A CASE OF EXTENSIONS OF GROUP SCHEMES OVER A DISCRETE VALUATION RING

By

Tsutomu SEKIGUCHI*) and Noriyuki SUWA

Introduction.

Let $X \rightarrow Y$ be a cyclic covering of degree *m* of normal varieties over a field *k*. If *m* is prime to the characteristic of *k* and *k* contains all the *m*-th roots of unity, the Kummer theory asserts that the covering $X \rightarrow Y$ is given by a cartesian square:

$$\begin{array}{c} X & \longrightarrow & G_{m, k} \\ \downarrow & & \downarrow \\ Y & \longrightarrow & G_{m, k} \end{array}$$

where θ is the *m*-th power map and *f* is a rational map of *Y* to the multiplicative group $G_{m,k}$. On the other hand, if $m=p^n$ and $p=\operatorname{char}.k>0$, the Witt-Artin-Schreier theory asserts that the covering $X \to Y$ is given by a cartesian square:

$$\begin{array}{c} X & \longrightarrow & W_{n, k} \\ \downarrow & & \downarrow & \mathcal{P} \\ Y & \xrightarrow{g} & W_{n, k} \end{array}$$

where $\mathscr{P}(x) = x^p - x$ and g is a rational map of Y to the Witt group $W_{n,k}$. Therefore, if one wishes to deform a cyclic covering $X \rightarrow Y$ of degree p^n over a field k of characteristic p > 0 to a cyclic covering of degree p^n over a field of characteristic 0, it seems natural to consider the deformations of the Witt-Artin-Schereier exact sequence

$$0 \longrightarrow (\mathbb{Z}/p^n)_k \longrightarrow W_{n,k} \longrightarrow W_{n,k} \longrightarrow 0$$

over a field k of characteristic p>0 to an exact sequence of Kummer type

$$1 \longrightarrow \boldsymbol{\mu}_{p^n, K} \longrightarrow (\boldsymbol{G}_{m, K})^n \longrightarrow (\boldsymbol{G}_{m, K})^n \longrightarrow 1$$

over a field K of characteristic 0. From this point of view, it seems most

Received September 21, 1989. Revised January 17, 1990.

^{*} Partially supported by Grant-in-Aid for Scientific Research #62540066.

T. SEKIGUCHI and N. SUWA

460

appropriate to consider the deformations of Witt groups to tori as the first step. In the one-dimensional case, the deformations of G_a to G_m are completely determined by [9], and later independently by [3]. In fact, every such deformation is given by a group scheme $\mathcal{G}^{(\lambda)}=\operatorname{Spec} A[x, 1/(\lambda x+1)]$ over a discrete valuation ring A with a group law $(x, y)\mapsto \lambda xy + x + y$, where λ is a non-zero element of the maximal ideal of A. If we take $A=\mathbb{Z}_p[\zeta]$ with a primitive p-th root ζ of unity, and $\lambda=\zeta-1$, then the exact sequence

$$0 \longrightarrow (\mathbf{Z}/p)_A \longrightarrow \mathcal{Q}^{(\lambda)} \xrightarrow{\psi} \mathcal{Q}^{(\lambda^p)} \longrightarrow 0$$

where ϕ is the A-homomorphism defined by $x \mapsto \{(\lambda x+1)^p - 1\}/\lambda^p$, gives the unique deformation of the Artin-Schreier sequence to the Kummer sequence. This exact sequence is first noticed by [3] and [4], and later independently by [8]. In [3], the above sequence is used to lift an automorphism of order p of a smooth projective curve over an algebraically closed field of characteristic p to one over a field of characteristic 0.

In the higher dimensional cases, some examples of deformations of Witt groups to tori have been illustrated by [4]. Later [5] has generalized the argument of [4] and has developed a method for computing $\text{Ext}_{\lambda}^{1}(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)})$, the group of extensions of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$. Furthermore, [5] has explicitly computed $\text{Ext}_{\lambda}^{1}(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)})$ under the condition that $\mu | p$ (cf. Ex. 4.1).

In this paper, we shall compute the group $\operatorname{Ext}_{A}^{1}(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)})$ for arbitrary λ , $\mu \neq 0$ of the maximal ideal m of A, developing the argument of [5] and analyzing such an extension by means of successive Néron blow-ups from a torus. Our main result is as follows:

THEOREM (cf. 2.3, Cor. 3.5 and Th. 3.10). Let A be a discrete valuation ring dominating $\mathbf{Z}_{(p)}$. Let λ , μ be non-zero elements of the maximal ideal \mathfrak{m} of A with the order of $\mu = \mathfrak{m}$. Then every extension \mathcal{E} of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$ is given by a group S-scheme

$$\mathcal{E} = \text{Spec } A[X_0, X_1, 1/(\lambda X_1 + 1), 1/(\mu X_1 + F(X_0))]$$

with the law of multiplication

$$\begin{split} X_{0} &\longmapsto \lambda X_{0} \otimes X_{0} + X_{0} \otimes 1 + 1 \otimes X_{0} , \\ X_{1} &\longmapsto \mu X_{1} \otimes X_{1} + X_{1} \otimes F(X_{0}) + F(X_{0}) \otimes X_{1} \\ &\quad + \frac{1}{\mu} [F(X_{0}) \otimes F(X_{0}) - F(\lambda X_{0} \otimes X_{0} + X_{0} \otimes 1 + 1 \otimes X_{0})] , \end{split}$$

where $F(X)=1+\sum_{i\geq 1}c_iX^i$ is a polynomial with $c_i\in\mathfrak{m}$ satisfying the equalities

Extensions of Group Schemes

$$c_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-p^{r+1}} \lambda^{p^{r}-i} \right\}$$

for j with $\operatorname{ord}_p j = r$ and $j \neq p^r$, and

$$c_{pr}c_{pr+1-pr} \equiv \sum_{i=0}^{pr} \binom{p^{r+1}-p^{r}+i}{p^{r+1}-2p^{r}+2i} \binom{p^{r+1}-2p^{r}+2i}{i} c_{pr+1-pr+i} \lambda^{pr-i} \mod \mathfrak{m}^{m}$$

for each $r \ge 0$.

It will be noted that our method is applicable also to the case $\lambda=0, 1$ or $\mu=0, 1$. In particular, we recover the work of Weisfeiler [10] when $\lambda=0$ and μ is a non-zero element of m.

We now explain briefly the plan of this paper. In §1, some general facts are discussed, concerning the Néron blow-ups. In §2, we analyze an extension of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$ by means of successive Néron blow-ups starting from a torus. Our main theorem is proven in §3; after establishing an analogue of Lazard's comparison lemma [2], we determine step by step the polynomials F(X), satisfying the condition $F(X)F(Y)=F(\lambda XY+X+Y) \mod \mu$. Some examples concerning the extensions are given in §4. We conclude this article by noting that a smooth affine 2-dimensional S-group scheme is not necessarily obtained by an extension of smooth 1-dimensional S-group schemes, even though its generic fibre and its special fibre are extensions of smooth 1-dimensional group schemes each.

Notation.

Throughout the article, A denotes a discrete valuation ring and m (resp. K, k) denotes the maximal ideal (resp. the fraction field, resp. the residue field) of A, if there are no restrictions. We denote by v the valuation on A and by π a uniformizing parameter of A. We put S=Spec A.

An S-group (resp. an S-homomorphism) means a group S-scheme of finite type (resp. an S-morphism between group S-schemes, compatible with the group structures).

For an S-group G, we denote by $G_K(\text{resp. } G_k)$ the generic (resp. closed) fibre of G over S. Moreover, when G is affine, we denote by A[G] (resp. K[G], resp. k[G]) the coordinate ring of G (resp. G_K , resp. G_k) and by $A[G]^+$ (resp. $K[G]^+$, resp. $k[G]^+$) the augmentation ideal of A[G] (resp. K[G], resp. k[G]).

For non-negative integers n, l with $n \ge l$, we denote by $\binom{n}{l}$ the number $\frac{n!}{(n-l)!\,l!}$. In particular $\binom{0}{0}=1$.

Contents.

- 1. Néron blow-ups
- 2. Néron blow-ups and $\mathcal{E}^{(\lambda, \mu; F)}$
- 3. Ext¹_S($\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}$)
- 4. Examples

1. Nérons blow-ups

We recall first Néron blow-ups. For details, see [1], [9].

1.1. Let G be a flat affine S-group and H a closed k-subgroup of G_k . Let J(H) be the inverse image in A[G] of the defining ideal of H in k[G]. Then the structure of Hopf algebra on K[G] induces a structure of Hopf A-algebra on the A-subalgebra $A[\pi^{-1}J(H)]$ of K[G]. Then $G^H = \operatorname{Spec} A[\pi^{-1}J(H)]$ is a flat affine S-group. The injection $A[G] \subset A[G^H] = A[\pi^{-1}J(H)]$ induces an S-homomorphism $G^H \to G$. By the definition, the generic fiber $(G^H)_K \to G_K$ is an isomorphism. We call the S-group G^H or the canonical S-homomorphism $G^H \to G$ the Néron blow-up of H in G.

REMARK 1.2. It is readily seen that $A[G^H]^+ = K[G]^+ \cap A[G^H]$.

PROPOSITION 1.3. Let $\varphi: G' \to G$ be an S-homomorphism of flat affine Sgroups and let H'(resp. H) be a closed k-subgroup of $G'_k(resp. G_k)$ such that $\varphi_k(H') \subset H$. Then there exists canonically an S-homomorphism $\tilde{\varphi} = \varphi^{(H', H)}: G'^{H'} \to G^H$ such that $\tilde{\varphi}_K = \varphi_K: G'_K \to G_K$.

PROOF. Let $\alpha: G'^{H'} \to G'$ denote the canonical S-homomorphism. By the assumption, the image of $(\varphi \circ \alpha)_k: (G'^{H'})_k \to G_k$ is contained in H. Therefore, by the universal property of Néron blow-ups ([9], Prop. 1.2), we get a unique homomorphism $\tilde{\varphi}$ which makes the diagram

$$\begin{array}{ccc} G'^{H'} & \stackrel{\tilde{\varphi}}{\longrightarrow} & G^{H} \\ & & & \downarrow \\ G' & \stackrel{\varphi}{\longrightarrow} & G \end{array}$$

commutative.

PROPOSITION 1.4. Let G be a flat affine S-group, G' a closed flat S-subgroup of G, H a closed k-subgroup of G_k and $H'=H\cap G_k$. Then the canonical homo-

morphism $\tilde{\varphi} = \varphi^H = \varphi^{(H', H)}$: $G'^{H'} \to G^H$ induced by the inclusion $G' \to G$ is a closed immersion.

PROOF. Since $H'=H\cap G_k$, J(H') is generated by J(H) in A[G']. Let π , f_1, \dots, f_r be generators of J(H) and $g_i(1 \le i \le r)$ be the image of f_i in A[G']. Then

$$A[G'^{H'}] = A[G'][\pi^{-1}g_1, \cdots, \pi^{-1}g_r],$$
$$A[G^{H}] = A[G][\pi^{-1}f_1, \cdots, \pi^{-1}f_r].$$

Hence the canonical surjection $K[G] \rightarrow K[G']$ induces a surjection $A[G^H] \rightarrow A[G'^{H'}]$.

REMARK 1.5. (1) The defining ideal of $G'^{H'}$ in G^{H} is given by $J(G')_{K} \cap A[G^{H}]$.

(2) In general, the square

is not cartesian.

PROPOSITION 1.6. Let G be a flat affine S-group, H a closed k-subgroup of G_k and $\tilde{G} = G^H$ the Néron blow-up. Then, by taking the flat closure, we get bijections among the closed K-subgroups of $G_K = \tilde{G}_K$, the closed flat S-subgroups of G and the closed flat S-subgroups of \tilde{G} .

PROOF. This is a direct consequence of EGA IV, Prop. 2.8.5.

Combining Proposition 1.5 and Proposition 1.6, we obtain the following assertion.

COROLLARY 1.7. Let G be a flat affine S-group and H a closed k-subgroup of G_k . Let G' be a closed flat S-subgroup of G and \tilde{G}' the flat closure of G'_K in $\tilde{G}=G^H$. Then \tilde{G}' is the Néron blow-up of $H \cap G'_k$ in G'.

PROPOSITION 1.8. Let G be a flat affine S-group, $H_1 \supset H$ closed k-subgroups of G_k and \tilde{H} the inverse image of H in $(G^{H_1})_k$. Then there exists a canonical isomorphism $(G^{H_1})^{\tilde{H}} \cong G^{\tilde{H}}$.

PROOF. Take generators π , f_1 , \cdots , f_r , g_1 , \cdots , g_s of J(H) such that $J(H_1)$ is generated by π , f_1 , \cdots , f_r . Since the square

is cartesian, $J(\tilde{H})$ is generated by J(H) in $A[G^{H_1}]$. Since f_1, \dots, f_r are divisible by π in $A[G^{H_1}]$, $J(\tilde{H})$ is generated by π, g_1, \dots, g_s in $A[G^{H_1}]$. Hence we have

$$A[(G^{H_1})^{\tilde{H}}] = A[G^{H_1}][\pi^{-1}g_1, \cdots, \pi^{-1}g_s]$$

= $A[G][\pi^{-1}f_1, \cdots, \pi^{-1}f_r][\pi^{-1}g_1, \cdots, \pi^{-1}g_s] = A[G^H].$

THEOREM 1.9. Let

$$(\#) \qquad \qquad 0 \longrightarrow G' \xrightarrow{\varphi} G \xrightarrow{\psi} G'' \longrightarrow 0$$

be an exact sequence of flat affine S-groups, and let H a closed k-subgroup of G_k , H' the inverse image of H in G'_k and H" the image of H in G''_k . Then the sequence of S-groups

$$(\widetilde{\#}) \qquad \qquad 0 \longrightarrow G'^{H'} \xrightarrow{\widetilde{\varphi} = \varphi^H} G^H \xrightarrow{\widetilde{\psi} = \psi^H} G''^{H'} \longrightarrow 0$$

induced from (#) is exact if one of the following conditions is satisfied:

- (1) $H \supset \varphi(G'_k)$; that is to say, $H = (\psi_k)^{-1}(H'')$.
- (2) G' is smooth over S.

PROOF. Since $(\tilde{\phi} \circ \tilde{\varphi})_K = (\phi \circ \varphi)_K = 0$ and \tilde{G}' is flat over S, $\tilde{\phi} \circ \tilde{\varphi} = 0$. Hence we obtain a canonical S-homomorphism $G^H/G'^{H'} \to G''^{H'}$. Obviously the generic fiber $(G^H/G'^{H'})_K \to (G''^{H'})_K$ is an isomorphism.

We prove that $\tilde{\varphi}_k : (G^H)_k \to (G''^{H'})_k$ is faithfully flat under the condition (1) or (2), which implies that $G^H/G'^{H'} \to G''^{H'}$ is an isomorphism ([9], Lemma 1.3).

Case (1). We identify $A[G''] \subset A[G]$ by $\phi: G \rightarrow G''$. We prove that the squure

is cartesian, which implies that $G^H \rightarrow G''^{H'}$ is faithfully flat.

By the assumption (1), the square

$$\begin{array}{c} H \longrightarrow H'' \\ \downarrow \qquad \qquad \downarrow \\ G \longrightarrow G'' \end{array}$$

is cartesian. Hence the defining ideal of H'' in k[G''] generates in k[G] the defining ideal of H. Therefore J(H) is generated by J(H'') in A[G]. Let π , f_1, \dots, f_r be generators of J(H''). Then

$$A[G^{H}] = A[G][\pi^{-1}f_{1}, \cdots, \pi^{-1}f_{r}],$$
$$A[G''^{H'}] = A[G''][\pi^{-1}f_{1}, \cdots, \pi^{-1}f_{r}].$$

Since A[G] is flat over A[G''],

$$A[G][\pi^{-1}f_1, \cdots, \pi^{-1}f_r] = A[G''][\pi^{-1}f_1, \cdots, \pi^{-1}f_r] \otimes_{A[G']} A[G].$$

Case (2). Let B be a complete discrete valuation ring, unramified over A with residue field \bar{k} . Then obviously we have

$$G^H \bigotimes_A B \cong (G \bigotimes_A B)^{H \otimes_k \bar{k}}.$$

Since B is faithfully flat over A, the sequence $(\widetilde{\#})$ is exact if and only if so is the sequence induced from $(\widetilde{\#})$ by the base change B/A. Hence for our purpose we may assume that A is a complete discrete valuation ring with algebraically closed residue field k.

Moreover, we may assume $H'' = G''_k$. In fact, let H_1 be the inverse image of H'' in G_k . By (1), we get an exact sequence of S-groups

$$0 \longrightarrow G' \longrightarrow G^{H_1} \longrightarrow G''^{H''} \longrightarrow 0.$$

Let \tilde{H} be the inverse image of H in $(G^{H_1})_k$. By Proposition 1.8, $(G^{H_1})^{\tilde{H}}$ is isomorphic to G^H . Moreover, $\tilde{H} \cap G'_k = H'$ and \tilde{H} is mapped onto $(G''^{H'})_k$.

Under these assumption, we prove first that the canonical map $\tilde{\phi}(k)$: $G^{H}(k) \rightarrow G''(k)$ is surjective.

Let $a \in G''(k)$. Since G'' is faithfully flat over $S = \operatorname{Spec} A$, there exist a complete discrete valuation ring B, dominating A and finite over A, and $\tilde{a} \in G''(B)$ such that the diagram

Spec
$$B \xrightarrow{\tilde{a}} G''$$

 $\uparrow \qquad \uparrow \qquad \uparrow$
Spec $k \xrightarrow{a} G''_k$

is commutative (EGA. IV, Prop. 14.5.8). Since B is strictly Henselian and G' is smooth over S=Spec A, the canonical map $\psi(B): G(B) \rightarrow G''(B)$ is surjective (cf. [11], Th. 11.7). Take $\tilde{b} \in G(B)$ such that $\psi(B)(\tilde{b}) = \tilde{a}$.

Furthermore, since $H \rightarrow G_k''$ is faithfully flat, there exist a complete discrete valuation ring B', dominating A and finite over A, and $b \in H(B \otimes_A k)$ such that the diagram

is commutative (EGA. IV, Cor. 17.16.2). Replacing B' by B, we may assume that B=B'.

Then $\tilde{b}_k - b$ is contained in $G'(B \otimes_A k) = \operatorname{Ker}(G(B \otimes_A k) \to G''(B \otimes_A k))$. Since *A* is strictly Henselian, *B* is finite flat over *A* and *G'* is smooth over *A*, the canonical map $G'(B) \to G'(B \otimes_A k)$ is surjective (cf. EGA. IV, Th. 18.5.17). Take $\tilde{c} \in G'(B)$ such that $\tilde{c}_k = \tilde{b}_k - b$ in $G'(B \otimes_A k)$. Then $(\tilde{b} - \tilde{c})_k = \tilde{b}_k - \tilde{c}_k = b \in H(B \otimes_A k)$; that is to say, $\tilde{b} - \tilde{c}$ is contained in $G^H(B)$. Let *x* be the image of $\tilde{b} - \tilde{c}$ by the canonical map $G^H(B) \to G^H(k)$. Then we have $\tilde{\phi}(k)(x) = a$. Therefore we see that $G^H(k) \to G''(k)$ is surjective.

We prove now that for any $t \in \text{Lie}(G_k^{\prime\prime})$, there exist an integer n > 0 and $y \in \text{Ker}(G^H(k[\varepsilon^{1/n}]) \rightarrow G^H(k))$ such that the diagram

is commutative, where ε is a dual number.

Let $t \in \text{Lie} G_k'' = \text{Ker}(G''(k[\varepsilon]) \to G''(k))$. Let $\hat{\mathcal{O}}$ denote the completion of A[G'']along the zero section, and let $t^* \colon \hat{\mathcal{O}} \to k[\varepsilon]$ be the local homomorphism defined by $t \colon \text{Spec} k[\varepsilon] \to G''$. Moreover, let $\tilde{s^*} \colon \hat{\mathcal{O}} \to A$ be the local homomorphism defined by the zero section $s \colon \text{Spec} A \to G''$. Assume that $t \neq 0$. Then $t^* \colon \hat{\mathcal{O}} \to k[\varepsilon]$ is surjective, and therefore, there exists a surjective homomorphism $\tilde{t}^* \colon$ $\hat{\mathcal{O}} \to A[\varepsilon]$ such that $t^* \colon \hat{\mathcal{O}} \to k[\varepsilon]$ and $s^* \colon \hat{\mathcal{O}} \to A$ are factorized by $\hat{\mathcal{O}} \to A[\varepsilon] \to k[\varepsilon]$ and $\hat{\mathcal{O}} \to A[\varepsilon] \to A$, respectively. Let $\tilde{t} \colon \text{Spec} A[\varepsilon] \to G''$ be the S-morphism defined by $\tilde{t}^* \colon \hat{\mathcal{O}} \to A[\varepsilon]$. Since A is strictly Henselian and G' is smooth over S =Spec A, the canonical map $\psi(A[\varepsilon]) \colon G(A[\varepsilon]) \to G''(A[\varepsilon])$ is surjective (cf. [11], Th. 11.7). Take $\tilde{u} \in G(A[\varepsilon])$ such that $\psi(A[\varepsilon])(\tilde{u}) = \tilde{t}$.

Furthermore, since $H \rightarrow G_k''$ is faithfully flat, there exist an integer n > 0 and $u \in \operatorname{Ker}(H(k[\varepsilon^{1/n}]) \rightarrow H(k))$ such that the diagram

is commutative. In fact, let $\mathfrak{U} = \operatorname{Ker}(k[G''] \xrightarrow{\iota^*} k[\varepsilon])$, and let \mathfrak{B}_0 be a maximal element in the set Σ of ideals \mathfrak{B} in k[H] such that $(\phi_k^*)^{-1}(\mathfrak{B}) = \mathfrak{B} \cap k[G''] = \mathfrak{U}$. Note that Σ is not empty because of the faithful flatness of $\phi_k : H \to G''_k$. Then we can see that $k[H]/\mathfrak{B}_0$ is an Artinian local ring. Because look at the inclusions:

$$k[H]/\mathfrak{B}_0 \supset k[\varepsilon] \cong k[G'']/\mathfrak{U} \supset k$$
.

By the normalization theorem, there exist parameters $x_1, \dots, x_l \in k[H]/\mathfrak{B}_0$ such that $k[H]/\mathfrak{B}_0$ is integral over the polynomial ring $k[x_1, \dots, x_l]$. Let \mathfrak{N} be a maximal ideal in $k[x_1, \dots, x_l]$ containing $(0: \varepsilon) \cap k[x_1, \dots, x_l] \subset k[x_1, \dots, x_l]$. Then there exists an ideal $\overline{\mathbb{G}}$ in $k[H]/\mathfrak{B}_0$ lying over \mathfrak{N} and $\overline{\mathbb{G}} \cap k[\varepsilon] = (0)$. The inverse image \mathbb{G} of $\overline{\mathbb{G}}$ by the canonical map $k[H] \rightarrow k[H]/\mathfrak{B}_0$ is obviously an element of Σ , and we get that $\mathfrak{B}_0 = \mathbb{G}$. Therefore $k[H]/\mathfrak{B}_0$ should be the type of $k[\varepsilon^{1/n}]$ for some positive integer n. Let $u' \in H(k[\varepsilon^{1/n}])$ be the point defined by the canonical map $k[H] \rightarrow k[H]/\mathfrak{B}_0 \cong k[\varepsilon^{1/n}]$. Then $u := u' - u'_k \in H(k[\varepsilon^{1/n}])$ is a required point. Here we note that $u'_k \in \operatorname{Ker}(H(k) \rightarrow G''(k))$, and $H(k) \subset H(k[\varepsilon^{1/n}])$ in the canonical way.

We denote again by \tilde{u} the image of \tilde{u} by the canonical map $G(A[\varepsilon] \rightarrow G(A[\varepsilon^{1/n}]))$. Then $\tilde{u}_k - u$ is contained in $G'(A[\varepsilon^{1/n}]) = \operatorname{Ker}(G(A[\varepsilon^{1/n}]) \rightarrow G''(A[\varepsilon^{1/n}])))$. Since A is strictly Henselian and G' is smooth over A, the canonical map $G'(A[\varepsilon^{1/n}]) \rightarrow G'(k[\varepsilon^{1/n}])$ is surjective (cf. EGA. IV, Th. 18.5.17). Take $\tilde{v} \in G'(A[\varepsilon^{1/n}])$ such that $\tilde{v}_k = \tilde{u}_k - u$ in $G'(k[\varepsilon^{1/n}])$. Then $(\tilde{u} - \tilde{v})_k = \tilde{u}_k - \tilde{v}_k$ $= u \in H(k[\varepsilon^{1/n}])$; that is to say, $\tilde{u} - \tilde{v}$ is contained in $G^H(A[\varepsilon^{1/n}])$. Let y be the image of $\tilde{u} - \tilde{v}$ by the canonical map $G^H(A[\varepsilon^{1/n}]) \rightarrow G^H(k[\varepsilon^{1/n}])$. Then we get the required commutative diagram

From the above two facts, we can conclude that $\tilde{\varphi}_k : (G^H)_k \to (G''^{H''})_k = G''_k$ is faithfully flat (cf. [7], pp. 109-111), and we accomplish the proof of Theorem 1.9. Now we give two examples supporting the necessity of the conditions of Theorem 1.9.

EXAMPLE 1.10. Assume that A has equal-characteristic p > 0. We consider the exact sequences:

where F denotes the Frobenius homomorphism. Let G (resp. G'') be the Néron blow-up of $a_{p,k}$ in $G_{a,S}$ (resp. of $\{0\}$ in $G_{a,S}$). Then G'' is isomorphic to $G_{a,S}$. By Theorem 1.9. (1), we get an exact sequence

$$0 \longrightarrow \boldsymbol{a}_{p,k} \longrightarrow G \xrightarrow{\hat{F}} G'' = \boldsymbol{G}_{a,S} \longrightarrow 0,$$

where \tilde{F} is the canonical S-homomorphism induced by F. More precisely, $A[G] = A[X, Y]/(\pi Y - X^p)$ and \tilde{F} is defined by

$$X \longmapsto X^p \colon A[G''] = A[X] \longrightarrow A[G] = A[X, Y]/(\pi Y - X^p).$$

Now let *H* be the closed *k*-subgroup of G_k defined by the ideal (X) in $k[G] = k[X, Y]/(X^p) = A[X, Y]/(\pi Y - X^p) \otimes_A k$. Then *H* is isomorphic to $G_{a,k}$. Moreover, we have exact sequences

Let \tilde{G} (resp. \tilde{G}') be the Néron blow-up of H in G (resp. of $\{0\}$ in $\boldsymbol{\alpha}_{p,s}$). Then \tilde{G}' is isomorphic to $\boldsymbol{\alpha}_{p,s}$. In this case, the sequence

$$0 \longrightarrow \boldsymbol{a}_{p,S} \longrightarrow \widetilde{G} \xrightarrow{\widetilde{F}^{H}} G'' = \boldsymbol{G}_{a,S} \longrightarrow 0$$

is not exact. In fact, we can can easily see that $\widetilde{F}^{H}: \widetilde{G} o G_{a,S}$ is defined by

$$X \longmapsto X^{p} \colon A[X] \longrightarrow A[\widetilde{G}] = A[X, Y, Z]/(\pi Z - X, \pi^{p-1} Z^{p} - Y).$$

Therefore $(\widetilde{F}^{H})_{k}$: $\widetilde{G}_{k} \rightarrow G_{a,k}$ is defined by

$$X \longmapsto 0: \ k[X] \longrightarrow k[\tilde{G}] = k[Z] = A[X, Y, Z]/(\pi Z - X, \pi^{p-1}Z^p - Y) \otimes_A k;$$

that is to say, $(\tilde{F}^H)_k = 0.$

REMARK 1.10.1. \tilde{G} is isomorphic to $G_{a,s}$. In fact,

$$X \longmapsto \pi Z, Y \longmapsto \pi^{p-1}Z^p, Z \longmapsto Z:$$
$$A[X, Y, Z]/(\pi Z - X, \pi^{p-1}Z^p - Y) \longrightarrow A[Z]$$

defines an isomorphism of \tilde{G} to $G_{a,s}$. Then the S-homomorphism $\tilde{F}^{H}: \tilde{G} \to G_{a,s}$ is simply written $\pi^{p-1}F: G_{a,s} \to G_{a,s}$.

EXAMPLE 1.11. Assume that k is of characteristic p>0. We consider the exact sequences:

where p denotes the p-th power map. Let G (resp. G'') be the Néron blow-up of $\mu_{p,k}$ in $G_{m,S}$ (resp. of {1} in $G_{m,S}$). Then G'' is isomorphic to $\mathcal{Q}^{(\pi)} =$ Spec $A[Y, 1/(\pi Y+1)]$ (cf. 2.1 or [3], Ch. I). By Theorem 1.9. (1), we get an exact sequence

$$0 \longrightarrow \boldsymbol{\mu}_{p,k} \longrightarrow G \stackrel{\tilde{p}}{\longrightarrow} \mathcal{Q}^{(\pi)} \longrightarrow 0,$$

where \tilde{p} is the canonical S-homomorphism induced by p. More precisely, $A\lceil G\rceil = A\lceil X, 1/X, Y\rceil/(\pi Y - X^p + 1)$ and \tilde{p} is defined by

$$Y \longmapsto Y \colon A[Y, 1/(\pi Y+1)] \longrightarrow A[G] = A[X, 1/X, Y]/(\pi Y - X^p + 1).$$

Now let *H* be the closed *k*-subgroup of G_k defined by the ideal (X-1) in $k[G]=k[X, Y]/(X^p-1)=A[X, 1/X, Y]/(\pi Y-X^p+1)\otimes_A k$. Then *H* is isomorphic to $G_{a,k}$. Moreover, we have exact sequences

Let \tilde{G} (resp. \tilde{G}') be the Néron blow-up of H in G (resp. of $\{1\}$ in $\mu_{p,s}$). In this case, the sequence

$$0 \longrightarrow G' \longrightarrow \widetilde{G} \xrightarrow{p^H} \mathcal{Q}^{(\pi)} \longrightarrow 0$$

is not exact. In fact, we can easily see that $\tilde{p}^{_H}: \widetilde{G} \to \mathcal{G}^{(\pi)}$ is defined by

$$Y \longmapsto ((\pi Z + 1)^p - 1)/\pi :$$

$$A[Y, 1/(\pi Y + 1)] \longrightarrow A[\tilde{G}]$$

$$= A[X, 1/X, Y, Z]/(\pi Z - X + 1, ((\pi Z + 1)^p - 1)/\pi - Y).$$

Therefore $(\tilde{p}^{H})_{k}: \tilde{G}_{k} \rightarrow G_{a,k}$ is defined by

$$Y \longmapsto 0:$$

$$k[Y] \longrightarrow k[\tilde{G}]$$

$$= k[Z] = A[X, 1/X, Y, Z]/(\pi Z - X + 1, ((\pi Z + 1)^p - 1)/\pi - Y) \otimes_A k,$$

$$k \neq 0$$

that is to say, $(\tilde{p}^{H})_{k}=0$.

REMARK 1.11.1. \tilde{G} is isomorphic to $\mathcal{G}^{(\pi)}$. In fact,

$$X \longmapsto \pi Z + 1, \ Y \longmapsto ((\pi Z + 1)^p - 1)/\pi, \ Z \longmapsto Z:$$

$$A[X, 1/X, Y, Z]/(\pi Z - X + 1, ((\pi Z + 1)^p - 1)/\pi - Y) \longrightarrow A[Z, 1/(\pi Z + 1)]$$

defines an isomorphism of \tilde{G} to $\mathcal{G}^{(\pi)}$. Then the S-homomorphism $\tilde{p}^{H}: \tilde{G} \rightarrow \mathcal{G}^{(\pi)}$ is defined by

$$Z \longmapsto ((\pi Z+1)^p - 1)/\pi \colon A[Z, 1/(\pi Z+1)] \longrightarrow A[Z, 1/(\pi Z+1)].$$

2. Néron blow-ups and $\mathcal{E}^{(\lambda, \mu; F)}$

We recall first some notations and results of [3], [5].

2.1. Let $\lambda \in \mathfrak{m} - \{0\}$. We define a smooth affine S-group $\mathcal{G}^{(\lambda)}$ as follows:

 $\mathcal{G}^{(\lambda)} = \operatorname{Spec} A[X_0, 1/(\lambda X_0 + 1)]$

1) law of multiplication

$$X_0 \longmapsto \lambda X_0 \otimes X_0 + X_0 \otimes 1 + 1 \otimes X_0$$
;

2) unit

$$X_0 \longmapsto 0;$$

3) inverse

$$X_{0} \longmapsto -X_{0}/(\lambda X_{0}+1)$$

Moreover, we define an S-homomorphism $\alpha^{(\lambda)}: \mathscr{G}^{(\lambda)} \rightarrow G_{m,s}$ by

$$T \longmapsto \lambda X_0 + 1: A[T, T^{-1}] \longrightarrow A[X_0, 1/(\lambda X_0 + 1)].$$

Then the generic fiber $\alpha_K^{(\lambda)}: \mathcal{G}_K^{(\lambda)} \to G_{m,K}$ is an isomorphism. On the other hand, the closed fiber $\mathcal{G}_k^{(\lambda)}$ is isomorphic to $G_{a,k}$.

DEFINITION 2.2. Let F(X) be a polynomial in A[X]. We shall say that

F(X) satisfies the condition $(\#_m)$ if

 $F(X) \equiv 1 \mod \mathfrak{m} \quad \text{and} \quad F(X)F(Y) \equiv F(\lambda XY + X + Y) \mod \mathfrak{m}^m$.

2.3. Let λ , $\mu \in \mathfrak{m} - \{0\}$ and $m = v(\mu)$, and let F(X) be a polynomial in A[X], satisfying the condition $(\#_m)$. We define a smooth affine S-group $\mathcal{E}^{(\lambda, \mu; F)}$ as follows:

$$\mathcal{E}^{(\lambda, \mu; F)} = \operatorname{Spec} A[X_0, X_1, 1/(\lambda X_0 + 1), 1/(\mu X_1 + F(X_0))]$$

1) law of multiplication

$$X_{0} \longmapsto \lambda X_{0} \otimes X_{0} + X_{0} \otimes 1 + 1 \otimes X_{0},$$

$$X_{1} \longmapsto \mu X_{1} \otimes X_{1} + X_{1} \otimes F(X_{0}) + F(X_{0}) \otimes X_{1}$$

$$+ \frac{1}{\mu} [F(X_{0}) \otimes F(X_{0}) - F(\lambda X_{0} \otimes X_{0} + X_{0} \otimes 1 + 1 \otimes X_{0})];$$

2) unit

$$X_0 \longmapsto 0, X_1 \longmapsto \frac{1}{\mu} [1 - F(0)];$$

3) inverse

$$\begin{split} X_{0} &\longmapsto -X_{0}/(\lambda X_{0}+1), \\ X_{1} &\longmapsto \frac{1}{\mu} [1/(\mu X_{1}+F(X_{0}))-F(-X_{0}/(\lambda X_{0}+1))]. \end{split}$$

2.4. We define an S-homomorphism $\mathcal{G}^{(\mu)} \rightarrow \mathcal{E}^{(\lambda, \mu; F)}$ by

$$\begin{aligned} X_{0} \longmapsto 0, \ X_{1} \longmapsto X + \frac{1}{\mu} [1 - F(0)]: \\ A[X_{0}, \ X_{1}, \ 1/(\lambda X_{0} + 1), \ 1/(\mu X_{1} + F(X_{0}))] \longrightarrow A[X, \ 1/(\mu X + 1)] \end{aligned}$$

and an S-homomorphism $\mathcal{E}^{(\lambda,\,\mu;\,F)} \rightarrow \mathcal{G}^{(\lambda)}$ by

$$\begin{split} X &\longmapsto X_{0}: \\ A[X, 1/(\lambda X+1)] &\longrightarrow A[X_{0}, X_{1}, 1/(\lambda X_{0}+1), 1/(\mu X_{1}+F(X_{0}))]. \end{split}$$

Then the sequence of S-groups

$$0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda,\,\mu;\,F)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0$$

is exact, i. e. $\mathcal{C}^{(\lambda,\mu;F)}$ is an extension of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$. Conversely, any extension of $\mathcal{G}^{(\lambda)}$ by $\mathcal{G}^{(\mu)}$ takes the form of

$$0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda,\mu;F)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0,$$

where F(X) is a polynomial in A[X], satisfying the condition $(\#_m)$ ([5], Cor. 3.6).

2.5. Let F(X), $\tilde{F}(X)$ be polynomials in A[X], satisfying the condition $(\#_m)$. If $F(X) \equiv \tilde{F}(X) \mod \mathfrak{m}^m$, then we can define an isomorphism of extensions:

$$\begin{array}{c} 0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda,\mu;\,F)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0 \\ \\ \| & & \downarrow \rangle \\ 0 \longrightarrow \mathcal{G}^{(\mu)} \longrightarrow \mathcal{E}^{(\lambda,\mu;\,\widetilde{F})} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0 \end{array}$$

by

$$Y_{0} \longmapsto X_{0}, Y_{1} \longmapsto X_{1} + \frac{1}{\mu} [F(X_{0}) - \tilde{F}(X_{0})]:$$

$$A[Y_{0}, Y_{1}, 1/(\lambda Y_{0} + 1), 1/(\mu Y_{1} + \tilde{F}(Y_{0}))] \longrightarrow$$

$$A[X_{0}, X_{1}, 1/(\lambda X_{0} + 1), 1/(\mu X_{1} + F(X_{0}))]$$

2.6. We define an S-homomorphism $\alpha^{(\lambda,\mu;F)}: \mathcal{E}^{(\lambda,\mu;F)} \to (G_{m,S})^2$ by

$$T_{0} \longmapsto \lambda X_{0} + 1, \ T_{1} \longmapsto \mu X_{1} + F(X_{0}):$$

$$A[T_{0}, \ T_{0}^{-1}, \ T_{1}, \ T_{1}^{-1}] \longrightarrow A[X_{0}, \ X_{1}, \ 1/(\lambda X_{0} + 1), \ 1/(\mu X_{1} + F(X_{0}))].$$

Then we obtain a morphism of extensions of S-gronps:

Hence the generic fiber $\alpha_{K}^{(\lambda,\mu;F)}: \mathcal{C}_{K}^{(\lambda,\mu;F)} \to (G_{m,K})^{2}$ is an isomorphism. On the other hand, the closed fiber $\mathcal{C}_{k}^{(\lambda,\mu;F)}$ is a unipotent k-group; more precisely, $\mathcal{C}_{k}^{(\lambda,\mu;F)}$ is an extension of $G_{a,k}$ by $G_{a,k}$ defined by the 2-cocycle $\varphi(X,Y) = \frac{1}{\mu} [F(X)F(Y) - F(\lambda XY + X + Y)] \mod \mathfrak{m}.$

Now we describe the S-homomorphism $\alpha^{(\lambda,\mu;F)}: \mathcal{E}^{(\lambda,\mu;F)} \to (G_{m,S})^2$ using Néron blow-ups.

2.7. Let $F(X) = \sum a_i X^i$ be a polynomial in A[X], satisfying the condition $(\#_m)$. Put

$$F_j(X) = \sum_{v(a_i) \leq j} a_i X^i$$

and

$$G_j(X) = \sum_{v(a_i)=j} a_i X^i$$

Then we see readily that

$$F_j(X) = \sum_{0 \le i \le j} G_i(X)$$

LEMMA 2.7.1. (1) $F_{j-1}(X)F_{j-1}(Y) \equiv F_{j-1}(\lambda XY + X + Y) \mod \mathfrak{m}^{j}$ for each j, $1 \leq j \leq m$.

(2) $F_{j-1}(X)F_{j-1}(Y) - F_{j-1}(\lambda XY + X + Y) \equiv G_j(X+Y) - G_j(X) - G_j(Y) \mod \mathfrak{m}^{j+1}$ for each $j, 1 \leq j \leq m-1$.

PROOF. The first assertion follows from the second. Assume that (1) holds for j=i+1 ($i\geq 1$), i.e.

$$F_i(X)F_i(Y) - F_i(\lambda XY + X + Y) \equiv 0 \mod \mathfrak{m}^{i+1}$$
.

Then

$$\begin{aligned} &\{F_{i-1}(X) + G_i(X)\} \{F_{i-1}(Y) + G_i(Y)\} \\ &- \{F_{i-1}(\lambda XY + X + Y) + G_i(\lambda XY + X + Y)\} \equiv 0 \mod \mathfrak{m}^{i+1}. \end{aligned}$$

Hence

$$\begin{split} &\{F_{i-1}(X)F_{i-1}(Y)-F_{i-1}(\lambda XY+X+Y)\}\\ &-\{G_i(\lambda XY+X+Y)-F_{i-1}(Y)G_i(X)-F_{i-1}(X)G_i(Y)\}\equiv 0 \ \mbox{mod.}\ \mathfrak{m}^{i+1}\,. \end{split}$$

Since $G_i(X) \equiv 0 \mod \mathfrak{m}^i$ and $F_{i-1}(X) \equiv 1 \mod \mathfrak{m}$ (resp. $\lambda \equiv 0 \mod \mathfrak{m}$),

$$F_{i-1}(Y)G_i(X) \equiv G_i(X), \ F_{i-1}(X)G_i(Y) \equiv G_i(Y) \mod \mathfrak{m}^{i+1}$$

(resp. $G_i(\lambda XY + X + Y) \equiv G_i(X + Y) \mod \mathfrak{m}^{i+1}$).

Hence we obtain

$$F_{i-1}(X)F_{i-1}(Y) - F_{i-1}(\lambda XY + X + Y) \equiv G_i(X+Y) - G_i(X) - G_i(Y) \mod \mathfrak{m}^{i+1}.$$

Therefore we get our assertion by induction on j counting down from j=m.

2.8. Hereafter, we assume that $\lambda = \pi^n$ and $\mu = \pi^m$, where π is a uniformizing parameter of A, for simplicity.

We start off with the first step.

Let \mathcal{G}_i denote the S-group $\mathcal{G}^{(\pi^i)} \times_S G_{m,S}$.

(1) \mathcal{Q}_1 is the Néron blow-up of $\{1\} \times G_{m,k}$ in $G_{m,S} \times {}_{S}G_{m,S}$. The canonical homomorphism $\mathcal{Q}_1 \rightarrow G_{m,S} \times {}_{S}G_{m,S}$ is defined by

 $X_0 \longmapsto \pi Y_0 + 1, X_1 \longmapsto Y_1:$

$$A[X_0, X_1, 1/X_0, 1/X_1] \longrightarrow A[Y_0, Y_1, 1/(\pi Y_0+1), 1/Y_1].$$

(2) For each $i, 1 \leq i \leq n-1, \mathcal{Q}_{i+1}$ is the Néron blow-up of $\{0\} \times G_{m,k}$ in \mathcal{Q}_i . The canonical homomorphism $\mathcal{Q}_{i+1} \rightarrow \mathcal{Q}_i$ is defined by

$$\begin{split} X_{\mathbf{0}} &\longmapsto \pi Y_{\mathbf{0}}, \ X_{\mathbf{1}} \longmapsto Y_{\mathbf{1}} : \\ & A[X_{\mathbf{0}}, \ X_{\mathbf{1}}, \ 1/(\pi^{i}X_{\mathbf{0}} + 1), \ 1/X_{\mathbf{1}}] \longrightarrow A[Y_{\mathbf{0}}, \ Y_{\mathbf{1}}, \ 1/(\pi^{i+1}Y_{\mathbf{0}} + 1), \ 1/Y_{\mathbf{1}}] . \end{split}$$

(3) $\mathcal{Q}^{(\lambda)} \times_{S} \mathcal{Q}^{(\mu)}$ is the Néron blow-up of $G_{a,k} \times \{1\}$ in $\mathcal{Q}_{n} = \mathcal{Q}^{(\lambda)} \times_{S} G_{m,S}$. The canonical homomorphism $\mathcal{C}_{1} \rightarrow \mathcal{Q}_{n}$ is defined by

$$X_0 \longmapsto Y_0, X_1 \longmapsto \pi Y_1 + 1:$$

$$A[X_0, X_1, 1/(\lambda X_0+1), 1/X_1] \longrightarrow A[Y_0, Y_1, 1/(\lambda Y_0+1), 1/(\pi Y_1+1)].$$

Now we pass to the second step.

Let \mathcal{E}_j denote the S-group $\mathcal{E}^{(\lambda, \pi^j; F_{j-1})}$. Note that $\mathcal{E}_1 = \mathcal{Q}^{(\lambda)} \times_S \mathcal{Q}^{(\mu)}$. By Lemma 2.7.1, for j with $1 \leq j \leq m-1$,

$$\begin{split} \varphi_j(X, Y) &:= [F_{j-1}(X)F_{j-1}(Y) - F_{j-1}(\lambda XY + X + Y)]/\pi^j \mod \mathfrak{m} \\ &= G_j(X+Y)/\pi^j - G_j(X)/\pi^j - G_j(Y)/\pi^j \mod \mathfrak{m} \,, \end{split}$$

and therefore, the closed fiber $(\mathcal{E}_j)_k$ is isomorphic to $(G_{a,k})^2$. Let Γ_j be the closed k-subgroup of $(\mathcal{E}_j)_k$ defined by the ideal $(X_1 - G_j(X_0)/\pi^j)$ in

$$k[X_0, X_1] = A[X_0, X_1, 1/(\lambda X_0 + 1), 1/(\pi^j X_1 + F_{j-1}(X_0))] \otimes_A k$$
.

Then Γ_j is isomorphic to $G_{a,k}$, and \mathcal{E}_{j+1} is the Néron blow-up of Γ_j in \mathcal{E}_j . The canonical homomorphism $\mathcal{E}_{j+1} \rightarrow \mathcal{E}_j$ is defined by

$$\begin{aligned} X_{0} &\longmapsto Y_{0}, \ X_{1} &\longmapsto \pi Y_{1} + G_{j}(Y_{0})/\pi^{j}: \\ & A[X_{0}, \ X_{1}, \ 1/(\lambda X_{0} + 1), \ 1/(\pi^{j} X_{1} + F_{j-1}(X_{0})] \longrightarrow \\ & A[Y_{0}, \ Y_{1}, \ 1/(\lambda Y_{0} + 1), \ 1/(\pi^{j+1} Y_{1} + F_{j}(Y_{0})]. \end{aligned}$$

Summing up the above argument, we conclude that the S-homomorphism $\alpha^{(\lambda,\mu;F)}: \mathcal{E}^{(\lambda,\mu;F)} \rightarrow (G_{m,S})^2$ is obtained by the sequence of Néron blow-ups

$$\mathcal{E}^{(\lambda,\,\mu;\,F)} = \mathcal{E}_m \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_1 \longrightarrow \mathcal{Q}_n$$
$$= \mathcal{Q}^{(\lambda)} \times_S G_{m,\,S} \longrightarrow \mathcal{Q}_{n-1} \longrightarrow \cdots \longrightarrow \mathcal{Q}_1 \longrightarrow (G_{m,\,S})^2.$$

RFMARK 2.9. We can see that

$$\mathcal{E}^{(\lambda,\,\mu;\,F)}\cong \mathcal{E}_m \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_1 \longrightarrow \mathcal{G}^{(\lambda)} \times_{S} G_{m,\,S}$$

and

$$\mathcal{G}^{(\lambda)} \times_{S} G_{m,S} = \mathcal{G}_{n} \longrightarrow \mathcal{G}_{n-1} \times_{S} G_{m,S} \longrightarrow \cdots \longrightarrow \mathcal{G}_{1} \times_{S} G_{m,S} \longrightarrow (G_{m,S})^{2}$$

are standard blow-up sequences in the sense of [9], p. 552, Remark 1. However,

$$\mathcal{E}^{(\lambda,\mu;F)} = \mathcal{E}_m \longrightarrow \mathcal{E}_{m-1} \longrightarrow \cdots \longrightarrow \mathcal{E}_1 \longrightarrow \mathcal{G}_n$$
$$= \mathcal{G}^{(\lambda)} \times_S G_{m,S} \longrightarrow \mathcal{G}_{n-1} \longrightarrow \cdots \longrightarrow \mathcal{G}_1 \longrightarrow (G_{m,S})^2$$

is not so.

REMARK 2.10. One may note that

$$0 \longrightarrow \mathcal{G}^{(\pi^{j+1})} \longrightarrow \mathcal{E}^{(\lambda, \pi^{j+1}; F_j)} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0$$

is the Néron blow-up of the exact sequence of k-groups

Extensions of Group Schemes

 $0 \longrightarrow \{0\} \longrightarrow \varGamma_j \longrightarrow G_a \longrightarrow 0$

in

 $0 \longrightarrow \mathcal{G}^{(\pi^j)} \longrightarrow \mathcal{E}^{(\lambda, \mu^j; F_{j-1})} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0$

(cf. Theorem 1.9).

3. Ext¹_S($\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}$)

In this section, we suppose that the residue field k is of characteristic p>0. We fix λ , $\mu \in \mathfrak{m} - \{0\}$. Put $m=v(\mu)$.

LEMMA 3.1. (Comparison lemma) Let $F(X)=1+c_1X+c_2X^2+\cdots+c_nX^n$ be a polynomial in A[X] with $c_i \in \mathfrak{m}$. The following conditions are equivalent.

(a) F(X) satisfies the condition $(\#_m)$.

(b)
$$c_{pr-1}c_{j-pr-1} \equiv \sum_{i=0}^{pr-1} {j-p^{r-1}+i \choose j-2p^{r-1}+2i} {j-2p^{r-1}+2i \choose i} c_{j-pr-1+i} \lambda^{pr-1-i} \mod \mathfrak{m}^m$$

if $j=p^r>1$, and

$$c_{pr}c_{j-pr} \equiv \sum_{i=0}^{p^{r}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i}\lambda^{p^{r}-i} \mod \mathfrak{m}^{m}$$

if $\operatorname{ord}_p j = r$ and $j \neq p^r$.

PROOF. (a) \Rightarrow (b): It is enough to remark that

$$F(X)F(Y) - F(\lambda XY + X + Y)$$

$$= \sum_{\substack{k \ge 0 \\ l \ge 1}} \left\{ c_k c_{k+l} - \sum_{i=0}^k \binom{k+l+i}{l+2i} \binom{l+2i}{i} c_{k+l+i} \lambda^{k-i} \right\} (XY)^k (X^l + Y^l)$$

$$+ \sum_{\substack{k \ge 0 \\ k \ge 0}} \left\{ c_k^2 - \sum_{i=0}^k \binom{k+i}{2i} \binom{2i}{i} c_{k+i} \lambda^{k-i} \right\} (XY)^k .$$

Here we understand that $c_f=0$ if f>n and $c_0=1$.

(b) \Rightarrow (a): Assume that $F(X)F(Y) \equiv F(\lambda XY + X + Y) \mod \mathfrak{m}^m$. Take the greatest s such that $F(X)F(Y) \equiv F(\lambda XY + X + Y) \mod \mathfrak{m}^s$. Choose k, l such that

$$c_{k}c_{k+l} - \sum_{i=0}^{k} \binom{k+l+i}{l+2i} \binom{l+2i}{i} c_{k+l+i}\lambda^{k-i} \equiv 0 \mod \mathfrak{m}^{s+1}.$$

Put

$$j=2k+l$$

and

$$g(X, Y) := [F(X)F(Y) - F(\lambda XY + X + Y)]/\pi^s \mod \mathfrak{m}.$$

Let $g_j(X, Y)$ denote the homogeneous component of degree j of g(X, Y). Then

1) $g_{j}(X, Y) = g_{j}(Y, X);$

2)
$$g_j(X+Y, Z)+g_j(X, Y)=g_j(X, Y+Z)+g_j(Y, Z)$$
 (cf. 2.6).

By Lazard's comparison lemma ([2], lemma 3),

$$g_j(X, Y) = \begin{cases} c\{(X+Y)^j - X^j - Y^j\} & \text{if } j \text{ is not a power of } p. \\ \frac{c}{p}\{(X+Y)^j - X^j - Y^j\} & \text{if } j \text{ is a power of } p. \end{cases}$$

where c is a constant $\neq 0$. Hence the coefficient of $X^{p^{r-1}}Y^{j-p^{r-1}} + X^{j-p^{r-1}}Y^{p^{r-1}}$ (resp. $X^{p^r}Y^{j-p^r} + X^{j-p^r}Y^{p^r}$) does not vanish when $j=p^r>1$ (resp. $\operatorname{ord}_p j=r$ and $j \neq p^r$); that is to say,

$$c_{pr-1}c_{j-pr-1} - \sum_{i=0}^{pr-1} \binom{j-p^{r-1}+i}{j-2p^{r-1}+2i} \binom{j-2p^{r-1}+2i}{i} c_{j-pr-1+i}\lambda^{pr-1-i} \neq 0$$

mod. \mathfrak{m}^{s+1}

when $j=p^r>1$, and

$$c_{pr}c_{j-pr} - \sum_{i=0}^{p^{r}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i}\lambda^{pr-i} \not\equiv 0 \mod \mathfrak{m}^{s+1}$$

when $\operatorname{ord}_p j = r$ and $j \neq p^r$. Note that $s+1 \leq m$.

DEFINITION 3.2. Let $a_0, a_1, \dots, a_l \in \mathfrak{m}$. We define the polynomial $F(\lambda, a_0, a_1, \dots, a_l; X) = 1 + \sum_{i \geq 1} c_i X^i$ in A[X] by

 $c_1 = a_0, c_p = a_1, \cdots, c_{pl} = a_l$

and

$$c_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{pr-1} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i} \lambda^{p^{r}-i} \right\}$$

if $\operatorname{ord}_p j = r$ and $j \neq p^r$.

Example 3.3. (1) p=2.

$$F(\lambda, a_0, a_1; X) = 1 + a_0 X + a_1 X^2 + a_1 (a_0 - 2\lambda) X^3/3.$$

(2) p=3.

$$F(\lambda, a_0, a_1; X) = 1 + a_0 X + a_0 (a_0 - \lambda) X^2 / 2 + a_1 X^3 + a_1 (a_0 - 3\lambda) X^4 / 4 + a_1 (a_0 - 3\lambda) (a_0 - 4\lambda) X^5 / 20 + a_1 \Big\{ (a_1 - \lambda^3) - \frac{3}{2} (a_0 - 2\lambda) (a_0 - 3\lambda) \lambda \Big\} X^6 / 20$$

Extensions of Group Schemes

$$+a_1\left\{(a_1-\lambda^8)-\frac{3}{2}(a_0-2\lambda)(a_0-3\lambda)\lambda\right\}(a_0-6\lambda)X^7/140$$

+
$$a_1\left\{(a_1-\lambda^8)-\frac{3}{2}(a_0-2\lambda)(a_0-3\lambda)\lambda\right\}(a_0-6\lambda)(a_0-7\lambda)X^8/1120$$

REMARK 3.4. The coefficient c_i of X^i in $F(\lambda, a_0, a_1, \dots, a_l; X)$ can been seen as a polynomial in λ , a_0 , a_1 , \dots , a_r ($r = \lfloor \log_p i \rfloor$) with coefficients in $\mathbb{Z}_{(p)}$.

By the definition, we obtain immediately the following assertion.

COROLLARY 3.5. Let $F(X) = F(\lambda, a_0, a_1, \dots, a_l; X) = 1 + \sum_{i \ge 1} c_i X^i$. The following conditions are equivalent.

(a) F(X) satisfies the condition $(\#_m)$.

(b)
$$c_{pr}c_{pr+1-pr} \equiv \sum_{i=0}^{p^{r}} {p^{r+1}-p^{r}+i \choose p^{r+1}-2p^{r}+2i}} {p^{r+1}-2p^{r}+2i \choose i} c_{pr+1-pr+i}\lambda^{p^{r}-i} \mod \mathfrak{m}^{m}$$

for each $r \geq 0$.

EXAMPLE 3.6. (1) p=2. $F(\lambda, a_0, a_1; X)$ satisfies the condition $(\#_m)$ if and only if $a_0(a_0-\lambda)\equiv 2a_1$ and $a_1(a_1-\lambda^2)-2a_1(a_0-2\lambda)\lambda\equiv 0 \mod \mathfrak{m}^m$.

(2) p=3. $F(\lambda, a_0, a_1; X)$ satisfies the condition $(\#_m)$ if and only if $a_0(a_0-\lambda)(a_0-2\lambda)\equiv 6a_1$ and $a_1\{(a_1-\lambda^3)-(3/2)(a_0-2\lambda)(a_0-3\lambda)\lambda\}(a_0-2\lambda^3)-3a_1\{(a_1-\lambda^3)-(3/2)(a_0-2\lambda)(a_0-2\lambda)\lambda\}(a_0-6\lambda)(a_0-2\lambda)\lambda\equiv 0 \mod \mathfrak{m}^m$.

REMARK 3.7. In [5], $\phi(a, \lambda; X)$ denotes the polynomial

$$1+aX+\frac{a(a-\lambda)}{2}X^{2}+\cdots+\frac{a(a-\lambda)\cdots(a-(p-2)\lambda)}{(p-1)!}X^{p-1}.$$

(Here we employ a slightly different notation.) We see readily that $F(\lambda, a; X) = \phi(a, \lambda; X)$ and that $F(\lambda, a; X) = \phi(a, \lambda; X)$ satisfies the condition $(\#_m)$ if and only if $a(a-\lambda)\cdots(a-(p-1)\lambda)\equiv 0 \mod \mathfrak{m}^m$. (cf. [5], 3.7 and 3.9)

The following assertions also can be seen without difficulty.

COROLLARY 3.8. Suppose that $F(X) = F(\lambda, a_0, a_1, \dots, a_l; X)$ satisfies the condition $(\#_m)$.

(1) The closed fiber of $\mathcal{E}^{(\lambda,\mu;F)}$ is the extension of $G_{a,k}$ by $G_{a,k}$, defined by the 2-cocycle $\sum_{j\geq 1} \xi_j \frac{X^{pj} + Y^{pj} - (X+Y)^{pj}}{p}$, where

$$\begin{split} \xi_{j} &= -\frac{1}{\mu} \bigg\{ c_{pj-1} c_{pj-pj-1} \\ &- \sum_{i=0}^{pj-1} \binom{p^{j} - p^{j-1} + i}{p^{j} - 2p^{j-1} + 2i} \binom{p^{j} - 2p^{j-1} + 2i}{i} c_{pj-pj-1+i} \lambda^{pj-1-i} \bigg\} \text{ mod. } \mathfrak{m} \,. \end{split}$$

(2) If the closed fiber of $\mathcal{E}^{(\lambda,\mu;F)}$ is isomorphic to $(G_{a,k})^2$, F(X) satisfies the condition $(\#_{m+1})$.

LEMMA 3.9. If
$$a_0, a_1, \dots, a_l \in \mathfrak{m}$$
 and $b_0, b_1, \dots, b_l \in \mathfrak{m}^s$, then
 $F(\lambda, a_0+b_0, a_1+b_1, \dots, a_l+b_l; X) \equiv F(\lambda, a_0, a_1, \dots, a_l; X) + \sum_{0 \leq i \leq l} b_i X^{p^i}$

mod. \mathfrak{m}^{s+1} .

Proof. Let

$$F(\lambda, a_0+b_0, a_1+b_1, \dots, a_l+b_l; X) = 1 + \sum_{i \ge 1} \tilde{c}_i X^i$$

and

$$F(\lambda, a_0, a_1, \cdots, a_l; X) = 1 + \sum_{i \ge 1} c_i X^i.$$

We first note that, by the definition,

$$\tilde{c}_j = a_r + b_r = c_j + b_r$$

if $j = p^r \ge 1$.

Now let j be an integer >0, which is not a power of p. We show that $\tilde{c}_j \equiv c_j \mod \mathfrak{m}^{s+1}$, assuming that $\tilde{c}_i \equiv c_i \mod \mathfrak{m}^{s+1}$ if i < j and i is not a power of p. Put $r = \operatorname{ord}_p j$. Then, by the definition,

$$\tilde{c}_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ \tilde{c}_{pr} \tilde{c}_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} \tilde{c}_{j-p^{r}+i} \lambda^{p^{r}-i} \right\}$$

and

$$c_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{pr-1} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i} \lambda^{pr-i} \right\}.$$

Obviously, $j-p^r+i$ $(1 \le i \le p^r-1)$ are not powers of p.

Case 1: $j-p^r$ is a power of p. Put $j-p^r=p^{\nu}$. Then

$$\begin{split} \tilde{c}_{j} &= \frac{1}{\left(\frac{p^{\nu} + p^{r}}{p^{r}}\right)} \left\{ \tilde{c}_{pr} \tilde{c}_{p\nu} - \sum_{i=0}^{pr-1} \binom{p^{\nu} + i}{p^{\nu} - p^{r} + 2i} \binom{p^{\nu} - p^{r} + 2i}{i} \tilde{c}_{p\nu+i} \lambda^{p^{r}-i} \right\} \\ &= \frac{1}{\left(\frac{p^{\nu} + p^{r}}{p^{r}}\right)} \left\{ (c_{pr} + b_{r})(c_{p\nu} + b_{\nu}) - \binom{p^{\nu}}{p^{\nu} - p^{r}} (c_{p\nu} + b_{\nu}) \lambda^{p^{r}} \\ &- \sum_{i=1}^{pr-1} \binom{p^{\nu} + i}{p^{\nu} - p^{r} + 2i} \binom{p^{\nu} - p^{r} + 2i}{i} \tilde{c}_{p\nu+i} \lambda^{p^{r}-i} \right\} \end{split}$$

Extensions of Group Schemes

$$= \frac{1}{\left(\frac{p^{\nu}+p^{r}}{p^{r}}\right)} \left\{ b_{r}b_{\nu} + (c_{pr} - \left(\frac{p^{\nu}}{p^{\nu}-p^{r}}\right)\lambda^{p^{r}})b_{\nu} + c_{p^{\nu}+p^{r}}b_{r} + c_{pr}c_{p^{\nu}+p^{r}}\right. \\ \left. - \left(\frac{p^{\nu}}{p^{\nu}-p^{r}}\right)c_{p^{\nu}}\lambda^{p^{r}} - \sum_{i=1}^{p^{r}-1} \left(\frac{p^{\nu}+i}{p^{\nu}-p^{r}+2i}\right) \left(\frac{p^{\nu}-p^{r}+2i}{i}\right)\tilde{c}_{p^{\nu}+i}\lambda^{p^{r}-i}\right\}.$$

By the hypothesis of induction, $\tilde{c}_{p^{\nu}+i} \equiv c_{p^{\nu}+i} \mod \mathfrak{m}^{s+1}$ for each $i(1 \leq i \leq p^r-1)$. Moreover, b_r , $b_{\nu+r} \in \mathfrak{m}^s$ and $c_{p^{\nu}}$, $c_{p^{\nu}+p^r}$, $\lambda \in \mathfrak{m}$. Hence we obtain

$$\begin{split} &\frac{1}{\left(\stackrel{p^{\nu}+p^{\tau}}{p^{\tau}}\right)} \left\{ b_{r}b_{\nu} + (c_{pr} - \binom{p^{\nu}}{p^{\nu} - p^{\tau}})\lambda^{p^{\tau}} b_{\nu} + c_{p^{\nu}+p^{\tau}}b_{\tau} + c_{pr}c_{p^{\nu}+p^{\tau}} \\ &- \binom{p^{\nu}}{p^{\nu} - p^{\tau}} c_{p^{\nu}}\lambda^{p^{\tau}} - \sum_{i=1}^{p^{\tau-1}} \binom{p^{\nu}+i}{p^{\nu} - p^{\tau} + 2i} \binom{p^{\nu}-p^{\tau}+2i}{i} \tilde{c}_{p^{\nu}+i}\lambda^{p^{\tau}-i} \right\} \\ &\equiv \frac{1}{\left(\stackrel{p^{\nu}+p^{\tau}}{p^{\tau}}\right)} \left\{ c_{pr}c_{p^{\nu}+p^{\tau}} - \binom{p^{\nu}}{p^{\nu} - p^{\tau}} c_{p^{\nu}}\lambda^{p^{\tau}} \\ &- \sum_{i=1}^{p^{r-1}} \binom{p^{\nu}+i}{p^{\nu} - p^{\tau} + 2i} \binom{p^{\nu}-p^{\tau}+2i}{i} c_{p^{\nu}+i}\lambda^{p^{\tau}-i} \right\} \bmod \mathbb{M}^{s+1}, \end{split}$$

and therefore $\tilde{c}_j \equiv c_j \mod \mathfrak{m}^{s+1}$.

Case 2: $j-p^r$ is not a power of p.

$$\begin{split} \tilde{c}_{j} &= \frac{1}{\binom{j}{p^{r}}} \bigg\{ \tilde{c}_{pr} \tilde{c}_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} \tilde{c}_{j-pr+i} \lambda^{p^{r}-i} \bigg\} \\ &= \frac{1}{\binom{j}{p^{r}}} \bigg\{ c_{pr} \tilde{c}_{j-pr} + b_{r} \tilde{c}_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} \tilde{c}_{j-pr+i} \lambda^{p^{r}-i} \bigg\}. \end{split}$$

By the hypothesis of induction, $\tilde{c}_{j-pr+i} \equiv c_{j-pr+i} \mod \mathfrak{m}^{s+1}$ for each $i(0 \leq i \leq p^r-1)$. Moreover, $b_r \in \mathfrak{m}^s$ and c_{pr} , \tilde{c}_{j-pr} , $\lambda \in \mathfrak{m}$. Hence we obtain

$$\frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} \tilde{c}_{j-pr} + b_{r} \tilde{c}_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} \tilde{c}_{j-p^{r}+i} \lambda^{p^{r}-i} \right\} \\
\equiv \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-p^{r}+i} \lambda^{p^{r}-i} \right\} \mod \mathfrak{m}^{s+1},$$

and therefore $\tilde{c}_j \equiv c_j \mod \mathfrak{m}^{s+1}$.

THEOREM 3.10. Let F(X) be a polynomial in A[X], satisfying the condition $(\#_m)$. Then there exist $a_0, a_1, \dots, a_l \in \mathfrak{m}$ such that $F(X) \equiv F(\lambda, a_0, a_1, \dots, a_l; X)$

mod. \mathfrak{m}^m .

PROOF. We prove the theorem by induction on m.

Note first that $F(X) \equiv 1 \mod m$. Assume that there exist $a_0, a_1, \cdots a_l \in m$ such that $F(X) \equiv F(\lambda, a_0, a_1, \cdots, a_l; X) \mod m^s$. (We take l so that deg $F(\lambda, a_0, a_1, \cdots, a_l; X) \ge \deg F(X)$.) Put

$$\widetilde{F}(X) = F(\lambda, a_0, a_1, \cdots, a_l; X)$$

and

$$F_{s-1}(X) = \sum_{v(c_j) \leq s-1} c_j X^j, \ G_s(X) = \sum_{v(c_j) = s} c_j X^j,$$

$$\widetilde{F}_{s-1}(X) = \sum_{v(\widetilde{c}_j) \leq s-1} \widetilde{c}_j X^j, \ \widetilde{G}_s(X) = \sum_{v(\widetilde{c}_j) = s} \widetilde{c}_j X^j,$$

where

$$F(X) = \sum_{j \ge 0} c_j X^j, \ \widetilde{F}(X) = \sum_{j \ge 0} \widetilde{c}_j X^j.$$

Then $F_{s-1}(X) \equiv \widetilde{F}_{s-1}(X) \mod \mathfrak{m}^s$ and $F_{s-1}(X)$, $\widetilde{F}_{s-1}(X)$ satisfy $(\#_s)$.

Let $\mathcal{E} = \mathcal{E}^{(\lambda, \pi^s; F_{s-1})}$ and $\tilde{\mathcal{E}} = \mathcal{E}^{(\lambda, \pi^s; \tilde{F}_{s-1})}$. We define an S-isomorphism β : $\mathcal{E} \cong \tilde{\mathcal{E}}$ by

$$\begin{split} Y_{0} &\longmapsto X_{0}, \ Y_{1} \longmapsto X_{1} + \frac{1}{\pi^{s}} [F(X_{0}) - \widetilde{F}(X_{0})]: \\ & A[Y_{0}, \ Y_{1}, 1/(\lambda Y_{0} + 1), 1/(\pi^{s} Y_{1} + \widetilde{F}_{s-1}(Y_{0}))] \longrightarrow \\ & A[X_{0}, \ X_{1}, 1/(\lambda X_{0} + 1), 1/(\pi^{s} X_{1} + F_{s-1}(X_{0}))]. \end{split}$$

Since the closed fibers $\tilde{\mathcal{E}}_{k} \cong \mathcal{E}_{k}$ are isomorphic to $(G_{a,k})^{2}$, $\tilde{F}(X)$ satisfies $(\#_{s+1})$ (cf. Corollary 3.8), and therefore

$$\widetilde{F}_{s-1}(X)\widetilde{F}_{s-1}(Y) - \widetilde{F}_{s-1}(\lambda XY + X + Y) \equiv \widetilde{G}_s(X+Y) - \widetilde{G}_s(X) - \widetilde{G}_s(Y) \mod \mathfrak{m}^{s+1}$$

(cf. Lemma 2.7.1.). We define now k-isomorphisms $\alpha : \mathcal{E}_k \cong (G_{a,k})^2$ and $\tilde{\alpha} : \tilde{\mathcal{E}}_k \cong (G_{a,k})^2$ by

$$T_0 \longmapsto X_0, T_1 \longmapsto (X_1 - G_s(X_0)/\pi^s):$$

$$k[T_0, T_1] \longrightarrow k[X_0, X_1] = A[X_0, X_1, 1/(\lambda X_0 + 1), 1/(\pi^s X_1 + F_{s-1}(X_0))] \bigotimes_A k_0 X_1 + K_{s-1}(X_0) = K_0 X_0 + K_$$

and by

 $T_0 \longmapsto Y_0, T_1 \longmapsto (Y_1 - \widetilde{G}_s(Y_0)/\pi^s):$

 $k[T_0, T_1] \longrightarrow k[Y_0, Y_1] = A[Y_0, Y_1, 1/(\lambda Y_0 + 1), 1/(\pi^s Y_1 + \tilde{F}_{s-1}(Y_0))] \otimes_A k,$ respectively. Then $\tilde{\alpha} \circ \beta_k \circ \alpha^{-1}$ is defined by

$$T_{0} \longmapsto T_{0}, T_{1} \longmapsto T_{1} + [G_{s}(T_{0}) - \widetilde{G}_{s}(T_{0}) + F_{s-1}(T_{0}) - \widetilde{F}_{s-1}(T_{0})]/\pi^{s}$$
$$= T_{1} + [F(T_{0}) - \widetilde{F}(T_{0})]/\pi^{s}.$$

Hence $T_0 \mapsto [F(T_0) - \tilde{F}(T_0)]/\pi^s \mod \mathfrak{m}$ defines a *k*-endomorphism of $G_{a,k}$, and therefore, there exist $b_0, b_1, \cdots, b_l \in \mathfrak{m}^s$ such that

$$F(X) - \widetilde{F}(X) \equiv \sum_{0 \le i \le l} b_i X^{p^i} \mod \mathfrak{m}^{s+1}.$$

By Lemma 3.9, we obtain

$$F(X) \equiv \widetilde{F}(X) + \sum_{0 \le i \le l} b_i X^{p^i} \equiv F(\lambda, a_0 + b_0, a_1 + b_1, \cdots, a_l + b_l; X) \mod \mathfrak{m}^{s+1},$$

and we are done.

3.11. Let $\mathfrak{M}_{(\lambda,\mu)}$ be the subset of $(\mathfrak{m}/\mathfrak{m}^m)^{(N)}$ formed by the elements (a_0, a_1, \cdots) such that

$$a_{r}c_{pr+1-pr}(a_{0}, a_{1}, \cdots, a_{r-1}) \equiv \sum_{i=0}^{p^{r}} \binom{p^{r+1}-p^{r}+i}{p^{r+1}-2p^{r}+2i} \binom{p^{r+1}-2p^{r}+2i}{i} c_{pr+1-pr+i}(a_{0}, a_{1}, \cdots, a_{r-1})\lambda^{p^{r}-i} \mod \mathfrak{m}^{m}$$

for each $r \ge 0$. Here $c_j(a_0, a_1, \dots, a_{r-1})$ is the polynomial defined by the coefficient of X^j in the expansion of $F(\lambda, a_0, a_1, \dots, a_l; X)$ (cf. Def. 3.2).

We define a law of multiplication on $\mathfrak{M}_{(\lambda,\mu)}$ by

$$(a_{0}, \dots, a_{r}, \dots)(b_{0}, \dots, b_{r}, \dots) = \\ \left(a_{0}+b_{0}, \dots, a_{r}+b_{r}+\sum_{i=1}^{p^{r-1}}c_{i}(a_{0}, a_{1}, \dots, a_{r-1})c_{p^{r-i}}(b_{0}, b_{1}, \dots, b_{r-1}), \dots\right).$$

Then $\mathfrak{M}_{(\lambda,\mu)}$ is isomorphic to the subgroup of the multiplicative group $(A/\mathfrak{M}^m[X])^{\times}$, formed by the polynomials F(X) such that $F(X)F(Y) = F(\lambda XY + X + Y)$.

Moreover, let $\widetilde{\mathfrak{M}}_{(\lambda,\mu)}$ denote the quotient of $\mathfrak{M}_{(\lambda,\mu)}$ by the subgroup generated by $(\lambda, 0, 0, \cdots)$. By [5], Cor. 3.6, $\widetilde{\mathfrak{M}}_{(\lambda,\mu)}$ is isomorphic to $\operatorname{Ext}_{\mathbb{S}}^{1}(\mathscr{G}^{(\lambda)}, \mathscr{G}^{(\mu)})$.

4. Examples

In this section, we suppose that the residue field k is of characteristic p>0.

EXAMPLE 4.1. Suppose that $\mu \mid p$ and $v(\mu) = m$. Let j be an integer >1, which is not a power of p. Put $r = \operatorname{ord}_p j$. The relation

$$c_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i} \lambda^{p^{r}-i} \right\}$$

implies

$$c_{j} \equiv \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \left(\frac{j}{p^{r}} - 1\right) c_{j-pr} \lambda^{p^{r}} \right\} \mod \mathfrak{m}^{m}.$$

(Note that $\binom{kp^r}{p^r} \equiv k \mod p$ and $\binom{kp^r+i}{p^r-i} \equiv 0 \mod p$ for $i, 1 \leq i \leq p^r-1$.) Hence we obtain

$$c_k \equiv \prod_{r=0}^{l} \frac{a_r (a_r - \lambda^{p^r}) \cdots (a_r - (n_r - 1)\lambda^{p^r})}{n_r !} \mod \mathfrak{m}^m,$$

where $k = \sum_{r=0}^{l} n_r p^r$ is the *p*-adic expansion of *k*, and therefore

$$F(\lambda, a_0, a_1, \cdots, a_l; X) \equiv \phi(a_0, \lambda; X) \phi(a_1, \lambda^p; X^p) \cdots \phi(a_l, \lambda^{p^l}; X^{p^l}) \mod \mathfrak{m}^m.$$

Moreover, the congruence relation

$$c_{pr}c_{pr+1-pr} \equiv \sum_{i=0}^{p^{r}} \binom{p^{r+1}-p^{r}+i}{p^{r+1}-2p^{r}+2i} \binom{p^{r+1}-2p^{r}+2i}{i} c_{pr+1-pr+i}\lambda^{p^{r}-i} \mod \mathfrak{m}^{m}$$

reads

$$c_{pr}c_{pr+1-pr}\equiv (p-1)c_{pr+1-pr}\lambda^{pr} \mod \mathfrak{m}^{m}.$$

Hence we have

$$a_r(a_r-\lambda^{p^r})(a_r-2\lambda^{p^r})\cdots(a_r-(p-1)\lambda^{p^r})/(p-1)!\equiv 0 \mod \mathfrak{m}^m$$

and therefore

$$a_r^p - \lambda^{p^r (p-1)} a_r \equiv 0 \mod \mathfrak{m}^m$$
.

It follows that $F(\lambda, a_0, a_1, \dots, a_l; X)$ satisfies the condition $(\#_m)$ if and only if $a_r^p - \lambda^{p^r(p-1)}a_r \equiv 0 \mod \mathfrak{m}^m$ for each $r \ge 0$.

The closed fiber of $\mathcal{E}^{(\lambda,\mu;F)}$ is the extension of $G_{a,k}$ by $G_{a,k}$, defined by the 2-cocycle $\sum_{j\geq 1} \xi_j \frac{X^{pj} + Y^{pj} - (X+Y)^{pj}}{p}$, where $\xi_j = \frac{1}{\mu} \{a_{j-1}^p - \lambda^{pj-1(p-1)}a_{j-1}\} \mod \mathfrak{m}$. Thus we recover [5], Cor. 3.8 and Th. 4.4, under the assumption that $\mu \mid p$.

EXAMPLE 4.2. Suppose that $\mu \mid \lambda$ and $v(\mu) = m$. Let j be an integer >1, which is not a power of p. Put $r = \operatorname{ord}_p j$. The relation

$$c_{j} = \frac{1}{\binom{j}{p^{r}}} \left\{ c_{pr} c_{j-pr} - \sum_{i=0}^{p^{r-1}} \binom{j-p^{r}+i}{j-2p^{r}+2i} \binom{j-2p^{r}+2i}{i} c_{j-pr+i} \lambda^{p^{r}-i} \right\}$$

implies

$$c_{j} \equiv \frac{1}{\binom{j}{p^{r}}} c_{pr} c_{j-pr} \mod \mathfrak{m}^{m}.$$

Hence we obtain

$$c_k \equiv \prod_{r=0}^l \frac{(p^r ! \cdot a_r)^{n_r}}{k !} \mod \mathfrak{m}^m.$$

where $k = \sum_{r=0}^{l} n_r p^r$ is the *p*-adic expansion of *k*.

Moreover, the congruence relation

$$c_{pr}c_{pr+1-pr} \equiv \sum_{i=0}^{p^{r}} \binom{p^{r+1}-p^{r}+i}{p^{r+1}-2p^{r}+2i} \binom{p^{r+1}-2p^{r}+2i}{i} c_{pr+1-pr+i}\lambda^{p^{r}-i} \mod \mathfrak{m}^{m}$$

reads

$$c_{pr}c_{pr+1-pr} \equiv \begin{pmatrix} p^{r+1} \\ p^r \end{pmatrix} c_{pr+1} \mod \mathfrak{m}^m,$$

and therefore

$$a_r^p / \sum_{i=1}^{p-2} \binom{p^{r+1}-ip^r}{p^r} \equiv \binom{p^{r+1}}{p^r} a_{r+1} \mod \mathfrak{m}^m.$$

Hence $F(\lambda, a_0, a_1, \dots, a_l; X)$ satisfies the condition $(\#_m)$ if and only if

$$a_{r}^{p} \equiv \sum_{i=0}^{p-2} \binom{p^{r+1} - ip^{r}}{p^{r}} a_{r+1} \mod \mathfrak{m}^{m}, \text{ i.e. } a_{r}^{p} \equiv \frac{p^{r+1}!}{(p^{r}!)^{r}} a_{r+1} \mod \mathfrak{m}^{m}$$

for each $r \ge 0$.

The closed fiber of $\mathcal{E}^{(\lambda,\mu;F)}$ is the extension of $G_{a,k}$ by $G_{a,k}$, defined by the 2-cocycle $\sum_{j\geq 1}\xi_j \frac{X^{pj}+Y^{pj}-(X+Y)^{pj}}{p}$, where

$$\xi_{j} = -\frac{1}{\mu} \left\{ a_{j-1}^{p} / \sum_{i=1}^{p-2} \begin{pmatrix} p^{r+1} - ip^{r} \\ p^{r} \end{pmatrix} - \begin{pmatrix} p^{r+1} \\ p^{r} \end{pmatrix} a_{j} \right\} \mod \mathfrak{m}$$

COROLLARY 4.2.1. The canonical map $\operatorname{Ext}^{1}_{S}(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}) \to \operatorname{Ext}^{1}_{k}(G_{a,k}, G_{a,k})$ is surjective if pv(p) < (p-1)m.

PROOF. It is sufficient to remark that $\operatorname{Ext}_{k}^{1}(G_{a,k}, G_{a,k})$ is generated by the 2-cocycles $\sum_{j\geq 1} \eta_{j} \frac{X^{pj} + Y^{pj} - (X+Y)^{pj}}{p}$, $\eta_{j} \in k$ (see [6], Ch. VII, 2.7). (Compare with [5], example 3.4)

EXAMPLE 4.3. Suppose that $\mu \mid p$ and $\mu \mid \lambda$. Then

$$\phi(a_{\tau}, \lambda^{p^{r}}; X) \equiv \sum_{i=0}^{p-1} (a_{\tau} X^{p^{r}})^{i} / i! \mod \mathfrak{m}^{m},$$

and therefore

$$F(\lambda, a_0, a_1, \cdots, a_l; X) \equiv \prod_{r=0}^{l} \sum_{i=0}^{p-1} (a_r X^{p^r})^i / i! \mod \mathfrak{m}^m$$

Moreover, $F(\lambda, a_0, a_1, \dots, a_l; X)$ satisfies the condition $(\#_m)$ if and only if $a_r^p \equiv 0 \mod \mathfrak{m}^m$ for each $r \geq 0$. Hence $c_{pr-i}(a_0, \dots, a_{r-1})c_i(b_0, \dots, b_{r-1}) \equiv 0 \mod \mathfrak{m}^m$ for each $r \geq 1$ and each i with $1 \leq i \leq p^{r-1}$ if (a_0, a_1, \dots) , $(b_0, b_1, \dots) \in \mathfrak{M}_{(\lambda, \mu)}$. Therefore $\mathfrak{M}_{(\lambda, \mu)} = \widetilde{\mathfrak{M}}_{(\lambda, \mu)}$ is isomorphic to the additive group $(\mathfrak{m}^s/\mathfrak{m}^m)^{(N)}$, where

$$s = \begin{cases} [m/p]+1 & if (p,m)=1\\ m/p & if p|m. \end{cases}$$

The closed fiber of $\mathcal{E}^{(\lambda,\mu;F)}$ is the extension of $G_{a,k}$ by $G_{a,k}$, defined by the 2-cocycle $\sum_{j\geq 1}\xi_j \frac{X^{pj}+Y^{pj}-(X+Y)^{pj}}{p}$, where $\xi_j=\frac{1}{\mu}a_{j-1}^p \mod \mathfrak{m}$.

COROLLARY 4.3.1. (1) Assume that p does not divide m. Then the canonical map $\operatorname{Ext}^{1}_{S}(\mathcal{G}^{(\lambda)}, \mathcal{G}^{(\mu)}) \rightarrow \operatorname{Ext}^{1}_{k}(G_{a,k}, G_{a,k})$ is zero.

(2) Assume that p divides m. Then the canonical map $\operatorname{Ext}^{1}_{S}(\mathcal{Q}^{(\lambda)}, \mathcal{Q}^{(\mu)}) \rightarrow \operatorname{Ext}^{1}_{k}(G_{a,k}, G_{a,k})$ is surjective if the residue field k is perfect.

PROOF. We have only to note that the equation $X^p \equiv \mu a \mod \mathfrak{m}^m$ has a solution in A for any $a \in A$ if k is perfect. (cf. [5], 4.5.)

We have computed the group of extensions $\operatorname{Ext}_{S}^{1}(\mathcal{Q}^{(\lambda)}, \mathcal{Q}^{(\mu)})$ of smooth affine 1-dimensional S-groups $\mathcal{Q}^{(\lambda)}$ and $\mathcal{Q}^{(\mu)}$. We conclude this article by noting that a smooth affine 2-dimensional S-group is not necessarily obtained by an extension of smooth 1-dimensional S-groups, even though its generic fiber and its special fibre are extensions of smooth 1-dimensional groups each.

4.4. Suppose that $k \neq F_p$. Let π be a uniformizing parameter of A, and let m be an integer >2. Put $\lambda = \pi^{m-1}$ and $\mu = \pi^m$. We choose an element $a \in A$ such that the image of a in k is not contained in $F_p(\subset k)$. Then the polynomial $F(X)=1+a\lambda X$ satisfies the condition $(\#_m)$ (cf. Remark 3.7). Let G denote the smooth affine S-group $\mathcal{E}^{(\lambda,\mu;F)}$:

$$G = \operatorname{Spec} A[X_0, X_1, 1/(\lambda X_0 + 1), 1/(\mu X_1 + F(X_0))].$$

By our assumption on *m*, the closed fiber G_k is isomorphic to $(G_{a,k})^2$. More precisely, the comultiplication of $k[G] = k[X_0, X_1] = A[X_0, X_1, 1/(\lambda X_0+1), 1/(\mu X_1 + F(X_0))] \otimes_A k$ is defined by

$$X_0 \longmapsto X_0 \otimes 1 + 1 \otimes X_0, \quad X_1 \longmapsto X_1 \otimes 1 + 1 \otimes X_1.$$

Let H be the closed k-subgroup of $G_k = (G_{a,k})^2$ defined by the ideal $(X_1^p - X_0)$ in

 $k[G] = k[X_0, X_1]$, and let $\beta: \tilde{G} \to G$ be the Néron blow-up of H in G. Since G is smooth over S and $H \cong G_{\alpha, k}$ is smooth over k, \tilde{G} is smooth over S([9], Th. 1.7).

Under these notations, we get the following assertion.

4.4.1. Any flat 1-dimensional closed S-subgroup of \tilde{G} is not smooth.

PROOF. For integers r, s, we define an injective S-homomorphism

$$\varphi_{r,s}: G_{m,s} \longrightarrow (G_{m,s})^2$$

by

$$U \longmapsto T^{r}, V \longmapsto T^{s}: A[U, U^{-1}, V, V^{-1}] \longrightarrow A[T, T^{-1}]$$

By the general theory of algebraic tori, we know that any closed K-subgroup of dimension 1 of $(G_{m,K})^2$ is the form of $\varphi_{r,s}(G_{m,K})$, where r, s are integers with (r, s)=1 or (r, s)=(0, 1), (1, 0). We identify the generic fiber $\tilde{G}_K(\text{resp. } G_K)$ to $(G_{m,K})^2$ via the isomorphism $\beta_{K^\circ} \alpha_K^{(\lambda,\mu;F)} : \tilde{G}_K \cong (G_{m,K})^2$ (resp. $\alpha_K^{(\lambda,\mu;F)} : G_K \cong$ $(G_{m,K})^2$). Let $\tilde{G}_{r,s}$ (resp. $G_{r,s}$) denote the flat closure of $\varphi_{r,s}(G_{m,K})$ in \tilde{G} (resp. G). We show that the closed fiber $(\tilde{G}_{r,s})_k$ is isomorphic to $\boldsymbol{a}_p \times G_{a,k}$, which implies our assertion together with Prop. 1.6.

Note first that the subgroup $\varphi_{r,s}(G_{m,K})$ of $G_K = (G_{m,K})^2$ is defined by the ideal $(U^s - V^r) = ((\lambda X_0 + 1)^s - (\mu X_1 + F(X_0))^r)$ in $K[U, U^{-1}, V, V^{-1}] = K[X_0, X_1, 1/(\lambda X_0 + 1), 1/(\mu X_1 + F(X_0))]$. By our assumption that $v(\mu) = m$ and $v(\lambda) = m - 1$,

 $(\lambda X_0+1)^s - (\mu X_1 + F(X_0))^r \equiv (s\lambda X_0+1) - (ra\lambda X_0+1) \equiv (s-ra)\lambda X_0 \mod \mathfrak{m}^m.$

By the choice of a, s-ra is invertible in A. Hence $G_{r,s}$ is defined by the ideal $(\{(\lambda X_0+1)^s-(\mu X_1+F(X_0))^r\}/\lambda)$ in $A[G]=A[X_0, X_1, 1/(\lambda X_0+1), 1/(\mu X_1+F(X_0))].$

Now we define an S-homomorphism $\psi_{\tau,s}: \mathcal{Q}^{(\mu)} \rightarrow G = \mathcal{E}^{(\lambda,\mu;F)}$ by

$$\begin{split} X_{0} \longmapsto & \{(\mu X+1)^{r}-1\}/\lambda, \ X_{1} \longmapsto \{(\mu X+1)^{s}-a(\lambda X+1)^{r}+a-1\}/\mu: \\ & A[X_{0}, \ X_{1}, 1/(\lambda X_{0}+1), 1/(\mu X_{1}+F(X_{0}))] \longrightarrow A[X, 1/(\mu X+1)]. \end{split}$$

Then $\phi_{\tau,s}: \mathcal{Q}^{(\mu)} \to G$ factors through $\mathcal{Q}^{(\mu)} \to G_{\tau,s} \to G$, and we can see that $\mathcal{Q}^{(\mu)} \to G_{\tau,s}$ is an isomorphism. Hence we obtain a commutative diagram of S-groups:

$$G_{r,s} \xrightarrow{\psi_{r,s}} G$$

$$\downarrow \alpha^{(\mu)} \qquad \qquad \downarrow \alpha^{(\lambda,\mu;F)}$$

$$G_{m,s} \xrightarrow{\varphi_{r,s}} (G_{m,s})^2 .$$

Since \tilde{G} is the Néron blow-up of H in G, $\tilde{G}_{r,s}$ is the Néron blow-up of $(G_{r,s})_k \cap H$ in $G_{r,s}$ (cf. Cor. 1.9). As is shown above,

$$\{(\lambda X_0+1)^s-(\mu X_1+F(X_0))^r\}/\lambda\equiv(s-ra)X_0\equiv 0 \mod \mathfrak{m}$$

Hence $(G_{r,s})_k$ is defined by the ideal $((s-ra)X_0)$ in $k[G]=k[X_0, X_1]$, and therefore, $(G_{r,s})_k \cap H$ is defined by the ideal $((s-ra)X_0, X_1^p - X_0)$ in $k[G]=k[X_0, X_1]$. Hence $(G_{r,s})_k \cap H$ is defined by the ideal (X^p) in $k[G_{r,s}]=k[X]$. Then $A[\tilde{G}_{r,s}]=A[X, 1/(\mu X+1), Y]/(\pi Y - X^p)$, and therefore $k[\tilde{G}_{r,s}]=k[X]=k[X, Y]/(X^p)$.

REMARK 4.4.2. The exact sequence of S-groups

 $0 \longrightarrow \widetilde{G}_{0,1} \longrightarrow \widetilde{G} \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0$

is the Néron blow-up of the exact sequence of k-groups

$$0 \longrightarrow \boldsymbol{a}_p \longrightarrow \boldsymbol{G}_{a,k} \longrightarrow \boldsymbol{G}_{a,k} \longrightarrow 0$$

in

 $0 \longrightarrow G_{0,1} \longrightarrow G \longrightarrow \mathcal{G}^{(\lambda)} \longrightarrow 0$

(cf. Theorem 1.9).

References

- Anantharaman, S., Schéma en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull Soc. Math. France, Mémoire 33 (1973).
- Lazard, M., Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955), 251-274.
- [3] Sekiguchi, T., Oort, F. and Suwa, N., On the deformation of Artin-Schreier to Kummer. Ann. scient. Éc. Norm. Sup., 22(4): 345-375, 1989.
- [4] Sekiguchi, T. and Oort, F., On the deformations of Witt groups to tori, In: Algebraic and Topological Theories (to the memory of Dr. T. Miyata), Kinokuniya (1985), 283-298.
- [5] Sekiguchi, T., On the deformation of Witt groups to tori II, Chuo Univ. Preprint series No. 1 (1988). J. of Alg. (forthcoming).
- [6] Serre, J.-P., Groupes algébriques et corps de classes, Hermann, 1959.
- [7] Waterhouse, W., Introduction to affine group schemes, Graduate Texts in Math.
 66, Springer, 1979.
- [8] Waterhouse, W., Unified Kummer-Artin-Schreier sequence, Math. Ann. 277 (1987), 447-451.
- [9] Waterhouse, W. and Weisfeiler, B., One-dimensional affine group schemes, J. of Alg. 66 (1980), 550-568.
- [10] Weisfeiler, B., On a case of extensions of group schemes, Trans. Amer. Math. Soc. 248 (1979), 171-189.
- [11] Grothendieck, A., Le groupe de Brauer III, Dix exposés sur la cohomologie des schémas, North-Holland (1960), 46-188.
- [EGA] Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique, Chapitre IV, Publ. Math. IHES, 20, 24, 28, 32 (1964-1967).

Extensions of Group Schemes

Tsutomu SEKIGUCHI Department of Mathematics Faculty of Science and Engineering Chuo University Kasuga 1-13-27, Bunkyo-ku Tokyo 112, Japan

Noriyuki SUWA Department of Mathematics Tokyo Denki University Kanda-nishiki-cho 2-2, Chiyoda-ku Tokyo 101, Japan