A CASE OF EXTENSIONS OF GROUP SCHEMES OVER A DISCRETE VALUATION RING

By

Tsutomu Sekiguchi*) and Noriyuki Suwa

Introduction.

Let $X \rightarrow Y$ be a cyclic covering of degree m of normal varieties over a field k. If m is prime to the characteristic of k and k contains all the m-th roots of unity, the Kummer theory asserts that the covering $X \rightarrow Y$ is given by a cartesian square:

where θ is the m-th power map and f is a rational map of Y to the multiplicative group $\boldsymbol{G}_{m, k}$. On the other hand, if $m=p^{n}$ and $p=$ char. $k>0$, the Witt-Artin-Schreier theory asserts that the covering $X \rightarrow Y$ is given by a cartesian square:

where $\mathscr{P}(x)=x^{p}-x$ and g is a rational map of Y to the Witt group $W_{n, k}$. Therefore, if one wishes to deform a cyclic covering $X \rightarrow Y$ of degree p^{n} over a field k of characteristic $p>0$ to a cyclic covering of degree p^{n} over a field of characteristic 0 , it seems natural to consider the deformations of the Witt-Artin-Schereier exact sequence

$$
0 \longrightarrow\left(\boldsymbol{Z} / p^{n}\right)_{k} \longrightarrow W_{n, k} \xrightarrow{\mathscr{P}} W_{n, k} \longrightarrow 0
$$

over a field k of characteristic $p>0$ to an exact sequence of Kummer type

$$
1 \longrightarrow \boldsymbol{\mu}_{p n, K} \longrightarrow\left(\boldsymbol{G}_{m, K}\right)^{n} \longrightarrow\left(\boldsymbol{G}_{m, K}\right)^{n} \longrightarrow 1
$$

over a field K of characteristic 0 . From this point of view, it seems most

[^0]appropriate to consider the deformations of Witt groups to tori as the first step. In the one-dimensional case, the deformations of \boldsymbol{G}_{a} to \boldsymbol{G}_{m} are completely determined by [9], and later independently by [3]. In fact, every such deformation is given by a group scheme $g^{(\lambda)}=\operatorname{Spec} A[x, 1 /(\lambda x+1)]$ over a discrete valuation ring A with a group law $(x, y) \mapsto \lambda x y+x+y$, where λ is a non-zero element of the maximal ideal of A. If we take $A=Z_{p}[\zeta]$ with a primitive p-th root ζ of unity, and $\lambda=\zeta-1$, then the exact sequence
$$
0 \longrightarrow(\boldsymbol{Z} / p)_{A} \longrightarrow \mathcal{G}^{(\lambda)} \xrightarrow{\psi} G^{(\lambda p)} \longrightarrow 0
$$
where ψ is the A-homomorphism defined by $x \mapsto\left\{(\lambda x+1)^{p}-1\right\} / \lambda^{p}$, gives the unique deformation of the Artin-Schreier sequence to the Kummer sequence. This exact sequence is first noticed by [3] and [4], and later independently by [8]. In [3], the above sequence is used to lift an automorphism of order p of a smooth projective curve over an algebraically closed field of characteristic p to one over a field of characteristic 0 .

In the higher dimensional cases, some examples of deformations of Witt groups to tori have been illustrated by [4]. Later [5] has generalized the argument of [4] and has developed a method for computing $\operatorname{Ext}_{A}^{1}\left(G^{(\lambda)}, G^{(\mu)}\right)$, the group of extensions of $q^{(\lambda)}$ by $q^{(\mu)}$. Furthermore, [5] has explicitly computed $\operatorname{Ext}_{A}^{1}\left(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}\right)$ under the condition that $\mu \mid p$ (cf. Ex. 4.1).
 $\mu \neq 0$ of the maximal ideal \mathfrak{m} of A, developing the argument of [5] and analyzing such an extension by means of successive Néron blow-ups from a torus. Our main result is as follows:

Theorem (cf. 2.3, Cor. 3.5 and Th. 3.10). Let A be a discrete valuation ring dominating $\boldsymbol{Z}_{(p)}$. Let λ, μ be non-zero elements of the maximal ideal \mathfrak{m} of A with the order of $\mu=m$. Then every extension \mathcal{E} of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$ is given by a group S-scheme

$$
\mathcal{E}=\operatorname{Spec} A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{1}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right]
$$

with the law of multiplication

$$
\begin{aligned}
X_{0} \longmapsto & \lambda X_{0} \otimes X_{0}+X_{0} \otimes 1+1 \otimes X_{0}, \\
X_{1} \longmapsto & \mu X_{1} \otimes X_{1}+X_{1} \otimes F\left(X_{0}\right)+F\left(X_{0}\right) \otimes X_{1} \\
& +\frac{1}{\mu}\left[F\left(X_{0}\right) \otimes F\left(X_{0}\right)-F\left(\lambda X_{0} \otimes X_{0}+X_{0} \otimes 1+1 \otimes X_{0}\right)\right],
\end{aligned}
$$

where $F(X)=1+\sum_{i \geqslant 1} c_{i} X^{i}$ is a polynomial with $c_{i} \in \mathfrak{m}$ satisfying the equalities

$$
c_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} c_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+1} \lambda^{p^{r-i}}\right\}
$$

for j with $\operatorname{ord}_{p} j=r$ and $j \neq p^{r}$, and

$$
c_{p r} c_{p r+1-p r} \equiv \sum_{i=0}^{p r}\binom{p^{r+1}-p^{r}+i}{p^{r+1}-2 p^{r}+2 i}\binom{p^{r+1}-2 p^{r}+2 i}{i} c_{p r+1-p r+i} \lambda^{p r-i} \bmod \mathfrak{m}^{m}
$$

for each $r \geqq 0$.
It will be noted that our method is applicable also to the case $\lambda=0,1$ or $\mu=0,1$. In particular, we recover the work of Weisfeiler [10] when $\lambda=0$ and μ is a non-zero element of m.

We now explain briefly the plan of this paper. In § 1 , some general facts are discussed, concerning the Néron blow-ups. In $\S 2$, we analyze an extension of $G^{(\lambda)}$ by $q^{(\mu)}$ by means of successive Néron blow-ups starting from a torus. Our main theorem is proven in §3; after establishing an analogue of Lazard's comparison lemma [2], we determine step by step the polynomials $F(X)$, satisfying the condition $F(X) F(Y)=F(\lambda X Y+X+Y)$ mod. μ. Some examples concerning the extensions are given in $\S 4$. We conclude this article by noting that a smooth affine 2 -dimensional S-group scheme is not necessarily obtained by an extension of smooth 1-dimensional S-group schemes, even though its generic fibre and its special fibre are extensions of smooth 1-dimensional group schemes each.

Notation.

Throughout the article, A denotes a discrete valuation ring and \mathfrak{m} (resp. K, k) denotes the maximal ideal (resp. the fraction field, resp. the residue field) of A, if there are no restrictions. We denote by v the valuation on A and by π a uniformizing parameter of A. We put $S=\operatorname{Spec} A$.

An S-group (resp. an S-homomorphism) means a group S-scheme of finite type (resp. an S-morphism between group S-schemes, compatible with the group structures).

For an S-group G, we denote by G_{K} (resp. G_{k}) the generic (resp. closed) fibre of G over S. Moreover, when G is affine, we denote by $A[G]$ (resp. $K[G]$, resp. $k[G]$) the coordinate ring of G (resp. G_{K}, resp. G_{k}) and by $A[G]^{+}$ (resp. $K[G]^{+}$, resp. $k[G]^{+}$) the augmentation ideal of $A[G]$ (resp. $K[G]$, resp. $k[G]$).

For non-negative integers n, l with $n \geqq l$, we denote by $\binom{n}{l}$ the number $\frac{n!}{(n-l)!l!}$. In particular $\binom{0}{0}=1$.

Contents.

1. Néron blow-ups
2. Néron blow-ups and $\mathcal{E}^{(\lambda, \mu ; F)}$
3. $\operatorname{Ext}_{S}^{1}\left(G^{(\lambda)}, q^{(\mu)}\right)$
4. Examples

1. Nérons blow-ups

We recall first Néron blow-ups. For details, see [1], [9].
1.1. Let G be a flat affine S-group and H a closed k-subgroup of G_{k}. Let $J(H)$ be the inverse image in $A[G]$ of the defining ideal of H in $k[G]$. Then the structure of Hopf algebra on $K[G]$ induces a structure of Hopf A-algebra on the A-subalgebra $A\left[\pi^{-1} J(H)\right]$ of $K[G]$. Then $G^{H}=\operatorname{Spec} A\left[\pi^{-1} J(H)\right]$ is a flat affine S-group. The injection $A[G] \subset A\left[G^{H}\right]=A\left[\pi^{-1} J(H)\right]$ induces an S homomorphism $G^{H} \rightarrow G$. By the definition, the generic fiber $\left(G^{H}\right)_{K} \rightarrow G_{K}$ is an isomorphism. We call the S-group G^{H} or the canonical S-homomorphism $G^{H} \rightarrow$ G the Néron blow-up of H in G.

Remark 1.2. It is readily seen that $A\left[G^{H}\right]^{+}=K[G]^{+} \cap A\left[G^{H}\right]$.
Proposition 1.3. Let $\varphi: G^{\prime} \rightarrow G$ be an S-homomorphism of flat affine S groups and let $H^{\prime}($ resp. $H)$ be a closed k-subgroup of $G_{k}^{\prime}\left(\right.$ resp. $\left.G_{k}\right)$ such that $\varphi_{k}\left(H^{\prime}\right) \subset H$. Then there exists canonically an S-homomorphism $\tilde{\varphi}=\varphi^{\left(H^{\prime}, H\right)}: G^{\prime H^{\prime}}$ $\rightarrow G^{H}$ such that $\tilde{\varphi}_{K}=\varphi_{K}: G_{K}^{\prime} \rightarrow G_{K}$.

Proof. Let $\alpha: G^{\prime H^{\prime} \rightarrow G^{\prime}}$ denote the canonical S-homomorphism. By the assumption, the image of $\left(\varphi^{\circ} \alpha\right)_{k}:\left(G^{\prime H^{\prime}}\right)_{k} \rightarrow G_{k}$ is contained in H. Therefore, by the universal property of Néron blow-ups ([9], Prop. 1.2), we get a unique homomorphism $\tilde{\varphi}$ which makes the diagram

commutative.
Proposition 1.4, Let G be a flat affine S-group, G^{\prime} a closed flat S-subgroup of G, H a closed k-subgroup of G_{k} and $H^{\prime}=H \cap G_{k}$. Then the canonical homo-
morphism $\tilde{\varphi}=\varphi^{H}=\varphi^{\left(H^{\prime}, H\right)}: G^{\prime H^{\prime} \rightarrow G^{H}}$ induced by the inclusion $G^{\prime} \rightarrow G$ is a closed immersion.

Proof. Since $H^{\prime}=H \cap G_{k}, J\left(H^{\prime}\right)$ is generated by $J(H)$ in $A\left[G^{\prime}\right]$. Let π, f_{1}, \cdots, f_{r} be generators of $J(H)$ and $g_{i}(1 \leqq i \leqq r)$ be the image of f_{i} in $A\left[G^{\prime}\right]$. Then

$$
\begin{aligned}
& A\left[G^{\prime H^{\prime}}\right]=A\left[G^{\prime}\right]\left[\pi^{-1} g_{1}, \cdots, \pi^{-1} g_{r}\right] \\
& A\left[G^{H}\right]=A[G]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right]
\end{aligned}
$$

Hence the canonical surjection $K[G] \rightarrow K\left[G^{\prime}\right]$ induces a surjection $A\left[G^{H}\right] \rightarrow$ $A\left[G^{\prime H^{\prime}}\right]$.

Remark 1.5. (1) The defining ideal of $G^{H^{\prime}}$ in G^{H} is given by $J\left(G^{\prime}\right)_{K} \cap$ $A\left[G^{H}\right]$.
(2) In general, the square

is not cartesian.
Proposition 1.6. Let G be a flat affine S-group, H a closed k-subgroup of G_{k} and $\tilde{G}=G^{H}$ the Néron blow-up. Then, by taking the flat closure, we get bijections among the closed K-subgroups of $G_{K}=\tilde{G}_{K}$, the closed flat S-subgroups of G and the closed flat S-subgroups of \tilde{G}.

Proof. This is a direct consequence of EGA IV, Prop. 2.8.5.
Combining Proposition 1.5 and Proposition 1.6, we obtain the following assertion.

Corollary 1.7. Let G be a flat affine S-group and H a closed k-subgroup of G_{k}. Let G^{\prime} be a closed flat S-subgroup of G and \tilde{G}^{\prime} the flat closure of G_{K}^{\prime} in $\tilde{G}=G^{H}$. Then \tilde{G}^{\prime} is the Néron blow-up of $H \cap G_{k}^{\prime}$ in G^{\prime}.

Proposition 1.8. Let G be a flat affine S-group, $H_{1} \supset H$ closed k-subgroups of G_{k} and \tilde{H} the inverse image of H in $\left(G^{H_{1}}\right)_{k}$. Then there exists a canonical isomorphism $\left(G^{H_{1}}\right)^{\tilde{H}} \leftrightharpoons G^{H}$.

Proof. Take generators $\pi, f_{1}, \cdots f_{r}, g_{1}, \cdots, g_{s}$ of $J(H)$ such that $J\left(H_{1}\right)$ is generated by $\pi, f_{1}, \cdots, f_{r}$. Since the square

is cartesian, $J(\tilde{H})$ is generated by $J(H)$ in $A\left[G^{H_{1}}\right]$. Since f_{1}, \cdots, f_{r} are divisible by π in $A\left[G^{H_{1}}\right], J(\tilde{H})$ is generated by $\pi, g_{1}, \cdots, g_{s}$ in $A\left[G^{H_{1}}\right]$. Hence we have

$$
\begin{aligned}
A\left[\left(G^{\left.H_{1}\right) \tilde{H}}\right]\right. & =A\left[G^{H_{1}}\right]\left[\pi^{-1} g_{1}, \cdots, \pi^{-1} g_{s}\right] \\
& =A[G]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right]\left[\pi^{-1} g_{1}, \cdots, \pi^{-1} g_{s}\right]=A\left[G^{H}\right] .
\end{aligned}
$$

Theorem 1.9. Let
(\#)

$$
0 \longrightarrow G^{\prime} \xrightarrow{\varphi} G \xrightarrow{\psi} G^{\prime \prime} \longrightarrow 0
$$

be an exact sequence of flat affine S-groups, and let H a closed k-subgroup of G_{k}, H^{\prime} the inverse image of H in G_{k}^{\prime} and $H^{\prime \prime}$ the image of H in $G_{k}^{\prime \prime}$. Then the sequence of S-groups
(\#)
$0 \longrightarrow G^{\prime H^{\prime}} \xrightarrow{\tilde{\varphi}=\varphi^{H}} G^{H} \xrightarrow{\tilde{\phi}=\psi^{H}} G^{\prime \prime H^{\prime}} \longrightarrow 0$
induced from (\#) is exact if one of the following conditions is satisfied:
(1) $H \supset \varphi\left(G_{k}^{\prime}\right)$; that is to say, $H=\left(\psi_{k}\right)^{-1}\left(H^{\prime \prime}\right)$.
(2) G^{\prime} is smooth over S.

Proof. Since $(\tilde{\phi} \circ \tilde{\varphi})_{K}=\left(\psi^{\circ} \circ \varphi\right)_{K}=0$ and \tilde{G}^{\prime} is flat over $S, \tilde{\phi} \circ \tilde{\varphi}=0$. Hence we obtain a canonical S-homomorphism $G^{H} / G^{\prime H^{\prime}} \rightarrow G^{\prime \prime H^{\circ}}$. Obviously the generic fiber $\left(G^{H} / G^{\prime H^{\prime}}\right)_{K} \rightarrow\left(G^{\prime \prime H^{\circ}}\right)_{K}$ is an isomorphism.

We prove that $\tilde{\psi}_{k}:\left(G^{H}\right)_{k} \rightarrow\left(G^{\prime \prime H^{*}}\right)_{k}$ is faithfully flat under the condition (1) or (2), which implies that $G^{H} / G^{\prime H^{\prime}} \rightarrow G^{\prime \prime H^{\prime}}$ is an isomorphism ([9], Lemma 1.3).

Case (1). We identify $A\left[G^{\prime \prime}\right] \subset A[G]$ by $\psi: G \rightarrow G^{\prime \prime}$. We prove that the sqaure

is cartesian, which implies that $G^{H} \rightarrow G^{\prime \prime H^{*}}$ is faithfully flat.
By the assumption (1), the square

is cartesian. Hence the defining ideal of $H^{\prime \prime}$ in $k\left[G^{\prime \prime}\right]$ generates in $k[G]$ the defining ideal of H. Therefore $J(H)$ is generated by $J\left(H^{\prime \prime}\right)$ in $A[G]$. Let π, f_{1}, \cdots, f_{r} be generators of $J\left(H^{\prime \prime}\right)$. Then

$$
\begin{aligned}
A\left[G^{H}\right] & =A[G]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right], \\
A\left[G^{\prime \prime H^{*}}\right] & =A\left[G^{\prime \prime}\right]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right] .
\end{aligned}
$$

Since $A[G]$ is fiat over $A\left[G^{\prime \prime}\right]$,

$$
A[G]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right]=A\left[G^{\prime \prime}\right]\left[\pi^{-1} f_{1}, \cdots, \pi^{-1} f_{r}\right] \otimes_{A\left[G^{\prime}\right]} A[G] .
$$

Case (2). Let B be a complete discrete valuation ring, unramified over A with residue field \bar{k}. Then obviously we have

$$
G^{H} \bigotimes_{A} B \cong\left(G \bigotimes_{A} B\right)^{H \otimes_{k} \bar{k}} .
$$

Since B is faithfully flat over A, the sequence ($\#$) is exact if and only if so is the sequence induced from (\#) by the base change B / A. Hence for our purpose we may assume that A is a complete discrete valuation ring with algebraically closed residue field k.

Moreover, we may assume $H^{\prime \prime}=G_{k}^{\prime \prime}$. In fact, let H_{1} be the inverse image of $H^{\prime \prime}$ in G_{k}. By (1), we get an exact sequence of S-groups

$$
0 \longrightarrow G^{\prime} \longrightarrow G^{H_{1}} \longrightarrow G^{\prime \prime H^{\circ}} \longrightarrow 0
$$

Let \tilde{H} be the inverse image of H in $\left(G^{H_{1}}\right)_{k}$. By Proposition 1.8, $\left(G^{H_{1}}\right)^{\tilde{H}}$ is isomorphic to G^{H}. Moreover, $\tilde{H} \cap G_{k}^{\prime}=H^{\prime}$ and \tilde{H} is mapped onto $\left(G^{\prime \prime H^{\prime}}\right)_{k}$.

Under these assumption, we prove first that the canonical map $\tilde{\psi}(k): G^{H}(k)$ $\rightarrow G^{\prime \prime}(k)$ is surjective.

Let $a \in G^{\prime \prime}(k)$. Since $G^{\prime \prime}$ is faithfully flat over $S=\operatorname{Spec} A$, there exist a complete discrete valuation ring B, dominating A and finite over A, and $\tilde{a} \in$ $G^{\prime \prime}(B)$ such that the diagram

is commutative (EGA. IV, Prop. 14.5.8). Since B is strictly Henselian and G^{\prime} is smooth over $S=\operatorname{Spec} A$, the canonical map $\psi(B): G(B) \rightarrow G^{\prime \prime}(B)$ is surjective (cf. [11], Th. 11.7). Take $\tilde{b} \in G(B)$ such that $\psi(B)(\tilde{b})=\tilde{a}$.

Furthermore, since $H \rightarrow G_{k}^{\prime \prime}$ is faithfully flat, there exist a complete discrete valuation ring B^{\prime}, dominating A and finite over A, and $b \in H\left(B \otimes_{A} k\right)$ such that the diagram

is commutative (EGA. IV, Cor. 17.16.2). Replacing B^{\prime} by B, we may assume that $B=B^{\prime}$.

Then $\tilde{b}_{k}-b$ is contained in $G^{\prime}\left(B \otimes_{A} k\right)=\operatorname{Ker}\left(G\left(B \otimes_{A} k\right) \rightarrow G^{\prime \prime}\left(B \otimes_{A} k\right)\right)$. Since A is strictly Henselian, B is finite flat over A and G^{\prime} is smooth over A, the canonical map $G^{\prime}(B) \rightarrow G^{\prime}\left(B \otimes_{A} k\right)$ is surjective (cf. EGA. IV, Th. 18.5.17). Take $\tilde{c} \in G^{\prime}(B)$ such that $\tilde{c}_{k}=\tilde{b}_{k}-b$ in $G^{\prime}\left(B \otimes_{A} k\right)$. Then $(\tilde{b}-\tilde{c})_{k}=\tilde{b}_{k}-\tilde{c}_{k}=b \in H\left(B \otimes_{A} k\right)$; that is to say, $\tilde{b}-\tilde{c}$ is contained in $G^{H}(B)$. Let x be the image of $\tilde{b}-\tilde{c}$ by the canonical map $G^{H}(B) \rightarrow G^{H}(k)$. Then we have $\tilde{\phi}(k)(x)=a$. Therefore we see that $G^{H}(k) \rightarrow G^{\prime \prime}(k)$ is surjective.

We prove now that for any $t \in \operatorname{Lie}\left(G_{k}^{\prime \prime}\right)$, there exist an integer $n>0$ and $y \in \operatorname{Ker}\left(G^{H}\left(k\left[\varepsilon^{1 / n}\right]\right) \rightarrow G^{H}(k)\right)$ such that the diagram

is commutative, where ε is a dual number.
Let $t \in \operatorname{Lie} G_{k}^{\prime \prime}=\operatorname{Ker}\left(G^{\prime \prime}(k[\varepsilon]) \rightarrow G^{\prime \prime}(k)\right)$. Let \hat{O} denote the completion of $A\left[G^{\prime \prime}\right]$ along the zero section, and let $t^{*}: \hat{0} \rightarrow k[\varepsilon]$ be the local homomorphism defined by $t: \operatorname{Spec} k[\varepsilon] \rightarrow G^{\prime \prime}$. Moreover, let $\widetilde{s^{*}}: \hat{\mathcal{O}} \rightarrow A$ be the local homomorphism defined by the zero section $s: \operatorname{Spec} A \rightarrow G^{\prime \prime}$. Assume that $t \neq 0$. Then $t^{*}: \hat{\mathcal{O}} \rightarrow$ $k[\varepsilon]$ is surjective, and therefore, there exists a surjective homomorphism \tilde{t}^{*} : $\hat{\mathcal{O}} \rightarrow A[\varepsilon]$ such that $t^{*}: \hat{\mathcal{O}} \rightarrow k[\varepsilon]$ and $s^{*}: \hat{\mathcal{O}} \rightarrow A$ are factorized by $\hat{\mathscr{O}} \rightarrow A[\varepsilon] \rightarrow k[\varepsilon]$ and $\hat{\mathcal{O}} \xrightarrow{\tilde{\tau}} A[\varepsilon] \rightarrow A$, respectively. Let $\tilde{t}: \operatorname{Spec} A[\varepsilon] \rightarrow G^{\prime \prime}$ be the S-morphism defined by $\tilde{t}^{*}: \hat{\mathcal{O}} \rightarrow A[\varepsilon]$. Since A is strictly Henselian and G^{\prime} is smooth over $S=$ $\operatorname{Spec} A$, the canonical map $\psi(A[\varepsilon]): G(A[\varepsilon]) \rightarrow G^{\prime \prime}(A[\varepsilon])$ is surjective (cf. [11], Th. 11.7). Take $\tilde{u} \in G(A[\varepsilon])$ such that $\psi(A[\varepsilon])(\tilde{u})=\tilde{t}$.

Furthermore, since $H \rightarrow G_{k}^{\prime \prime}$ is faithfully flat, there exist an integer $n>0$ and $u \in \operatorname{Ker}\left(H\left(k\left[\varepsilon^{1 / n}\right]\right) \rightarrow H(k)\right)$ such that the diagram

is commutative. In fact, let $\mathfrak{U}=\operatorname{Ker}\left(k\left[G^{\prime \prime}\right] \xrightarrow{t^{*}} k[\varepsilon]\right)$, and let \mathfrak{B}_{0} be a maximal element in the set Σ of ideals \mathfrak{B} in $k[H]$ such that $\left(\psi_{k}^{*}\right)^{-1}(\mathfrak{B})=\mathfrak{B} \cap k\left[G^{\prime \prime}\right]=\mathfrak{u}$. Note that Σ is not empty because of the faithful flatness of $\psi_{k}: H \rightarrow G_{k}^{\prime \prime}$. Then we can see that $k[H] / \mathfrak{B}_{0}$ is an Artinian local ring. Because look at the inclusions:

$$
k[H] / \mathfrak{B}_{0} \supset k[\varepsilon] \cong k\left[G^{\prime \prime}\right] / \mathfrak{U} \supset k
$$

By the normalization theorem, there exist parameters $x_{1}, \cdots, x_{\imath} \in k[H] / \mathfrak{B}_{0}$ such that $k[H] / \mathfrak{B}_{0}$ is integral over the polynomial ring $k\left[x_{1}, \cdots, x_{l}\right]$. Let \mathfrak{N} be a maximal ideal in $k\left[x_{1}, \cdots, x_{l}\right]$ containing ($0: \varepsilon$) $\cap k\left[x_{1}, \cdots, x_{l}\right] \subset k\left[x_{1}, \cdots, x_{l}\right]$. Then there exists an ideal $\overline{\mathfrak{c}}$ in $k[H] / \mathfrak{B}_{0}$ lying over \mathfrak{R} and $\overline{\mathbb{C}} \cap k[\varepsilon]=(0)$. The inverse image \mathfrak{C} of $\overline{\mathfrak{C}}$ by the canonical map $k[H] \rightarrow k[H] / \mathfrak{B}_{0}$ is obviously an element of Σ, and we get that $\mathfrak{B}_{0}=\mathbb{C}$. Therefore $k[H] / \mathfrak{B}_{0}$ should be the type of $k\left[\varepsilon^{1 / n}\right]$ for some positive integer n. Let $u^{\prime} \in H\left(k\left[\varepsilon^{1 / n}\right]\right)$ be the point defined by the canonical map $k[H] \rightarrow k[H] / \mathfrak{B}_{0} \cong k\left[\varepsilon^{1 / n}\right]$. Then $u:=u^{\prime}-u_{k}^{\prime} \in H\left(k\left[\varepsilon^{1 / n}\right]\right)$ is a required point. Here we note that $u_{k}^{\prime} \in \operatorname{Ker}\left(H(k) \rightarrow G^{\prime \prime}(k)\right)$, and $H(k) \subset$ $H\left(k\left[\varepsilon^{1 / n}\right]\right)$ in the canonical way.

We denote again by \tilde{u} the image of \tilde{u} by the canonical map $G(A[\varepsilon] \rightarrow$ $G\left(A\left[\varepsilon^{1 / n}\right]\right)$. Then $\tilde{u}_{k}-u$ is contained in $G^{\prime}\left(A\left[\varepsilon^{1 / n}\right]\right)=\operatorname{Ker}\left(G\left(A\left[\varepsilon^{1 / n}\right]\right) \rightarrow\right.$ $G^{\prime \prime}\left(A\left[\varepsilon^{1 / n}\right]\right)$). Since A is strictly Henselian and G^{\prime} is smooth over A, the canonical map $G^{\prime}\left(A\left[\varepsilon^{1 / n}\right]\right) \rightarrow G^{\prime}\left(k\left[\varepsilon^{1 / n}\right]\right)$ is surjective (cf. EGA. IV, Th. 18.5.17). Take $\tilde{v} \in G^{\prime}\left(A\left[\varepsilon^{1 / n}\right]\right)$ such that $\tilde{v}_{k}=\tilde{u}_{k}-u$ in $G^{\prime}\left(k\left[\varepsilon^{1 / n}\right]\right)$. Then $(\tilde{u}-\tilde{v})_{k}=\tilde{u}_{k}-\tilde{v}_{k}$ $=u \in H\left(k\left[\varepsilon^{1 / n}\right]\right)$; that is to say, $\tilde{u}-\tilde{v}$ is contained in $G^{H}\left(A\left[\varepsilon^{1 / n}\right]\right)$. Let y be the image of $\tilde{u}-\tilde{v}$ by the canonical map $G^{H}\left(A\left[\varepsilon^{1 / n}\right]\right) \rightarrow G^{H}\left(k\left[\varepsilon^{1 / n}\right]\right)$. Then we get the required commutative diagram

From the above two facts, we can conclude that $\tilde{\psi}_{k}:\left(G^{H}\right)_{k} \rightarrow\left(G^{\prime \prime H^{\prime \prime}}\right)_{k}=G_{k}^{\prime \prime}$ is faithfully flat (cf. [7], pp. 109-111), and we accomplish the proof of Theorem 1.9.

Now we give two examples supporting the necessity of the conditions of

Theorem 1.9.

Example 1.10. Assume that A has equal-characteristic $p>0$. We consider the exact sequences:
where F denotes the Frobenius homomorphism. Let G (resp. $G^{\prime \prime}$) be the Néron blow-up of $\boldsymbol{\alpha}_{p, k}$ in $\boldsymbol{G}_{a, S}$ (resp. of $\{0\}$ in $\boldsymbol{G}_{a, s}$). Then $G^{\prime \prime}$ is isomorphic to $\boldsymbol{G}_{a, S}$. By Theorem 1.9. (1), we get an exact sequence

$$
0 \longrightarrow \boldsymbol{\alpha}_{p, k} \longrightarrow G \xrightarrow{\tilde{F}} G^{\prime \prime}=\boldsymbol{G}_{a, s} \longrightarrow 0
$$

where \tilde{F} is the canonical S-homomorphism induced by F. More precisely, $A[G]$ $=A[X, Y] /\left(\pi Y-X^{p}\right)$ and \tilde{F} is defined by

$$
X \longmapsto X^{p}: A\left[G^{\prime \prime}\right]=A[X] \longrightarrow A[G]=A[X, Y] /\left(\pi Y-X^{p}\right) .
$$

Now let H be the closed k-subgroup of G_{k} defined by the ideal (X) in $k[G]=$ $k[X, Y] /\left(X^{p}\right)=A[X, Y] /\left(\pi Y-X^{p}\right) \otimes_{A} k$. Then H is isomorphic to $G_{a, k}$. Moreover, we have exact sequences

$$
\begin{aligned}
& 0 \rightarrow \underset{\cup}{\boldsymbol{a}_{p, s}} \longrightarrow \underset{\cup}{G} \xrightarrow[\cup]{\tilde{F}} \boldsymbol{G}_{a, s} \longrightarrow 0 \\
& 0 \longrightarrow \underset{\cup}{\boldsymbol{\alpha}_{p, k}} \longrightarrow G_{\mathcal{k}} \longrightarrow \boldsymbol{G}_{a, k} \longrightarrow 0 \\
& 0 \longrightarrow\{0\} \longrightarrow H \longrightarrow \boldsymbol{G}_{a, k} \longrightarrow 0 .
\end{aligned}
$$

Let \tilde{G} (resp. \tilde{G}^{\prime}) be the Néron blow-up of H in G (resp. of $\{0\}$ in $\boldsymbol{a}_{p, s}$). Then \tilde{G}^{\prime} is isomorphic to $\boldsymbol{\alpha}_{p, s}$. In this case, the sequence

$$
0 \longrightarrow \boldsymbol{a}_{p, s} \longrightarrow \tilde{G} \xrightarrow{\tilde{F}^{H}} G^{\prime \prime}=\boldsymbol{G}_{a, s} \longrightarrow 0
$$

is not exact. In fact, we can can easily see that $\tilde{F}^{H}: \tilde{G} \rightarrow G_{a, S}$ is defined by

$$
X \longmapsto X^{p}: A[X] \longrightarrow A[\tilde{G}]=A[X, Y, Z] /\left(\pi Z-X, \pi^{p-1} Z^{p}-Y\right)
$$

Therefore $\left(\tilde{F}^{H}\right)_{k}: \tilde{G}_{k} \rightarrow \boldsymbol{G}_{a, k}$ is defined by

$$
X \longmapsto 0: k[X] \longrightarrow k[\tilde{G}]=k[Z]=A[X, Y, Z] /\left(\pi Z-X, \pi^{p-1} Z^{p}-Y\right) \otimes_{A} k ;
$$

that is to say, $\left(\tilde{F}^{H}\right)_{k}=0$.

Remark 1.10.1. \tilde{G} is isomorphic to $\boldsymbol{G}_{a, s}$. In fact,

$$
\begin{aligned}
X \longmapsto & \pi Z, Y \longmapsto \pi^{p-1} Z^{p}, Z \longmapsto Z: \\
& A[X, Y, Z] /\left(\pi Z-X, \pi^{p-1} Z^{p}-Y\right) \longrightarrow A[Z]
\end{aligned}
$$

defines an isomorphism of \tilde{G} to $\boldsymbol{G}_{a, s}$. Then the S-homomorphism $\tilde{F}^{H}: \tilde{G} \rightarrow \boldsymbol{G}_{a, s}$ is simply written $\pi^{p-1} F: \boldsymbol{G}_{a, S^{\hookrightarrow} \rightarrow} \boldsymbol{G}_{a, s}$.

Example 1.11. Assume that k is of characteristic $p>0$. We consider the exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow \underset{\cup}{\mu_{p, s}} \longrightarrow \boldsymbol{G}_{\mathrm{m}, s} \xrightarrow{p} \boldsymbol{G}_{m, s} \longrightarrow 0 \\
& 0 \longrightarrow \underset{\cup}{\mu_{p, k}} \longrightarrow \boldsymbol{G}_{\boldsymbol{m , k}} \xrightarrow{p} \boldsymbol{G}_{m, k} \longrightarrow 0 \\
& 0 \longrightarrow \mu_{p, k} \longrightarrow \mu_{p, k} \longrightarrow\{1\} \longrightarrow 0,
\end{aligned}
$$

where p denotes the p-th power map. Let G (resp. $G^{\prime \prime}$) be the Néron blow-up of $\mu_{p, k}$ in $G_{m, S}$ (resp. of $\{1\}$ in $G_{m, S}$). Then $G^{\prime \prime}$ is isomorphic to $G^{(\pi)}=$ $\operatorname{Spec} A[Y, 1 /(\pi Y+1)]$ (cf. 2.1 or [3], Ch. I). By Theorem 1.9. (1), we get an exact sequence

$$
0 \longrightarrow \mu_{p, k} \longrightarrow G \xrightarrow{\tilde{p}} \underline{Q}^{(\pi)} \longrightarrow 0,
$$

where \tilde{p} is the canonical S-homomorphism induccd by p. More precisely, $A[G]=A[X, 1 / X, Y] /\left(\pi Y-X^{p}+1\right)$ and \tilde{p} is defined by

$$
Y \longmapsto Y: A[Y, 1 /(\pi Y+1)] \longrightarrow A[G]=A[X, 1 / X, Y] /\left(\pi Y-X^{p}+1\right)
$$

Now let H be the closed k-subgroup of G_{k} defined by the ideal $(X-1)$ in $k[G]=k[X, Y] /\left(X^{p}-1\right)=A[X, 1 / X, Y] /\left(\pi Y-X^{p}+1\right) \otimes_{A} k$. Then H is isomorphic to $G_{a, k}$. Moreover, we have exact sequences

Let \tilde{G} (resp. \tilde{G}^{\prime}) be the Néron blow-up of H in G (resp. of $\{1\}$ in $\mu_{p, s}$. In this case, the sequence

$$
0 \longrightarrow G^{\prime} \longrightarrow \tilde{G} \xrightarrow{\tilde{p}^{H}} G^{(\pi)} \longrightarrow 0
$$

is not exact. In fact, we can easily see that $\tilde{p}^{H}: \widetilde{G} \rightarrow \mathcal{G}^{(\pi)}$ is defined by

$$
\begin{aligned}
& Y \longmapsto\left((\pi Z+1)^{p}-1\right) / \pi: \\
& A[Y, 1 /(\pi Y+1)] \longrightarrow A[\tilde{G}] \\
& \quad=A[X, 1 / X, Y, Z] /\left(\pi Z-X+1,\left((\pi Z+1)^{p}-1\right) / \pi-Y\right) .
\end{aligned}
$$

Therefore $\left(\tilde{p}^{H}\right)_{k}: \tilde{G}_{k} \rightarrow \boldsymbol{G}_{a, k}$ is defined by

$$
\begin{aligned}
& Y \longmapsto 0: \\
& k[Y] \longrightarrow k[\tilde{G}] \\
& \quad=k[Z]=A[X, 1 / X, Y, Z] /\left(\pi Z-X+1,\left((\pi Z+1)^{p}-1\right) / \pi-Y\right) \otimes_{A} k,
\end{aligned}
$$

that is to say, $\left(\tilde{p}^{H}\right)_{k}=0$.
REMARK 1.11.1. \tilde{G} is isomorphic to $\mathcal{Q}^{(\pi)}$. In fact,

$$
\begin{gathered}
X \longmapsto \pi Z+1, Y \longmapsto\left((\pi Z+1)^{p}-1\right) / \pi, Z \longmapsto Z: \\
A[X, 1 / X, Y, Z] /\left(\pi Z-X+1,\left((\pi Z+1)^{p}-1\right) / \pi-Y\right) \longrightarrow A[Z, 1 /(\pi Z+1)]
\end{gathered}
$$

defines an isomorphism of \tilde{G} to $G^{(\pi)}$. Then the S-homomorphism $\tilde{p}^{H}: \tilde{G} \rightarrow G^{(\pi)}$ is defined by

$$
Z \longmapsto\left((\pi Z+1)^{p}-1\right) / \pi: A[Z, 1 /(\pi Z+1)] \longrightarrow A[Z, 1 /(\pi Z+1)] .
$$

2. Néron blow-ups and $\mathcal{E}^{(\lambda, \mu ; F)}$

We recall first some notations and results of [3], [5].
2.1. Let $\lambda \in \mathfrak{m}-\{0\}$. We define a smooth affine S-group $G^{(\lambda)}$ as follows:

$$
\mathcal{G}^{(\lambda)}=\operatorname{Spec} A\left[X_{0}, 1 /\left(\lambda X_{0}+1\right)\right]
$$

1) law of multiplication

$$
X_{0} \longmapsto \lambda X_{0} \otimes X_{0}+X_{0} \otimes 1+1 \otimes X_{0} ;
$$

2) unit

$$
X_{0} \longmapsto 0 ;
$$

3) inverse

$$
X_{0} \longmapsto-X_{0} /\left(\lambda X_{0}+1\right) .
$$

Moreover, we define an S-homomorphism $\alpha^{(\lambda)}: q^{(\lambda)} \rightarrow \boldsymbol{G}_{m, S}$ by

$$
T \longmapsto \lambda X_{0}+1: A\left[T, T^{-1}\right] \longrightarrow A\left[X_{0}, 1 /\left(\lambda X_{0}+1\right)\right] .
$$

Then the generic fiber $\alpha_{K}^{(\lambda)}: \mathcal{G}_{K}^{(\lambda)} \rightarrow \boldsymbol{G}_{m, K}$ is an isomorphism. On the other hand, the closed fiber $\mathcal{G}_{k}^{(\lambda)}$ is isomorphic to $G_{a, k}$.

Definition 2.2. Let $F(X)$ be a polynomial in $A[X]$. We shall say that
$F(X)$ satisfies the condition $\left(\#_{m}\right)$ if

$$
F(X) \equiv 1 \bmod . \mathfrak{m} \quad \text { and } \quad F(X) F(Y) \equiv F(\lambda X Y+X+Y) \text { mod. } \mathfrak{m}^{m} .
$$

2.3. Let $\lambda, \mu \in \mathfrak{m}-\{0\}$ and $m=v(\mu)$, and let $F(X)$ be a polynomial in $A[X]$, satisfying the condition $\left(\#_{m}\right)$. We define a smooth affine S-group $\mathcal{E}^{(\lambda, \mu ; F)}$ as follows:

$$
\mathcal{E}^{(\lambda, \mu ; F)}=\operatorname{Spec} A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right]
$$

1) law of multiplication

$$
\begin{gathered}
X_{0} \longmapsto \lambda X_{0} \otimes X_{0}+X_{0} \otimes 1+1 \otimes X_{0}, \\
X_{1} \longmapsto \mu X_{1} \otimes X_{1}+X_{1} \otimes F\left(X_{0}\right)+F\left(X_{0}\right) \otimes X_{1} \\
+\frac{1}{\mu}\left[F\left(X_{0}\right) \otimes F\left(X_{0}\right)-F\left(\lambda X_{0} \otimes X_{0}+X_{0} \otimes 1+1 \otimes X_{0}\right)\right] ;
\end{gathered}
$$

2) unit

$$
X_{0} \longmapsto 0, X_{1} \longmapsto \frac{1}{\mu}[1-F(0)] ;
$$

3) inverse

$$
\begin{aligned}
& X_{0} \longmapsto-X_{0} /\left(\lambda X_{0}+1\right), \\
& X_{1} \longmapsto \frac{1}{\mu}\left[1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)-F\left(-X_{0} /\left(\lambda X_{0}+1\right)\right)\right] .
\end{aligned}
$$

2.4. We define an S-homomorphism $\mathcal{G}^{(\mu)} \rightarrow \mathcal{E}^{(\lambda, \mu ; F)}$ by

$$
\begin{aligned}
X_{0} & \longrightarrow, X_{1} \longmapsto X+\frac{1}{\mu}[1-F(0)]: \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] \longrightarrow A[X, 1 /(\mu X+1)]
\end{aligned}
$$

and an S-homomorphism $\mathcal{E}^{(\lambda, \mu ; F) \rightarrow \mathcal{G}^{(\lambda)}}$ by

$$
\begin{aligned}
& X \longmapsto X_{0}: \\
& A[X, 1 /(\lambda X+1)] \longrightarrow A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] .
\end{aligned}
$$

Then the sequence of S-groups

$$
0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda, \mu ; F)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0
$$

is exact, i. e. $\mathcal{E}^{(\lambda, \mu ; F)}$ is an extension of $\mathcal{G}^{(\lambda)}$ by $\mathcal{q}^{(\mu)}$. Conversely, any extension of $g^{(\lambda)}$ by $q^{(\mu)}$ takes the form of

$$
0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda, \mu ; F)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0,
$$

where $F(X)$ is a polynomial in $A[X]$, satisfying the condition $\left(\#_{m}\right)$ ([5], Cor. 3.6).
2.5. Let $F(X), \tilde{F}(X)$ be polynomials in $A[X]$, satisfying the condition $\left(\#_{m}\right)$. If $F(X) \equiv \tilde{F}(X) \bmod \mathfrak{m}^{m}$, then we can define an isomorphism of extensions:

by

$$
\begin{aligned}
& Y_{0} \longmapsto X_{0}, Y_{1} \longmapsto X_{1}+\frac{1}{\mu}\left[F\left(X_{0}\right)-\tilde{F}\left(X_{0}\right)\right]: \\
& A\left[Y_{0}, Y_{1}, 1 /\left(\lambda Y_{0}+1\right), 1 /\left(\mu Y_{1}+\tilde{F}\left(Y_{0}\right)\right)\right] \longrightarrow \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] .
\end{aligned}
$$

2.6. We define an S-homomorphism $\alpha^{(\lambda, \mu ; F)}: \mathcal{E}^{(\lambda, \mu ; F)} \rightarrow\left(G_{m, S}\right)^{2}$ by

$$
\begin{aligned}
T_{0} \longmapsto & \lambda X_{0}+1, T_{1} \longmapsto \mu X_{1}+F\left(X_{0}\right): \\
& A\left[T_{0}, T_{0}^{-1}, T_{1}, T_{1}^{-1}\right] \longrightarrow A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] .
\end{aligned}
$$

Then we obtain a morphism of extensions of S-gronps:

Hence the generic fiber $\alpha_{K}^{(\lambda, \mu ; F)}: \mathcal{E}_{K}^{(\lambda, \mu ; F)} \rightarrow\left(\boldsymbol{G}_{m, K}\right)^{2}$ is an isomorphism. On the other hand, the closed fiber $\mathcal{E}_{k}^{(\lambda, \mu ; F)}$ is a unipotent k-group; more precisely, $\mathcal{E}_{k}^{(\lambda, \mu ; F)}$ is an extension of $G_{a, k}$ by $G_{a, k}$ defined by the 2-cocycle $\varphi(X, Y)=$ $\frac{1}{\mu}[F(X) F(Y)-F(\lambda X Y+X+Y)] \bmod . m$.

Now we describe the S-homomorphism $\alpha^{(\lambda, \mu ; F)}: \mathcal{E}^{(\lambda, \mu ; F) \rightarrow\left(G_{m, s}\right)^{2} \text { using }}$ Néron blow-ups.
2.7. Let $F(X)=\Sigma a_{i} X^{i}$ be a polynomial in $A[X]$, satisfying the condition $\left(\#_{m}\right)$. Put

$$
F_{j}(X)=\sum_{v\left(a_{i}\right) \leq j} a_{i} X^{i}
$$

and

$$
G_{j}(X)=\sum_{v\left(a_{i}\right)=j} a_{i} X^{i}
$$

Then we see readily that

$$
F_{j}(X)=\sum_{0 \leq i \leq j} G_{i}(X)
$$

Lemma 2.7.1. (1) $F_{j-1}(X) F_{j-1}(Y) \equiv F_{j-1}(\lambda X Y+X+Y) \bmod . \mathfrak{m}^{j}$ for each j, $1 \leqq j \leqq m$.
(2) $\quad F_{j-1}(X) F_{j-1}(Y)-F_{j-1}(\lambda X Y+X+Y) \equiv G_{j}(X+Y)-G_{j}(X)-G_{j}(Y) \bmod . \mathfrak{m}^{j+1}$ for each $j, 1 \leqq j \leqq m-1$.

Proof. The first assertion follows from the second. Assume that (1) holds for $j=i+1(i \geqq 1)$, i. e.

$$
F_{i}(X) F_{i}(Y)-F_{i}(\lambda X Y+X+Y) \equiv 0 \text { mod. } \mathrm{m}^{i+1} .
$$

Then

$$
\begin{aligned}
& \left\{F_{i-1}(X)+G_{i}(X)\right\}\left\{F_{i-1}(Y)+G_{i}(Y)\right\} \\
& \quad-\left\{F_{i-1}(\lambda X Y+X+Y)+G_{i}(\lambda X Y+X+Y)\right\} \equiv 0 \text { mod. } \mathfrak{m}^{i+1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\{F_{i-1}(X) F_{i-1}(Y)-F_{i-1}(\lambda X Y+X+Y)\right\} \\
& \quad-\left\{G_{i}(\lambda X Y+X+Y)-F_{i-1}(Y) G_{i}(X)-F_{i-1}(X) G_{i}(Y)\right\} \equiv 0 \mathrm{mod} . \mathfrak{m}^{i+1}
\end{aligned}
$$

Since $G_{i}(X) \equiv 0$ mod. \mathfrak{m}^{i} and $F_{i-1}(X) \equiv 1$ mod. $\mathfrak{m}($ resp. $\lambda \equiv 0 \bmod . \mathfrak{m})$,

$$
\begin{aligned}
& F_{i-1}(Y) G_{i}(X) \equiv G_{i}(X), F_{i-1}(X) G_{i}(Y) \equiv G_{i}(Y) \text { mod. } \mathfrak{m}^{i+1} \\
& \text { (resp. } \left.G_{i}(\lambda X Y+X+Y) \equiv G_{i}(X+Y) \text { mod. } \mathfrak{m}^{i+1}\right) .
\end{aligned}
$$

Hence we obtain

$$
F_{i-1}(X) F_{i-1}(Y)-F_{i-1}(\lambda X Y+X+Y) \equiv G_{i}(X+Y)-G_{i}(X)-G_{i}(Y) \bmod \cdot \mathfrak{m}^{i+1}
$$

Therefore we get our assertion by induction on j counting down from $j=m$.
2.8. Hereafter, we assume that $\lambda=\pi^{n}$ and $\mu=\pi^{m}$, where π is a uniformizing parameter of A, for simplicity.

We start off with the first step.
Let G_{i} denote the S-group $g^{\left(\pi^{i}\right)} \times{ }_{s} G_{m, S}$.
(1) \boldsymbol{G}_{1} is the Néron blow-up of $\{1\} \times \boldsymbol{G}_{m, k}$ in $\boldsymbol{G}_{m, s} \times{ }_{s} \boldsymbol{G}_{m, s}$. The canonical homomorphism $\mathcal{G}_{1} \rightarrow \boldsymbol{G}_{m, S} \times{ }_{s} \boldsymbol{G}_{m, S}$ is defined by

$$
\begin{aligned}
X_{0} & \longmapsto
\end{aligned} \quad \pi Y_{0}+1, X_{1} \longmapsto Y_{1}: ~ 子 A\left[Y_{0}, Y_{1}, 1 /\left(\pi Y_{0}+1\right), 1 / Y_{1}\right] .
$$

(2) For each $i, 1 \leqq i \leqq n-1, \mathcal{G}_{i+1}$ is the Néron blow-up of $\{0\} \times G_{m, k}$ in \mathcal{G}_{i}. The canonical homomorphism $\underline{G}_{i+1} \rightarrow G_{i}$ is defined by

$$
\begin{aligned}
X_{0} & \longmapsto \pi Y_{0}, X_{1} \longmapsto Y_{1}: \\
& A\left[X_{0}, X_{1}, 1 /\left(\pi^{i} X_{0}+1\right), 1 / X_{1}\right] \longrightarrow A\left[Y_{0}, Y_{1}, 1 /\left(\pi^{i+1} Y_{0}+1\right), 1 / Y_{1}\right] .
\end{aligned}
$$

(3) $\mathcal{G}^{(\lambda)} \times s^{G^{(\mu)}}$ is the Néron blow-up of $\boldsymbol{G}_{a, k} \times\{1\}$ in $\mathcal{G}_{n}=\mathcal{G}^{(\lambda)} \times{ }_{s} \boldsymbol{G}_{m, S}$. The canonical homomorphism $\mathcal{E}_{1} \rightarrow \mathcal{G}_{n}$ is defined by

$$
\begin{aligned}
X_{0} & \longrightarrow Y_{0}, X_{1} \longmapsto \pi Y_{1}+1: \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 / X_{1}\right] \longrightarrow A\left[Y_{0}, Y_{1}, 1 /\left(\lambda Y_{0}+1\right), 1 /\left(\pi Y_{1}+1\right)\right] .
\end{aligned}
$$

Now we pass to the second step.
Let \mathcal{E}_{j} denote the S-group $\mathcal{E}^{\left(\lambda, \pi j ; F_{j-1}\right)}$. Note that $\mathcal{E}_{1}=q^{(\lambda)} \times{ }_{s^{\mathcal{G}^{(\mu)}} \text {. By }}$ Lemma 2.7.1, for j with $1 \leqq j \leqq m-1$,

$$
\begin{aligned}
\varphi_{j}(X, Y): & =\left[F_{j-1}(X) F_{j-1}(Y)-F_{j-1}(\lambda X Y+X+Y)\right] / \pi^{j} \bmod \cdot \mathfrak{m} \\
& =G_{j}(X+Y) / \pi^{j}-G_{j}(X) / \pi^{j}-G_{j}(Y) / \pi^{j} \bmod \cdot \mathfrak{m},
\end{aligned}
$$

and therefore, the closed fiber $\left(\mathcal{E}_{j}\right)_{k}$ is isomorphic to $\left(G_{a, k}\right)^{2}$. Let Γ_{j} be the closed k-subgroup of $\left(\mathcal{E}_{j}\right)_{k}$ defined by the ideal $\left(X_{1}-G_{j}\left(X_{0}\right) / \pi^{j}\right)$ in

$$
k\left[X_{0}, X_{1}\right]=A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\pi^{j} X_{1}+F_{j-1}\left(X_{0}\right)\right)\right] \otimes_{A} k
$$

Then Γ_{j} is isomorphic to $\boldsymbol{G}_{a, k}$, and \mathcal{E}_{j+1} is the Néron blow-up of Γ_{j} in \mathcal{E}_{j}. The canonical homomorphism $\mathcal{E}_{j+1} \rightarrow \mathcal{E}_{j}$ is defined by

$$
\begin{aligned}
& X_{0} \longmapsto Y_{0}, X_{1} \longmapsto \pi Y_{1}+G_{j}\left(Y_{0}\right) / \pi^{j}: \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\pi^{j} X_{1}+F_{j-1}\left(X_{0}\right)\right] \longrightarrow\right. \\
& A\left[Y_{0}, Y_{1}, 1 /\left(\lambda Y_{0}+1\right), 1 /\left(\pi^{j+1} Y_{1}+F_{j}\left(Y_{0}\right)\right] .\right.
\end{aligned}
$$

Summing up the above argument, we conclude that the S-homomorphism $\alpha^{(\lambda, \mu ; F)}: \mathcal{E}^{(\lambda, \mu ; F)} \rightarrow\left(\boldsymbol{G}_{m, S}\right)^{2}$ is obtained by the sequence of Néron blow-ups

$$
\begin{aligned}
\mathcal{E}^{(\lambda, \mu ; F)} & =\mathcal{E}_{m} \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_{1} \longrightarrow \mathcal{G}_{n} \\
& =\mathcal{G}^{(\lambda)} \times{ }_{s} \boldsymbol{G}_{m, s} \longrightarrow \mathcal{G}_{n-1} \longrightarrow \cdots \longrightarrow \mathcal{G}_{1} \longrightarrow\left(\boldsymbol{G}_{m, s}\right)^{2} .
\end{aligned}
$$

RFMARK 2.9. We can see that

$$
\mathcal{E}^{(\lambda, \mu ; F)} \cong \mathcal{E}_{m} \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_{1} \longrightarrow \mathcal{G}^{(\lambda)} \times{ }_{S} \boldsymbol{G}_{m, S}
$$

and

$$
\mathcal{G}^{(\lambda)} \times{ }_{s} \boldsymbol{G}_{m, s}=\mathcal{G}_{n} \longrightarrow \mathcal{G}_{n-1} \times{ }_{s} \boldsymbol{G}_{m, s} \longrightarrow \cdots \longrightarrow \mathfrak{G}_{1} \times{ }_{s} \boldsymbol{G}_{m, s} \longrightarrow\left(\boldsymbol{G}_{m, s}\right)^{2}
$$

are standard blow-up sequences in the sense of [9], p. 552, Remark 1. However,

$$
\begin{aligned}
\mathcal{E}^{(\lambda, \mu ; F)} & =\mathcal{E}_{m} \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_{1} \longrightarrow \mathcal{G}_{n} \\
& =\mathcal{G}^{(\lambda)} \times{ }_{s} \boldsymbol{G}_{m, s} \longrightarrow \mathcal{G}_{n-1} \longrightarrow \cdots \longrightarrow \mathcal{G}_{1} \longrightarrow\left(\boldsymbol{G}_{m, s}\right)^{2}
\end{aligned}
$$

is not so.
Remark 2.10. One may note that

$$
0 \longrightarrow \mathcal{G}^{\left(\pi^{j+1}\right)} \longrightarrow \mathcal{E}^{\left(\lambda, \pi^{j+1} ; F_{j}\right)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0
$$

is the Néron blow-up of the exact sequence of k-groups

$$
0 \longrightarrow\{0\} \longrightarrow \Gamma_{j} \longrightarrow \boldsymbol{G}_{a} \longrightarrow 0
$$

in

$$
0 \longrightarrow \mathcal{G}^{(\pi j)} \longrightarrow \mathcal{E}^{\left(\lambda, \mu^{j} ; F_{j-1}\right)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0
$$

(cf. Theorem 1.9).

3. $\operatorname{Ext}_{\mathcal{S}}\left(g^{(\lambda)}, g^{(\mu)}\right)$

In this section, we suppose that the residue field k is of characteristic $p>0$. We fix $\lambda, \mu \in \mathfrak{m}-\{0\}$. Put $m=v(\mu)$.

Lemma 3.1. (Comparison lemma) Let $F(X)=1+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}$ be a polynomial in $A[X]$ with $c_{i} \in \mathfrak{m}$. The following conditions are equivalent.
(a) $F(X)$ satisfies the condition $\left(\#_{m}\right)$.
(b) $c_{p r-1} c_{j-p r-1} \equiv \sum_{i=0}^{p r-1}\binom{j-p^{r-1}+i}{j-2 p^{r-1}+2 i}\binom{j-2 p^{r-1}+2 i}{i} c_{j-p r-1+i} \lambda^{p r-1-i} \bmod . \mathfrak{m}^{m}$ if $j=p^{r}>1$, and

$$
c_{p r} c_{j-p r} \equiv \sum_{i=0}^{p^{r}}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p^{r-i} \bmod \cdot \mathfrak{m}^{m}}
$$

if $\operatorname{ord}_{p} j=r$ and $j \neq p^{r}$.
Proof. (a) $\Rightarrow(\mathrm{b})$: It is enough to remark that

$$
\left.\left.\begin{array}{rl}
F(X) F(Y)-F(\lambda X Y+X+Y) \\
= & \sum_{l \geq 1}^{k \geq 1}\{ \\
\left\{c_{k} c_{k+l}-\sum_{i=0}^{k}\binom{k+l+i}{l+2 i}\binom{l+2 i}{i} c_{k+l+i} \lambda^{k-i}\right.
\end{array}\right\}(X Y)^{k}\left(X^{l}+Y^{l}\right)\right)
$$

Here we understand that $c_{f}=0$ if $f>n$ and $c_{0}=1$.
(b) $\Rightarrow(\mathrm{a})$: Assume that $F(X) F(Y) \not \equiv F(\lambda X Y+X+Y)$ mod. \mathfrak{m}^{m}. Take the greatest s such that $F(X) F(Y) \equiv F(\lambda X Y+X+Y)$ mod. ${ }^{s}$. Choose k, l such that

$$
c_{k} c_{k+l}-\sum_{i=0}^{k}\binom{k+l+i}{l+2 i}\binom{l+2 i}{i} c_{k+l+i} \lambda^{k-i} \not \equiv 0 \text { mod. } \mathfrak{m}^{s+1} .
$$

Put

$$
j=2 k+l
$$

and

$$
g(X, Y):=[F(X) F(Y)-F(\lambda X Y+X+Y)] / \pi^{s} \bmod . \mathfrak{m} .
$$

Let $g_{j}(X, Y)$ denote the homogeneous component of degree j of $g(X, Y)$. Then

1) $g_{j}(X, Y)=g_{j}(Y, X)$;
2) $g_{j}(X+Y, Z)+g_{j}(X, Y)=g_{j}(X, Y+Z)+g_{j}(Y, Z)(c f .2 .6)$.

By Lazard's comparison lemma ([2], lemma 3),

$$
g_{j}(X, Y)= \begin{cases}c\left\{(X+Y)^{j}-X^{j}-Y^{j}\right\} & \text { if } j \text { is not a power of } p . \\ \frac{c}{p}\left\{(X+Y)^{j}-X^{j}-Y^{j}\right\} & \text { if } j \text { is a power of } p .\end{cases}
$$

where c is a constant $\neq 0$. Hence the coefficient of $X^{p^{r-1}} Y^{j-p^{r-1}}+X^{j-p r-1} Y^{p r-1}$ (resp. $X^{p r} Y^{j-p r}+X^{j-p r} Y^{p r}$) does not vanish when $j=p^{r}>1$ (resp. ord ${ }_{p} j=r$ and $j \neq p^{r}$); that is to say,

$$
c_{p r-1} c_{j-p r-1}-\sum_{i=0}^{p r-1}\binom{j-p^{r-1}+i}{j-2 p^{r-1}+2 i}\binom{j-2 p^{r-1}+2 i}{i} c_{j-p r-1+i} \lambda^{p r-1-i} \neq 0
$$

when $j=p^{r}>1$, and

$$
c_{p r} c_{j-p r}-\sum_{i=0}^{p^{r}}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p r-i} \not \equiv 0 \bmod \cdot \mathfrak{m}^{s+1}
$$

when $\operatorname{ord}_{p} j=r$ and $j \neq p^{r}$. Note that $s+1 \leqq m$.
Definition 3.2. Let $a_{0}, a_{1}, \cdots, a_{\imath} \in \mathfrak{m}$. We define the polynomial $F\left(\lambda, a_{0}\right.$, $\left.a_{1}, \cdots, a_{l} ; X\right)=1+\sum_{i \leqslant 1} c_{i} X^{i}$ in $A[X]$ by

$$
c_{1}=a_{0}, c_{p}=a_{1}, \cdots, c_{p l}=a_{\iota}
$$

and

$$
c_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} c_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p^{r-i}}\right\}
$$

if $\operatorname{ord}_{p j} j=r$ and $j \neq p^{r}$.
Example 3.3. (1) $p=2$.

$$
F\left(\lambda, a_{0}, a_{1} ; X\right)=1+a_{0} X+a_{1} X^{2}+a_{1}\left(a_{0}-2 \lambda\right) X^{3} / 3 .
$$

(2) $p=3$.

$$
\begin{aligned}
& F\left(\lambda, a_{0}, a_{1} ; X\right)=1+a_{0} X+a_{0}\left(a_{0}-\lambda\right) X^{2} / 2+a_{1} X^{3} \\
& \quad+a_{1}\left(a_{0}-3 \lambda\right) X^{4} / 4+a_{1}\left(a_{0}-3 \lambda\right)\left(a_{0}-4 \lambda\right) X^{5} / 20 \\
& \quad+a_{1}\left\{\left(a_{1}-\lambda^{3}\right)-\frac{3}{2}\left(a_{0}-2 \lambda\right)\left(a_{0}-3 \lambda\right) \lambda\right\} X^{6} / 20
\end{aligned}
$$

$$
\begin{aligned}
& +a_{1}\left\{\left(a_{1}-\lambda^{3}\right)-\frac{3}{2}\left(a_{0}-2 \lambda\right)\left(a_{0}-3 \lambda\right) \lambda\right\}\left(a_{0}-6 \lambda\right) X^{7} / 140 \\
& +a_{1}\left\{\left(a_{1}-\lambda^{3}\right)-\frac{3}{2}\left(a_{0}-2 \lambda\right)\left(a_{0}-3 \lambda\right) \lambda\right\}\left(a_{0}-6 \lambda\right)\left(a_{0}-7 \lambda\right) X^{8} / 1120
\end{aligned}
$$

REMARK 3.4. The coefficient c_{i} of X^{i} in $F\left(\lambda, a_{0}, a_{1}, \cdots, a_{i} ; X\right)$ can been seen as a polynomial in $\lambda, a_{0}, a_{1}, \cdots, a_{r}\left(r=\left[\log _{p} i\right]\right)$ with coefficients in $\mathbb{Z}_{(p)}$.

By the definition, we obtain immediately the following assertion.
Corollary 3.5. Let $F(X)=F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)=1+\sum_{i \geq 1} c_{i} X^{i}$. The following conditions are equivalent.
(a) $F(X)$ satisfies the condition $\left(\#_{m}\right)$.
(b) $c_{p r} c_{p r+1-p r} \equiv \sum_{i=0}^{p^{r}}\binom{p^{r+1}-p^{r}+i}{p^{r+1}-2 p^{r}+2 i}\binom{p^{r+1}-2 p^{r}+2 i}{i} c_{p^{r+1}-p^{r+i}} \lambda^{p^{r-i} \bmod \cdot \mathrm{~m}^{m}}$ for each $r \geqq 0$.

EXAMPLE 3.6. (1) $p=2 . \quad F\left(\lambda, a_{0}, a_{1} ; X\right)$ satisfies the condition (\# $\#_{m}$) if and only if $a_{0}\left(a_{0}-\lambda\right) \equiv 2 a_{1}$ and $a_{1}\left(a_{1}-\lambda^{2}\right)-2 a_{1}\left(a_{0}-2 \lambda\right) \lambda \equiv 0 \bmod . \mathrm{m}^{m}$.
(2) $\quad p=3$. $F\left(\lambda, a_{0}, a_{1} ; X\right)$ satisfies the condition $\left(\# m_{m}\right)$ if and only if $a_{0}\left(a_{0}-\lambda\right)\left(a_{0}-2 \lambda\right) \equiv 6 a_{1} \quad$ and $\quad a_{1}\left\{\left(a_{1}-\lambda^{3}\right)-(3 / 2)\left(a_{0}-2 \lambda\right)\left(a_{0}-3 \lambda\right) \lambda\right\}\left(a_{0}-20 \lambda^{3}\right)-3 a_{1}$ $\left\{\left(a_{1}-\lambda^{3}\right)-(3 / 2)\left(a_{0}-2 \lambda\right)\left(a_{0}-3 \lambda\right) \lambda\right\}\left(a_{0}-6 \lambda\right)\left(a_{0}-2 \lambda\right) \lambda \equiv 0 \bmod . \mathfrak{m}^{m}$.

REMARK 3.7. In [5], $\phi(a, \lambda ; X)$ denotes the polynomial

$$
1+a X+\frac{a(a-\lambda)}{2} X^{2}+\cdots+\frac{a(a-\lambda) \cdots(a-(p-2) \lambda)}{(p-1)!} X^{p-1}
$$

(Here we employ a slightly different notation.) We see readily that $F(\lambda, a ; X)$ $=\phi(a, \lambda ; X)$ and that $F(\lambda, a ; X)=\phi(a, \lambda ; X)$ satisfies the condition (\#m) if and only if $a(a-\lambda) \cdots(a-(p-1) \lambda) \equiv 0 \bmod . \mathfrak{m}^{m}$. (cf. [5], 3.7 and 3.9)

The following assertions also can be seen without difficulty.

Corollary 3.8. Suppose that $F(X)=F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)$ satisfies the condition $\left(\#_{m}\right)$.
(1) The closed fiber of $\mathcal{E}^{(\lambda, \mu ; F)}$ is the extension of $\boldsymbol{G}_{a, k}$ by $\boldsymbol{G}_{a, k}$, defined by the 2-cocycle $\sum_{j \geq 1} \xi_{j} \frac{X^{p^{j}}+Y^{p^{j}}-(X+Y)^{p^{j}}}{p}$, where

$$
\begin{aligned}
\xi_{j}= & -\frac{1}{\mu}\left\{c_{p^{j-1} c_{p j-p j-1}}\right. \\
& \left.-\sum_{i=0}^{p j-1}\binom{p^{j}-p^{j-1}+i}{p^{j}-2 p^{j-1}+2 i}\binom{p^{j}-2 p^{j-1}+2 i}{i} c_{p j-p j-1+i} \lambda^{p^{j-1-i}}\right\} \text { mod. } \mathfrak{m} .
\end{aligned}
$$

(2) If the closed fiber of $\mathcal{E}^{(\lambda, \mu ; F)}$ is isomorphic to $\left(\boldsymbol{G}_{a, k}\right)^{2}, F(X)$ satisfies the condition ($\#_{m+1}$).

Lemma 3.9. If $a_{0}, a_{1}, \cdots, a_{l} \in \mathfrak{m}$ and $b_{0}, b_{1}, \cdots, b_{l} \in \mathfrak{m}^{s}$, then

$$
F\left(\lambda, a_{0}+b_{0}, a_{1}+b_{1}, \cdots, a_{l}+b_{l} ; X\right) \equiv F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)+\sum_{0 \leqslant i \leq l} b_{i} X^{p^{i}}
$$

$$
\text { mod. } \mathfrak{m}^{s+1}
$$

Proof. Let

$$
F\left(\lambda, a_{0}+b_{0}, a_{1}+b_{1}, \cdots, a_{l}+b_{l} ; X\right)=1+\sum_{i=1} \tilde{c}_{i} X^{i}
$$

and

$$
F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)=1+\sum_{i \geqslant 1} c_{i} X^{i} .
$$

We first note that, by the definition,
if $j=p^{r} \geqq 1$.

$$
\tilde{c}_{j}=a_{r}+b_{r}=c_{j}+b_{r}
$$

Now let j be an integer >0, which is not a power of p. We show that $\tilde{c}_{j} \equiv c_{j} \bmod . \mathfrak{m}^{s+1}$, assuming that $\tilde{c}_{i} \equiv c_{i} \bmod . \mathfrak{m}^{s+1}$ if $i<j$ and i is not a power of p. Put $r=\operatorname{ord}_{p} j$. Then, by the defintion,

$$
\tilde{c}_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{\tilde{c}_{p r c} \tilde{c}_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} \tilde{c}_{j-p r+i} 2^{p r-i}\right\}
$$

and

$$
c_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} c_{j-p r} \sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p^{r-i}}\right\} .
$$

Obviously, $j-p^{r}+i\left(1 \leqq i \leqq p^{r}-1\right)$ are not powers of p.
Case 1: $j-p^{r}$ is a power of p. Put $j-p^{r}=p^{\nu}$. Then

$$
\begin{aligned}
& \tilde{c}_{j}= \frac{1}{\binom{p^{\nu}+p^{r}}{p^{r}}}\left\{\tilde{c}_{p_{r} \tilde{c}_{p^{\nu}}-} \sum_{i=0}^{p r-1}\binom{p^{\nu}+i}{p^{\nu}-p^{r}+2 i}\binom{p^{\nu}-p^{r}+2 i}{i} \tilde{c}_{p^{\nu+i}} \lambda^{p^{r-i}}\right\} \\
&=\frac{1}{\binom{p^{\nu}+p^{r}}{p^{r}}}\left\{\left(c_{\left.p^{r}+b_{r}\right)\left(c_{p^{\nu}}+b_{\nu}\right)-\binom{p^{\nu}}{p^{\nu}-p^{r}}\left(c_{\left.p^{\nu}+b_{\nu}\right) \lambda^{p r}}\right.} \begin{array}{r}
\left.-\sum_{i=1}^{p r-1}\binom{p^{\nu}+i}{p^{\nu}-p^{r}+2 i}\binom{p^{\nu}-p^{r}+2 i}{i} \tilde{c}_{p^{\nu+i}} \lambda^{p^{r-i}}\right\}
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\binom{p^{\nu}+p^{r}}{p^{r}}}\left\{b_{r} b_{\nu}+\left(c_{p r}-\binom{p^{\nu}}{p^{\nu}-p^{r}} \lambda^{p^{r}}\right) b_{\nu}+c_{p^{\nu}+p r} b_{r}+c_{p r} c_{p^{\nu}+p^{2}}\right. \\
& \left.-\binom{p^{\nu}}{p^{\nu}-p^{r}} c_{p^{\nu}} \lambda^{p^{r}}-\sum_{i=1}^{p r-1}\binom{p^{\nu}+i}{p^{\nu}-p^{r}+2 i}\binom{p^{\nu}-p^{r}+2 i}{i} \tilde{c}_{p^{\nu+i} \lambda^{p^{r-i}}}\right\} .
\end{aligned}
$$

By the hypothesis of induction, $\tilde{c}_{p^{\nu+i}} \equiv c_{p^{\nu+i}}$ mod. \mathfrak{m}^{s+1} for each $i\left(1 \leqq i \leqq p^{r}-1\right)$. Moreover, $b_{r}, b_{\nu+r} \in \mathfrak{m}^{s}$ and $c_{p^{\nu}}, c_{p^{\nu}+p r}, \lambda \in \mathfrak{m}$. Hence we obtain

$$
\begin{aligned}
& \frac{1}{\binom{p^{\nu}+p^{r}}{p^{r}}}\left\{b_{r} b_{\nu}+\left(c_{p r}-\binom{p^{\nu}}{p^{\nu}-p^{r}} \lambda^{p^{r}}\right) b_{\nu}+c_{p^{\nu}+p r} b_{r}+c_{p r} c_{p^{\nu}+p r}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \equiv \frac{1}{\binom{p^{\nu}+p^{r}}{p^{r}}}\left\{c_{p r} c_{p^{\nu}+p r}-\binom{p^{\nu}}{p^{\nu}-p^{r}} c_{p^{\nu} \lambda^{p r}}\right. \\
& \left.-\sum_{i=1}^{p r-1}\binom{p^{\nu}+i}{p^{\nu}-p^{r}+2 i}\binom{p^{\nu}-p^{r}+2 i}{i} c_{p^{\nu+i} \lambda^{p^{r-i}}}\right\} \bmod . \mathfrak{m}^{s+1},
\end{aligned}
$$

and therefore $\tilde{c}_{j} \equiv c_{j} \bmod . \mathfrak{m}^{s+1}$.
Case 2: $j-p^{r}$ is not a power of p.

$$
\begin{aligned}
\tilde{c}_{j} & =\frac{1}{\binom{j}{p^{r}}}\left\{\tilde{c}_{p r c} \tilde{c}_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} \tilde{c}_{j-p r+i} \lambda^{p r-i}\right\} \\
& =\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} \tilde{c}_{j-p r}+b_{r} \tilde{c}_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} \tilde{c}_{j-p r+i} \lambda^{p^{r-i}}\right\} .
\end{aligned}
$$

By the hypothesis of induction, $\tilde{c}_{j-p r+i} \equiv c_{j-p r+i}$ mod. \mathfrak{m}^{s+1} for each $i\left(0 \leqq i \leqq p^{r}-1\right)$. Moreover, $b_{r} \in \mathfrak{m}^{s}$ and $c_{p r}, \tilde{c}_{j-p r}, \lambda \in \mathfrak{m}$. Hence we obtain

$$
\begin{aligned}
& \frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} \tilde{c}_{j-p r}+b_{r} \tilde{c}_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} \tilde{c}_{j-p r+i} \lambda^{p^{r-i}}\right\} \\
\equiv & \frac{1}{\binom{j}{p^{r}}}\left\{c_{p r c_{j-p r}-}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{r-i}\right\} \bmod \cdot \mathfrak{m}^{s+1},
\end{aligned}
$$

and therefore $\tilde{c}_{j} \equiv c_{j} \bmod . \mathfrak{m}^{s+1}$.
Theorem 3.10. Let $F(X)$ be a polynomial in $A[X]$, satisfying the condition $\left(\#_{m}\right)$. Then there exist $a_{0}, a_{1}, \cdots, a_{\imath} \in \mathfrak{m}$ such that $F(X) \equiv F\left(\lambda, a_{0}, a_{1}, \cdots, a_{\imath} ; X\right)$
$\bmod . \mathfrak{m}^{m}$.
Proof. We prove the theorem by induction on m.
Note first that $F(X) \equiv 1$ mod. \mathfrak{m}. Assume that there exist $a_{0}, a_{1}, \cdots a_{l} \in \mathfrak{m}$ such that $F(X) \equiv F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)$ mod. ${ }^{s}$. (We take l so that $\operatorname{deg} F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right) \geqq \operatorname{deg} F(X)$.) Put

$$
\tilde{F}(X)=F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)
$$

and

$$
\begin{aligned}
& F_{s-1}(X)=\sum_{v\left(c_{j}\right) \leq s-1} c_{j} X^{j}, G_{s}(X)=\sum_{v\left(c_{j}\right)=s} c_{j} X^{j}, \\
& \tilde{F}_{s-1}(X)=\sum_{\left.v \tilde{c}_{j}\right) \leqslant s-1} \tilde{c}_{j} X^{j}, \tilde{G}_{s}(X)=\sum_{v\left(\tau_{j}\right)=s} \tilde{c}_{j} X^{j},
\end{aligned}
$$

where

$$
F(X)=\sum_{j \geq 0} c_{j} X^{j}, \tilde{F}(X)=\sum_{j \geq 0} \tilde{c}_{j} X^{j} .
$$

Then $F_{s-1}(X) \equiv \widetilde{F}_{s-1}(X)$ mod. \mathfrak{m}^{s} and $F_{s-1}(X), \widetilde{F}_{s-1}(X)$ satisfy (\#s).
Let $\mathcal{E}=\mathcal{E}^{\left(\lambda, \pi^{s} ; F_{s-1}\right)}$ and $\tilde{\mathcal{E}}=\mathcal{E}^{\left(\lambda, \pi^{s} ; \tilde{F}_{s-1}\right)}$. We define an S-isomorphism β : $\mathcal{E} \leadsto \tilde{e}$ by

$$
\begin{aligned}
& Y_{0} \longmapsto X_{0}, Y_{1} \longmapsto X_{1}+\frac{1}{\pi^{s}}\left[F\left(X_{0}\right)-\tilde{F}\left(X_{0}\right)\right]: \\
& A\left[Y_{0}, Y_{1}, 1 /\left(\lambda Y_{0}+1\right), 1 /\left(\pi^{s} Y_{1}+\widetilde{F}_{s-1}\left(Y_{0}\right)\right)\right] \longrightarrow \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\pi^{s} X_{1}+F_{s-1}\left(X_{0}\right)\right)\right] .
\end{aligned}
$$

Since the closed fibers $\tilde{\mathcal{E}}_{k} \cong \mathcal{E}_{k}$ are isomorphic to $\left(\mathcal{G}_{a, k}\right)^{2}, \tilde{F}(X)$ satisfies (\# ${ }_{s+1}$) (cf. Corollary 3.8), and therefore

$$
\tilde{F}_{s-1}(X) \tilde{F}_{s-1}(Y)-\tilde{F}_{s-1}(\lambda X Y+X+Y) \equiv \tilde{G}_{s}(X+Y)-\tilde{G}_{s}(X)-\tilde{G}_{s}(Y) \bmod \cdot \mathfrak{m}^{s+1}
$$

(cf. Lemma 2.7.1.). We define now k-isomorphisms $\alpha: \mathcal{E}_{k} \simeq\left(\boldsymbol{G}_{a, k}\right)^{2}$ and $\tilde{\alpha}: \tilde{\mathcal{E}}_{k}$ $\xrightarrow{\sim}\left(G_{a, k}\right)^{2}$ by

$$
\begin{aligned}
& T_{0} \longmapsto X_{0}, T_{1} \longmapsto\left(X_{1}-G_{s}\left(X_{0}\right) / \pi^{s}\right): \\
& k\left[T_{0}, T_{1}\right] \longrightarrow k\left[X_{0}, X_{1}\right]=A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\pi^{s} X_{1}+F_{s-1}\left(X_{0}\right)\right)\right] \otimes_{A} k
\end{aligned}
$$

and by

$$
\begin{aligned}
T_{0} \longmapsto Y_{0}, T_{1} \longmapsto\left(Y_{1}-\tilde{G}_{s}\left(Y_{0}\right) / \pi^{s}\right): \\
k\left[T_{0}, T_{1}\right] \longrightarrow k\left[Y_{0}, Y_{1}\right]=A\left[Y_{0}, Y_{1}, 1 /\left(\lambda Y_{0}+1\right), 1 /\left(\pi^{s} Y_{1}+\widetilde{F}_{s-1}\left(Y_{0}\right)\right)\right] \otimes_{A} k
\end{aligned}
$$

respectively. Then $\tilde{\alpha} \circ \beta_{k} \circ \alpha^{-1}$ is defined by

$$
\begin{gathered}
T_{0} \longmapsto T_{0}, T_{1} \longmapsto T_{1}+\left[G_{s}\left(T_{0}\right)-\tilde{G}_{s}\left(T_{0}\right)+F_{s-1}\left(T_{0}\right)-\tilde{F}_{s-1}\left(T_{0}\right)\right] / \pi^{s} \\
=T_{1}+\left[F\left(T_{0}\right)-\tilde{F}\left(T_{0}\right)\right] / \pi^{s}
\end{gathered}
$$

Hence $T_{0} \mapsto\left[F\left(T_{0}\right)-\tilde{F}\left(T_{0}\right)\right] / \pi^{s}$ mod. \mathfrak{m} defines a k-endomorphism of $\boldsymbol{G}_{a, k}$, and therefore, there exist $b_{0}, b_{1}, \cdots, b_{l} \in \mathfrak{m}^{s}$ such that

$$
F(X)-\tilde{F}(X) \equiv \sum_{0 \leq i \leq l} b_{i} X^{p^{i}} \bmod . \mathfrak{m}^{s+1}
$$

By Lemma 3.9, we obtain

$$
F(X) \equiv \tilde{F}(X)+\sum_{0 \leq i \leq l} b_{i} X^{p^{i}} \equiv F\left(\lambda, a_{0}+b_{0}, a_{1}+b_{1}, \cdots, a_{l}+b_{l} ; X\right) \text { mod. } \mathfrak{m}^{s+1}
$$

and we are done.
3.11. Let $\mathfrak{M}_{(\lambda, \mu)}$ be the subset of $\left(\mathfrak{m} / \mathfrak{m}^{m}\right)^{(N)}$ formed by the elements (a_{0}, a_{1}, \cdots) such that

$$
\begin{aligned}
& a_{r} c_{p r+1-p r}\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) \equiv \\
& \sum_{i=0}^{p^{r}}\binom{p^{r+1}-p^{r}+i}{p^{r+1}-2 p^{r}+2 i}\binom{p^{r+1}-2 p^{r}+2 i}{i} c_{p r+1-p r+i}\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) \lambda^{p^{r-i}} \bmod \cdot \mathfrak{m}^{m}
\end{aligned}
$$

for each $r \geqq 0$. Here $c_{j}\left(a_{0}, a_{1}, \cdots, a_{r-1}\right)$ is the polynomial defined by the coefficient of X^{j} in the expansion of $F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l}: X\right)$ (cf. Def. 3.2).

We define a law of multiplication on $\mathfrak{M}_{(\lambda, \mu)}$ by

$$
\begin{aligned}
& \left(a_{0}, \cdots, a_{r}, \cdots\right)\left(b_{0}, \cdots, b_{r}, \cdots\right)= \\
& \left(a_{0}+b_{0}, \cdots, a_{r}+b_{r}+\sum_{i=1}^{p_{r-1}} c_{i}\left(a_{0}, a_{1}, \cdots, a_{r-1}\right) c_{p r-i}\left(b_{0}, b_{1}, \cdots, b_{r-1}\right), \cdots\right) .
\end{aligned}
$$

Then $\mathfrak{M}_{(\lambda, \mu)}$ is isomorphic to the subgroup of the multiplicative group $\left(A / \mathfrak{M}^{m}[X]\right)^{x}$, formed by the polynomials $F(X)$ such that $F(X) F(Y)=$ $F(\lambda X Y+X+Y)$.

Moreover, let $\tilde{\mathfrak{M}}_{(\lambda, \mu)}$ denote the quotient of $\mathfrak{M}_{(\lambda, \mu)}$ by the subgroup generated by $(\lambda, 0,0, \cdots)$. By [5], Cor. 3.6, $\tilde{\mathfrak{M}}_{(\lambda, \mu)}$ is isomorphic to $\operatorname{Ext}_{S}^{1}\left(q^{(\lambda)}, q^{(\mu)}\right)$.

4. Examples

In this section, we suppose that the residue field k is of characteristic $p>0$.
EXAMPLE 4.1. Suppose that $\mu \mid p$ and $v(\mu)=m$. Let j be an integer >1, which is not a power of p. Put $r=\operatorname{ord}_{p} j$. The relation

$$
c_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r} c_{j-p r}-\sum_{i=0}^{p r-1}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p^{r-i}}\right\}
$$

implies

$$
c_{j} \equiv \frac{1}{\binom{j}{p^{r}}}\left\{c_{\left.p r c_{j-p r}-\left(\frac{j}{p^{r}}-1\right) c_{j-p r} \lambda^{p r}\right\} \bmod \cdot \mathfrak{m}^{m}}\right.
$$

(Note that $\binom{k p^{r}}{p^{r}} \equiv k$ mod. p and $\binom{k p^{r}+i}{p^{r}-i} \equiv 0$ mod. p for $i, 1 \leqq i \leqq p^{r}-1$.) Hence we obtain

$$
c_{k} \equiv \prod_{r=0}^{l} \frac{a_{r}\left(a_{r}-\lambda^{p r}\right) \cdots\left(a_{r}-\left(n_{r}-1\right) \lambda^{p^{r}}\right)}{n_{r}!} \bmod \cdot \mathfrak{m}^{m},
$$

where $k=\sum_{r=0}^{l} n_{r} p^{r}$ is the p-adic expansion of k, and therefore

$$
F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right) \equiv \phi\left(a_{0}, \lambda ; X\right) \phi\left(a_{1}, \lambda^{p} ; X^{p}\right) \cdots \phi\left(a_{l}, \lambda^{p l} ; X^{p l}\right) \bmod . \mathfrak{m}^{m}
$$

Moreover, the congruence relation

$$
c_{p r} c_{p r+1-p r} \equiv \sum_{i=0}^{p^{r}}\binom{p^{r+1}-p^{r}+i}{p^{r+1}-2 p^{r}+2 i}\binom{p^{r+1}-2 p^{r}+2 i}{i} c_{p r+1-p^{r+i}} \lambda^{p r-i} \bmod . \mathfrak{m}^{m}
$$

reads

$$
c_{p r} c_{p r+1-p r} \equiv(p-1) c_{p r+1-p r} \lambda^{p^{r}} \bmod \cdot \mathfrak{m}^{m} .
$$

Hence we have

$$
a_{r}\left(a_{r}-\lambda^{p r}\right)\left(a_{r}-2 \lambda^{p r}\right) \cdots\left(a_{r}-(p-1) \lambda^{p r}\right) /(p-1)!\equiv 0 \bmod \cdot \mathfrak{m}^{m}
$$

and therefore

$$
a_{r}^{p}-\lambda^{p r(p-1)} a_{r} \equiv 0 \bmod \cdot \mathfrak{m}^{m} .
$$

It follows that $F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)$ satisfies the condition ($\#_{m}$) if and only if $a_{r}^{p}-\lambda^{p^{r}(p-1)} a_{r} \equiv 0$ mod. \mathfrak{m}^{m} for each $r \geqq 0$.

The closed fiber of $\mathcal{E}^{(\lambda, \mu ; F)}$ is the extension of $\boldsymbol{G}_{a, k}$ by $\boldsymbol{G}_{a, k}$, defined by the 2-cocycle $\sum_{j \geq 1} \xi_{j} \frac{X^{p^{j}}+Y^{p^{j}}-(X+Y)^{p^{j}}}{p}$, where $\xi_{j}=\frac{1}{\mu}\left\{a_{j-1}^{p}-\lambda^{p^{j-1}(p-1)} a_{j-1}\right\} \bmod . \mathfrak{m}$.

Thus we recover [5], Cor. 3.8 and Th. 4.4, under the assumption that $\mu \mid p$.
Example 4.2. Suppose that $\mu \mid \lambda$ and $v(\mu)=m$. Let j be an integer >1, which is not a power of p. Put $r=\operatorname{ord}_{p} j$. The relation

$$
c_{j}=\frac{1}{\binom{j}{p^{r}}}\left\{c_{p r c_{j-p r}-\sum_{i=0}^{p r-1}}\binom{j-p^{r}+i}{j-2 p^{r}+2 i}\binom{j-2 p^{r}+2 i}{i} c_{j-p r+i} \lambda^{p r-i}\right\}
$$

implies

$$
c_{j} \equiv \frac{1}{\binom{j}{p^{r}}} c_{p r} c_{j-p r} \bmod \cdot \mathfrak{m}^{m}
$$

Hence we obtain

$$
c_{k} \equiv \prod_{r=0}^{l} \frac{\left(p^{r}!\cdot a_{r}\right)^{n} r}{k!} \bmod \cdot \mathfrak{m}^{m}
$$

where $k=\sum_{r=0}^{l} n_{r} p^{r}$ is the p-adic expansion of k.
Moreover, the congruence relation

$$
c_{p r} c_{p r+1-p r} \equiv \sum_{i=0}^{p^{r}}\binom{p^{r+1}-p^{r}+i}{p^{r+1}-2 p^{r}+2 i}\binom{p^{r+1}-2 p^{r}+2 i}{i} c_{p r+1-p r+i} \lambda^{p^{r-i}} \bmod . \mathfrak{m}^{m}
$$

reads

$$
c_{p r} r c_{p r+1-p r} \equiv\binom{p^{r+1}}{p^{r}} c_{p r+1} \bmod . \mathfrak{m}^{m}
$$

and therefore

$$
a_{r}^{p} / \sum_{i=1}^{p-2}\binom{p^{r+1}-i p^{r}}{p^{r}} \equiv\binom{p^{r+1}}{p^{r}} a_{r+1} \bmod \cdot \mathfrak{m}^{m} .
$$

Hence $F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)$ satisfies the condition $\left(\#_{m}\right)$ if and only if

$$
a_{r}^{p} \equiv \sum_{i=0}^{p-2}\binom{p^{r+1}-i p^{r}}{p^{r}} a_{r+1} \bmod \cdot \mathfrak{m}^{m}, \text { i. e. } a_{r}^{p} \equiv \frac{p^{r+1}!}{\left(p^{r}!\right)^{r}} a_{r+1} \bmod . \mathfrak{m}^{m}
$$

for each $r \geqq 0$.
The closed fiber of $\mathcal{E}^{(\lambda, \mu ; F)}$ is the extension of $\boldsymbol{G}_{a, k}$ by $\boldsymbol{G}_{a, k}$, defined by the 2-cocycle $\sum_{j=1} \xi_{j} \frac{X^{p^{j}}+Y^{p^{j}}-(X+Y)^{p^{j}}}{p}$, where

$$
\xi_{j}=-\frac{1}{\mu}\left\{a_{j-1}^{p} \sum_{i=1}^{p-2}\binom{p^{r+1}-i p^{r}}{p^{r}}-\binom{p^{r+1}}{p^{r}} a_{j}\right\} \bmod \cdot \mathfrak{m}
$$

Corollary 4.2.1. The canonical map $\operatorname{Ext}_{S}^{1}\left(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}\right) \rightarrow \operatorname{Ext}_{k}^{1}\left(\boldsymbol{G}_{a, k}, \boldsymbol{G}_{a, k}\right)$ is surjective if $p v(p)<(p-1) m$.

Proof. It is sufficient to remark that $\operatorname{Ext}_{k}^{1}\left(\boldsymbol{G}_{a, k}, \boldsymbol{G}_{a, k}\right)$ is generated by the 2-cocycles $\sum_{j \leq 1} \eta_{j} \frac{X^{p^{j}}+Y^{p^{j}}-(X+Y)^{p^{j}}}{p}, \eta_{j} \in k$ (see [6], Ch. VII, 2.7). (Compare with [5], example 3.4)

Example 4.3. Suppose that $\mu \mid p$ and $\mu \mid \lambda$. Then

$$
\phi\left(a_{r}, \lambda^{p r} ; X\right) \equiv \sum_{i=0}^{p-1}\left(a_{r} X^{p r}\right)^{i} / i!\bmod \cdot \mathfrak{m}^{m},
$$

and therefore

$$
F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right) \equiv \prod_{r=0}^{i} \sum_{i=0}^{p-1}\left(a_{r} X^{p^{r}}\right)^{i} / i!\bmod . \mathfrak{m}^{m}
$$

Moreover, $F\left(\lambda, a_{0}, a_{1}, \cdots, a_{l} ; X\right)$ satisfies the condition (\#m) if and only if $a_{r}^{p} \equiv 0$ mod. \mathfrak{n}^{m} for each $r \geqq 0$. Hence $c_{p r-i}\left(a_{0}, \cdots, a_{r-1}\right) c_{i}\left(b_{0}, \cdots, b_{r-1}\right) \equiv 0 \bmod$. \mathfrak{m}^{m} for each $r \geqq 1$ and each i with $1 \leqq i \leqq p^{r-1}$ if $\left(a_{0}, a_{1}, \cdots\right),\left(b_{0}, b_{1}, \cdots\right) \in \mathfrak{M}_{(\lambda, \mu)}$. Therefore $\mathfrak{M}_{(\lambda, \mu)}=\tilde{\mathfrak{M}}_{(\lambda, \mu)}$ is isomorphic to the additive group $\left(\mathfrak{m}^{s} / \mathfrak{m}^{m}\right)^{(N)}$, where

$$
s= \begin{cases}{[m / p]+1} & \text { if } \quad(p, m)=1 \\ m / p & \text { if } p \mid m .\end{cases}
$$

The closed fiber of $\mathcal{E}^{(\lambda, \mu ; F)}$ is the extension of $\boldsymbol{G}_{a, k}$ by $\boldsymbol{G}_{a, k}$, defined by the 2-cocycle $\sum_{j \geq 1} \xi_{j} \frac{X^{p^{j}}+Y^{p^{j}}-(X+Y)^{p^{j}}}{p}$, where $\xi_{j}=\frac{1}{\mu} a_{j-1}^{p}$ mod. m.

Corollary 4.3.1. (1) Assume that p does not divide m. Then the canonical map $\operatorname{Ext}_{S}^{1}\left(\mathcal{G}^{(\lambda)}, \mathcal{Q}^{(\mu)}\right) \rightarrow \operatorname{Ext}_{k}^{1}\left(\boldsymbol{G}_{a, k}, \boldsymbol{G}_{a, k}\right)$ is zero.
(2) Assume that p divides m. Then the canonical map $\operatorname{Ext}_{S}^{1}\left(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}\right) \rightarrow$ $\operatorname{Ext}_{k}^{1}\left(\boldsymbol{G}_{a, k}, G_{a, k}\right)$ is surjective if the residue field k is perfect.

Proof. We have only to note that the equation $X^{p} \equiv \mu a \bmod . \mathfrak{m}^{m}$ has a solution in A for any $a \in A$ if k is perfect. (cf. [5], 4.5.)

We have computed the group of extensions Ext ${ }_{S}^{1}\left(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}\right)$ of smooth affine 1-dimensional S-groups $G^{(\lambda)}$ and $G^{(\mu)}$. We conclude this article by noting that a smooth affine 2-dimensional S-group is not necessarily obtained by an extension of smooth 1 -dimensional S-groups, even though its generic fiber and its special fibre are extensions of smooth 1-dimensional groups each.
4.4. Suppose that $k \neq \boldsymbol{F}_{p}$. Let π be a uniformizing parameter of A, and let m be an integer >2. Put $\lambda=\pi^{m-1}$ and $\mu=\pi^{m}$. We choose an element $a \in A$ such that the image of a in k is not contained in $\boldsymbol{F}_{p}(\subset k)$. Then the polynomial $F(X)=1+a \lambda X$ satisfies the condition $\left(\#_{m}\right)$ (cf. Remark 3.7). Let G denote the smooth affine S-group $\mathcal{E}^{(\lambda, \mu ; F)}$:

$$
G=\operatorname{Spec} A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] .
$$

By our assumption on m, the closed fiber G_{k} is isomorphic to $\left(G_{a, k}\right)^{2}$. More precisely, the comultiplication of $k[G]=k\left[X_{0}, X_{1}\right]=A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right)\right.$, $\left.1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] \otimes_{A} k$ is defined by

$$
X_{0} \longmapsto X_{0} \otimes 1+1 \otimes X_{0}, \quad X_{1} \longmapsto X_{1} \otimes 1+1 \otimes X_{1} .
$$

Let H be the closed k-subgroup of $G_{k}=\left(\boldsymbol{G}_{a, k}\right)^{2}$ defined by the ideal $\left(X_{1}^{p}-X_{0}\right)$ in
$k[G]=k\left[X_{0}, X_{1}\right]$, and let $\beta: \tilde{G} \rightarrow G$ be the Néron blow-up of H in G. Since G is smooth over S and $H \cong \boldsymbol{G}_{a, k}$ is smooth over k, \tilde{G} is smooth over S ([9], Th. 1.7).

Under these notations, we get the following assertion.
4.4.1. Any flat 1-dimensional closed S-subgroup of \tilde{G} is not smooth.

Proof. For integers r, s, we define an injective S-homomorphism

$$
\varphi_{r, s}: \quad \boldsymbol{G}_{m, s} \longrightarrow\left(\boldsymbol{G}_{m, s}\right)^{2}
$$

by

$$
U \longmapsto T^{r}, V \longmapsto T^{s}: \quad A\left[U, U^{-1}, V, V^{-1}\right] \longrightarrow A\left[T, T^{-1}\right] .
$$

By the general theory of algebraic tori, we know that any closed K-subgroup of dimension 1 of $\left(\boldsymbol{G}_{m, K}\right)^{2}$ is the form of $\varphi_{r, s}\left(\boldsymbol{G}_{m, K}\right)$, where r, s are integers with $(r, s)=1$ or $(r, s)=(0,1),(1,0)$. We identify the generic fiber $\tilde{G}_{K}\left(\right.$ resp. $\left.G_{K}\right)$ to $\left(\boldsymbol{G}_{m, K}\right)^{2}$ via the isomorphism $\beta_{K^{\circ}} \alpha_{K}^{(\lambda, \mu ; F)}: \tilde{G}_{K} \simeq\left(G_{m, K}\right)^{2}$ (resp. $\alpha_{K}^{(\lambda, \mu ; F)}: G_{K} \simeq$ $\left.\left(G_{m, K}\right)^{2}\right)$. Let $\tilde{G}_{r, s}$ (resp. $\left.G_{r, s}\right)$ denote the flat closure of $\varphi_{r, s}\left(G_{m, K}\right)$ in \tilde{G} (resp. $G)$. We show that the closed fiber $\left(\tilde{G}_{r, s}\right)_{k}$ is isomorphic to $\boldsymbol{\alpha}_{p} \times \boldsymbol{G}_{a, k}$, which implies our assertion together with Prop. 1.6.

Note first that the subgroup $\varphi_{r, s}\left(\boldsymbol{G}_{m, K}\right)$ of $G_{K}=\left(\boldsymbol{G}_{m, K}\right)^{2}$ is defined by the ideal $\left(U^{s}-V^{r}\right)=\left(\left(\lambda X_{0}+1\right)^{s}-\left(\mu X_{1}+F\left(X_{0}\right)\right)^{r}\right)$ in $K\left[U, U^{-1}, V, V^{-1}\right]=K\left[X_{0}, X_{1}\right.$, $\left.1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right]$. By our assumption that $v(\mu)=m$ and $v(\lambda)=m-1$,

$$
\left(\lambda X_{0}+1\right)^{s}-\left(\mu X_{1}+F\left(X_{0}\right)\right)^{r} \equiv\left(s \lambda X_{0}+1\right)-\left(r a \lambda X_{0}+1\right) \equiv(s-r a) \lambda X_{0} \bmod . \mathfrak{m}^{m} .
$$

By the choice of $a, s-r a$ is invertible in A. Hence $G_{r, s}$ is defined by the ideal $\left(\left\{\left(\lambda X_{0}+1\right)^{s}-\left(\mu X_{1}+F\left(X_{0}\right)\right)^{r}\right\} / \lambda\right)$ in $A[G]=A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right]$.

Now we define an S-homomorphism $\psi_{r, s}: G^{(\mu)} \rightarrow G=\mathcal{E}^{(\lambda, \mu ; F)}$ by

$$
\begin{aligned}
X_{0} \longmapsto & \left\{(\mu X+1)^{r}-1\right\} / \lambda, X_{1} \longmapsto\left\{(\mu X+1)^{s}-a(\lambda X+1)^{r}+a-1\right\} / \mu: \\
& A\left[X_{0}, X_{1}, 1 /\left(\lambda X_{0}+1\right), 1 /\left(\mu X_{1}+F\left(X_{0}\right)\right)\right] \longrightarrow A[X, 1 /(\mu X+1)] .
\end{aligned}
$$

Then $\psi_{r, s}: G^{(\mu)} \rightarrow G$ factors through $G^{(\mu)} \rightarrow G_{r, s} \rightarrow G$, and we can see that $G^{(\mu)} \rightarrow$ $G_{r, s}$ is an isomorphism. Hence we obtain a commutative diagram of S-groups:

Since \tilde{G} is the Néron blow-up of H in $G, \tilde{G}_{r, s}$ is the Néron blow-up of $\left(G_{r, s}\right)_{k} \cap H$ in $G_{r, s}$ (cf. Cor. 1.9). As is shown above,

$$
\left\{\left(\lambda X_{0}+1\right)^{s}-\left(\mu X_{1}+F\left(X_{0}\right)\right)^{r}\right\} / \lambda \equiv(s-r a) X_{0} \equiv 0 \text { mod. } \mathfrak{m}
$$

Hence $\left(G_{r, s}\right)_{k}$ is defined by the ideal ($\left.(s-r a) X_{0}\right)$ in $k[G]=k\left[X_{0}, X_{1}\right]$, and therefore, $\left(G_{r, s}\right)_{k} \cap H$ is defined by the ideal $\left((s-r a) X_{0}, X_{1}^{p}-X_{0}\right)$ in $k[G]=$ $k\left[X_{0}, X_{1}\right]$. Hence $\left(G_{r, s}\right)_{k} \cap H$ is defined by the ideal $\left(X^{p}\right)$ in $k\left[G_{r, s}\right]=k[X]$. Then $A\left[\tilde{G}_{r, s}\right]=A[X, 1 /(\mu X+1), Y] /\left(\pi Y-X^{p}\right)$, and therefore $k\left[\tilde{G}_{r, s}\right]=$ $k[X, Y] /\left(X^{p}\right)$.

Remark 4.4.2. The exact sequence of S-groups

$$
0 \longrightarrow \tilde{G}_{0,1} \longrightarrow \tilde{G} \longrightarrow g^{(\lambda)} \longrightarrow 0
$$

is the Néron blow-up of the exact sequence of k-groups

$$
0 \longrightarrow \boldsymbol{\alpha}_{p} \longrightarrow \boldsymbol{G}_{a, k} \xrightarrow{F} \boldsymbol{G}_{a, k} \longrightarrow 0
$$

in

$$
0 \longrightarrow G_{0,1} \longrightarrow G \longrightarrow \mathcal{Q}^{(\lambda)} \longrightarrow 0
$$

(cf. Theorem 1.9).

References

[1] Anantharaman, S., Schéma en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull Soc. Math. France, Mémoire 33 (1973).
[2] Lazard, M., Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251-274.
[3] Sekiguchi, T., Oort, F. and Suwa, N., On the deformation of Artin-Schreier to Kummer. Ann. scient. Éc. Norm. Sup., 22(4) : 345-375, 1989.
[4] Sekiguchi, T. and Oort, F., On the deformations of Witt groups to tori, In: Algebraic and Topological Theories (to the memory of Dr. T. Miyata), Kinokuniya (1985), 283-298.
[5] Sekiguchi, T., On the deformation of Witt groups to tori II, Chuo Univ. Preprint series No. 1 (1988). J. of Alg. (forthcoming).
[6] Serre, J.-P., Groupes algébriques et corps de classes, Hermann, 1959.
[7] Waterhouse, W., Introduction to affine group schemes, Graduate Texts in Math. 66, Springer, 1979.
[8] Waterhouse, W., Unified Kummer-Artin-Schreier sequence, Math. Ann. 277 (1987), 447-451.
[9] Waterhouse, W. and Weisfeiler, B., One-dimensional affine group schemes, J. of Alg. 66 (1980), 550-568.
[10] Weisfeiler, B., On a case of extensions of group schemes, Trans. Amer. Math. Soc. 248 (1979), 171-189.
[11] Grothendieck, A., Le groupe de Brauer III, Dix exposés sur la cohomologie des schémas, North-Holland (1960), 46-188.
[EGA] Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique, Chapitre IV, Publ. Math. IHES, 20, 24, 28, 32 (1964-1967).

Tsutomu Sekiguchi
Department of Mathematics
Faculty of Science and Engineering
Chuo University
Kasuga 1-13-27, Bunkyo-ku
Tokyo 112, Japan
Noriyuki Suwa
Department of Mathematics
Tokyo Denki University
Kanda-nishiki-cho 2-2, Chiyoda-ku
Tokyo 101, Japan

[^0]: Received September 21, 1989. Revised January 17, 1990.

 * Partially supported by Grant-in-Aid for Scientific Research \#62540066.

