ON RAMANUJAN SUMS ON ARITHMETICAL SEMIGROUPS

By

Aleksander GRYTCZUK

1. Introduction.

Let $f: N \rightarrow C$ be an arithmetic function and let $f^* = \mu * f$ denote the Dirichlet convolution and the Möbius function μ , so that

(1.1)
$$f^*(n) = \sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right), \quad n \ge 1.$$

Let

(1.2)
$$c_q(n) = \sum_{\substack{h=1\\(h,q)=1}}^{q} \exp\left(2\Pi i \frac{hn}{q}\right)$$

be the Ramanujan's trigonometric sum. A Ramanujan series is a series of the form

(1.3)
$$\sum_{q=1}^{\infty} a_q c_q(n)$$

where $c_q(n)$ is Ramanujan's sum and

(1.4)
$$a_q = \sum_{m=1}^{\infty} \frac{f^*(mq)}{mq}.$$

Important result concerning Ramanujan's expansions of certain arithmetical functions has been given by Delange [2]. He proved the following result:

THEOREM A. If $\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n} |f^*(n)| < \infty$, where $\omega(n)$ is the number of distinct prime divisors of n, then $\sum_{q=1}^{\infty} |a_q c_q(n)| < \infty$ for every n and $\sum_{q=1}^{\infty} a_q c_q(n) = f(n)$. In his proof, Delange used the inequality

in his proor, belange used the inequality

(1.5)
$$\sum_{d\mid k} |c_d(n)| \leq 2^{\omega(k)} n ,$$

see [2; Lemma, p. 263] and conjectured [2, p. 264] that his Lemma is best possible.

In [3] we proved the following identity:

Received August 12, 1991, Revised November 13, 1991.

Aleksander GRYTCZUK

(*)
$$\sum_{d \mid k} |c_k(n)| = 2^{\omega(k/(k,n))}(k, n)$$

for all positive integers k and n.

D. Redmond [7] generalized (*) to a larger class of functions and K.R. Johnson [4] evaluated the left hand side of (*) for second variable. Further generalizations connected with (*) have been given by K.R. Johnson [5], J. Chidambaraswamy and D.V. Krishnaiah [1] and D. Redmond [8].

In this paper by using (*) we give a theorem inverse to the Theorem A. Moreover we obtain an evaluation of Ramanujan's sum defined on an arithmetical semigroup.

2. Inverse Theorem to the Theorem A.

We prove the following

THEOREM 1. If $\sum_{k=1}^{\infty} U_k < \infty$, where

(2.1)
$$U_{k} = \sum_{mq=k} \frac{|f^{*}(mq)|}{mq} |c_{q}(n)|,$$

then

$$\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n} |f^*(n)| < \infty$$

PROOF. Let us suppose $\sum_{k=1}^{\infty} U_k < \infty$, where U_k is given by (2.1) above. From (2.1) we get

(2.2)
$$\sum_{k=1}^{\infty} \frac{|f^*(k)|}{k} \sum_{q \mid k} |c_q(n)| < \infty .$$

By (2.2) and (*) we obtain

(2.3)
$$\sum_{k=1}^{\infty} \frac{|f^*(k)|}{k} 2^{\omega(k/(k,n))}(k, n) < \infty .$$

Now, by well-known properties of the function $\omega(n)$ it follows that

(2.4)
$$2^{\omega(k/(k,n))} \ge \frac{2^{\omega(k)}}{2^{\omega((k,n))}}$$

and if D = (k, n) then

$$(2.5) D \ge 2^{\omega(D)} .$$

From (2.4) and (2.5) we obtain

316

On Ramanujan sums on arithmetical semigroups

(2.6)
$$2^{\omega(k/(k,n))}(k,n) \ge 2^{\omega(k)} \frac{(k,n)}{2^{\omega((k,n))}} \ge 2^{\omega(k)}.$$

By (2.3) and (2.6) our theorem follows.

3. Ramanujan's sum on an arithmetical semigroup.

Let G denote a commutative semigroup with identity element 1, relative to multiplication operation. Suppose that G has a finite or countably infinite subset P such that every element $a \neq 1$ in G has a unique with to up to order of the factor indicated of the factorization of the form

where $p_i \in P$, $p_i \neq p_j$ for $i \neq j$ and α_i are positive rational integers. It there exists a real-valued norm mapping $\|\cdot\|$ on G such that

(3.2)
$$\begin{cases} (i) & \|1\|=1, & \|p\|>1 & \text{if } p \in P \\ (ii) & \|ab\|=\|a\|\|b\| & \text{for all } a, b \in G, \\ (iii) & N_G(x)=\text{card } \{a \in G : \|a\| \le x\} < \infty & \text{for } x < 0 \end{cases}$$

then the semigroup G will be called the arithmetical semigroup.

We have the following;

LEMMA 1. Let $c_r(a)$ denote the Ramanujan sum defined on an arithmetical semigroup G as follows

(3.3)
$$c_r(a) = \sum_{d \mid (r,s)} \mu\left(\frac{r}{d}\right) \|d\|^{\delta}$$

where r, $a \in G$; $\delta > 0$, μ denotes the Möbius function on G and (r, a) is the g.c.d. of r, a in G. Then we have

(3.4)
$$c_{p^{m}}(a) = \begin{cases} \|p\|^{\delta m} - \|p\|^{\delta(m-1)} & \text{if } p^{m} | a \\ -\|p\|^{\delta(m-1)} & \text{if } p^{m-1} | a \text{ and } p^{m} \not | a \\ 0 & \text{if } p^{m-1} \not | a \end{cases}$$

for any prime element $p \in P$ and positive integer m. Moreover $c_1(a)=1$ and for any fixed $a \in G$ the function $c_r(a)$ is a multiplicative function with respect to variable r.

The proof of this Lemma follows from the results given by J. Knopfmacher see [6, pp. 185-186].

317

Now, we can prove the following:

THEOREM 2. Let G be a given arithmetical semigroup and $c_r(a)$ denote the Ramanujan sum on G. Then for any r, $a \in G$ we have

(3.5)
$$\sum_{d \mid r} |c_d(a)| = 2^{\omega(r/(r,a))} ||(r,a)||^{\delta}$$

where $\delta > 0$ and $\omega(D) = k$ if $D = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$.

PROOF. Let $a \in G$ be fixed. Then the function f(r)=(r, a) is a multiplicative function of r. Hence by (ii) of (3.2) it follows that

(3.6)
$$||(rs, a)||^{\delta} = ||(r, a)||^{\delta} ||(s, a)||^{\delta}$$
 for $r, s \in G$ such that $(r, s) = 1$.

Let $g = p^{\alpha_1} \cdots p^{\alpha_k}$, $p_i \in P$, $p_i \neq p_j$ for $i \neq j$, then we have $\omega(g) = k$. Consider the function $F(g) = 2^{w(g)}$.

It is easy to see that F(g) is a multiplicative function. Hence

(3.7)
$$F\left(\frac{rs}{(rs, a)}\right) = F\left(\frac{r}{(r, a)}\right)F\left(\frac{s}{(s, a)}\right) \quad \text{for } (r, s) = 1; r, s \in G.$$

From (3.6) and (3.7) it follows that the function

$$P(r, a) = 2^{\omega(r/(r, a))} ||(r, a)||^{\delta}$$

is a multiplicative functions of $r \in G$ for any fixed $a \in G$.

By Lemma 1 it follows that the left hand side of (3.5) is also multiplicative of $r \in G$ for any fixed $a \in G$. Thus it suffices to verify (3.5) for $r = p^m$, where $p \in P$ and *m* is a positive integer. Denote by L(r, a) the left hand side of (3.5) and suppose that $p^1 || a$.

If $0 \leq 1 < m$ then we have

(3.8)
$$L(p^{m}, a) = \sum_{j=0}^{m} |c_{p^{j}}(a)| = |c_{1}(a)| + \sum_{j=1}^{1} |c_{p^{j}}(a)| + |c_{p^{l+1}}(a)|.$$

By Lemma 1 and (3.8) it follows that

$$L(p^{m}, a) = 1 + \sum_{j=1}^{1} (\|p\|^{\delta_{j}} - \|p\|^{\delta_{(j-1)}}) + \|p\|^{\delta_{1}} = 2\|p\|^{\delta_{1}}.$$

If $1 \ge m$ then by Lemma 1 we obtain

$$L(p^{m}, a) = \sum_{j=0}^{m} |c_{p^{j}}(a)| = 1 + \sum_{j=1}^{m} (\|p\|^{\delta_{j}} - \|p\|^{\delta_{(j-1)}}) = \|p\|^{\delta_{m}}.$$

Comparing the functions $L(p^m, a)$ and $P(p^m, a)$ we get $L(p^m, a)=P(p^m, a)$ and the proof of Theorem 2 is complete.

318

References

- [1] Chidambaraswamy J. and Krishnaisa P.V., An identity for a class of arithmetical functions of two variables, Internat, J. Math. and Math. Sci. Vol. 11, No. 2 (1988), 351-354.
- [2] Delange H., On Ramanujan expansions of certain arithmetical functions, Acta Arith. XXXI, 3 (1976), 259-270.
- [3] Grytczuk A., An identity involving Ramanujan's sum, El. Math. 36 (1981), 16-17.
- [4] Johnson K.R., A result for "other" variable Ramanujan's sum, El. Math[.] 38 (1983), 122-124.
- [5] Johnson, K.R., Explicit formula for sums of Ramanujan type sums, Indian J. pure appl. Math. 18(8), (1987), 675-677.
- [6] Knopfmacher J., Abstract Analytic Number Theory, North-Holland Publ., 1975.
- [7] Redmond D., A remark on a paper by A. Grytczuk, El. Math. 32 (1983), 17-20.
- [8] Redmond D., A generalization of a result of K.R. Johnson, Tsukuba J. Math. Vol. 13, No. 1 (1989), 99-105.

Institute of Mathematics Department of Algebra and Number Theory Pedagogical University Zielona Gora, Poland