
Let $\Psi(\xi) \in S_{1,0}^{0}$ be a real-valued symbol such that $\Psi(\xi)$ is positively homogeneous of degree 0 for $|\xi| \geqq 1 / 2, \Psi(\xi)=1$ on supp Ψ_{1} and $\operatorname{supp} \Psi \subset\left\{\xi\left|\xi_{2} \geqq|\xi| / 7\right.\right.$ and $|\xi| \geqq 1 / 3\}$. Note that $\Psi_{1}(D)=\Psi(D) \Psi_{1}(D)$. Put $\mathscr{D}(\xi)=\xi_{2}^{1 / 2} \Psi(\xi) \in S_{1,0}^{1 / 2}$.

Lemma 4.3. We have

$$
\begin{aligned}
& \left|\left(\beta(x) D_{2} \Psi_{1}(D) v, \Psi_{1}(D) v\right)\right| \\
& \quad \leqq\left|\left(\beta(x) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right)\right|+C\|v\|^{2} \quad \text { for } v \in C_{0}^{\infty} .
\end{aligned}
$$

Proof. Since $D_{2} \Psi_{1}(D)=\mathscr{D}(D)^{2} \Psi_{1}(D)$, we have

$$
\begin{aligned}
\left(\beta(x) D_{2} \Psi_{1}(D) v, \Psi_{1}(D) v\right)= & \left(\beta(x) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right) \\
& +\left([\beta(x), \mathscr{D}(D)] \mathscr{D}(D) \Psi_{1}(D) v, \Psi_{1}(D) v\right) .
\end{aligned}
$$

It is obvious that $[\beta(x), \mathscr{D}(D)] \in L^{-1 / 2}{ }_{1,0}$, which proves the lemma.
We may assume that $B(t)$ is defined on \boldsymbol{R}. For example, we define $B(t)=0$ if $|t|>c_{0}$.

Lemma 4.4. Set $\tilde{v}=\int \exp \left(-i x_{2} \xi_{2}\right) v(x) d x_{2}$, where $v \in C_{0}^{\infty}$. Then we have

$$
\begin{align*}
\left|\left(\beta(x) D_{2} v, v\right)\right| & \leqq 2 \int_{0}^{\infty}\left(\int B\left(x_{1}\right) \xi_{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right) d \xi \tag{4.2}\\
& +C\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} \quad \text { for } v \in C_{0}^{\infty},
\end{align*}
$$

where $d \xi_{2}=(2 \pi)^{-1} d \xi_{2}$.
Proof. By Lemma 4.2 and 4.3 we have

$$
\begin{align*}
\left|\left(\beta(x) D_{2} v, v\right)\right| \leqq & \left|\left(\beta(x) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right)\right| \tag{4.3}\\
& +C\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} .
\end{align*}
$$

Modifying U if necessary, we may assume that $|\beta(x)| \leqq B\left(x_{1}\right)$ for $x \in U$. Since supp $\chi \subset U \times \boldsymbol{R}^{2}$, it is easy to see that

$$
\begin{aligned}
\left|\left(\beta(x) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right)\right| \leqq & \left(B\left(x_{1}\right) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right) \\
& +C\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\} .
\end{aligned}
$$

From Parseval's formula it follows that

$$
\begin{equation*}
\left(B\left(x_{1}\right) \mathscr{D}(D) \Psi_{1}(D) v, \mathscr{D}(D) \Psi_{1}(D) v\right)=\int_{0}^{\infty}\left(\int B\left(x_{1}\right) \xi_{2}\left|\tilde{w}_{1}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right) d \xi_{2} \tag{4.4}
\end{equation*}
$$

where $w_{1}(x)=\Psi_{1}(D) v(x)$ and $\tilde{w}_{1}\left(x_{1}, \xi_{2}\right)=\int \exp \left(-i x_{2} \xi_{2}\right) w_{1}(x) d x_{2}$. In fact, we have $\mathscr{D}(\xi)=\left(\xi_{2}\right)_{+}^{1 / 2} \Psi(\xi)$, where $\left(\xi_{2}\right)_{+}=\max \left\{\xi_{2}, 0\right\}$. Therefore we have

$$
\int \exp \left(-i x_{2} \xi_{2}\right) \mathscr{D}(D) \Psi_{1}(D) v(x) d x_{2}=\left(\xi_{2}\right)_{+}^{1 / 2} \tilde{w}_{1}\left(x_{1}, \xi_{2}\right)
$$

Put $w_{2}(x)=\Psi_{2}(D) v(x)$ and $\tilde{w}_{2}\left(x_{1}, \xi_{2}\right)=\int \exp \left(-i x_{2} \xi_{2}\right) w_{2}(x) d x_{2}$. Then we have

$$
\begin{aligned}
\int_{0}^{\infty}\left(\int B\left(x_{1}\right) \xi_{2}\left|\tilde{w}_{2}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right) d \xi_{2} & \leqq C \int\left|\xi_{2} \|_{\tilde{w}_{2}}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} d \xi_{2} \\
& \leqq C^{\prime}\left\|w_{2}\right\|_{1 / 2}^{2} \\
& \leqq C^{\prime \prime}\left\{\|v\|^{2}+\|(1-\chi(x, D)) v\|_{1}^{2}\right\},
\end{aligned}
$$

since $R^{2} \times \operatorname{supp} \Psi_{2}(\xi) \cap \operatorname{supp} \chi=\varnothing$. This, together with (4.3) and 4.4), gives (4.2).

From now on, we shall estimate $E=\int_{0}^{\infty}\left(\int B\left(x_{1}\right) \xi_{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right) d \xi_{2}$. Put $E\left(\xi_{2}\right)=\int B\left(x_{1}\right) \xi_{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}$. We fix $\xi_{2} \gg 1$ and take $\chi_{1}(t) \in C_{0}^{\infty}(\boldsymbol{R})$ so that $0 \leqq$ $\chi_{1}(t) \leqq 1, \chi_{1}(t)=1$ if $|t| \leqq 1$, and $\chi_{1}(t)=0$ if $|t| \geqq 2$. By the assumption, there exists $h>0, A_{1}>0, B_{1}>0$ such that $|t|^{2 l} / A(t) \leqq A_{1}$ for $|t| \leqq h,|t|^{1-l} B(t) \leqq B_{1}$ for $|t| \leqq h$ and $2^{l+5}\left\{1+2^{l+2} / l(l+1)\right\} A_{1} B_{1}^{2} / l(l+1)<1$. Put $\varphi(t)=\chi_{1}\left(K^{-1}\left(\xi_{2} /\left(A_{1} B_{1}\right)\right)^{1},(l+1) t\right)$, where $K=\left\{\left(2^{2}+2^{l+4} / l(l+1)\right)^{1 /(l+1)}+\left(2^{3} A_{1} B_{1}^{2} / l(l+1)\right)^{-1 /(l+1)} / 2\right\} / 2$. Hereafter we assume that supp $v \subset\left\{x\left|\left|x_{1}\right|<h\right\}\right.$. Write

$$
\begin{aligned}
E\left(\xi_{2}\right) \leqq & 2\left\{\int B\left(x_{1}\right) \xi_{2}\left|\left(1-\varphi\left(x_{1}\right)\right) \tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right. \\
& \left.+\int B\left(x_{1}\right) \xi_{2}\left|\varphi\left(x_{1}\right) \tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right\} \equiv 2\left(E^{1}\left(\xi_{2}\right)+E^{2}\left(\xi_{2}\right)\right) .
\end{aligned}
$$

Since supp $\left(1-\varphi\left(x_{1}\right)\right) \subset\left\{x_{1}\left|K^{-1}\left(\xi_{2} /\left(A_{1} B_{1}\right)\right)^{1 /(l+1)}\right| x_{1} \mid \geqq 1\right\}$ and $\left|x_{1}\right|^{1-l} B\left(x_{1}\right) \leqq B_{1}$ for $\left|x_{1}\right| \leqq h$, we have

$$
B\left(x_{1}\right) \leqq B_{1}\left|x_{1}\right|^{l-1} \leqq K^{-(l+1)} A_{1}^{-1} \xi_{2}\left|x_{1}\right|^{l+1}\left|x_{1}\right|^{l-1} \leqq K^{-(l+1)} A\left(x_{1}\right) \xi_{2}
$$

in supp $\left(1-\varphi\left(x_{1}\right)\right)$ if $\left|x_{1}\right| \leqq h$. In the last inequelity we have used $\left|x_{1}\right| \times A\left(x_{1}\right)^{-1}$ $\leqq A_{1}$ for $\left|x_{1}\right| \leqq h$. Hence we have

$$
E^{1}\left(\xi_{2}\right) \leqq K^{-(l+1)} \int A\left(x_{1}\right)\left|\xi_{2}\right|^{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}
$$

To estimate $E^{2}\left(\xi_{2}\right)$, we take $a>0$, which depends on ξ_{2}, such that $a K^{-1}\left(\xi_{2} /\left(A_{1} B_{1}\right)\right)^{1 /(l+1)}=2$. Then we obtain

$$
\begin{aligned}
& \int_{0}^{a} B\left(x_{1}\right) \xi_{2}\left|\varphi\left(x_{1}\right) \tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \\
& \quad \leqq(2 K)^{l+1} A_{1} B_{1}^{2}\{l(l+1)\}^{-1} \int_{0}^{\infty}\left|D_{1}\left(\varphi\left(x_{1}\right) \tilde{v}\left(x_{1}, \xi_{2}\right)\right)\right|^{2} d x_{1}
\end{aligned}
$$

We have also

$$
\begin{aligned}
& \int_{0}^{\infty}\left|D_{1}\left(\varphi\left(x_{1}\right) \tilde{v}\left(x_{1}, \xi_{2}\right)\right)\right|^{2} d x_{1} \\
& \quad \leqq 2\left\{C_{1}^{2} K^{-2(l+1)}\left(A_{1} B_{1}^{2}\right)^{-1} \int_{0}^{\infty} A\left(x_{1}\right)\left|\xi_{2}\right|^{2}|\tilde{v}|^{2} d x_{1}+\int_{0}^{\infty}\left|D_{1} \tilde{v}\right|^{2} d x_{1}\right\},
\end{aligned}
$$

where put $C_{1}=\operatorname{supp}\left|\chi_{1}^{\prime}(t)\right|$. In fact, we have

$$
\left(K^{-1}\left(\xi_{2} /\left(A_{1} B_{1}\right)\right)^{1 /(l+1)}\right)^{2 l} A_{1} A(t) \geqq 1 \quad \text { if } \varphi^{\prime}(t) \neq 0 .
$$

Here we note that we can take $C_{1}(>1)$ so that C_{1} is close enough to 1 . In the some manner we have the similar estimates for
$\int_{-a}^{0} B\left(x_{1}\right) \xi_{2}\left|\varphi\left(x_{1}\right) \tilde{v}\right|^{2} d x_{1}$ and $\int_{-\infty}^{0}\left|D_{1}\left(\varphi\left(x_{1}\right) \tilde{v}\right)\right|^{2} d x_{1}$. We may assume that $h \leqq c_{0}$. Summing up the above estimates, we have the following

Lemma 4.5. Assume that $v \in C_{0}^{\infty}$ and $\operatorname{supp} v \subset\left\{\left|\left|x_{1}\right|<h\right\}\right.$. Then we have

$$
\begin{align*}
& \int_{0}^{\infty}\left(\int B\left(x_{1}\right) \xi_{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1}\right) d \xi_{2} \tag{4.5}\\
& \quad \leqq K^{-(l+1)}\left(1+2^{l+2} / l(l+1)\right) \int A\left(x_{1}\right)\left|\xi_{2}\right|^{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} d \xi_{2} \\
& \quad+2(2 K)^{l+1} A_{1} B_{1}^{2}\{l(l+1)\}^{-1} \int\left|D_{1} \tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} d \xi_{2}
\end{align*}
$$

Now we can prove Lemma 4.1. Note that

$$
\begin{aligned}
& \int A\left(x_{1}\right)\left|\xi_{2}\right|^{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \tilde{d} \xi_{2} \leqq\left(\alpha(x) D_{2} v, D_{2} v\right), \\
& \int\left|D_{1} \tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \tilde{d} \xi_{2} \leqq\left\|D_{1} v\right\|^{2},
\end{aligned}
$$

where $\operatorname{supp} v \subset\left\{x\left|\left|x_{1}\right|<h\right\}\right.$. Therefore, it follows from (4.2) and (4.5) that
(4.1) holds. In fact, we have

$$
\left\{2^{2}\left(1+2^{l+2} / l(l+1)\right)\right\}^{1 /(l+1)}<K<\left(2^{3} A_{1} B_{1}^{2} / l(l+1)\right)^{-1 /(l+1)} / 2 .
$$

This gives $2^{2} K^{-(l+1)}\left(1+2^{l+2} / l(l+1)\left(<1\right.\right.$ and $2^{3}(2 K)^{l+1} A_{1} B_{1}^{2} / l(l+1)<1$.
Let us prove the assertion (i) of Theorem 1.3. Now take $\varphi(t) \in \mathscr{B}^{\infty}$ in $\Lambda_{\delta}(x, \xi)$ so that $\varphi(t)=0$. Note that $e_{3}(x, \xi)=0$ in (3.6). (3.6) and (4.1) show that (3.1) holds. This proves the assertion (1) of Theorem 1.3.

Lemma 4.6. If (1.3) holds or $\lim _{t \rightarrow 0} t^{2} \Gamma(t) \log A(t)=0$, then for any $\varepsilon>0$ there exists $C_{s}>0$ and $\Psi(x) \in \mathscr{B}^{\infty}\left(\boldsymbol{R}^{2}\right)$ such that $\operatorname{supp} \Psi \cap\left\{x \mid x_{1}=0\right\}=\varnothing$ and
(4.6) $\left|\operatorname{Re}\left(e_{3}(x, D) \operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v, v\right)\right|$

$$
\leqq \varepsilon\left\{\left\|D_{1} v\right\|^{2}+\left(\alpha(x) D_{2} v, D_{2} v\right)\right\}+C_{\varepsilon}\|v\|^{2}+C\left\{\|(1-\chi(x, D)) v\|_{2}^{2}+\|\Psi(x) v\|_{2}^{2}\right\}
$$

for $v \in C_{0}^{\infty}$, where $\chi(x, \xi)$ is the same as in Lemma 4.1.
In Lemma 3.3 in $\S 3$ we have already proved that (4.6) holds under the assumption (1.3). Therefore, from now on we shall prove that (4.6) holds if $\lim _{t \rightarrow 0} t^{2} \Gamma(t) \log A(t)=0$. We may assume that $U \subset\left\{x\left|\left|x_{1}\right|<c_{0}\right\} . \quad L_{\xi_{2}}=D_{1}^{2}+A\left(x_{1}\right) \xi_{2}^{2}\right.$. A simple modification of the proof of Proposition 3.1 in [3] gives the following

Lemma 4.7. For any $\varepsilon>0$ there exists $n_{0}>0$ such that

$$
\int \Gamma\left(x_{1}\right)\left(\log \left|\hat{\xi}_{2}\right|\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \leqq \varepsilon L_{\xi_{2}} \tilde{v}\left(x_{1}, \xi_{2}\right) \cdot \overline{\tilde{v}\left(x_{1}, \xi_{2}\right)} d x_{1} .
$$

for $v \in C_{0}^{\infty}(U)$ and for all $\xi_{2} \geqq n_{0}$, where $\tilde{v}\left(x_{1}, \xi_{2}\right)=\int \exp \left(-i x_{2} \xi_{2}\right) v(x) d x_{2}$.
Proof. Assume that $\operatorname{supp} \tilde{v}\left(\cdot, \xi_{2}\right) \subset\left\{\left.x_{1} \in \boldsymbol{R}\left|A\left(x_{1}\right)\right| \xi_{2}\right|^{1 / 2} \geqq 1 / 2\right\}$. Let $\varepsilon>0$. If $\left|\xi_{2}\right|>\varepsilon^{-1}$, then we have

$$
\begin{aligned}
\int \Gamma\left(x_{1}\right)\left(\log \left|\xi_{2}\right|\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} & \leqq C \int\left|\xi_{2}\right|^{1 / 2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \\
& \leqq 2 C \varepsilon \int A\left(x_{1}\right)\left|\xi_{2}\right|^{2}\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \\
& \leqq 2 C \varepsilon \int L_{\xi_{2}} \tilde{v}\left(x_{1}, \xi_{2}\right) \cdot \overline{\tilde{v}\left(x_{1}, \xi_{2}\right)} d x_{1} .
\end{aligned}
$$

Next assume that $\operatorname{supp} \tilde{v}\left(\cdot, \xi_{2}\right) \subset\left\{\left.x_{1} \in \boldsymbol{R}\left|A\left(x_{1}\right)\right| \xi_{2}\right|^{1 / 2} \leq 2\right\}$. Choose $a=a\left(\xi_{2}\right)$ so that $A(a)\left|\xi_{2}\right|^{1 / 2}=2$. Noting that $\tilde{v}\left(x_{1}, \xi_{2}\right)=-\int_{x_{2}}^{a} \partial \tilde{v} / \partial x_{1}\left(s, \xi_{2}\right) d s$, we have

$$
\int_{0}^{a} \Gamma\left(x_{1}\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \leqq \Gamma(a) a^{2} 2^{-1} \int L_{\xi_{2}} \tilde{v}\left(x_{1}, \xi_{2}\right) \cdot \overline{\tilde{v}\left(x_{1}, \xi_{2}\right)} d x_{1} .
$$

By the assumption we can see that

$$
\Gamma(a) a^{2} \log \left|\xi_{2}\right| \leqq \varepsilon\left(\log \left|\xi_{2}\right|\right)(\log A(a))^{-1} \leqq C \varepsilon
$$

if $\xi_{2} \gg 1$. In fact, we have $\lim _{\xi_{2^{-0}}} a\left(\xi_{2}\right)=0$. Therefore, we obtain

$$
\int_{0}^{a} \Gamma\left(x_{1}\right)\left(\log \left|\xi_{2}\right|\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} \leqq C \varepsilon \int L_{\xi_{2}} \tilde{v}\left(x_{1}, \xi_{2}\right) \cdot \overline{\tilde{v}\left(x_{1}, \xi_{2}\right)} d x_{1} .
$$

Now we can prove the lemma for general $v \in C_{0}^{\infty}$, repeating the same argument as in the proof of Proposition 3.1 in [3].

Finally, if we prove

$$
\begin{align*}
& \left|\operatorname{Re}\left(e_{3}(x, D) \operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v, v\right)\right| \tag{4.7}\\
& \leqq 2 \int \Gamma\left(x_{1}\right)\left(\log \left\langle\xi_{2}\right\rangle\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d x_{1} d \xi_{2}+C\left\{\|v\|^{2}+\left(1-\chi(x, D) v \|_{2}^{2}\right\}\right.
\end{align*}
$$

for $v \in C_{0}^{\infty}(U)$, then we will obtain (4.6) in view of Lemma 4.7. Note that $e_{3}(x, \xi) \equiv e_{3}(x)$ does not depend on ξ. Lat us prove (4.7).

Write

$$
\begin{aligned}
\operatorname{Re}\left(e_{3}(x)\right. & \left.\operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D)) v, v\right) \\
= & \operatorname{Re}\left(e_{3}(x) \operatorname{Im} \beta_{1}(x, 0,1)(\log \lambda(D))^{1 / 2} v,(\log \lambda(D))^{1 / 2} v\right) \\
& +\operatorname{Re}\left(\left[e_{3}(x) \operatorname{Im} \beta_{1}(x, 0,1),(\log \lambda(D))^{1 / 2}\right](\log \lambda(D))^{1 / 2} v, v\right) \\
\equiv & I_{1}+I_{2} .
\end{aligned}
$$

Since $\left[e_{3}(x) \operatorname{Im} \beta_{1}(x, 0,1),(\log \lambda(D))^{1 / 2}\right](\log \lambda(D))^{1 / 2} \in L_{1.0}^{0}$, we obtain

$$
\left|I_{2}\right| \leqq C\|v\|^{2} \quad \text { for } v \in C_{0}^{\infty}(U) \text {. }
$$

Next we shall consider I_{1}. For simplicity, set

$$
\begin{aligned}
(\log \lambda(D))^{1 / 2} v & =(\log \lambda(D))^{1 / 2} v+\left\{(\log \lambda(D))^{1 / 2}-\left(\log \left\langle D_{2}\right\rangle\right)^{1 / 2}\right\} v \\
& \equiv u_{1}+u_{2}
\end{aligned}
$$

where $\left(\log \left\langle D_{2}\right\rangle\right)^{1 / 2} v=\int \exp \left(i x_{2} \xi_{2}\right)\left(\log \left\langle\xi_{2}\right\rangle\right)^{1 / 2} \tilde{v}\left(x_{1}, \xi_{2}\right) d \xi_{2}$. Recall that $\left|\operatorname{Im} \beta_{1}(x, 0,1)\right|$ $\leqq \Gamma\left(x_{1}\right)$. Therefore, we have

$$
\begin{aligned}
\left|I_{1}\right| & \leqq\left.\left|\int e_{3}(x) \operatorname{Im} \beta_{1}(x, 0,1)\right|(\log \lambda(D))^{1 / 2} v\right|^{2} d x \mid \\
& \leqq C \sum_{j=1}^{2} \int \Gamma\left(x_{1}\right)\left\{\int\left|u_{j}(x)\right|^{2} d x_{2}\right\} d x_{1} .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \int \Gamma\left(x_{1}\right)\left\{\int\left|u_{1}(x)\right|^{2} d x_{2}\right\} d x_{1} \\
& \quad=\int \Gamma\left(x_{1}\right)\left\{\int\left(\log \left\langle\xi_{2}\right\rangle\right)\left|\tilde{v}\left(x_{1}, \xi_{2}\right)\right|^{2} d \xi_{2}\right\} d x_{1}, \\
& \int \Gamma\left(x_{1}\right)\left\{\int\left|u_{2}(x)\right|^{2} d x_{2}\right\} d x_{1} \\
& \quad \leqq C \int\left|u_{2}(x)\right|^{2} d x \leqq C^{\prime} \int\langle\xi\rangle(1-\phi(\xi))|\hat{v}(\xi)|^{2} d \xi,
\end{aligned}
$$

where $\Psi(\xi) \in S_{1,0}^{0}$ is positively homogeneous of degree 0 for $|\xi| \geqq 3,0 \leqq \Psi(\xi) \leqq 1$, $\Psi(\xi)=1$ if $\xi_{2} \geqq 2|\xi| / 3 \geqq 2$, and $\operatorname{supp} \Psi(\xi) \subset\left\{\xi \in \boldsymbol{R}^{2}\left|\xi_{2}>|\xi| / 2>1\right\}\right.$. Note that $\operatorname{supp} \chi \cap \boldsymbol{R}^{2} \times \operatorname{supp}(1-\Psi(\xi))=\varnothing$, thus we have

$$
\int\langle\xi\rangle(1-\Psi(\xi))|\hat{v}(\xi)|^{2} d \xi \leqq C\left\{\|(1-\chi(x, D)) v\|_{2}^{2}+\|v\|^{2}\right\},
$$

which proves (4.7).
Now take $\varphi(t) \in \mathscr{B}^{\infty}\left(\boldsymbol{R}^{2}\right)$ in $\Lambda_{\dot{\delta}}(x, \xi)$ so that $\varphi(t)=t^{2}$. Then from the estimate (3.6), Lemma 4.1 and 4.6 , we obtain (3.1) in the same manner as in the proof of Theorem 1.2. So we can apply Lemma 3.1, and prove that $(0,0,0,1) \notin W F(u)$ if $u \in \mathscr{D}^{\prime}$ and $(0,0,0,1) \oplus W F(P(x, D) u)$, applying the same argument with the origin replace by a point in $S \cap U \subset\left\{x \in \boldsymbol{R}^{2} \mid x_{1}=0\right\}$, we can prove the assertion (ii) of Theorem 1.3 .

§ 5. Further remark.

In this section we consider the operator of the form $\left.P_{1}(x), D\right)=D_{1}^{2}+\alpha(x) D_{2}^{2}$ $+\beta(x) D_{2}$, in \boldsymbol{R}^{2}, where $\alpha(x) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ is non-negative, $\alpha(0)=0$, and $\beta(x) \ni C^{\infty}\left(\boldsymbol{R}^{2}\right)$ is complex-valued. Put $S=\left\{x \in \boldsymbol{R}^{2} \mid \alpha(x)=0\right\}$. In what follows we consider the various types of S, and always assume that there exist a positive integer l and a constant $C>0$ so that

$$
(\operatorname{Re} \beta(x))^{2}+(\operatorname{Im} \beta(x))^{2 l} \leqq C \alpha(x) .
$$

Example 1. Assume that $S=\{x \mid f(x)=0\}$, where $d f(0) \neq 0, \partial f / \partial x_{1}(0)=0$, and $\partial f / \partial x_{1}(x) \neq 0$ if $x \neq 0$. Then P_{1} is microhypoelliptic in \boldsymbol{R}^{2}. In fact, since $\tau^{2}(S)=\varnothing$, from Corollary 1 of Theorem 1.2 it follows that P_{1} is microhypoelliptic in R^{2}.

Example 2. Assume that $S=S_{1} \cup S_{2}$, where $S_{j}=\left\{x \mid s_{j}(x)=0\right\}, \partial s_{j} / \partial x_{1}(x) \neq 0$ for $x \neq 0(j=1,2)$ and $S_{1} \cap S_{2}=\{0\}$. Then in the same manner as in Example

1, P_{1} is microhypoelliptic in \boldsymbol{R}^{2}.
Example 3. Assume that $S=\cup_{j=1}^{\infty} S_{j} \cup S_{0}$, where $S_{j}=\left\{x \mid s_{j}(x)=0\right\}, \partial s_{j} / \partial x_{1}(x)$ $\neq 0$ for any $x \in \boldsymbol{R}^{2}(j=0,1,2, \cdots), S_{j} \cap S_{k}=\varnothing$ if $j, k \geqq 1$ and $j \neq k$, and $S_{0}=$ $\bar{\bigcup}_{j=1}^{\infty} S_{j} \backslash \bigcup_{j=1}^{\infty} S_{j}$. Then P_{1} is microhypoelliptic in \boldsymbol{R}^{2}. In fact, since $\tau(S) \subset S_{0}$ and $\tau^{2}(S) \subset \tau\left(S_{0}\right)=\varnothing$, in view of Corollary 1 of Theorem $1.2, P_{1}$ is microhypoelliptic in R^{2}.

Example 4. Assume that $S=\cup_{j=}^{\infty} S_{j} \cup S_{0} \cup \cup_{k=1}^{\infty} T_{k} \cup T_{0}$, where $S_{j}=\left\{x \mid s_{j}(x)\right.$ $=0\}, \partial s_{j} / \partial x_{1}(x) \neq 0$ for any $\left.\left.x \in \boldsymbol{R}^{2}(j=1,2, \cdots), S_{0}=\right\} x \mid s_{0}(x)=0\right\}, \partial s_{0} / \partial x_{1}(x) \neq 0$ if $x \neq 0, \quad s_{0}(0)=\partial s_{0} / \partial x_{1}(0)=0, T_{k}=\left\{x \mid t_{k}(x)=0\right\}, \partial t_{k} / \partial x_{1}(x) \neq 0$ for any $x \in \boldsymbol{R}^{2}(k=$ $1,2, \cdots) . T_{0}=\left\{x \mid t_{0}(x)=0\right\}, \partial t_{0} / \partial x_{1}(x) \neq 0$ if $x \neq 0$ and $t_{0}(0)=\partial t_{0} / \partial x_{1}(0)=0, S_{j^{\prime}} \cap S_{j^{\prime}}=$ $T_{k} \cap T_{k^{\prime}}=\varnothing$ if $j \neq j^{\prime}, k \neq k^{\prime}, j, j^{\prime}, k . k^{\prime} \geqq 1, S_{0}=\overline{\bigcup_{j=1}^{\infty} S_{j}} \bigcup_{j=1}^{\infty} S_{j}, T_{0}=\overline{\bigcup_{k=1}^{\infty} T_{k}} \bigcup_{k=1}^{\infty} T_{k}$ and $S_{j} \cap T_{k}=\left\{a_{j, k}\right\}(j, k \geqq 1)$. Then P_{1} is microhypoelliptic in \boldsymbol{R}^{2}. In fact since $\tau(S) \subset\left(S_{0} \cup T_{0}\right) \cup\left\{a_{j, k} \mid j, k \geqq 1\right\}, \tau^{2}(S) \subset \tau\left(S_{0} \cup T_{0} \cup\left\{a_{j, k} \mid j, k \geqq 1\right\}\right) \subset S_{0} \cup T_{0}$, $\tau^{3}(S) \subset \tau^{2}\left(S_{0} \cup T_{0} \cup\left\{a_{j, k}\right\}\right) \subset \tau\left(S_{0} \cup T_{0}\right) \subset\{0\}$ and $\tau^{4}(S)=\varnothing, P_{1}$ is microhypoelliptic in $\boldsymbol{R}^{\mathbf{2}}$ in view of Corollary 1 or Theorem 1.2.

References

[1] V.S. Fedii, On a criterion for hypoellipticity, Math USSR Sb., 14 (1971), 15-45.
[2] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
[3] T. Hoshiro, Hypoellipticity for infinitely degenerate elliptic and parabolic operators of second order, J. Math. Kyoto Univ., 28 (1988), 615-632.
[4] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, to appear.
[5] Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675.

Institute of Mathematics
University of Tsukuba
Ibaraki 305, Japan

