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Introduction.

The important notion of reflection functors was introduced into the representa-

tion theory of algebras by Bernstein-Gelfand-Ponomarev [8]. Those functors were

defined only for hereditary tensor algebras given by quivers and species [12].

Then Auslander-Platzeck-Reiten [7] arranged the notion by non-diagramatic treat-

ment so that it is possible to apply the concept for any algebras. Brenner-Butler

[10] extended the Auslander-Platzeck-Reiten partial Coxeter functor and defined

the tilting theory. Further, Happel-Ringel [15] generalized the Brenner-Butler

tiltingtheory and studied tiltedalgebras.

We regard the tiltingtheory as a powerful method of deforming algebras and

their module categories. A tiltingfunctor, hower, is nothing but a Morita equiv-

alence, for any self-injectivealgebra. Hence, it is natural to search for a way of

applying the tiltingtheory to the study of self-injectivealgebras.

Let A be a basic indecomposable artin algebra. Denote by mod-A (resp. A-

mod) the category of all finitelygenerated right (resp. left) A-modules. Let D:

mod-A^yl-mod be the ordinary duality functor. In the following, we shall con-

sider the trivialextension self-injectivealgebra R=A＼xDA defined as follows: R

is A@DA as an additive group and its multiplication is given by (a,q)-(a',qf)=

(a-a',a-q'+q-ar) for any (a,q),(a',q')eARDA = R.

In the paper [19], Tachikawa started in the study of self-injectivealgebras R,

and in [20], he has proved that mod-i? is equivalent to mod-S (S―B＼xDB) if A is

hereditary tensor algebra and B is given by reflection procedure from A. Here

mod-R is the projectively(= injectively)stable category of mod-i? in the sense of

Auslander.

Let ezA be a primitive idempotent such that eA is simple non-injective and

r~leA(S)ADA = 0, where t~l(resp. r) denotes the Auslander-Reiten translation TrD

(resp. DTr). By putting TA = 0―e)A@T~1eA and B=~End{TA), the Auslander-

Platzeck-Reiten partial Coxeter functor is defined to be the functor Hoiru (T, ?):
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mod-A-+mod-B.

In the present paper, we shall generalize the above result of Tachikawa and

show the following

Theorem. There is an equivalence F : mod-i?-≫mod-Ssuch thatF(X)^IIomA

(T,X) for any ^-module X not possessing eA as a direct suramand.

As an application of our Theorem, making use of the Assem-Happel's char-

acterization of generalized tilted algebras [1],we shall prove that the trivialex-

tension self-injectivealgebra R of a generalized tilted algebra A of Dynkin class

An is always stably equivalent to a serial self-injectivealgebra.

Gabriel-Riedtmann [14] proved that every DJK-slgehra. of a Brauer quiver is

stably equivalent to a serial self-injectivealgebra. It is easy to check that any

Z)/if-algebra of a Brauer quiver of multiplicityI is the trivial extension algebra

of a generalized tilted algebra of Dynkin class An. Therefore, our argument can

be seen as another proof of the result of Gabriel-Riedtmann in the case,of DJK-

algebras of multiplicity1. Notice that another case of D/A'-algebras of multiplicity

greater than 1 can be reduced to our case.

Throughout this paper, we fix a commutative artin ring K and all algebras

are artin A"-algebras and modules are finitelygenerated. D always denotes the

ordinary duality functor.

1. Preliminaries

Throughout this paper, we shall freely use the results on tiltingtheory proved

in [7],[9],[10] and [15] and also the facts about modules over the trivialextension

self-injectivealgebras given by [13], [19] and [20]. But it is convenient to re-

member some of them which will be used frequently. In this section, we shall

recall the basic properties of partial Coxeter functors and trivial extension self-

injective algebras and fix the notations.

Let A be an artin algebra and eA a simple non-injective module with the

property ~~leA0ADA = 0. We assume that A is self-basic and indecomposable.

Let us put TA = (l―e)Acz-1eA and B―End(TA). It is easy to see that the module

TA becomes a tiltingmodule, that is, it satisfiesthe the following three conditions:

(1) proj.dim. 7＼*^1,

(2) Ext1(TA,TA) = 0 and

(3) There is a short exact sequence Q~+Aa-≫T'a―>T'j->Qwith V and T" are

direct summands of direct sums of copies of TV

Let F=HonM7＼?), F'= ExV (TA,?) be the functors from mod-A mod-/? and
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G = (?RBT), G^TonCP.flD those from mod-B to mod-A. Let £T={X＼F'(X)= 0},

& = {X＼F(X)=Q} be the full subcategories of mod-A and %={Y＼G(Y) = 0}, ^J =

{Y＼G'(Y)--=Q} those of mod-fi. Then, by Brenner-Butler [10] or Happel-Ringel [15],

the following facts are known.

(a) (£T,20 and (3C, <ty)are torsion theories in the categories mod-^4 and mod-

B, respectively.

(b) The left module BT is again a tiltingmodule with End(Br) = A

(c) CJ and <y (resp. £F and X) are category equivalent under the restrictions

of F and G (resp. F' and G') which are mutually inverses.

We callour specialkind of tiltingfunctor F the partial Coxeter functor with

respect to a simple module eA, following Auslander-Platzeck-Reiten [7].

Since BTA is balanced, it is proved that ADAA = ADT(g)BTA and BDBB = BTRA

DTb as bimodules. Sometimes, we shall identify DA (resp. DB) with DT<g)BT

(resp. T(x)ADT) by these isomorphisms. We denote by tcthe composite: DBRBT

= TRA DTRBT^ TRA DA,

It is well known [3] that the /li?-sequence starting from eA is at the same

time the minimal projective resolution of vleA:

(*) O-^eA-^P-^T-'eA-tO

From this sequence, by tensoring DA, we have the minimal injective resolution

of eA (note that T-1eA<^ADA = 0):

( $ ) 0^eA-*eARA DA °-^4P(k)AZM-+0

Applying the partial Coxeter functor F to the sequence (*), we have the minima.1

projective resolution of the /^-module F'ieA):

Q-+F(P) --^ F(j-1eA)-+F'(eA)->0

Since (*) is an Ai?-sequence, denoting by e the primitive idempotent element oJ

B corresponding to the direct summand r~leA of TA, we see that F(P) = ra.deE

and F'(eA) = topeB. Further, tensoring DB to the above sequence, we have the

minimal injective resolution of the Z?-module F'{eA):

0-> rF＼eA) y F{P)RBDB ^-(^R^> F{z~leA)RBDB ^0

＼＼l ＼＼X ＼＼l
0->DHonu {eA, T) -^^ DHom, (P, T) -Tr-(J^ DHom A(r^eA, 7>->0

On the other hand, applying the functor F to the sequence ($), we have

0^ F(eA(g)ADA)

l!(
0-+DHonu (eA, T)

F(≪<S)DA)

F(PRADA)

til

F'(eA)

til

^0

-D-i^? DHom-4 ^ T) i^^rDHom^ ^~lgA' T^Q

Thus we have the following commutative diagram with exact rows
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Lemma 1.1.

O->F(eA0A DA) *'("RD/t)> F(PRA DA) F'{eA) ->0

III III III

0-≫ F'(eA) F(P)RB DB) -j^^ F{v^eA)RB DB^Q

By the above diagram, we see that top eB=Ff(eA)=F(r-1eA)(g)BDB―WB, i.e.,

Be is simple projective. Moreover, we have the following isomorphism:

DBRB T~lBes DB0B DrF(eA)

sDHorau (DzF'{eA), B)

= m.omB (TR A Ae,B)

sDHomfl (Te, B) = DHomA {T, eA) = 0

Therefore, HomB(T, ―):Z?-mod-*A-mod is again a partial Coxeter functor. We

shall use this A-5-symmetry to define the desired functors.

For a given bimodule BUA, there is always an adjoint pair of functors Horn a

([/,-) and (-RBU). Denote by f :lmoA-B-+YLomA (U, (-<g)BU)) (resp. eu :Hom^

(U, ―)<£)sU-^lmoa-A)the unit (resp. the coun.it)of this adjunction.

In the later part of the paper, the natural transformation rj'[_)mT-e?_)(g)DT:

F(-)RbDB->F(-(g)ADA) will appear frequently. We shall denote by 0 this nat-

ural transformation. It should be noted that Op is an isomorphism for any projec-

tive ^-module P not possessing eA as a direct summand.

Denote by T(A) (resp. T(B)) the trivialextension self-injectivealgebra AlxDA

(resp. B＼xDB). See Introduction for definition. Since there is an algebra epi-

morphism T(A)―>A^>-0, each ^4-module can be seen as a T"(y4)-module. We call

such T(.A)-modules being of 1st kind and others 2nd kind, following Tachikawa

[19].

On the other hand, since A is a subalgebra of T(A), any T(.A)-module can be

seen as an .A-module and we call it the underlying ^-module. Hence, a T(A)-

module XT(A) is given by its underlying A-module XA with its multiplicationby

DA : XRa DA^X. Note that(X- DA) -DA = 0,Le.,<f>-(<f>RDA) = 0. We shallindicate

this structure of XTu-> by the pair (XA, <j>).For a T(y4)-morphism / from Xtui ―

(XA,</>)to X'TiA)= (XA, (j>f),it can be seen as an A-morphism between underlying A-

modules such that the following diagram commutes:

XRA ZM―*

fRDA I

X'RA DA >

X

X'
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Since the torsion theory (2*,£F)is splitting,each A-module XA can be de-

composed as X=LQ)V with LA£^F and VA^- Further, DA is in £Tand so is

XRADA, thus B.omA(X(g)ADA,L) = 0. Therefore, any T(A)-module has to be of

the form XTca, = (l@V,Q
J))

with LAe& and VAeZ.

In the above argument, we considered that the operation XxDA-^-X of a

r(A)-module Xtu*> is given by X<g)ADA~>X. But by the adjunction isomorphism

HomA (X^ADA, X)=UomA(X,RomA (DA, X)), we may consider that the operation

is given by X->-Honu (DA, X). We shall say XT(A) = (XA, <fi)to be jP-form (resp.

R-iorm) if ^eHomu (X<g)ADA, X) (resp. ^eHoiru (X, Hoiru (DA, X))). In this paper,

we shall study modules only by T-forms.

For any object of 3s as LA is a direct sum of copies of eA, we can define

the sequence:

0-^L -X P(L) ―U T(L)->0

by taking the direct sum of the sequence (*). We shall use this sequence fre-

quently.

By the ^4-5-symmetry, in the category of left 5-modules, we may consider

the sequence similarly above. Applying the duality functor D to this sequence,

we have the following sequence in the category of right Z?-modules mod-5:

0-*W(K) -X 1(K) ―^> K-+0 ,

where if is an object in 2C, i.e.,KB is a direct sum of copies of eDB=ExtA(T,eA)

=F(eA) and I(K) is a direct sum of copies of F(PRADA) = F(P)RBDB, jK is

isomorphic to RF(f$)RDB and 8K is isomorphic to 0F(a(g)ZM). These sequences

also appear frequently.

Note that any module of the category mod-5 has to be of the form W@K

with Wg QJ and if 3C, since the torsion theory (2£,QJ) is also splitting.

2. Stable functor F: mod-T(A)^mod-T(B)

At first,we shall constract the correspondence F: mod6-T(A)->-mode-T(B) which

willbe used to define the stable functor F : mod-T(A)^mod-T(B), where mode-T(A)

and mode-T(i3) are the full subcategories of mod-T(A) and mod-T(B) whose classes

of objects consisting of modules not possessing as direct summands eT(A) and

eT(B), respectivery.

Lemma 2.1. Let XTCa^ = (l@V, Q ?)) be a T(A)-module with FcT and Lc£F.

If XT(A^^ode-T(A) then there is a morphism 1 such that the following diagram

commutes:
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aiR DA
0->L->L(g).4 DA ―――-*■ P(L)Ra DA-*Q

v ^

Proof. Denote by vi'.eA-^L the z'-thinjection of L = (-j)i,eA.If ?. does not

factor through aLRDA, A-nRDA is a monomorphism for some i, hence there is

a T(i4)-monomorphism:

/≪ 0 ＼

＼0 l-vi<S)DAJ
eT(A) = eA@eA(g)A DA-*X= LR V.

However, this is a contradiction since el＼A)T(.A)is injective and XTu-> has not

eT(A) as a direct summand.

Using the extended morphism 2, we shall construct a T(B)-modnle F(X) as

follows:

/ /O 0 0＼＼

F(X) = ＼F(P(L))@>F(V)(BF(T(L))(g)BDB,h* <p*0

＼ ＼F(BL)RDB 0 0//

X*= (F(P{L))Rb DB ^ F(P(L)(g)A DA) -^ F{ V)) and

<j>*= {F{V)RB -X F(VRADA) -^ F{V)).

Lemma 2.2. F(X) is a T(i?)-module.

Proof. It is sufficientto verify that <f>*-X*RDB=0 and 0*-</>*RDB=O. For

the firstequality, consider the following commutative diagram:

F(P(L))RB DBRn DB -^^ FKP(L)Ra DA)RB DB -^R^≫ F( V)RB DB
＼'r

F(P(L)RA DARA DA) -^EZT F(VR- DA>^F^ ･

By the definition,(/>*-l*(g)DB=F(<p)-dvF(2)<g)DB-0p(L,<g)DB=F(0)-F(2RDA)-dp(L)RDA-

0pcl)(&DB=0 since <J)-2(g)DA =■■().The second equality can be proved similarly.

Lemma 2.3. F(X)TcB^mode-T(B).

Proof. If eT{B) is a direct sumraand of F{X) as a T"(Z?)-module then so is

as a 5-module, therefore eBRBDB=F(T-xeA)RBDB is a summand of F(T(L))RBDB

by Krull-Reraar-Schmidt theorem. Thus there is an A-morphism / such that

F(fiL)RDB-2*-F(f)RDB coincides with this injectionmap. This is a contradiction

since RomA(T~leA, P) = 0.
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Thus we have defined the correspondence F: mode-T(A)->mode-T(B) as an-

nounced at the beginning of this section. In the following, we shall show it is

possible to make F a stable functor: rnod-T(A)-*-rnod-T1(.B).

Let Xi=(jLi@Vi,Qi ^.)) (i=l,2) be T(A)-modules in mode-T(A) and 0=(j£ °):

Xi^-^Y2 a r(v4)-morphism. Since O-^-^-^P-^r'^^-^O is an AivNsequence, we can

define /1-rnorphism g', g" and h' by the following commutative diagrams:

0-≫L
ccLl

P(LO

0->L2 * P(L2)
≪L2

0~>L

'4

V2

* r>/ j

pil

hi

T(LO -> 0

'"1

2XL2) -> 0 and

) -^-=-* T(L0->0

Here, gf, and g" are uniquely determined by g since Horcu (r~leA,A)―0 but h' is

not by h.

For a given T(^4)-morphism 0―1^ A, fixing the representative h' of h, we

shall define the 7＼jB)-morphism:

(i)

(ii)

(iii)

(F(g>) 0 0 ＼

＼ 0 0 F(g')RDB

Lemma 2,4. F(0) is a T(5)-morphIsm.

Proof. We have to verify the followingthree properties:

<f,*-F(f)(g)DB=F(f)-<f>f,

FipLa)RDB-F{g')<g)DB=F(g")RDB-F(PL1)RDB and

X*■F(g')RDB+6t ■F(hf)RDB=F(f) ■X*.

(i) and (ii)are easily verified. We shall show (iii)only. Since dPiL2yF(g')(&DB=

F{g'RDA)-6PiL1-) and 0Vl-F(h')= F(k'RDA)-dPCLl), we have following equalities:

FIX)■0pcl2,･F(g')RDB=F(l2) ■F＼q'RDA) ■0PiLo and

F(^2).0Vt-F{h')= FXfa)･F{h'RDA) -dPiL0,

thus it is enough to show F0L2)-F(g'(g)DA)+ F{<f>z)-F{h'RDA) = F{f)-F{l1). From

the equalitiesf-/t1= k3-gRDA + <j>t-hRDA, l2 = lt-aL, and h%DA = h'QDA'ah&DA,
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we have f-2raLlRDA = (2z-g'RDA + <p2-h'RDA)-aLl<g)DA and f-ll= l2-g'RDA +

(j)Z-h'RDA since aLl0DA is an epimorphism. Hence we obtain the desired equality.

Lemma 2.5. F(0) is uniquely determined in the stable category mod-T(B) for

a morphism 0

Proof. Let h'■aLi= h-=h"-aLl and hf ―h"=z-pL:

n t

h' -

P(Li) ―i_* r(Li) > o

F2

^z

Let F{ftY be the morphism constructed from 0 and h"'. Then P{ft)-P{0)' factors

through projective: F＼Xi)^*Q^>-F{Xz),where y, C and Q are defined as follows:

Q=(f(T{L))RF{T{U))RbDB,
( °

B

0

0

0/

and

We have shown the main property of the correspondence F.

It is easy to see that F maps any projective module in mode-T(^4) to projective

27Z?)-module and it induces a stable functor: mo&T(A)-^mo&T(B). In fact,if 0

factors through eT(A) then F(fl)factors through F(P)RBT{B).

By the symmetry of the partialCoxeter functor, we can define a stable functor

F': T(B)-mod^T(A)-mod. Using this functor F', we define the stable functor G:

DA

W(.L)8)T

0

0

0

mod-T(B)-+mod-T(A) as the composite D-F'-D. In the next section, we shall

/ / °

Horn,,(DAMK)RBT)@r(K)<g>BTRWRBT, dKRT-e

＼ ＼ 0

show the equivalenceG-F~lmod_rU)

3. Proof of Theorem

In order to compute G-F, it is convenient to give G(Y) concretely for a T(B)-

module YTW in mode-T(B).

Let YTm=(w@K,(^ q)) be a T(B)-module with W^ and Keg. If YTiB,

is in mode-T(5), then there is a morphism p.such that pL―jK- ft. Using this mor-

phism ≪,G(Y) is denned as follows:

G(Y) =
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ft*=fi<g)T and </>*=<pRT.

It is easy to see that K=F＼T(L)), W=F(P(L))@F(V) and <!>=(§*?*), t*=

(F(Pl)<8)DB,0) if we put Y=F(X). From here, the following Lemma is proved

Lemma 3.1. For a given TG4)-module X=(l@V, Q °))with VzZ and L £F.

If Xtu) has no directsummand isomorphic to eT(A), then G-P(X)Tu> is of the

form

LbP(QRP<IK.DARV, Q^

^^
g g＼＼

^ ＼ 0 5 0 0//

Now we shallshow G-F(X)tu^P(L)RaT(A)RX, by making use of the form

in the above Lemma.

Let us define,two TMVmornhisms y and C.

x:P(L)RAnA) = (p(L)@P(L)RADA,(Xp°
^

jj))

(0 0
^O °

0 l
･F(X)=L@P(L)RP(L)Ra DAR V,-> G

/-Ijr0 0 0＼

C:G-F(X)=L@P(L)@P(L)(g)ADARV ――^ X=L@V.

Then it is easy to verify that ^ is a jT(.A)-monomorphism and C is a T(y4)-epimor-

phism and £･%=0. Further, the sura of lengths of P(L)(x)4jP(A) and X is just that

of G-F(X). Hence we know that the sequence 0-^P(L)(g)AT(A)^G-F(X)^X-^Q

is exact. Since P(L)0aT(A)T(.a) is injective, the above sequence splits. There-

fore, G-F(X) is isomorphic to the direct sum of X and P(L)<S)aT(A). It is easy

to prove that the isomorphism G-F(X)=X in the category mod-TM) has natura-

lity on X. This completes the proof of Theorem. F-G = lmod-r<£)is given by the

4. An Application

As an application of our Theorem, we shall prove that any DJK-algebra of a

Brauer quiver of multiplicity1 is stably equivalent to a serialself-injectivealgebra

as announced before.

It is easy to show that any DJK-algebra of a Brauer quiver of multiplicity1

is a self-injectivetrivialextension of some algebra A. By the characterization of

generalized tiltedalgebras of Dynkin class An which is given by Assem and Happel

ril,we know that the algebra A has to be a generalized tiltedalgebra of Dynkin
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class An. Hence, A is the algebra of a connected finitefull subquiver of the fol

lowing infinitetree:

°＼V ^>J^'0
o 6^°

^"

o

(f . 0 = o = $ ･ yo

Clearly, there is a joint whose branches have no joints except at most one

branch. Here, a vertex is said to be a joint if it has at least three neighbours.

Consider such a ioint e* as follows:

The starting point e^ of a branch B＼ corresponds to a simple projective module

e,A. Thus, A is of the form:

/ eiAet

＼(l-ei)Ae1

0

(l-ei)A(l-e

＼
= e1AeiXO―e1)A(X-ei)＼X(l-ei)Ae,

Le us put

/eiAei
A/ = eiAelx(l-e1)A(l-A1)＼xD((l-er)Ael)=^{

(l-e1)AO.-e1))

Then T(A) and T(A') are isomorphic to each

the algebra A' is as follows:

other as algebras. The quiver of
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The length of the branch B[ (resp. B'2)is shorter (resp. longer) than that of Bi

(resp. B2) just 1.

We can continue this process and have an algebra A" of the following quiver:

fl

･hi

o

e2

ht

Then we apply the reflectionprocesses (these correspond to partial Coxeter

functors defined at the vertices ht, ht-u ･･･) to the algebra A" and finally,we

have an algebra B of the following auiver:

i

fl

/em
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Further, we apply the inverse processes of A＼-+Af to the algebra B, then we

have an algebra B' of the following quiver:

yfht
. e

i apply the reflection proces

1 the number of joints in

i A:

At last, we apply the reflectionprocesses to B'',then it becomes an algebra

Aw for which the number of joints in the quiver is smaller than that of the

original algebra A:

o――^o ･ ･ ･

ht em

o ^o ･ ･ ･
ei L

o

f

Hence, iterating the processes A＼->Aw＼^>Ami-+Am- ･･, we have a hereditary

algebra of the quiver:

O ^o ^O ^>0 ･･･≫･･････ 0―^0 ^O" y>0

By our Theorem, it is easy to see that T(A) is stably equivalent to the trivial

extension algebra of the finalhereditary algebra. On the other hand, the trivial

extension algebra of the above hereditary algebra is clearly serial. Thus every

DJK-algebra of a Brauer quiver of multiplicity1 is stably equivalent to a serial

self-iniectivealgebra.
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