ON RAMANUJAN SUMS ON ARITHMETICAL SEMIGROUPS

By

Aleksander Grytczuk

1. Introduction.

Let $f: N \rightarrow C$ be an arithmetic function and let $f^{*}=\mu * f$ denote the Dirichlet convolution and the Möbius function μ, so that

$$
\begin{equation*}
f^{*}(n)=\sum_{d \backslash n} \mu(d) f\left(\frac{n}{d}\right), \quad n \geqq 1 . \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
c_{q}(n)=\sum_{\substack{n=1 \\(h, q)=1}}^{q} \exp \left(2 \Pi i \frac{h n}{q}\right) \tag{1.2}
\end{equation*}
$$

be the Ramanujan's trigonometric sum. A Ramanujan series is a series of the form

$$
\begin{equation*}
\sum_{q=1}^{\infty} a_{q} c_{q}(n) \tag{1.3}
\end{equation*}
$$

where $c_{q}(n)$ is Ramanujan's sum and

$$
\begin{equation*}
a_{q}=\sum_{m=1}^{\infty} \frac{f^{*}(m q)}{m q} . \tag{1.4}
\end{equation*}
$$

Important result concerning Ramanujan's expansions of certain arithmetical functions has been given by Delange [2]. He proved the following result:

Theorem A. If $\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n}\left|f^{*}(n)\right|<\infty$, where $\omega(n)$ is the number of distinct prime divisors of n, then $\sum_{q=1}^{\infty}\left|a_{q} c_{q}(n)\right|<\infty$ for every n and $\sum_{q=1}^{\infty} a_{q} c_{q}(n)=f(n)$.

In his proof, Delange used the inequality

$$
\begin{equation*}
\sum_{d \backslash k}\left|c_{d}(n)\right| \leqq 2^{\omega(k)} n, \tag{1.5}
\end{equation*}
$$

see [2; Lemma, p. 263] and conjectured [2, p. 264] that his Lemma is best possible.

In [3] we proved the following identity:

Received August 12, 1991, Revised November 13, 1991.

$$
\sum_{d \backslash k}\left|c_{k}(n)\right|=2^{\omega(k /(k, n))}(k, n)
$$

for all positive integers k and n.
D. Redmond [7] generalized $\left({ }^{*}\right)$ to a larger class of functions and K.R. Johnson [4] evaluated the left hand side of $(*)$ for second variable. Further generalizations connected with (*) have been given by K. R. Johnson [5], J. Chidambaraswamy and D.V. Krishnaiah [1] and D. Redmond [8].

In this paper by using $\left(^{*}\right)$ we give a theorem inverse to the Theorem A. Moreover we obtain an evaluation of Ramanujan's sum defined on an arithmetical semigroup.

2. Inverse Theorem to the Theorem A .

We prove the following
Theorem 1. If $\sum_{k=1}^{\infty} U_{k}<\infty$, where

$$
\begin{equation*}
U_{k}=\sum_{m=k} \frac{\left|f^{*}(m q)\right|}{m q}\left|c_{q}(n)\right|, \tag{2.1}
\end{equation*}
$$

then

$$
\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n}\left|f^{*}(n)\right|<\infty .
$$

Proof. Let us suppose $\sum_{k=1}^{\infty} U_{k}<\infty$, where U_{k} is given by (2.1) above. From (2.1) we get

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left|f^{*}(k)\right|}{k} \sum_{q \backslash k}\left|c_{q}(n)\right|<\infty . \tag{2.2}
\end{equation*}
$$

By (2.2) and (*) we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left|f^{*}(k)\right|}{k} 2^{\omega(k /(k, n))}(k, n)<\infty . \tag{2.3}
\end{equation*}
$$

Now, by well-known properties of the function $\omega(n)$ it follows that

$$
\begin{equation*}
2^{\omega(k /(k, n))} \geqq \frac{2^{\omega(k)}}{2^{\omega(k, n))}} \tag{2.4}
\end{equation*}
$$

and if $D=(k, n)$ then

$$
\begin{equation*}
D \geqq 2^{\omega(D)} \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5) we obtain

$$
\begin{equation*}
2^{\omega(k /(k, n))}(k, n) \geqq 2^{\omega(k)} \frac{(k, n)}{2^{\omega((k, n))}} \geqq 2^{\omega(k)} \tag{2.6}
\end{equation*}
$$

By (2.3) and (2.6) our theorem follows.

3. Ramanujan's sum on an arithmetical semigroup.

Let G denote a commutative semigroup with identity element 1 , relative to multiplication operation. Suppose that G has a finite or countably infinite subset P such that every element $a \neq 1$ in G has a unique with to up to order of the factor indicated of the factorization of the form

$$
\begin{equation*}
a=p_{1}{ }_{1}^{d_{1}} \cdots p_{k}{ }^{d_{k}} \tag{3.1}
\end{equation*}
$$

where $p_{i} \in P, p_{i} \neq p_{j}$ for $i \neq j$ and α_{i} are positive rational integers. It there exists a real-valued norm mapping $\|\cdot\|$ on G such that
(3.2) $\begin{cases}\text { (i) }\|1\|=1, \quad\|p\|>1 & \text { if } p \in P \\ \text { (ii) }\|a b\|=\|a\|\|b\| & \text { for all } a, b \in G, \\ \text { (iii) } \quad N_{G}(x)=\operatorname{card}\{a \in G:\|a\| \leqq x\}<\infty & \text { for } x<0\end{cases}$
then the semigroup G will be called the arithmetical semigroup.
We have the following;
Lemma 1. Let $c_{r}(a)$ denote the Ramanujan sum defined on an arithmetical semigroup G as follows

$$
\begin{equation*}
c_{r}(a)=\sum_{d_{1}(r, s)} \mu\left(\frac{r}{d}\right)\|d\|^{\bar{o}} \tag{3.3}
\end{equation*}
$$

where $r, a \in G ; \delta>0, \mu$ denotes the Möbius function on G and (r, a) is the g.c.d. of r, a in G. Then we have

$$
c_{p^{m}}(a)= \begin{cases}\|p\|^{\delta m}-\| \|^{\partial \bar{o}(m-1)} & \text { if } p^{m} \mid a \tag{3.4}\\ -\|p\|^{\delta(m-1)} & \text { if } p^{m-1} \mid a \text { and } p^{m} \nmid a \\ 0 & \text { if } p^{m-1} \nmid a\end{cases}
$$

for any prime element $p \in P$ and positive integer m. Moreover $c_{1}(a)=1$ and for any fixed $a \in G$ the junction $c_{r}(a)$ is a multaplicative function with respect to variable r.

The proof of this Lemma follows from the results given by J. Knopfmacher see [6, pp. 185-186].

Now, we can prove the following:
THEOREM 2. Let G be a given arithmetical semigroup and $c_{r}(a)$ denote the Ramanujan sum on G. Then for any $r, a \in G$ we have

$$
\begin{equation*}
\sum_{d \backslash r}\left|c_{d}(a)\right|=2^{\omega(r /(r, a))}\|(r, a)\|^{\delta} \tag{3.5}
\end{equation*}
$$

where $\delta>0$ and $\omega(D)=k$ if $D=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$.
Proof. Let $a \in G$ be fixed. Then the function $f(r)=(r, a)$ is a multiplicative function of r. Hence by (ii) of (3.2) it follows that

$$
\begin{equation*}
\|(r s, a)\|^{\delta}=\|(r, a)\|^{\delta}\|(s, a)\|^{\delta} \quad \text { for } r, s \in G \text { such that }(r, s)=1 \tag{3.6}
\end{equation*}
$$

Let $g=p^{\alpha_{1}} \cdots p^{\alpha_{k}}, p_{i} \in P, p_{i} \neq p_{j}$ for $i \neq j$, then we have $\omega(g)=k$. Consider the function $F(g)=2^{w(g)}$.

It is easy to see that $F(g)$ is a multiplicative function. Hence

$$
\begin{equation*}
F\left(\frac{r s}{(r s, a)}\right)=F\left(\frac{r}{(r, a)}\right) F\left(\frac{s}{(s, a)}\right) \quad \text { for }(r, s)=1 ; r, s \in G . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) it follows that the function

$$
P(r, a)=2^{\omega(r /(r, a))}\|(r, a)\|^{\delta}
$$

is a multiplicative functions of $r \in G$ for any fixed $a \in G$.
By Lemma 1 it follows that the left hand side of (3.5) is also multiplicative of $r \in G$ for any fixed $a \in G$. Thus it suffices to verify (3.5) for $r=p^{m}$, where $p \in P$ and m is a positive integer. Denote by $L(r, a)$ the left hand side of (3.5) and suppose that $p^{1} \| a$.

If $0 \leqq 1<m$ then we have

$$
\begin{equation*}
L\left(p^{m}, a\right)=\sum_{j=0}^{m}\left|c_{p^{j}}(a)\right|=\left|c_{1}(a)\right|+\sum_{j=1}^{1}\left|c_{p^{j}}(a)\right|+\left|c_{p^{l+1}}(a)\right| . \tag{3.8}
\end{equation*}
$$

By Lemma 1 and (3.8) it follows that

$$
L\left(p^{m}, a\right)=1+\sum_{j=1}^{1}\left(\|p\|^{\delta j}-\|p\|^{\partial(j-1)}\right)+\|p\|^{\delta 1}=2\|p\|^{\|^{\delta 1}}
$$

If $1 \geqq m$ then by Lemma 1 we obtain

$$
L\left(p^{m}, a\right)=\sum_{j=0}^{m}\left|c_{p^{j}}(a)\right|=1+\sum_{j=1}^{m}\left(\|p\|^{\delta j}-\|p\|^{\delta(j-1)}\right)=\|p\|^{\delta m} .
$$

Comparing the functions $L\left(p^{m}, a\right)$ and $P\left(p^{m}, a\right)$ we get $L\left(p^{m}, a\right)=P\left(p^{m}, a\right)$ and the proof of Theorem 2 is complete.

References

[1] Chidambaraswamy J. and Krishnaisa P. V., An identity for a class of arithmetical functions of two variables, Internat, J. Math. and Math. Sci. Vol. 11, No. 2 (1988), 351-354.
[2] Delange H., On Ramanujan expansions of certain arithmetical functions, Acta Arith. XXXI, 3 (1976), 259-270.
[3] Grytczuk A., An identity involving Ramanujan's sum, El. Math. 36 (1981), 16-17.
[4] Johnson K.R., A result for "other" variable Ramanujan's sum, El. Math• 38 (1983), 122-124.
[5] Johnson, K.R., Explicit formula for sums of Ramanujan type sums, Indian J. pure appl. Math. 18(8), (1987), 675-677.
[6] Knopfmacher J., Abstract Analytic Number Theory, North-Holland Publ., 1975.
[7] Redmond D., A remark on a paper by A. Grytczuk, El. Math. 32 (1983), 17-20.
[8] Redmond D., A generalization of a result of K. R. Johnson, Tsukuba J. Math. Vol. 13, No. 1 (1989), 99-105.

Institute of Mathematics
Department of Algebra and Number Theory
Pedagogical University
Zielona Gora, Poland

