THE GENERALIZATIONS OF FIRST COUNTABLE SPACES

By

Zhu JIAN-PING

Abstract. In this paper we consider some generalizations of first countable spaces, called w_{κ} -spaces. When $\kappa=1$, ω_1 , ∞ , the spaces are respectively Fréchet spaces, w-spaces in the sense of G. Gruenhage [5] and first countable spaces. We show that the w_{κ} -spaces are the images of metric spaces under certain kind of continuous maps, called w_{κ} -maps. For any cardinals $\kappa_1 < \kappa_2$, we construct by forcing a model in which there is a countable space with character ω_1 which is a w_{κ_1} -space but not w_{κ_2} -space.

1. Introduction

Generalizations of first countable spaces have been one of the traditional topics in general topology. G. Gruenhage [5] defined the class of w-spaces by topological games. P.L. Sharma [9] gave out a very useful characterization of w-spaces. In this paper we introduce w_{κ} -spaces which establish an interesting relationship among Fréchet spaces, w-spaces and first countable spaces.

It is well-known that Fréchet spaces and first countable spaces are respectively the images of metric spaces under pseudo-open and almost open maps (see [7]). The author [10] proved that w-spaces are the images of metric spaces under w-maps. Theorem 3.2 in this paper unifies all of these results.

Assuming *MA*, F. Galvin [4] constructed a *w*-space which is not a c^* -space, i.e. a space X with countable tightness and every countable subspace of X is first countable. In this paper we show that for any cardinals $\kappa_1 < \kappa_2$, it is consistent that there is a countable space with character ω_1 which is a w_{κ_1} -space but not w_{κ_2} -space.

2. Notations, Definitions and Basic Properties

All spaces considered are assumed to be Hausdorff and maps continuous onto. The notation $\{A_{\alpha}: \alpha < \kappa\}$ is not necessarily faithful. For the terminology

Received December 20, 1989. Rivised June 18, 1990.

Zhu JIAN-PING

and basic facts about forcing see [6], for the weak versions of Martin's axiom see [3]. We use p to denote the least cardinality of a centered family \mathcal{F} of subsets of $\boldsymbol{\omega}$ such that there is no $A \in [\boldsymbol{\omega}]^{\boldsymbol{\omega}}$ such that $A \subset ^*B$ for any $B \in \mathcal{F}$. α, β, \cdots denote ordinals and κ, λ, \cdots cardinals.

DEFINITION 2.1. We call a map $f: X \to Y$ a w_{κ} -map, if for any $y \in Y$ and any open cover $\{U_{\alpha}: \alpha < \kappa\}$ of $f^{-1}(y)$, there exists an α such that $y \in int(f(U_{\alpha}))$. If a map is a w_{κ} -map for any κ , we call it a w_{∞} -map. From now on, κ is a nonzero cardinal or ∞ .

It is obvious that the class of w_1 -maps equals to the class of pseudo-open maps. We can easily construct for any $\kappa_1 < \kappa_2$ a map which is a w_{κ_1} -map but not w_{κ_2} -map.

LEMMA 2.1. Let $f: X \rightarrow Y$, then the following are equivalent:

(1) f is a w_{κ} -map;

(2) If $\{A_{\alpha}: \alpha < \kappa\}$ is a family of subsets of $Y, y \in \cap \{cl(A_{\alpha}): \alpha < \kappa\}$, then there exists an $x \in f^{-1}(y), x \in \cap \{cl(f^{-1}(A_{\alpha})): \alpha < \kappa\}$.

PROOF. (1) \rightarrow (2) Suppose that there exists a family $\{A_{\alpha}: \alpha < \kappa\}$ of subsets of Y and $y \in \cap \{cl(A_{\alpha}): \alpha < \kappa\}$ such that for any $x \in f^{-1}(y)$, $x \notin \cap \{cl(f^{-1}(A_{\alpha})): \alpha < \kappa\}$. Then if $x \in f^{-1}(y)$, there are an open neighbourhood U_x of x and an $\alpha_x < \kappa$ such that $U_x \cap f^{-1}(A_{\alpha_x}) = 0$. Let $U_{\alpha} = \cup \{U_x: x \in f^{-1}(y) \& \alpha_x = \alpha\}$ for any $\alpha < \kappa \{U_{\alpha}: \alpha < \kappa\}$ is clearly an open cover of $f^{-1}(y)$. Since f is a w_x -map, there is a U_{α} such that $y \in int(f(U_{\alpha}))$. However, $U_{\alpha} \cap f^{-1}(A_{\alpha}) = \cup \{U_x \cap f^{-1}(A_{\alpha}): x \in f^{-1}(y) \& \alpha_x = \alpha\} = 0$. So $f(U_{\alpha}) \cap A_{\alpha} = 0$, but $y \in cl(A_{\alpha})$. This is a contradiction.

(2) \rightarrow (1) Suppose that f is not a w_{α} -map, i.e. we have a $y_0 \in Y$ and a cover $\{U_{\alpha} : \alpha < \kappa\}$ of $f^{-1}(y_0)$ such that for any α , U_{α} is open and $y_0 \notin \operatorname{int}(f(U_{\alpha}))$. Therefore, we have $y_0 \in \cap \{cl(Y - f(U_{\alpha})) : \alpha < \kappa\}$. By (2), there exists an $x \in f^{-1}(y_0)$ such that $x \in \cap \{cl(f^{-1}(Y - f(U_{\alpha}))) : \alpha < \kappa\}$. However, since $\{U_{\alpha} : \alpha < \kappa\}$ is a cover of $f^{-1}(y_0)$, there is a $U_{\alpha}, x \in U_{\alpha}$. Since $U_{\alpha} \cap f^{-1}(Y - f(U_{\alpha})) = 0, x \notin cl(f^{-1}((Y - f(U_{\alpha}))))$. This contradiction completes the proof.

DEFINITION [7] 2.2. $f: X \rightarrow Y$ is called almost open, if for any $y \in Y$, there is an $x \in f^{-1}(y)$ such that for any neighbourhood U of x, f(U) is a neighbourhood of y.

THEOREM 2.1. Let $f: X \rightarrow Y$. The following are equivalent: (1) f is an almost open map; (2) f is a w_{μ_1} -map, where $\mu_1 = \sup\{L(f^{-1}(y)): y \in Y\}$, L denotes the Lindelöf degree;

(3) f is a w_{μ_1} -map, where $\mu_2 = 2^{|Y|}$.

The proof is routine by the definitions and Lemma 2.1.

3. Theorems on w_{κ} -spaces

DEFINITION 3.1. A space Y is called a w_{κ} -space, if for any family $\{A_{\alpha} : \alpha < \kappa\}$. of subsets of Y and $y \in \bigcap \{cl(A_{\alpha}) : \alpha < \kappa\}$, there exists a decreasing sequence $\{F_n : n \in \omega\}$ of subsets of Y satisfying that $F_n \cap A_{\alpha} \neq 0$ for any n and α and for any open neighbourhood U of y there is an n such that $F_m \subset U$ for any m > n, i.e., $\{F_n : n \in \omega\}$ converges to y. What a w_{∞} -space means is obvious.

We can see easily from the definition that when κ is finite, w_{κ} -spaces are exactly Fréchet spaces. By the trick of repeatedly enumerating, if necessary, we can see from [9] that w_{ω} -spaces are exactly the *w*-spaces in the sense of G. Gruenhage [5].

THEOREM 3.1. Let Y be a space. The following are equivalent:

- (1) Y is a first countable space;
- (2) Y is a w_{∞} -space;
- (3) Y is a $w_{2|Y|}$ -space.

PROOF. We need only to proof $(3) \rightarrow (1)$. Take $y \in Y$. We enumerate $\{A : y \in cl(A) \& A \subset Y\}$ as $\{A_{\alpha} : \alpha < 2^{|Y|}\}$. Since Y is a $w_{2^{|Y|}}$ -space, there must be a decreasing sequence $\{F_n : n \in \omega\}$ converging to y such that $F_n \cap A_{\alpha} \neq 0$ for any n and α . Let $U_n = int(F_n)$. Then $\{U_n : n \in \omega\}$ is a neighbourhood base $at_A^{\forall}y$. \Box

We generalize A.V. Arhangelskii's sheaf (see [8]) to any cardinals. We need it in the proof of Theorem 3.2.

DEFINITION 3.2. If $\{r_{\alpha}: \alpha < \lambda\}$ is a family of convergent sequences with a common limit point y, we call it κ -sheaf with the vertex y. Let $r_{\alpha} = \{y_{\alpha n}: n \in \omega\}$. If for any neighbourhood U of y, there is an n_0 such that $y_{\alpha n} \in U$ for any $n > n_0$ and α , we call it a uniform κ -sheaf. If for any κ -sheaf $\{r_{\alpha}: \alpha < \kappa\}$ in Y there is a uniform κ -sheaf $\{r'_{\alpha}: \alpha < \kappa\}$ such that r'_{α} is a subsequence of r_{α} , we call Y a κ -sheafed space.

Zhu JIAN-PING

PROPOSITION 3.1. A space Y is a w_{κ} -space if and only if Y is a Fréchet κ -sheafed space. Consequently, w_{κ} -spaces are almost countably productive for any $\kappa \ge \omega$.

The last part of Proposition 3.1 follows from the fact that w-spaces are almost countably productive [8].

THEOREM 3.2. A space Y is a w_{κ} -space if and only if Y is an image of a metric space under a w_{κ} -map.

PROOF. On the part of "only if" needs to be proven here, since w_{κ} -spaces are preserved by w_{κ} -maps by Lemma 2.1.

Let $\{R_{\eta}: \eta \in A\}$ be an enumeration of all uniform κ -sheaves in Y. For any $\eta \in A$ we construct a metric space X_{η} as follows: Take κ disjoint countable infinite sets $\{s_{\alpha\eta}: \alpha < \kappa\}$ and $x_{\eta} \notin \cup \{s_{\alpha\eta}: \alpha < \kappa\}$. Let $X_{\eta} = \cup \{s_{\alpha\eta}: \alpha < \kappa\} \cup \{x_{\eta}\}$ and $s_{\alpha\eta} = \{x_{\alpha\eta}^{\eta}: n \in \omega\}$. We define

$$d_{\eta}(x_{\alpha m}^{\eta}, x_{\alpha n}^{\eta}) = \begin{cases} 1/m + 1/n & \alpha \neq \beta \\ |1/m - 1/n| & \alpha = \beta \end{cases};$$
$$d_{\eta}(x_{\alpha m}^{\eta}, x_{\eta}) = 1/m.$$

Then (X_{η}, d_{η}) is a metric space. Let X be the topological sum of $\{X_{\eta} : \eta \in A\}$ and $f : X \to Y$ be the map which maps X_{η} onto $\bigcup R_{\eta}$ in a natural way. Now we want to show that f is a w_{κ} -map. Suppose $\{A_{\alpha} : \alpha < \kappa\}$ is a family of subsets of Y and $y \in \bigcap \{ cl((A_{\alpha}) : \alpha < \kappa\} \}$. Since Y is Fréchet, there is an $\eta \in A$ such that $r_{\alpha\eta} \subset A_{\alpha}$, where $R_{\eta} = \{r_{\alpha\eta} : \alpha < \kappa\}$, and the vertex of R_{η} is y. It is easily seen from the definition of f that $s_{\alpha\eta} \subset f^{-1}(A_{\alpha})$ and $x_{\eta} \in f^{-1}(y)$. Therefore, $x_{\eta} \in cl(f^{-1}(A_{\alpha}))$. By Lemma 2.1, f is a w_{κ} -map. This completes the proof. \Box

THEOREM 3.3. Let Y be a space with countable tightness and character less than p. Then Y is a w-space. In particular, if Y is countable, Y is a w_{κ} -space for any $\kappa < p$.

PROOF. Let \mathcal{U} be a local base at $y \in Y$ with cardinality less than p. Suppose that $\{A_n : n \in \omega\}$ is a family of subsets of Y such that $y \in \overline{A}_n$. Since Y has countable tightness, we can assume that A_n is countable. Let $\bigcup \{A_n : n \in \omega\}$ = $\{y_n : n \in \omega\}$. We define $P = \{(I, S) : I \in [\omega]^{<\omega} \& S \in [\mathcal{U}]^{<\omega}\}$ and $(I', S') \leq (I, S)$ iff $I' \supset I$, $S' \supset S$ and $I' \setminus I \subset \cap \{U : U \in S\}$. It is easily seen that (P, \leq) is a σ -centered poset. The conclusion follows from the standard density arguments. \Box REMARK. It follows from Example 4.2 that it is consistent that ω_1 $and there is a countable space with character <math>\omega_1$ which is not a w_p -space.

4. Examples of countable w_{κ} -spaces with character ω_1

It follows from Theorem 3.1 that every countable $w_{2\omega}$ -space is first countable. Therefore, we are only interested in the models of $2^{\omega} > \omega_1$ in this section. We will construct some models of set theory in which there exist our desired examples.

EXAMPLE 4.1. A countable space which is Fréchet but not a w-space.

Let X be the quotient space of countably many copies of $\{0, 1/2, 1/3, \cdots, 1/\omega, \cdots\}$ with all limits adhering together. We adjoin ω_1 dominating reals to any model of $2^{\omega} > \omega_1$. Then in this model. X is a desired one.

EXAMPLE 4.2. A countable space with character ω_1 which is a w_{κ_1} -space but not w_{κ_2} -space, where $\omega \leq \kappa_1 < \kappa_2 \leq 2^{\omega}$.

We can assume that κ_2 is regular. We start with a model V of $MA+2^{\omega} \ge \kappa_2$. Let $\mathcal{A}=\{A_{\alpha}: \alpha < \omega_1\}$ be a family of infinite subsets of ω and well-ordered by \subset^* . We define a finite supports iteration $\{(P_{\eta}, Q_{\eta}): \eta < \kappa_2\}$ of ccc forcing in the following way:

In $V^{P_{\eta}}$, we first take a ccc poset Q'_{η} so that in $V^{P_{\eta}*Q'_{\eta}}$ we have $MA+2^{\omega}>\kappa_{2}$. Now we work in $V^{P_{\eta}*Q'_{\eta}}$. We define a poset $Q''_{\eta}=\{(a, S): a\in [\omega]^{<\omega}, S\subset [\omega]^{\omega}$ is finite and for any $\alpha<\omega_{1}, \cup S\subset^{*}A_{\alpha}\}$ where $(a', S')\leq (a, S)$ iff $a'\supset a, S'\supset S$ and $(a'\smallsetminus a)\cap B=0$ for any $B\in S$. Let $D_{\alpha,n}=\{(a, S):$ there exists an m>n such that $m\in a\cap A_{\alpha}\}$ for any α and n. It is easily seen that $D_{\alpha n}$ is dense in Q''_{η} . So if G''_{η} is a generic filter of Q''_{η} then $B_{\eta}=\cup\{a:$ there is an S with $(a, S)\in G''_{\eta}\}$ satisfies that $B_{\eta}\cap A_{\alpha}$ is infinite for any $\alpha<\omega_{1}$. By a similar density argument, if $B\in [\omega]^{\omega}\cap V^{P_{\eta}*Q'_{\eta}}$ satisfies $B\subset *A_{\alpha}$ for any $\alpha<\omega_{i}$, then $B\cap B_{\eta}$ is finite. Let $Q_{\eta+1}=Q'_{\eta}*Q''_{\eta}$.

Let G_{κ_2} be a generic filter of P_{κ_2} over V. From now on, we work in $V[G_{\kappa_2}]$.

For any $\mathcal{U}\subset [\boldsymbol{\omega}]^{\omega}$ and $|\mathcal{U}| < \kappa_2$ there is an $\alpha < \kappa_2$ such that $\mathcal{U} \in V[G_{\alpha}]$. So if \mathcal{U} has the strong finite intersection property, there is a $W \in [\boldsymbol{\omega}]^{\omega}$ such that $W \subset U$ for any $U \in \mathcal{U}$. Therefore, we have $p \ge \kappa_2$ in $V[G_{\kappa_2}]$.

On the other hand, since there is no $U \in [\omega]^{\omega}$ such that $U \subset A_{\alpha}$ and $U \cap B_{\eta}$ is infinite for any $\alpha < \omega_1$ and $\eta < \kappa_2$, we have $p \leq \kappa_2$ by Theorem 3.8 [2].

Now we begin to construct the countable space X with character ω_1 which

Zhu JIAN-PING

is a w_{κ_1} -space but not w_{κ_2} -space. Let $X=\omega$. We define the topology in the following way: If $x \neq 0$, x is isolated; The neighbourhood base at 0 is $\{(A_{\alpha} \setminus s) \cup \{0\} : \alpha < \omega_1 \text{ and } s \in [\omega]^{<\omega}\}.$ By Theorem 3.3, X is a w_{s_1} -space since $p = \kappa_2$. However, we can take $\{B'_{\eta}: \eta < \kappa_2\} \subset [\omega]^{\omega}$ so that $B'_{\eta} \subset *A_{\alpha} \cap B_{\eta}$ for any $\alpha < \omega_1$ and $\eta < \kappa_2$. It is obvious that B'_{η} is a convergent sequence. Suppose that X is a w_{s_2} -space. Then there exist $\{F_n: n \in \omega\}$ such that:

- (1) $F_n \in [\omega]^{\omega}$ and $F_{n+1} \subset F_n$ for any $n \in \omega$;
- (2) For any $\alpha < \omega_1$ there is an *n* such that $F_n \subset A_\alpha$;
- (3) $F_n \cap B'_\eta \searrow m \neq 0$ for any $n, m \in \omega$ and $\eta < \kappa_2$.

Therefore, there is an n such that $F_n \subset {}^*A_{\alpha}$ and $F_n \cap B'_{\eta}$ is infinite for any $\alpha < \omega_1$ and $\eta < \kappa_2$. This is impossible by our choice of $\{B_\eta: \eta < \kappa_2\}$.

QUESTION 4.1. Is it consistent that every countable w-space is first countable? Moreover, is it consistent with $\neg CH$ that every countable Fréchet space with character less that 2^w is first countable?

REMARK. A. Dow and J. Steprans [2] have constructed a model in which every countable Fréchet α_1 -space is first countable.

ACKNOWLEDGEMENT. The results in this paper was obtained when I was the graduate student of Professor Jia-Lin, Fang for Master degree and the graduate student of Professor Bao-Ming, Pu and Professor Hao-Xuan, Zhou for Ph. D. degree. This paper was revised while I was a research student of Professor Y. Kodama at University of Tsukuba. I would like to express my gratitude to them for their directions.

References

- [1] E.K. Van Douwen, The integers and topology, Handbook of set theoretic topology, North-Holland, Amsterdam, 1984.
- [2] A. Dow and J. Steprans, A model in which countable Fréchet α_1 -apaces are first countable, Math. Proc. Camb. Phil. Soc. 105 (1988), 473-480.
- [3] D.H. Fremlin, Consequences of Martin's axiom, Combridge Univ. Press, 1984.
- [4] F. Gavin, On Gruenhage's generalization of first countable spaces, Notices Amer. Math. Soc. 24 (1977), A-22.
- [5] G. Gruenhage, Infinite games and first countable spaces, Gen. Top. Appl. 6 (1976), 339-352.
- [6] K. Kunen, Set theory, North-Holland, Amsterdam, 1980.
- [7] E. Michael, A quintuple quotient quest, Gen. Top. Appl. 2 (1972), 91-138.
- [8] T. Nogura, Frechetness of inverse limits and products, Gen. Top. Appl. 20 (1985), 59-66.

172

- [9] P.L. Sharma, Some characterizations of W-spaces and w-spaces, Gen. Top. Appl. 9 (1978), 289-293.
- [10] J.P. Zhu, w-spaces and w-maps, Science Bulletin 32 (1987).

Dept. Math., Sichuan Univ., Chengdu, China. Current Address: Inst. Math., Univ. Tsukuba, Ibaraki 305, Japan.