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ON TUBES OF NONCONSTANT RADIUS

By

Naoyuki Koike

Abstract. One purpose of this paper is to obtain formulae for the

shape operators of tubes, whose radius is not necessarily constant,

over Riemannian submanifolds. Another purpose of this paper is

to define the notion of the natural lift of a distribution on a Rie-

mannian submanifold to a tube over the submanifold and investigate

its integrability. Also, we shall construct models of certain kind

of Riemannian hypersuface in terms of the formulae for the shape

operators of tubes.

Introduction.

Tubes of constant radius over Riemannian submanifoids have been studied

by many geometricians. For example, T. E. Cecil and P. J. Ryan obtained

formulae for their shape operators (cf. [2]). In this paper, we will investigate

tubes of which radius is not necessarily constant. For its purpose, in §1, we

will define the notion of the natural liftof a tangent vector fieldon a Rieman-

nian submanifold to a tube over the submanifold and investigate its properties.

In §2, we will obtain formulae for the shape operators of tubes over a Rie-

mannian submanifold in an Euclidean space, which are generalizations of some

of those given by T. E. Cecil and P. J. Ryan. In § 3, we will define the notion

of the natural lift of a distribution on a Riemannian submanifold to a tube

over the submanifold and investigate its integrability. As an application of

results in §2, 3, we will construct soft models of Riemannian hypersurfaces

in an Euclidean space of which the number of mutually distinct principal cur-

vatures is constant on the hypersurface or a dense subset of the hypersurface

(see §4).

§1. Preliminaries.

Throughout this paper, unless otherwise mentioned, we assume that all

objects are smooth and all manifolds are connected. Let Mn be an n-dimensional
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Riemannian manifold isometrically immersed by an immersion / into an (n+r)-

dimensional Riemannian manifold Mn+r. Then we call(Mn, f) a Riemannian

submanifold in Mn+r. Especially, in case of r―＼, we callit a Riemannian

hypersurface in Mn+r. Denote by p the bundle projection of the normal

bundle TLM of (M, /). Set W := {$eeTxM＼ 3 exp (/x(|))},where exp is the ex-

ponential map of M and c1 is the natural imbedding of TLM into TM. It is

clear that W is a neighbourhood of 0-section in TLM. Define a map exp1: W

―>M by exp1 :=expwx. For a positive function s on M, set NS(M) := {£e

TXM| |£|^e(/>(£))}and ts(M):=dNs(M), where |£|is the norm of $ and a7V£(M)

is the boundary of NS(M). If te(M)cW, then we set /s:=exp1| tsCM). Denote

by F(M, f) the focal set of (M, /). If s satisfiesexpx(iV£(M))nF(M, /)=0,

then (te(M), fs) is a Riemannian hypersurface in Mn+r, where we give ts(M)

the metric induced from that of M by fe. This hypersurface is called the

tube of radius s over (M, /). In the sequel, we shall call it an s-tube for

simplicity. We shall suppress /*, fe*, cL and the natural imbedding cf of

THe(M) into TM. Denote by 1 (resp. 1) the Levi-Civita connection of M

(resp. M) and 7X the normal connection of (M, /). Also, denote by
^4
and yl£

the shape operators of (M, /) and (te(M), fe), respectively. Let Q be a hori-

zontal distribution on TXM induced from I1 and denote by X% the horizontal

liftof X(=TvmM to £ with respect to Q.

Lemma 1.1. For X(=TpiVM (£e:f,(M)),X%+

to ts(M).

Xe

e(/>(£)) ^(ETtiTKM)) is tangent

Proof. Let x(t)(fe[0, 1]) be an integral curve of X(eTp^M, |(f)(fe[0,1])

a normal vector fieldalong the curve x(t) given by parallel translating £along

the curve x(t) with respect to V1 and x(t)(?e[0, 11) a curve in £e(M) defined

by x{t)
s(pm))
£(/>(£))
$(t). We shallshowx(0)=X%+-^-^rJ. Denote by x(0)Q (resp.

x(0)v) the ^-component (resp. the F-component) of x(0) with respect to the

decomposition T(TJ-M) ―QRV. where V is the tangent bundle of fibres of TLM.

We have only to show x(Q)Q=Xf and x(0)v Easily we have p*x(O)

=X and hence x(O)Q=X%. Let d: [0, l]x[0, rj―T^M be the rectangle with

respect to Q and V of which diagonal is x(t), that is, for each se[0, 1],

8.s(t-*8(t,s)) is a Q-curve, for each £e[0, 1], dt.(s-+d(t, s)) is a F-curve and

8(t, t)=x(t) (fe[O, 1]). It is clear that *(OV=50.(0) and go-(s)=e(^i!?)

fore, we have x(0)v― This completes the proof. H

6(P(&)
£. There-
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Now we shall define new terminologies.

Definition 1.1. For X<=TpiVM, we call X£+^-r% (eTeag(M))) the

natural lift of X to £ and denote it by X*. Also, for Y<=r(TM), we call

Y((=r(T(t,(M))) denned by Y(£):= F(J(|))f for £e*,(M) the natara/ /*/* of F.

Denote by Pa the parallel translation from a(0) to ≪(1)along a curve ≪ in

M with respect to 7, and Pp the parallel translation from /3(0)to jS(l)along a

curve jS in M with respect to 7X. For |gTxM and ZeTp^M, let /f>jr be

the Jacobi fieldalong j$ with J^,x(0)=X and /[,x(0)=-AI, where ^ is a

geodesic in M with r?(0)=/>(£)and fe(O)=£>and Jix=%^Js.x-

Lemma 1.2. Le^ £ef,(M) anrf ZeTp(£)M. T/ien

fe*X^ ―J:X(l) +
Xs

e(pm
U0-)

holds.

Proof. From the definitionof Xt and fe, we have

/e*£e.=expi(*f0 +

=expi(*f) +

Xe

Xs
≪(/>(£))

expi(£)

fed)

Hence we have only to show exp^(Z|-)=/f, ^(1). Let a(t)(£e[0, 1]) be a suf-

ficientlysmall curve in M with d(0)=X, /3(0(fe[0, 1]) a curve in TxM defined

by P(t)=PZ＼LOtt£and 5: [0, l]X[0, 1]->M a map defined by d(t,s):=expx(sP(t)).

Since iS(0)=X|', we have 5.1(0)=expi(J8(0))=expi(Z^). On the other hand, since

each curve dt. is a geodesic in M, /(s):= 5.,(0)is a Jacobi fieldalong ff. It is

clear that J(0)=X. Moreover, we have

J'(O)=%J=%id.ft
(0,0)

9

CO.0) OS

because of Vx^-=0. Thus it follows from the uniqueness of the Jacobi field
OS

that J=Js,x- Therefore, we obtain expi(Xf)=5.1(0)=/(l)=/f,.Y(l). This com-

pletes the proof. ■
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fe*Xf

MU(M))

focalpoint

Fig. 1.1.

Easily we have the following lemma.

Lemma 1.3. For X,Y^TP^M (£<Ef.(M)),<X(, ff>=</ft2r(l), Js.r(X)>+

(Xe)(Ye) holds.

Proof. By Lemma 1.2, we have

=(^*<1>+^w. um+
Ys

£(/>(£))

Since both J^,x(0) and /?,x(0) are orthogonal to 7>(0), J$.x(X) is orthogonal to

7>(1). Similarly, /t-,y(l)is orthogonal to 7>(1). Hence we obtain the desired

equality. ■

In the case where M is flat,we have the following lemma.

Lemma 1.4. For XgTp^M (£<e*,(M)),Js,x(l)=Prs(X-AsX) holds.

Proof. Since M is flat, J'lx=0 holds. By solving J'lx'-O under the

initialconditions JSlX(0)=X and J(.X(O)= ―ASX, we have J^xi^―Pr^^^iX-tA^X)

and hence Js,x(＼)=Pr^X-AeX). m

From this lemma, we have the following result.

Proposition 1.5. Assume that M zs fiat. For X^TP^M and Y(=Ts(te(M)

n/rW£))) ($^U(M)), <L, F>=0 holds.
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From Lemma 1.3 and 1.4,we obtain the following result.

Proposition 1.6. Assume that M is flat. Let X, YeTpl^M such that

(X, F>=0. // either X or Y is a eigenvector of At and eitherX or Y is

orthogonalto grad s, then <.XS,F^>=0 holds.

§2. Shape operators of tubes.

In this section, we shall investigate the shape operator of the e-tube over

an n-dimensional Riemannian submanifold M in an (n+r)-dimensional Euclidean

space Rn+r. For its purpose, we shall calculate the inward unit normal vector

field of the s-tube. In the sequal, we identify TxRn+r with Rn+r under the

natural correspondence for every x^Rn+r. Define E^r(ffTRn+r) by

£(£):=_-i- for £ef,(M), where f*TRn+r is the bundle induced from

TRnJrr by /.. Let U,> ･■･>lg) be the set of all the mutually distinct eigen-

values of A* (£ef,(M)). Note that e(/>(£))<
1

Uii/iei
that is, ＼Xt＼<l (z=

1, ･■･,g) because expL(Ns(M))r＼F(M, /)=0 and the ambient space is Rn+r.

Then we denote by XXi the Ker(^―i?;/)-component of Z(eTp(f)M) with

respect to the decomposition Tp(|)M=Ker (A$―^i/)c ･･･RKer (A―^g/) (?= 1,

Lemma 2.1. The inward unit normal vector fieldE of (te(M), fs) is given by

i=＼ 1― Ai

I 4, lgrad£(Xg))^l2
E(£)= i=1 l

for £efe(M).

Proof. It is clear that Tfs^Rn+r=Tp^MRTi(ts(M)r＼p-1(p($))R<E&>

(orthogonal direct sum), where <£(£)>is the 1-dimensional subspace spanned

by £(£). Hence £(£) can be expressed as £(£)=
F+Z+£(£)_

for Fe

TP,OM and Z^T^UM)r＼p-＼p{^))). It follows from Ts(tt(M)np-＼p(£)))ci

TMM)) that

<£(az>=^Mw=0

that is, Z = 0. Take any X<=TP^M. It follows from Lemma 1.2 and 1.4 that

(2.1) f^Xs=X-AsX-(Xe)E($).

Hence we have
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<Y,X-
＼Y + (01

Xs

(Xe)ER>

_<Y, X-AzXy-<grade(p(e), X}

<Y

=0.

F-grad £(/>(£)),Z>

＼Y + (1)1

From the arbitrarityof X, Y―ASY―grad e(/>(£))=0is deduced. Therefore, we

obtain ^^gradsOp^ that r=^grads(^);<> After ^ wq oU&ln
1 ＼―h <=i 1―/i

E($)=

S grad*(jp-Ai+£≪-)

m

For X<E:Rn+r, denote by XTx (resp. X±x) the T^M-component (resp. the

T£M-component) of X with respect to the decomposition Rn+r = TxM($T$M

and XT£(resp. X1?) the Tf(^(M))-component (resp. the Tj(^(M))-component) of

X with respect to the decomposition Rn+r = T?(te(M))RTI(t£(M)). Define £e

f*(TR**r) by £(c:= -^^^ for &*W.

MU{M))

Fig. 2.1.

For the shape operator A£of the s-tube,we have the following formulae
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Theorem 2.2. (i) For X^Ts(te(M)np~1(p($))), the following equalityholds:

"^^Tm&k))*-*1*''}

(ii) Let X be an eigenvalue of A? (t-&e(M)). Then, for ZeKer (As―XI)

the following equality holds:

(2-3) *<***= vi+!m^-^d(^^+(Xs)E(^)-{^^}

Proof, (i) Let $(t) (fe[0, 1]) be a curve in tE(M) with £(0)=X. Then

we have

AtEipX=-'$xE=
dt ≪ = 0

dt i=o2V(l+|£(e)|2)3

1 d

Vi + |£(£)|≪df

d＼E(£(t))＼z

dt

(£(£(*))+£(£(*))) I *=o

-vmm?(%E+%m

It follows from this equality and £(£)+£(£)e7>(f,(M)) that

(2.4)
^^-vi+

^

ai
A*-1-^

On the other hand, we have

(2.5) Vx£=
dEffl))

dt t = 0

i dm
161

1

II

1

dt

/ t=0

jtifMt))-pm))} i'-o+ie1|Irf|^01

1

6(/>(£))

iX-p*X)
(P*X)s

~
*(/>(≪)
Eg)

{X-p*X+{(p*X)s}E(£)}

£ = 0

£ = 0

£
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Since p*X=Q, VXE=-

and

1

6(/>(£))
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X holds. Therefore, we obtain

^^vmmn-i^k/-^^}
(ii) It is clear that the same equalities as (2.4) and (2.5) hold:

7.fs£=―7±K,{Xs-ptXs+{(.ptX's)s}EG)}.

Hence, since p*X?=X, we have

^A=vn^{i^-*+(M))~Mr£

Moreover, since X= ^ {Xs+(Xs)E(&} by (2.1)and A^X=XX, we obtain

Ah^X?
Vi + |£(0|≪U(/>(0)tf-l)

■
1 [ '

Vl + |£(c|≪le(Mc)W-D

(Xs+(Xs)Etf))-%ie£}T

(Xi+(Xs)E^)Ti)-(VisE)T$＼

■

In the case where e is constant, we have the following result.

Corollary 2.3. (i) For X(BTi(te(M)np~1(p^))), the following equality

holds:

(ii) Let X be an eigenvalue of A, (£efe(M)). Then, for ZeKer (A^―XI),

the following equality holds:

Proof. Since s is constant, E―0 holds. Hence, the statements (i) and (ii)

are deduced from the previous theorem, m

Remark. The results in this corollary are stated in [2, Theorem 3.2 of

P 131].

Let r be a function on te(M) defined by assigning the number of the mutually

distinct eigenvalues of At to each ^e^£(M) and Gm(M) the Grassmann bundle
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of m-planes over M. It is easy to show the following lemma.

Lemma 2.4. Assume that r is constant on an open subset U of ts(M).

(i) Let Xi (z = l, ■･･, g) be functions on U such that Ui(£)> *･･>^≪(£)} is the

set of all mutually distinct eigenvalues of A% for every £e£7. Then Xt is a

smooth function and the multiplicity of the eigenvalue ki($) of A% is independent

of ^U (≫= 1, -,g),

(ii) Let Dki be a section of (p＼u)*Gmi(M) defined by DXi(£):= Ker(A,-U$)I)

for £<ee(7(/=1, ･･･, g), where mi=6＼mK&r{A^―Xi{^)I). Then Dxt is a smooth

section of {p＼u)*Gm.{M) (≫= 1, ■■■, g).

Let Uct£(M). For @<^r((p＼u)*(T*MRTM)), denote by 0 an element of

r((p＼n)*(T*Rn+r<9)TRn+r))definedby

for £e£7. Note that 0 is regarded as a (Rn+r)*RRn+r-valued function on U.

Denote by the same symbol 7 the connection on (p＼u)*(T*Rn+rRTRn+T) induced

from the Levi-Civita connection 7 of Rn+r. Then it is clear that lx^ ―

dt
t=0 holds for every X(~TU, where £(0 (fePO, 11) is a curve in £/

with £(0)=X. If t is constant on a neighbourhood of |e?E(M), then the

equalities(2.2) and (2.3)in Proposition 2.2 are written in more detail as follows.

Theorem 2.5. Assume that t is constanton an open subset U of ts(M).

Let Xi and Dxt (i= l, ■■■,g) be as in Lemma 2.4 and Pxt an element of

r((p＼u)*(T*M<g)TM)) definedby assigningthe orthogonalprojectionof TP^M

onto Di.{l~)to each £e£7.

(i) For X^Ti{ts{M)r＼p-＼p{m (£e£7),thefollowing equalityholds:

(2.6)

A^x-VW)^(m)x~f^

' |grade(/>(£))j
Here £(£)= ! + 2

i =l

8

a-u&r

I2
^― and Y is an element of TpC^M given by

1

tA {i-u&y
1y2 l-X^( f (XXj)＼Vij(^_
11 * 5(|) V/fe ,(i-^)T3

where V := grad e(/>(£))
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(ii) For X^Dxt (£) (£e£7), the following equality holds:

A' X - l f ^°R X

+
s(/>(0)tfi.(0-l)

l^Kgrad £(£(£)))}fi

1-Ji(0

}

Here {(Vi^Xgrad e(p($)))＼Fi is the T^tt{M)i^p-＼p($)))-component of (7'^Pit)

(grad e(/>(£)))with respectto the decomposition Rn+r = TPc^M^Ti(ts(M)r＼p-1(p^)))

c<£(^)>, and Z is an element of TvC^M given by

Z"
≪.1ii (l-^t( ))(l-^(c) ≪-i (l-^i(e))2

_ * 1 fg , 1-^(1)/ f W^iy^tf)!'

*tl(i-^( ))'rfXi B(£) ＼& (i-^( ))≫

' <WxtPz
+ s

V,Vxk&>

*til(1-^-0(1-^(1))

' <7x grade, V*

+ k (l-^(6))2

where V := grad e(p(t-)).

Proof, (i) By Theorem 2.2,we have

^OTfe)1'^

≪>>

It follows the definition of £(£)and Lemma 2.1 that l+＼E(%)＼2 = B(g).

(fe[0, 1]) be a curve in te(M)r＼p~＼p(%)) with £(0)=X. Since

^ grad£(/)(!));.(fa))
S-T^a)T-GT^M' we have

(2.8) VxE= 231―
Ograds(j>(g)h<(g)

a-zm2

$xPxtW
i-j≪(e)

― grad6(/>(£))jf<fa≫

}<ETp(f)M

Therefore, (Vx£)r| is orthogonal to ts(M)r＼p-i(p(^))

Y^TplpM such that Ff=(7zE)^ by Proposition 1.5.

Y=Y. From (2.8), we can obtain

-}

Let ≪0

£(£(0)=

and hence there exists

We have only to show
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{1XE)T,=1XE-<1XE, £(£)>£(£)

f * fy, C(c(l-Jit(c)

where C(£)is definedby

C(~ f (*W^>la

}vw

* itfxPitW^i
+ 2

≪>>

<.r-i(i-j,(c)(i-Ji(0) ■

On the other hand, bv Lemma 1.2 and 1.4. we have

(2.10)
Ye=Y-A£Y-(Ye)E(£).

By comparing the TD(-eiM-component of (2.9) and (2.10), we have

this is,

Y-A*Y = f, 1

g

(&nXXi

$*Pit)V

l-U$)

5(6) }vw

(l-2(£))Y - l !x2 Cmi-X^h

Therefore, we can obtain Y

+ * {$zPij)V}itw
/§ 1-J/0

lElYiiW ―Y

(ii) By Theorem 2.2,we have

(2.11)
■<4i:c£)^G―

1 [Xi mXe+(.Xe)ERTS)

e(/K0)tfio(0-D
-tft&re}

It follows from the definition of E(t-) and Lemma 2.1 that

Let £(f) (*<=[(), 1]) be a curve in te(M) with £(0)=J?e.

g grad e(/>(^(0))^c{<o)

5 i-^(i(o)
we have

d

- #_4, fW08rade(j>(fl);<(g? , ^grad

i i(XeXt)Vitw
mt (l-^,(c)≪

277

Since £(£(*))=

e(/>(£(O))j,cf≪≫lt=o

($*ePit)V+<yzgrade)itw
i-ue

}

and hence
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where C(£)is defined by

8 (XSXi)＼VX.^＼2 8

g <7xgrads, Vx

Therefore, we have

(2.12)

where W(£) is defined by

(2.13)

Since

<$*ePi V, V, Cf)>

i a-umi-u$))

*ePxt)V}re
1-Jt(0

+W(&,

-≪>=!,ra^'-T^-

+

+

' {($*ePit)V}TpCs>+<yxgra&G)xiw

g
s

1-w

C(0

B(B)
E(B).

W($)eTe(f,(M))r＼THUM)np-＼p^)))t there exists Z<=.TV^M such that

h=wR by Proposition 1.5. According to (2.11) and (2.12), we have only to

show Z =―Z. By Lemma 1.2 and 1.4,we have

(2.14) Zs=Z-AsZ-(Zt-)E(&

By comparing the T^M-component of (2.13)and (2.14),we have

7 A 7-f l 1X2 CRQ.-U$)＼V

8 {(^/VVIrcjj+C^gradeh^,
+ s ―

i= ＼ 1-U&

that is

n
i(£＼＼7 -

l 1x7 C(0(1-J,(0)iv

* ＼{$2ePx}V}Tf ce)hi<$) (V* grade) ji(f)

1-J*(0
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Therefore, we can obtain Z= S Z; (f)= ―Z. ■

279

Let (M', /') be an n'-dimensional Riemannian submanifold in Rn'+r> and

(Rl, c) an /-dimensional totally geodesic Riemannian submanifold in Rl+S. Then

(M'xR1, f'Xc) is an n-dimensional Riemannian submanifold in Rn+r called a

cylinder over (M', /'), where n ―n'+l and r―r'-＼-s.Assume that the set of

all principal curvatures of (Mf, f) is bounded.

Theorem 2.6. Let (M, f)= {M'xRl, f'Xc) and e a sufficientlysmall positive

function on M such that grad e^F{TR1), where TRl is a foliation on M of which

leaves are {-}xRl. Then

(i) For XtETz(te(M)r＼p-＼p(%))),the following equality holds:

Ai^X=
VT+1 grad e(p(&) 12e(p&)X '

(ii) Let X be a nonzero eigenvalue of A$ ($^te(M)). Then, for Ie

Ker(A―XI), the following equality holds:

^£(?)^f ―

;

i+|grade(/>(£j)| e(/>(0)tf-D
*e

(iii) For ZeKer A^r＼TM', the following equality holds:

(iv) For X^TR1 (czKer A), the following equality holds

**<*>*=
2VT+irads(/)(l))l2

{X {1°g(1 +' grad *'^grad £(/)(l))^27xgrad £f}'

Proof, (i) According to (i)of Theorem 2.2, the following equality holds:

A%^X―
1 I 1 1

Since gradseTRlaKer As, we have E―grade°p and hence Vx£―0. There-

fore,we obtain the desiredequality.

(ii) According to (ii)of Theorem 2.2,the followingequalityholds:

*^=ttmfcwii<tta*+X')E^-<''it>T'}

Since grad etETRlcKer A% and XeeTlR1, we have Xs=O and

^i£^=7jfs(grade≪/>)=^jrgrade=0.

Therefore, we obtain the desired equality.
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(iii) According to (ii)of Theorem 2.2, the following equality holds:

(2.15) A-ElvX(=^-^m^HE)n.

Since gmd sceT Rl aKer A% and X(eT±R1, we have 7^£=0. Therefore, we

obtain ^41^)^=0.

(iv) According to (ii) of Theorem 2.2, the above equality (2.15) holds. Let

h be the second fundamental form of (M, /). It follows from h(X, grad e(p(t-)))

=0, £=grad£°£and £(£)=-7=_=L__ {grads(/>(£))+£(£)}that

(VxiE)T(=(Vx grad £)r4=(Vx grad e)rf

=7Xgrad e-<7vgrade, E(£≫E(£)

7X grad £
<Vxgrads, grad e(/>(£))>

1+1 grad £(/>(£))I2
{grad e(/>(£))+£(f)}

=Vxgrad£--Z{log(l+|grade|2)Hgrads(Xf))+£(£)}.

Thus since(^f£)rfeEKer^c<E(£)>, (V^E)^ is the natural liftof {(^£)r≪}rpC{)

to £,this is,

(^i^)r =7^gradee-yZ{log(1 + |grad£|2)}grads^(f))e.

Therefore, we obtain the desired equality, m

§3. The natural lifts of distributions.

Let (Mn, f) be a Riemannian submanifold in Mn+r and D a distribution

on M. Set D:=＼J^ts<iM){Xi＼X^Dp<:^}. It is shown that D is a (smooth) dis-

tribution on ts(M). In fact, for a local base (Xu ■■■,Xm) of D on an open

subset U of M, (Zi, ･･･.Xm) is a local base of D on p~＼U), when ra=dimZ).

We shall call this distribution D the natural lift of Z) to ^e(M). We have the

following result with respect to the integrability of the natural lift.

Theorem 3.1. Let F be a foliation on M. If the normal connection of

(M, f) is flat along each leaf of F, then the natural lift F of F to te(M) is a

foliation on tXM).

Proof. Let X, Y^F{F＼V), where U is an open subset of M. We shall

show IX, F] = [ZT7]. Fix ^EEp-'iU). Let V(cU) be a simply connected

neighbourhood about p($0)in a leaf of F through />(£,)and | a 7x-parallel

normal vector field on V with £(£(£o))=£o.Note that the existence of I is
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assured by the flatness of V1 along V. Define a normal vector field| on V by

!(*):=-t^f^tIOO for xeF. Let F* := U*<=k?WE0, 1]). It is clear that

V* is a submanifold (with boundary) in Mn+r. Let X (resp. F) be a

vector field on y* such that l(ri(0))=Z(n(0)) and [1, f|]=0 (resp. K(n(O)) =

F(n(0)) and [?, ^]=0). We see that ^(ricx)(l))=^|U) and f(n<≪(l))=f|c*)

for every x&V (cf.Proof of Lemma 1.1). Hence ＼_X,f](ri(*)(l))=[^, i>](ricx)(l))

holds for every xgF. It is clear that [X, F](n(0)) = [Z, F](n(0)). By the

Jacobi identity, we have

[it f], fd=-CCr, m, x＼-U.h, xi, ft=o.

Hence we see that ＼_X,Y~＼{y$W(＼)) = [X, F]|U) for every #<=F. As a con-

sequence, ＼_X,F](7icx)(l)) ―[X, Y~＼kw is deduced for every xeF. Especially,

we obtain that ＼_X,f ] = [*, F] at $ 0 This completes the proof. ■

Also, we can prove the following result.

Theorem 3.2. Let F be a foliation on M and Fs a foliation on ts(M) of

which leaves are ts(M)r＼p~1(p(^))(£e£e(M)). // the normal connection of (M, f)

is flat along each leaf of F, then F@FS is a foliation on te(M).

Proof. Take X^r(F＼v) and Y^r(Fs＼u), where U is a sufficientlysmall

open subset of ts(M). We have only to show [X, Y~](Er(FRFs＼u) because F

and Fs are integrable, respectively. Let (Xu ･･･, Xm) be a local base of F on

U consisting of

Let X= S QiXi

i =＼

the natural lifts of vector fields on p(U), where ra=dim F

Then we have

TO rv
LX,Y2=^laiXi, Yl

i = l

m
= S{

1=1

(YaJXt + aJXuY-]}.

It is clear that Xt is a foliated vector fieldwith respect to Fs, that is, [_XU F]

^r(Fs＼u). Therefore, we obtain [X, Y~]sEr(FRFs＼v). M

§4. Applications.

We expect that various arguments for tubes of nonconstant radius contri-

bute to constructing various models of Riemannian hypersurfaces. For example,

in this section, we shall construct soft models of Riemannian hypersurfaces of

which the number of mutually distinct principal curvatures is constant on the
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hypersurface or a dense subset of the hypersurface in terms of Theorem 2.(

mainly. First we shall prepare the following two lemmas.

Lemma 4.1. Let (M, /) be an open portion (M'xU, f'Xc＼u) of a Riemanniar

hypersurface {M'xR1, f'Xc) as in Theorem 2.6 and e―i°q. Here U is an open

subset of Rl and q is the natural projection of M=M'XU onto U and e is c

positive function on U such that exp1(Ne(M))r＼F(M, /)=0 and the graph of e it

a Riemannian hypersurface which has exactly g mutually distinct principal cur-

vatures Xi> ■■■>Xe. Then the statements (i), (ii) and (iii) in Theorem 2.6 hole

and A%^-,＼fu£(TU^TU^) has exactly g mutually distinct eigenvalues Ai(q(p($)):

e(q(P(g))))> ■■■>Xg(q(P(&), e(q(p(£)))), where TU is a foliation on M=M'xL

given by assigning T({x:} X£/)<:*!,*2) to (xu x2)^M'xU.

Proof. It is clear that gradee/XTf/). Hence (i),(ii) and (iii)in Theorerr

2.6 hold. Fix £oef,(M). Since the normal connection V1 of (M, /) is flat

along each leaf of TU, the natural lift TU is a foliation on ts(M) by Theorem

3.1. Let L be a leaf of TU through £0. It is easy to show that a 7-"--parallel

normal vector field along a curve in p{L) is parallel with respect to 7, where

7 is the Levi-Civita connection of Rn+r. Hence we see that L is congruent

to the graph of s and E＼l corresponds to the unit normal vector field of the

graph of e (cf. Proof of Lemma 1.1). Therefore, we see that A%^a-)＼fv$ has

exactly g mutually distinct eigenvalues ^(g(/>(£0)),e(9(/>(£o))))>･･･ >^≪(tf(/>(£o)),

WW))). ■

LEMMA 4.2. Let (M, f)=(M'xR＼ f'Xc) and s―s°q, where s is a positive

function on R1 such that expJ-(Ne(M))r＼F(M, f) = 0 and q is the natural projec-

tion of M=M'xRx onto R1. Then the statements (i), (ii) and (iii) in Theorem

2.6 hold and, for X^Tp^Rl (cKer^), the following equality holds:

Here &'=― and &n = ~n^> where (t) is the natural coordinate of R1.

Proof. It is clear that grad se/XTi?1). Hence (i), (ii), (iii) and (iv) in

Theorem 2.6 hold. According to (iv) of Theorem 2.6, the following equality

holds:

(4.5) Mk
1

"2Vl+|grad£(6OT

{|- log(l +1
grad £|2)}grad t{p^)＼-21dldt grad es＼
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Since grad£=£'^-, we have
at

(4.6)
^-{log(l+|grad£ 2)}grad£(/>(£))-2V^ grade

It follows from (4.5) and (4.6) that

E(SAdt)r v{i+£r(pm2}^dt)i

-2e"(j>(g)) a

l + e'iP&Ydf
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Thus the equality (4.4) holds. H

First, by using Lemma 4.1, we shall construct soft models of Riemannian

hypersurfaces stated in the beginning of this section. Let (M', /') be a Rie-

mannian hypersurface in i?"i+1 with exactly gi mutually distinct principal cur-

vatures ^!> ■･･>Xgl and e a positive function on an open subset U of Rn'2, of

which graph is a Riemannian hypersurface with exactly g2 mutually distinct

principal curvatures p.x> ･･･fier Here we assume that Xt (lt^if^gi) and ftj

(l^Ljf^g2) have no zero point. Let m* (i=l, ･･■, gi) be the multiplicity of Xi

and m'j (/=1, ･･･, g2) that of pts. Set (M, /):= {M'xU, f'X{c＼u))and s:= e-gv,

where c is the inclusion mapping of Rn<i into Rnn+r-1 and qv is the natural

projection of M=M'xU onto £/. By letting a Riemannian hypersurface given

by homothetic transforming with a sufficientlylarge coefficient(M', /') be

(M', /') newly, letting e―c (c is a positive constant with c<infi.ey£"(x))be e

newly and shrinking M' and U if necessary, we may assume that

(4.7) expHM(M))nF(M, /) = 0, maxlsi^lSup6|^|<-|-,

21^.I
maxlgisgl sup ^ gr^Tr < min ^J^,inf IP-i1≫

maxls>s, sup| ftj| <inf ―=-==l====r-.
2 r Vl+lgrad£|2£

Denote by E' the unit normal vector fieldof (M', /') and set Ws:= ＼S^tJM)＼
1

<£,E'≫d], where de(O, 1). For fe^, the set of all the mutually

Ae(£)X ―
+

1

grade( *(£))" £(/>(£))
X

e(/>(£))

disinct eigenvalues of A? is {0}VJ{<$, E'(qM.(p(£)))>UqM-(PG)))＼i=L, - , gi＼,

where A is the shape operator of (M, /) and qu> is the natural projection of

M'xU onto W. According to Lemma 4.1, the shape operator As of (te(M), fe)

satisfies the following three conditions (i)~(iii):

(i) for XEiTs(UM)r＼p-＼p(m,
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(ii) for XeKerUf-<|, £'(<7*'(/>($)))Mi(fcr'(/>(£)))/)G^Ws),

^!(£)^Q ―

<e, e＼

+

(iii) A'E(V | foe has

£
)

■*･( (£)))Mt(<7*-(/>(£)))*

e(/>(£))≪£,E'(qM.(pW))>li(qM<PG)))-D'

exactly g2 mutually distinct eigenvalues iii(qu(P(£))>

e(Qu(P(G))))> ■■■>pgi<iQu(p(£)), e(qv(p(£)))). Define functions Vl, ■･･, vgl+g2+1 on

Wd by

*(£) =

v,1+l(0

+1 grad s

+ gr

m2z(p(m<iE＼QM,(p(m>uqM'(pm)-i

(i=l, ･･･, Si),

J

and

Vj{£)= tij-Bl-i(qu(P(.&), e(qu(P($)))) (/ = £i+2, - ,£i+ #2 + l).

It is clear that vix^vi2 (l£ii^i2£g0 and vh4^vh (gi+2^j1^j＼£g1 + g2+l) at

each point of Ws. It follows from (4.7) that |vf|< Iv,-|< Iy≪1+il(l^z'^gi, gi+2

^7^^1 + ^2+1). Thus Vi, ■･･, vgl+g2+1 are mutually distinct at each point of

Ws. Therefore (Ws, fe＼ws) 1S a Riemannian hypersurface with mutually distinct

principal curvatures vx, ■･■, vgl+gz+i. Note that vt (i=l, ■■･, gi + gz+l) have no

zero point and the multiplicities of vx, ■■■, vgl+g2+1 are mu ･･･, mgl, r― 1, mi, ･･■,

m^2, respectively. By the way, the existence of the above Riemannian hyper-

surface (Mr, /') for 5-1=1, 2 (any multiplicity) and that of the above function

£ for ^2=1 (any multiplicity) are well-known. Hence, by the above construc-

tion, for every set {mx, ･･■, mg＼ of positive integers, we can obtain soft models

of Riemannian hypersurfaces in an Euclidean space which has exactly g mutually

distinct principal curvatures, which have multiplicities mu ■■･, mg and are non-

zero, at each point.

Next, by using Lemma 4.2, we shall construct soft models of complete

Riemannian hypersurfaces stated in the beginning of this section. Let (M', /')

be a complete Riemannian hypersurface in Rn+l with exactly g mutually dis-

tinct principal curvatures ^i> ･･■>Xg on a dense subset W' of M', where we

assume sup|^|<oo (i=l, ■･･, g). Let £ be a positive function on R1 such that

1 Is"!
£<mmiSiSg inf sup

/7rT
_/2
3
<oo and the set of all solutions of the equa-

tion e"(ea ―l) + a(l+e/2)=0 is discrete for every constant a. It is clear that

such a function s exists innumerably. Set (M, f) = (M'xR＼ /'xid) and s: =

e°qu where id is the identity map of R1 and qx is the natural projection of

M=M'xRl onto R1. Since s< minlsiSg inf
^―,

expx(Ne(M))nF(M, /) = 0,
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that is, the £-tube(te(M), fs) is defined. According to Lemma 4.2, the shape

operator As of (te(M), fs) satisfies the following conditions (i) and (ii):

(i) for XeKer (At-£(p($))UgM'(pmi),

As %=^ ^(mAPim ≪

and

(ii) for XzeTmR1 (cTp^M),

where qu> is the natural projection of M―M'xR1 onto M'. Define functions

≪i.･･･. ≪CT..ion tJM) hv

j≪i(£)=

Vi + e''(/>(£)

UQM'(pm)

and

^pmuQwiPim-i)

j≪*+i(£)=
-e"(/>(fl)

(≫= !,-,*)

It is clear that fiu ■■■, ptg are mutually distinct at each point of W'xR1. Since

the set of all solutions of the equation z"{ea ―l) + a(l+s/2)=0 is discrete for

every constant a, ptt and fig+1 are mutually distinct at each point of a dense

subset of te(M) (i―1, ･･･, g). Therefore, ftu ■■■, /ug+
1
are mutually distinct at

each point of a dense subset W of ts(M). Thus (te(M), ft) is a complete Rie-

mannian hypersurface in Rn+2 with exactly g+l mutually distinct principal

curvatures uu ■■■, ug+1 on W. Moreover, since supUi|<oo, £<min15iS5

inf

1

＼e"＼
and suP^f^pyr<°°> we have sup＼fit＼<cv {i=l, ■■■,g+l). By the21/U

way, the existence of the above complete Riemannian hypersurface (M', /')

for £=1 is well-known. Hence, by the above construction, for every positive

integer g, we can obtain soft models of complete Riemannian hypersurfaces in

an Euclidean space with exactly g mutually distinct principal curvatures at

p>arh nninf r≫fn rlpncspeiihcp>f-
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