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ON TUBES OF NONCONSTANT RADIUS

By

Naoyuki KOIKE

Abstract. One purpose of this paper is to obtain formulae for the
shape operators of tubes, whose radius is not necessarily constant,
over Riemannian submanifolds. Another purpose of this paper is
to define the notion of the natural lift of a distribution on a Rie-
mannian submanifold to a tube over the submanifold and investigate
its integrability. Also, we shall construct models of certain kind
of Riemannian hypersuface in terms of the formulae for the shape
operators of tubes.

Introduction.

Tubes of constant radius over Riemannian submanifolds have been studied
by many geometricians. For example, T.E. Cecil and P.]. Ryan obtained
formulae for their shape operators (cf. [2]). In this paper, we will investigate
tubes of which radius is not necessarily constant. For its purpose, in §1, we
will define the notion of the natural lift of a tangent vector field on a Rieman-
nian submanifold to a tube over the submanifold and investigate its properties.
In §2, we will obtain formulae for the shape operators of tubes over a Rie-
mannian submanifold in an Euclidean space, which are generalizations of some
of those given by T.E. Cecil and P.]J. Ryan. In §3, we will define the notion
of the natural lift of a distribution on a Riemannian submanifold to a tube
over the submanifold and investigate its integrability. As an application of
results in §2, 3, we will construct soft models of Riemannian hypersurfaces
in an Euclidean space of which the number of mutually distinct principal cur-
vatures is constant on the hypersurface or a dense subset of the hypersurface
(see §4).

§1. Preliminaries.

Throughout this paper, unless otherwise mentioned, we assume that all
objects are smooth and all manifolds are connected. Let M™ be an n-dimensional
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Riemannian manifold isometrically immersed by an immersion f into an (n47)-
dimensional Riemannian manifold #77*". Then we call (M™, f) a Riemannian
submanifold in Mn+r, Especially, in case of r=1, we call it a Riemannian
hypersurface in M®7".  Denote by p the bundle projection of the normal
bundle T*M of (M, f). Set W :={EcT+M|?exp (:*(£))}, where eXp is the ex-
ponential map of M and ¢* is the natural imbedding of 7'M into TM. It is
clear that W is a neighbourhood of O-section in T'M. Define a map exp*: W
—M by exp*::é?f)ozi. For a positive function ¢ on M, set N.(M):={ée
T M| |&i=e(p®)} and t.(M):=@N.(M), where |£] is the norm of & and dN.(M)
is the boundary of N,(M). If t.(M)cW, then we set fe:=exp*|, . Denote
by F(M, f) the focal set of (M, /). If ¢ satisfies exp*(N,(M)INF(M, /)=,
then (t.(M), f.) is a Riemannian hypersurface in M**", where we give t.(M)
the metric induced from that of M by f.. This hypersurface is called the
tube of radius ¢ over (M, f). In the sequel, we shall call it an e-tube for
simplicity. We shall suppress fi, fex, ¢* and the natural imbedding ¢* of
Ttt.(M) into TM. Denote by V (resp. V) the Levi-Civita connection of A
(resp. A7I) and V* the normal connection of (M, f). Also, denote by A and A®
the shape operators of (M, f) and (t.(M), f.), respectively. Let Q be a hori-
zontal distribution on 7*M induced from V* and denote by X! the horizontal
lift of XeT p, M to & with respect to Q.

LEMMA 1.1. For X&T (M Est(M)), XE+
to t.(M).

(p@){-‘(CTE(Tl M)) is tangent

Proor. Let x(t) (¢<[0, 1]) be an integral curve of X& T,y M, &(t) (t<[0,1])
a normal vector field along the curve x(t) given by parallel translating & along
the curve x(t) with respect to V* and #(t) (t<[0, l]) a curve in ¢, (M) defined

by #(t):= e((f’;fg;>g(r) We shall show:(0)=X£+ p@)

£(0)y) the Q-component (resp. the V-component) of #£(0) with respect to the
decomposition T(T*M)=Q®V, where V is the tangent bundle of fibres of 7M.

——~£. Denote by £(0)q (resp.

We have only to show #%(0)p=Xf and %(0)y=—-—=<&. Easily we have p,x(0)

(17(5))
=X and hence %£(0)p=X{. Let 8:[0, 1I1x[0, 1]-T*M be the rectangle with

respect to ¢ and V of which diagonal is %(f), that is, for each s<[0, 1],
0.5(t—0(t, s)) is a Q-curve, for each t=[0, 1], §,.(s—d(t, s)) is a V-curve and

at, H=3%x(@) ¢<[0, 1]). It is clear that x(O)Vzti,.(O) and 50.(5)=M£. There-
e (p(&)

fore, we have %(0)y=——==&. This completes the proof. B
e(p(&))
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Now we shall define new terminologies.

DerINITION 1.1. For X&T,M, we call Xf+

natural lift of X to & and denote it by )?5. Also, for YcI'(TM), we call
Y(eI(T@.(M))) defined by Y(&) := Y (p€): for éct,(M) the natural lift of Y.

Denote by P, the parallel translation from a(0) to a(l) along a curve a in
M with respect to V, and P} the parallel translation from B(0) to S(1) along a
curve B in M with respect to V. For §=T*M and X&T ,nM, let Je x be
the Jacobi field along 7. with /. x(0)=X and Ji x(0)=—AX, where 7: is a
geodesic in M with 7:(0)=p(&) and 7:(0)=§, and J¢, X—Vm] x-

LEMMA 1.2. Let §=tAM) and XETP(;)M[. Then

feaXe=Je, x(1) +—7p7e(D)

(Z)(S))
holds.

ProoF. From the definition of )?5 and f., we have

fesXe=exps(XE) + -~ expi(d)

(Z)(E))

=exp(X§) +- 7e(D).

(P(E))
Hence we have only to show expi(X{)=J x(1). Let a® (¢<[0, 11) be a suf-
ficiently small curve in M with &(0)=X, B (¢<[0, 1]) a curve in T*M defined
by B#)=Pz, & and 9: [0, 1]X[0, 1]—M a map defined by 8(, s) i=expt(sf@®).
Since f(0)=X¥, we have 9d.,(0)=expx(B(0))=expi(Xf). On the other hand, since
each curve d,. is a geodesic in M, J(s):= 6.,(0) is a Jacobi field along 7.. It is
clear that J(0)=X. Moreover, we have

f’(o):ﬁsf:ﬁamsa% ‘\ o

-~ 0 0
:valﬂsi =an _A§X

Sl 0

because of V}(%ZO. Thus it follows from the uniqueness of the Jacobi field

that /=], x. Therefore, we obtain expi(Xé)zS.l(O)zj(l):]g,X(l). This com-
pletes the proof. &
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fez‘irs

Je(t(M))

JE,X(l)::':

focal point
Fig. 1.1.

Easily we have the following lemma.

LEMMA 1.3. For X,YeT oM Ect (M), (X Vo=« xQ), Je e+
(Xe)Ye) holds.

Proor. By Lemma 1.2, we have

Ozs, ?E>:<fe*)?f; fa*?£>

=(Je W) s PeD), Jorb S (D).

(P(E)) &( P(E))

Since both [ x(0) and ji x(0) are orthogonal to 7:(0), J: x(1) is orthogonal to
7¢(1). Similarly, J.p() is orthogonal to 7:(1). Hence we obtain the desired
equality. =

In the case where M is flat, we have the following lemma.
LEMMA 1.4, For XeT pesM (E=t(M)), [, X(l):ﬁrf(X—AfX) holds.

PrROOF. Since M is flat, J¢ x=0 holds. By solving J£ “0 under the
initial conditions /¢, x(0)=X and J;, x(0)=— A:X, we have /¢, x(t)= 5,[0 (X —tAX)
and hence jé,X(l)—Pre(X—AgX). ]

From this lemma, we have the following result.

PROPOSITION 1.5. Assume that M is flat. For X&T yexM and Y €T (t.(M)
NP (PE)) EEt(M)), <X;, Y>=0 holds.
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From Lemma 1.3 and 1.4, we obtain the following result.

PROPOSITION 1.6. Assume that M is flat. Let X, YTy eusM such that
(X, Y>=0. If either X or Y is a eigemvector of A: and either X or Y is
orthogonal to grad ¢, then O?e, )7,5>:() holds.

§2. Shape operators of tubes.

In this section, we shall investigate the shape operator of the e-tube over
an n-dimensional Riemannian submanifold M in an (n4-r)-dimensional Euclidean
space R**", For its purpose, we shall calculate the inward unit normal vector
field of the e-tube. In the sequal, we identify T.R™'" with R**" under the
natural correspondence for every xeR™". Define E=I(f¥TR™T") by

&
E®=—1g

TR by f.. Let {4,> - >A4,} be the set of all the mutually distinct eigen-
values of A (¢=t.(M)). Note that s(p(E))<ﬁi~éT,

1, -, g) because exp“(N.(M)WNF(M, /)=@ and the ambient space is R"*".
Then we denote by X,, the Ker(A;—A4;/)-component of X(&T M) with
respect to the decomposition T, M=Ker (4;—2,1)P - PKer (4:—2,1]) (=1,
, 8)-

for &<t (M), where [f¥TR"" 1is the bundle induced from

that is, A<l (1=

LEMMA 2.1. The inward unit normal vector field E of (t.(M), f¢) is given by
% grad e(ﬁ(&))zt LEE

E@®)=

| grad e(p(€))a, |*
Ji+2 2T a=a)r

for &t (M).

ProOF. It is clear that T,,oR™ " =Ty MDT:(t(M)NDp (pE)BLEE)>
(orthogonal direct sum), where (E(®)> is the l-dimensional subspace spanned

by F(&). Hence E(f) can be expressed as E(§)= lgiiigégl for Y&

TpexM and ZT (MNP (pE)). It follows from T:(t(M)NPp~(pE)) =
Te(t(M)) that

_Z,z, _
[Y+Z+E@)|

that is, Z=0. Take any X<T M. It follows from Lemma 1.2 and 1.4 that

CE®), Z>=

@2.1) fesXe=X—AX—(Xe)E(®).

Hence we have
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Y +E®), X—AX—X)EE)>

KE@), fexXe>= Y+E®)
Y, X—AX>—Xe
Y +E®)
_ &, X—AX)>—<grad (p€), X>
1Y 4+E®©)]
_ (Y =AY —grad e(p(), X
Y +E(@©)]
=0.
From the arbitrarity of X, Y —A.Y —grad e(p(€))=0 is deduced. Therefore, we
obtain ¥, gra%_(j;(&))i, that is, Y= 1‘2_-_}1~gra—(jll$(4§(§i After all we obtain

2 MH—E(Q

E@=--
Igrad e(pENa, 1%
J 14 SEE A

For X&R™*", denote by Xz (resp. X, ) the T M-component (resp. the
TiM-component) of X with respect to the decomposition R**"=T MPTLIM
and Xz, (resp. X 1) the Te(t.(M))-component (resp. the T#(¢.(M))-component) of
X with respect to the decomposition R™'"=T(t.(M)PTi¢(M)). Define Ec=

* n+r (S)Tp(g) -
SHTR™") by E@§):= BE@., 0] for é=t.(M).

. Sfe(te(M
) (M))

\\ 1)

"~

Fig. 2.1.

For the shape operator A° of the e-tube, we have the following formulae.
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THEOREM 2.2. (1) For XeT:(t. (MNP~ (p(E))), the following equality holds :

1 { 1
V1+E@©)? e(p®)

2.2) Ao X= X—~TxBry} .

(ii) Let A be an eigenvalue of A: (<t (M)). Then, for X<Ker (A:—A1),

the following equality holds:

1 { A
V14| E@2 Le(p@)a—1)

(2.3) Ay Xe=

Proor. (i) Let &%) (¢t<[0, 1]) be a curve in (M) with &0)=X.

we have

dEE®)

AE(E)X:—V,\'E: dt

t=0

d 1
= —— E E
dt{\/l i ECOt e

E@®+E@®
t=02 «/<1+ |EE)[%)?

_d|EE®)|®
- dt

1

CVIH|E@dt
_dIEEW)* E@Q+EE
di Lo (1 + | E@)Y

L 1
V1+|E@®)|
It follows from this equality and E(§)+E(E)ET$*(£€(M)) that
S S
VI+[E@®)]?

(E EO+HEEDN =0

(ﬁxE-f'ﬁXE) .

(2.4) Ay X=— (VxE+VxE)r,.

On the other hand, we have

s = dEGE®)| _ dyE®) |
2.5 Veb=—=p =~ (5(z)|>1;0

d 1
- r(azrg&ﬂ)‘ ot
d1£0)]

_ 1
S AZGORVCO NN S L

N (hX)e
=@ PO ey EO

1 -
G {X—= X+ {(psX)e} E(E)}.

1 dé®)
REN

Ret(X)E©r)—TxeBry} .

Then
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Since ppX=0, VyF=— (p(&))X holds. Therefore, we obtain

1 1
X
V14+1E®)] 2{8(1)(5))
(ii) It is clear that the same equalities as (2.4) and (2.5) hold:

A%(G)X: —(ﬁxé)ré}.

~ 1 X = o~ oA
Ay Xe=——F=———N 3L+ 3:E)p:
R Y T DR
and
N o= 1 ~ ~ -
ViE= @) { — b X+ (P Xp)et E©)} .
Hence, since p*)?S:X, we have
1 J 1

A Xe= (Re=X+XOE@)~Vre}

V14+1E@)|(p@)
Moreover, since X—= 12 {)?5+(Xs)1?($)} by (2.1) and A;X=2X, we obtain

~ 1
Af e Xe= «/1+|E(E)|2l5(p(€))(l D

Rt XOE@)—TxeE}

= ! { X 2 L AR
YL+ E@) =D St EIEOm~TeBr

In the case where ¢ is constant, we have the following result.

COROLLARY 2.3. (1) For XeT (M) (p@&)), the following equality
holds :

1
A%(@X: ?X .

(ii) Let 2 be an eigenvalue of A: <t (M)). Then, for X<Ker (4:—2I),
the following equality holds:
A

A%(E)X‘fzmi

PROOF. Since ¢ is constant, £=0 holds. Hence, the statements (i) and (ii)
are deduced from the previous theorem. @

REMARK. The results in this corollary are stated in [2, Theorem 3.2 of
P 131].

Let 7 be a function on ¢, (M) defined by assigning the number of the mutually
distinct eigenvalues of A; to each &=t (M) and G,(M) the Grassmann bundle
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of m-planes over M. It is easy to show the following lemma.

LEMMA 2.4. Assume that t is constant on an open subset U of t.(M).

(1) Let A; 1=1, -+, g) be functions on U such that {A,(&)> -+ >2,(&)} is the
set of all mutually distinct eigenvalues of As for every £U. Then 2; is a
smooth function and the multiplicily of the eigenvalue 2,(8) of A: is independent
of §€U (i=1, -, g),

(i) Let Dy, be a section of (ply)*Gn, (M) defined by D;,(§) := Ker(A:—1:,(&)])
for é=U (i=1, ---, g), where m;=dim Ker (A4:—2,(&)]). Then D;, is a smooth
section of (plv)*Gn (M) (=1, ---, g).

Let Uct,(M). For @=l(p|ly)MT*MKQTM)), denote by & an element of
T({(ply)X(T*R**" QT R™*")) defined by

@(S)X (XETP(G)A4)

@)X ={
0 XeTieoM)

for é&U. Note that @ is regarded as a (R**")*®R"*"-valued function on U.
Denote by the same symbol ¥ the connection on (Pl (T*R™* QT R™*™) induced
from the Levi-Civita connection V of R™T, Then it is clear that V;@=

d—q)%@) l:=o holds for every X<=TU, where £¢) (t<[0, 1]) is a curve in U

with é(O):X. If r is constant on a neighbourhood of £<i¢. (M), then the
equalities (2.2) and (2.3) in Proposition 2.2 are written in more detail as follows.

THEOREM 2.5. Assume that t© is constant on an open subset U of t.(M).
Let 4 and D, ¢=1, -, g) be as in Lemma 2.4 and P;, an element of
I'(pI*(T*MQTM)) defined by assigning the orthogonal projection of T ;M
onto D; (&) to each §€U.

(i) For XeT (. (M)Np~ (p&) E<U), the following equality holds:

1

£ — _1— - Y
2.6) ApeX =5 oa X Te)-

g lgrade(p(é)) ;e !?
=1 (A—2:,8)*
1 1“2«;(5)/ g (X'zj”VX'(E)!Z
N e TGN
D i A ey
NPV, Vi £ {AVxPi)V} o

xa‘—‘zxé))(l—xl(s)))} Vasot, 2, 1—2,E)A—2,8)"

where V := grad e(p(&)).

Here B(&)=1+

and Y is an element of T pceyM given by

g
+ 2
i l=
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(ii) For XeD;io(E) (&cl)), the following equality holds:

1y 2:,(8) &
VBE L e(p€)2:,(&)—1)
G
e(p(8) (4:,(&)—1)
& {(VxePsy) (grade(p@} F;}
=1 1—-2:(8) ’
Here {(V3:P;,)(grad e(p@)} re is the T(t.(M)Np~'(p(E))-component of (VzeP2)
(grad e(p(8))) with respect to the decomposition R =T peey MPT et (M) p~H(P(E))
OCE@®)>, and Z is an element of T pesM given by
V2P )V, oo & Vxgrad 9,0
1 (1—2,8)1—4;8) = (1=248)"
N G 12 & AV sl
S0-2EPU BO \&A A-46)

<(viepzj)V, Va L&) + é ?vx grad e, V)j@Z
L (I=2,ENA—2:(8) * i= (1—2;8)*
¢ (VP2 )V, E©)

= 1—2,) >}V‘i<5> ’

where V := grad e(p(£)).

@.7) Aser Xe=

E@r+Z:

g
Z=— 3
Ji=

K

hl

[}

+

5
s k=

J

Proor. (i) By Theorem 2.2, we have

1 1 .~
AbeX= V14 E(g)lz{s(p(f))x—(vxE)Té} :

It follows the definition of E(£) and Lemma 2.1 that 14| £(&)|2=B(€). Let &)
(t<[0,1]) be a curve in t.(M)Np~(p&) with &0)=X. Since E(EF)=

él gra‘ii?fgi;ﬁ‘?f@ eT )M, we have
d

(X2;) grad e(p()z, e Egrad RUQRIEERES
F eyt 1=2®)

— {(Xlz)Vii(@ Sﬁxpxi)v

=1 L(1—4:(8)" 1—-2,8)

Therefore, (VxE)r, is orthogonal to (MNP (p) and hence there exists
Y&T M such that YS:(VXE)Té by Proposition 1.5. We have only to show
Y =Y. From (2.8), we can obtain

2.8) VeE=3%

=1

.

}ETN)M.
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(2-9) (ﬁXE)T};:ﬁXEA"<§XE; E(E»E(f)

_ & 1 _ CEA-248)
_E‘lu—z-(g)?{mi B }V“‘“

s TPV C@ -
A T4® BO

E@®),

where C(8) is defined by

< (Xli)]V;i(e)lz g <(VXP1 AV, V1j<e)>
CO=Z 1@y T Raiei-10)"

On the other hand, by Lemma 1.2 and 1.4, we have
(2.10) Y=V A7 (T oE®).
By comparing the T ,,M-component of ( (2.9) and (2.10), we have

7 7 é 1 {XZ _»CM}VM(E)

A-%6 B(®
+5 T
this is,
1=2O7 0= = 2(5))2{;”_6(5)(;@2 Oy, o
+5 %Q-

- g _
Therefore, we can obtain Y=Y ;,=Y.
=1

(iiy By Theorem 2.2, we have
1 {210(5)(X5+(X &E©)ze)
VI+IE@ e(PEN:,(6)—1)
It follows from the definition of E(&) and Lemma 2.1 that 1+ E@®)|*=B¢®).
Let &®) (t<[0,1]) be a curve in t(M) with 0)=X.. Since E(&®)=
g grad e(pEE)) 2,can

(2.11) AE(f) e= (vz\’;gEA)Té}-

fi“‘x =1 (S(t)) , we have
d
v~ E— 2 [(XN'di)grad 6(17(5))12«5) d7grade(p(g(t)))l,-(é(t))|t=o
P N s Y G)E 1—28)
_ 4 {(Xemvzi(@ (V2:P, )V +(Vx grad em@}
=1l (1—2,08) 1-4:(8

and hence
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(ﬁ igE)Tg:ﬁng"G? )?EE, E@DE®)

_& 1 CEOU—28)
Ty s T LERE
(vx’epii)v_i—(VX grad S)Z,;(é) C(E)E(E)

1-2,8  B®

g
+
=1
where C(&) is defined by

o & KV a0l
CO=Z 1 2@y TR T-LE0—4,@)
e (Vrgrade, Vo> & <NzP2)V, EE)
I BT 7= CR B W Y (5

(VP2 )V, Ve

M~

Therefore, we have

{(V #eP2 )V} re

(2.12) (Ver)rg 1-2.® +W,

where W (&) is defined by

2.13) W(&)— S o 21 (E)Y{Xex _C_(E_%E)L@)}h ©
" ,é {(erPxi)V}Tl,,f}Jir(gx grad &)1,
N 2 <(€7;z5P11}.)_If2 ’.if()E»E(E) B % 5@,

Smce WE Tt  MYNTEEMNDT(PEN, there exists Z&T ,eM such that
=W(&) by Proposition 1.5. According to (2.11) and (2. 12), we have only to
show Z=—Z7. By Lemma 1.2 and 1.4, we have

(2.14) Ze=Z2—AZ—(ZE@®).

By comparing the T, M-component of (2.13) and (2. 14), we have

7 5_ & 1 _ CeU—148)

Z-AZ= B ert A pe | e

{(vchji)V} T )‘I‘(V X grad 5)1 Gl
+12 T 1— 2 (5) ’
that is,

7 1 5. CO0U-26)

-2 r0=— Gy @ X g Vo

o i {{(ngpxj)V}T,,(@}x (O (Vx grad 5)).,-@

= 1—2;(8) 1—2:(8)
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o0

Therefore, we can obtain Z= Z_;i(g)z—Z. ]
i=1

2

]

Let (M’, f/) be an n’-dimensional Riemannian submanifold in R* *"" and
(RY, ¢) an [-dimensional totally geodesic Riemannian submanifold in R***. Then
(M’ R, f'x¢) is an n-dimensional Riemannian submanifold in R**" called a
cylinder over (M’, f’), where n=n’+{ and r=r'+s. Assume that the set of
all principal curvatures of (M’, f’) is bounded.

THEOREM 2.6. Let (M, f)=(M’XR', f'X¢) and ¢ a sufficiently small positive
function on M such that grad e (T R"), where TR is a foliation on M of which
leaves are {-} XR'. Then

() For XeT:(. MNP~ (p&)), the following equality holds:

1
VI+Tgrad e(p(@)*e(p(€)

(i) Let A be a mnonzero eigenvalue of A: (&<t (M)). Then, for Xc

Ker (A;—AI), the following equality holds :

X s

ApeX=

A
v/1+ | grad e(p(8)) | 2e(p(£)A—1)
(ili) For X<Ker AT M’, the following equality holds:

Aper Xe= Xe,

AEE@)X&:U,

(iv) For XeTR' (cKer A;), the following equality holds:

~ 1 —~ _~
A%(é’X$:2\/1+|grad OOF {X {log (1+ | grad ¢|®)} grad e(p(€))s—2V x grad & .

PrOOF. (i) According to (i) of Theorem 2.2, the following equality holds:

1 1
ApeX= VI+IE@)® {8(17(5))X (VXE)TE} :

Since grad e= TR'cKer A:, we have E=grade-p and hence VyE=0. There-
fore, we obtain the desired equality.
(i) According to (ii) of Theorem 2.2, the following equality holds:
1 A
vl+\E(s>|z'{a<p<s>')(1~1>
Since grade=TR!cKer A; and X&T*R!, we have Xe=0 and

Aper Xe=

et KXOE@r)— T Bhre}

ﬁgeE:ﬁjé(grad go p)=Vygrade=0.

Therefore, we obtain the desired equality.
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(iif) According to (ii) of Theorem 2.2, the following equality holds:
I
VI+|E@)?
Since grade=TR'cKer A; and XeT*R', we have Vi.E=0. Therefore, we
obtain A X,=0.

(iv) According to (ii) of Theorem 2.2, the above equality (2.15) holds. Let
h be the second fundamental form of (M, f). It follows from A(X, grad e(p(£)))

=0, E=grade-p and E(§)= {grad e(p(&)+E (&)} that

(2.15) A%(e;)?éZ (ﬁ.f’gEA)TE .

1
1+ |grad e(p(é)[®
(VieE)re=Vx grad &), =(Vx grad &),
=Vygrade—<(Vygrade, EE)>EE)

{Vxgrade, grad e(pé))>
1+|grad e(pé)|*

=Vygrade— {grad e(pEN+E®)}

=V grad s— - X {log (1-+| grad ¢ 9} {grad e(p(@)+E(@).

Thus since (V z.E)r;=Ker ABLEE)>, (VieE)r, is the natural lift of {(V¢:E)re}
to &, this is,

p(&

~ PN T 1 ——~——
(VieE)re=Vygrad e;— 7X {log (14 |grad ¢|®)} grad e(p(&))e .

Therefore, we obtain the desired equality. =

§3. The natural lifts of distributions.

Let (M™, f) be a Riemannian submanifold in M™7" and D a distribution
on M. Set D:= UEELE(M){)QXEDZ,@}. It is shown that D is a (smooth) dis-
tribution on ¢,(M). In fact, for a local base (X, -, Xn) of D on an open
subset U of M, ()?1, )?m) is a local base of D on p~'(U), when m=dim D.
We shall call this distribution D the natural lift of D to t.(M). We have the
following result with respect to the integrability of the natural lift.

THEOREM 3.1. Let F be a foliation on M. If the normal connection of
(M, ) is flat along each leaf of F, then the natural lift E of F to t. (M) is a
foliation on t.(M).

Proor. Let X, Y<I'(Fly), where U is an open subset of M. We shall
show [)?, ?]:[}?,\I//]. Fix &ep™'(U). Let V(cU) be a simply connected
neighbourhood about p(&,) in a leaf of F through p(&) and & a V:-parallel
normal vector field on V with &(p(&,))=&,. Note that the existence of & is
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assured by the flatness of V* along V. Define a normal vector field £ on V by

By = — )
= e c ] )
V* is a submanifold (with boundary) in M"*". Let X (resp. Y) be a

vector field on V* such that Xre0)=X7e0)) and [X, 7:]1=0 (resp. Y (7:0)=
Y(7e0) and [¥, 7:1=0). We see that XGe(1))=Xtw» and ¥Fear(D)=Y tn>
for every x&V (cf. Proof of Lemma 1.1). Hence [X, ¥1(7éor()=[X, ¥1G2e>D)
holds for every xeV. It is clear that [X, Y1Ge0)=[X, Y1(:0). By the
Jacobi identity, we have

[[X, V1, 7d=—[0¥, 7, X]—[[s X1, Y1=0.
Hence we see that [X, ?](Tgm(l)):[ﬁ]ém for every xcV. As a con-

sequence, [)?, )N/](Tg(w(l)):[;{,\)/’]gm is deduced for every x=V. Especially,
we obtain that [)?, Y1=[X, Y] at &. This completes the proof. ®

&(x) for xeV. Let V¥:i=\U.erTew([0, 1]). It is clear that

Also, we can prove the following result.

THEOREM 3.2. Let F be a foliation on M and Fs a foliation on t.(M) of
which leaves are t«{M)Np~'(p(&)) (Ect.(M)). If the normal connection of (M, f)
is flat along each leaf of F, then FFs is a foliation on t.(M).

ProoF. Take XeI'(F|y) and Y&I'(Fsl|y), where U is a sufficiently small
open subset of t.(M). We have only to show [X, Y1el'(F@Fs|y) because F
and Fgs are integrable, respectively. Let ()?l, e, )?m) be a local base of F on
U consisting of the natural lifts of vector fields on p(U), where m=dim F.

Let X= % a;X,. Then we have

i=1

[X, Y= 3T[a.X, Y]
i=1

= "1”1 {—(Yai))?i+ai[)zi: Y]}

It is clear that Xi is a foliated vector field with respect to Fs, that is, [)?i,Y]
=I'(Fs|y). Therefore, we obtain [X, Y]=[(F®Fsly). &

§4. Applications.

We expect that various arguments for tubes of nonconstant radius contri-
bute to constructing various models of Riemannian hypersurfaces. For example,
in this section, we shall construct soft models of Riemannian hypersurfaces of
which the number of mutually distinct principal curvatures is constant on the
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hypersurface or a dense subset of the hypersurface in terms of Theorem 2.6
mainly. First we shall prepare the following two lemmas.

LEMMA 4.1. Let (M, f) be an open portion (M’ XU, f'Xc¢ly) of a Riemannian
hypersurface (M’ XRY, f'X¢) as in Theorem 2.6 and e=g-q. Here U is an open
subset of R' and q is the natural projection of M=M'XU onto U and & is a
positive function on U such that exp*(N(MWNF(M, f)=@ and the graph of & is
a Riemannian hypersurface which has exactly g mutually distinct principal cur-
vatures ;> -~ >A,. Then the statements (i), (ii) and (iii) in Theorem 2.6 hold
and Agel fue (TU~TU¢) has exacily g mutually distinct eigenvalues A,(q(p(&)),
sg(pEN)> -+ >A,(q(p&), Eq(p@&))), where TU 1is a foliation on M=M'XU
given by assigming T({x:} XU)cz,, 2 10 (24, x)EM'XU.

Proor. It is clear that grade=(TU). Hence (i), (ii) and (iii) in Theorem
2.6 hold. Fix &,ct.(M). Since the normal connection V* of (M, f) is flat
along each leaf of TU, the natural lift TU is a foliation on t.(M) by Theorem
3.1. Let L be a leaf of TU through &. It is easy to show that a V+-parallel
normal vector field along a curve in p(L) is parallel with respect to Vv, where
V is the Levi-Civita connection of R**". Hence we see that L is congruent
to the graph of & and E|. corresponds to the unit normal vector field of the
graph of & (cf. Proof of Lemma 1.1). Therefore. we see that A%<eo>|7‘~Uso has
exactly g mutually distinct eigenvalues 4,(g(p(&0)), 8(g(pEN)> - > 2, (q(p(Eo))s
Eg(pEo))). m

LEMMA 4.2. Let (M, /)=(M’'XR?, f'X¢) and e=&-q, where & is a positive
function on R*' such that exp“(N.M)NF(M, /)=@ and q is the natural projec-
tion of M=M’'XR' onto R'. Then the statements (i), (ii) and (iii) in Theorem
2.6 hold and, for X€T ,&;R' (cKer Ay), the following equality holds :

& —&"(p&)
4.4 Asery Xe= ————r—r—x X, .
( ) EE)AE {1+E/(p(8))2}3 §

2

de d®e
Here ¢/ =—- and &"=

7 I where (1) is the natural coordinate of R'.

ProOF. It is clear that grade<I'(TR'). Hence (i), (ii), (iii) and (iv) in
Theorem 2.6 hold. According to (iv) of Theorem 2.6, the following equality
holds :

€ 4 = = 1
4.5) AE(@('a?)é“z V1-+|grade(p(d)®

{2 tog1-+ 1 grad |9} grad SREN 2o Frad e



On Tubes of Nonconstant Radius 283

0
~, we have

ot

Since grade=¢’

—2¢"(p(8) 9

0 . - 9
(4.6) 5 {log (1+|grad ei®)} grad e(p(§))—2Vs0. grad e= T+ (pEY ot

It follows from (4.5) and (4.6) that
. (ON_ =) (d
AE@(@Z‘ )5— VAL (p(€))?} 3(61‘ >$ )
Thus the equality (4.4) holds. =

First, by using Lemma 4.1, we shall construct soft models of Riemannian
hypersurfaces stated in the beginning of this section. Let (M’, /) be a Rie-
mannian hypersurface in R™*' with exactly g, mutually distinct principal cur-
vatures 4,> -+ >4,, and & a positive function on an open subset U of R™, of
which graph is a Riemannian hypersurface with exactly g, mutually distinct
principal curvatures g,> .- g,,. Here we assume that 1, (1<i<g,) and p;
(1£7<g,) have no zero point. Let m; (=1, ---, g,) be the multiplicity of 2,
and mj (j=1, .-+, g that of y;. Set (M, f):= (M’'XU, f'X(|y) and e:= &oqy,
where ¢ is the inclusion mapping of R" into R™*"~' and ¢y is the natural
projection of M=M’XU onto U. By letting a Riemannian hypersurface given
by homothetic transforming with a sufficiently large coefficient (M’, f’) be
(M’, ') newly, letting é¢—c (¢ is a positive constant with c¢<inf,cy&(x)) be &
newly and shrinking M’ and U if necessary, we may assume that

1
4.7 exp*(N.(MNWNF(M, /=@, MmaX;sizy, sup &l ;| <*‘2*,
2|4;] . .
maXléiﬁglsup \/JW_ET < mlnlgjégzlnﬂ‘uj[,

N T T
Denote by E’ the unit normal vector field of (M’, f*) and set W;:= {€=t. (M)
;(IBI(ET@’ E’>>0}, where 0c=(0,1). For &=W; the set of all the mutually
disinct eigenvalues of A; is {0} U {KE, E'(qu (pENYAlgu (pENi=1, -+, gi},
where A is the shape operator of (M, f) and ¢4 is the natural projection of
M’xU onto M’. According to Lemma 4.1, the shape operator A° of (t.(M), fe)
satisfies the following three conditions (i)~(iii):
(i) for X&Tt. MNP (p&)),

1

Ao X = T rade GO @)
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(i) for XcKer (A:—<&, E' (g (pENAlqu (PENT) E=Wo),

<&, E'(qur (pENAlgar (DENXe
A1+ grad e(p@) 12e(pE)(KE, E'(qu (pENDAilgu (pEN—1)’
(iii) Aje | 7pe has exactly g, mutually distinct eigenvalues gi(gu(p(€),

Equ(pEM> - > g, (qu(p()), E(qu(p(€)). Define functions vy, -, vg gy ON
W5 by

Ay Xe=

€, E'(gu (p@N>A:(qu (p&))
V14| grad s(pENPe(PENKE, E (qu (pENAlqu (pEN)—1

(Z':]w ) gl):

vi(§)=

1
~T+Tgrad e(p@)[*e(p(€)

”gﬁ-)(s):

and
V(&)= ptj-g,-1(qu(D(8)), Elqu(p@®)) U=g:1+2, -, g1tg+1).

It is clear that v, #v;, (1S4, #i,=g) and y; #vj, (g1 +2<7,# 7.2 g+ g.+1) at
each point of W,. It follows from (4.7) that |v;| <|y;| <lvg.l 1Si<gy, &1+2
<j<g+g+1). Thus vy, -, vg .g,+: are mutually distinct at each point of
Ws. Therefore (Ws, f.lw,) is a Riemannian hypersurface with mutually distinct
principal curvatures v, ==, ¥y 4g,1. Note that v, G=1, -, g,+g.+1) have no
zero point and the multiplicities of vy, -, vy, g,01 ar€ My, oo, My, r—1, mi, -,
my,, respectively. By the way, the existence of the above Riemannian hyper-
surface (M’, ') for g,=1, 2 (any multiplicity) and that of the above function
¢ for g,=1 (any multiplicity) are well-known. Hence, by the above construc-
tion, for every set {mi, ---, m,} of positive integers, we can obtain soft models
of Riemannian hypersurfaces in an Euclidean space which has exactly g mutually
distinet principal curvatures, which have multiplicities m,, ---, m, and are non-
zero, at each point.

Next, by using Lemma 4.2, we shall construct soft models of complete
Riemannian hypersurfaces stated in the beginning of this section. Let (M’, f)
be a complete Riemannian hypersurface in R**! with exactly g mutually dis-
tinct principal curvatures i,> -~ >4, on a dense subset W’ of M’, where we

assume sup|i;| <oo (=1, -, g). Let & be a positive function on R' such that

. . 1 g” .
§< min, gz, inf AR sup—\/(f%—gﬁ/\’oo and the set of all solutions of the equa-

tion & (Fa—1+a(l+&%=0 is discrete for every constant a. It is clear that
such a function & exists innumerably. Set (M, f/)=(M’'XR', f/Xid) and ¢:=
£og,, where id is the identity map of R' and ¢, is the natural projection of

M=M xR' onto R!' Since e<mins;s infi,expl(Ne(M))f\F(M, H=o,
21440
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that is, the e-tube (t.(M), f.) is defined. According to Lemma 4.2, the shape
operator A. of (t.(M), f.) satisfies the following conditions (1) and (ii):
(i) for XeKer (A:—s(p(E)Ailgu (PEN),

- Aiqu (HE)) 4
VIF @ epE)lan (pEN-D

A%(e))?.s:
and
(li) for XETp(é)Rl (CTP(S)IM)’
s R T ¢
Ao Xe= ey
where ¢y is the natural projection of M=M’'x R! onto M’. Define functions
ﬂlr Tty Mes1 O ts(M) by

L M)
VI (@) ((pEN (g (PEN—1) 7

ﬂi(f):
and

—e"(p€)

#g+l<€):V{l+El<ﬁ(§)32}3.
It is clear that g, -+, u, are mutually distinct at each point of W’XR'. Since

the set of all solutions of the equation g7(Ea—1)+a(l+&%=0 is discrete for
every constant a, g, and p,., are mutually distinct at each point of a dense

subset of 1. (M) (=1, ---, g). Therefore, 1, o, tgo are mutually distinet at
each point of a dense subset W of ¢t.(M). Thus (t(M), f.) is a complete Rie-
mannian hypersurface in R*** with exactly g+1 mutually distinct principal
curvatures gy, -, py,; on W.  Moreover, since sup|i;| <oo, e<min gz,

=)

%;273:<00, we have sup|u;| <oo (i=1, .-+, g+1). By the

. 1

inf I and supt/a
way, the existence of the above complete Riemannian hypersurface (M’, 1)
for g=1 is well-known. Hence, by the above construction, for every positive
integer g, we can obtain soft models of complete Riemannian hypersurfaces in
an Euclidean space with exactly g mutually distinct principal curvatures at
each point of a dense subset.
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