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By
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0. Introduction.

Let H be a Hopf algebra with bijective antipode S over a commutative

ring k, and M a right //-module. Then End (M) is a right //-module algebra

over k with //-action(<p<―h)(m)=^h)(p{m+-S(hm))<-{ha->). (S is the composi-

tion inverse of S.) This //-action on End(M) is strongly inner so that

//#End(M)^//0End(M). (Here the smash product is the right smash product

of [6] or [12].) Similarly, if M is a finitelygenerated projective ^-module and

a left //-comodule, then End(M) is a left //-comodule algebra, the left H-

coaction is strongly inner, and End(M)#//^End(M)0//.

In this paper, we exploit the above observation to examine some well-known

duality results, along with some new examples, from the point of view that

the duality involves an endomorphism ring and a strongly inner action or co-

arHnn.

1. Bialgebra actions, coactioits and smash products.

Throughout, we work over a commutative ring k. Unless otherwise

stated, all maps are ^-linear,(g) means (g)*, Horn means Horn*, algebra means

a ^-algebra with 1, etc. The word ring will mean a ^-algebra, not necessarily

with 1. For A an algebra, CU{A) will denote the group of multiplicative units

of A.

H will denote a bialgebra over k with comultiplication A, and counit e. If

H is a Hopf algebra, S will denote the antipode; if the antipode S is bijective,

S will denote the composition inverse of S. We use Sweedler's sigma notation,

i.e. we write A(/i)=S/i(1>0/i<2), ARl-A(/0=lRA-A(/i)=S/i<i>(8>^c2><S>ftc3:>,and

so on. (We will usually omit the summation index (h).) Our rings may have

left and/or right //-actions: we will denote these by arrows on the left or
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right.

Definition 1.1. (i) We call a ring A a left(right) //-module ring if A is

a left (right) //-module such that /i-≫(a6)=2(/z(1>->a)(/i<8)-≫-&){(ab)^-h-

S(g-^/J(i))(^<―/J(2)))-If A is a ^-algebra, we also require that h acting on 1

be s(h) for all h<=H, and then A is called an //-module algebra, (i.e., A is an

//-module and H measures A to A [23, p. 138].) We call an H― //-bimodule A

an //―//-bimodule ring (algebra) if A is a left and right //-module ring (alge-

bra).

(ii) We call a ring A a left(right) //-comodule ring if A is a left(right)

//-comodule such that the //-comodule structure map preserves multiplication.

Again we use Sweedler's sigma notation and write a->Sac-i)R0o≫e//£><)^ for

a left //-comodule map and a-≫2a(0)RaO)e;4(g)// for a right //-comodule

structure map on A. If A is a &-algebra then the comodule structure map

must map 1 to l(g)l,and A is called an //-comodule algebra. We call an H―H-

bicomodule A an //―//-bicomodule ring (algebra) if A is a left and right H-

comodule ring (algebra).

Example 1.2. (i) The dual i/*=Hom(#, k) of H is an //-//-bimodule

algebra. The left action of H on H* is given by (h-*f*)(g)=f*(gh) and the

right action by (f**-h)(g)=f*(hg). If H is commutative, then clearly these

left and right actions coincide.

(ii) H is itself an H― //-bicomodule algebra with comultiplication giving

both //-comodule structure maps.

Remark 1.3. (i) If A is a left //-module ring (right //-module ring, H―H-

bimodule ring) without 1, then A can be embedded in a left //-module (right

//-module, H― //-bimodule) algebra, denoted A1, and A is a left(right, etc) H-

module subring and ideal of A1. This is done as follows.

Let A1=Axk. As usual, addition in A1 is componentwise addition, and

multiplication is defined by (a, a)(b,(3)=(ab+ab-＼-($a, ≪/3),a, b^A, a,/3e&;

then (0, 1) is the multiplicativeidentity for A1. The left //-action on A may

be extended to a left //-module action on A1 by h―>(a,a)=(/i―>a, s(h)a). Then

/i->(0,l)=(0, e(fc))=e(/i)(0,1), and, it is easily checked that

2(fca>-Ka, a))(fc(2)-K&,P))=(h-+(ab)+P(h->a)+a(h-+b), s(h)a^)

= /i-≫((a,a)(M))>

so /L1is a left //-module algebra.
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(ii) For A, A1 as above, if A is a right (left,etc.) //-comodule ring with-

out 1, then the //-coaction may be extended to A1 so that A is a //-comodule

subring. Define a right //-coaction on A1 by J{a, a)=S(a≪≫, O)0ao>+(O, a)01.

Clearly (r01>7#=(10A>r, r(0,l)=(0, 1)01, and, for a, b^A, a, fi^k,

r(a, a)r(6, j3)=S(a<oAo), O)0aa)&a>+2(j8a≪≫, O)0aO)

+S(≪6c≪, O)06(D+(0, ≪j8)01-

=rtab+ab+pa, ≪j8)=r((a,a)(6,j8)),

so that 7 preserves multiplication,as required. □

Recall the definitionsof left and right smash products.

Definition 1.4.(i).[6], [24, p. 471] Let A be a left //-module ring and B

a left //-comodule ring. The left smash product A#£B is defined to be the k-

module A(g)B with multiplicationdefined by (a#Hb)(c#Hd)=^,a(bi-1^c)#Hb≪>-)d.

If B = H, then A#£H is the usual smash product A#H [23, p. 155].

(ii) [6], [12, 1.3] Let B be a right //-module ring and A a right H-

comodule ring. The right smash product A#§B is defined to be the ^-module

A<SiB with multiplicationdefined by {a#§b)(c#§d)=^acw#§(b^cm)d.

Remark 1.5. Note that the smash products in Definition 1.4 make sense

for H a coalgebra with an associative multiplication and a coassociative multi-

plication-preserving comultiplication. For example, H could be the semigroup

ring kS where S is a semigroup without identity; see Examples 1.6(ii),2.10

and 3.8.

For A a right //-comodule algebra, a smash product structure denoted

#(H, A) on the homomorphism ring Hom(H, A), is defined in [13, p. 1166] and

a modified form is used to prove the duality results in [141.

If the meaning is clear from the context, we write a#b for a#£b or a#§b

Next we give some examples of right smash products.

Example 1.6. (i) Let G be a group and E―kG, the group ring. Let A

be a right &G-comodule ring (i.e. A is G-graded) and let P be the subring of

Hom(kG, k) generated by the projection maps pe, g^G, i.e. pg{h)=8gih. If

G is finite,then '£,gE.Gpgis a multiplicativeidentity for P, and P is a subalge-

bra of H*; otherwise P is a subring of H* without a 1. The group G acts

as automorphisms of P on the left and right by a-^ph ―phg-i and ph<-g=p.-ih



282 Margaret Beattie

respectively, making P an H― //-bimodule subring of H* (with the H―H-

bimodule structure of Example 1.2(i)). For A a ^-algebra, the right smash

product A#$gP is the "generalized smash product" A#G* of [3] ; the right

smash product A#fGPl is the smash product A#G of [22].

(ii) The construction of the right smash product in (i) can be extended to

rings graded by a semigroup S. First let's take S to be cancellative and let

PQEom(kS, k) be the subring generated by the projections as before. Then

for s, t<=S, ps*-t is 0 if there is no mjeS with tw = s or the projection pw if

such a (unique) w exists. Thus P is a right £S-module ring and if A is S-

graded, we may form A#fsP-

It S is not cancellative, then pg<r-tmay not be in P. Let P be the smallest

right 6S-module subring of Horn(kS, k) containing P. Then for A graded by

S, A#ksP is defined; the elements of A^fsP of the form '£ai#pH form a sub-

ring of A#^SP.

Abrams' smash product for a ring graded by a category [1, Definition 2.1]

is a subring of the subring above.

(iii) Suppose T is a right G-set, and A is a G-graded ring. Let PT be

the ring generated by orthogonal idempotents pt, f<=7＼ Then PT is a right

&G-module ring via pt<^-g=pt^g, and, for A a G-graded ring, we may form

the smash product A#$-GPT. If A has a 1, and T is finite,this is [20, 2.11] ;

if T is infinite, then A#^gPt is the smash product A#T of [21]. Later on,

we will use this construction for H a subgroup of G and G/H the set of left

cosets of H in G. Then if (gt: ie.1) is a set of coset representatives, PG/h is

generated by the idempotents pUil and Pigii<―h=pzh.-igii-

(iv) Let H be a Hopf algebra and U a Hopf subalgebra of H°, the finite

dual of H. Suppose A is a left H-module algebra which is £7-locallyfinite,so

that A is a right £/-comodule algebra and /i-≫≪= 2a≪≫aci)(/0for a^ h<=H [9,

p. 157]. Let B be a left //-comodule algebra; thus 6 is a right ^/-module

algebra by /x-m=Sm(/?(_n)6(0). Then by [6, Lemma 1.9], A#£B = A#$B. □

The proofs of the next two lemmas are straightforward, and therefore

omitted.

Lemma 1.7.(cf. [6, Lemmas 1.5,1.7]) Suppose A is an H―H-bimodule ring

and B is a left (right) H-comodule ring. Then A#£B (B#hA) is a right (left)

H-module ring with H-action induced by the H-action on A, i.e. (a#Hb)^-h = a<-

h#U (h-*(b#§a)=b#%h-^a).



Strongly inner actions, coactions, and duality theorems 283

Similarly, if A is a left (right) H-module ring, B an H―H-bicomodule ring,

then A#£B (B#§A) is a right (left) H-comodule ring with the H-comodule

structure induced by that on B. □

Lemma 1.8.(cf.[6, Lemma 1.8]). Suppose A is a right H-comodule ring,

B is an H―H-bimodule ring, and C is a left H-comodule ring. Then the map

taking (a#b)#c to a#{b#c) is a natural isomorphism from (A#§B)#hC to

A#§(B#£C) where the smash products(A#§B) and (B#£C) have the left and

risht H-module structuredescribedin Lemma 1.7.

Similarly, if A is a left H-module ring, B a H― H-bicomodule ring, and C

a right H-module ring, then (A#£B)#§C is naturally isomorphic to A#fi(B#§C).

n.

2. Inner actions and duality for right smash products.

Let A be a right //-comodulering and L an H― //-bimodulering; we want

to consider (A#hL)#£H=A#h(L#£H) and discuss some situationswhere

A#h(L#hI1) is ring isomorphic to A6§(L#jiH).

Definition 2.1. [11, p. 52] Let R be an //-module ring which is a subring

of an algebra T. The //-actionon R is called T-inner (or just inner if T―R)

if there exists a convolution invertible u in Hom(//, T) with convolution in-

verse v such that for all re/?, /ze//, A-->r or r<-/i is lLjU{ha^rv(hm). If the

action is a left action and yeAlg(//, T), we call the action left strongly T-

inner; if the action is a right action and yeAlg(//, T), the action is called

rierhtstroncrlv T-inner.

Examples 2.2. (i) Let H be a Hopf algebra, and A an //-module k-

Azumaya algebra. If k is a field,then the //-action on A is inner [18, 3.1].

If k is a semilocal ring or a von Neumann regular ring, and // is finitelygen-

erated projective over k, then the //-action on A is inner [7, Corollary 2.5].

(ii) If M is a right //-module, and End(M) has the //-actioninduced by

M mentioned in the introduction, then it is easily checked that the //-action on

End(M) is strongly inner.

(iiii) Note that various examples of inner and strongly inner actions are

sriven in T8. Section 11.

The next theorem is a slight generalization of [8, Proposition 1.19] or [6
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Lemma 1.11] which provides some insight into the role of strongly inner ac-

tions in some duality theorems for right smash products. Our applications will

involve right strongly inner actions, but of course parallelresults hold for left

actions.

Theorem 2.3. Let A be a right H-comodule ring and B a right H-module

ring which is a subnng of an algebra C such that the action of H on B is right

strongly C-inner, implemented by ueHom(i/, C) with convolution inverse v.

Then A#§B is isomorphic to a subring of A(g)C, and if u(h)b and v(h)b are in

B for all h<=H, b^B, {for example if B is a left ideal of C), then A#§B =

A§Z)B. If B has a 1, then thislast condition says that u, vaU.om(H, B).

Proof. Map A#§B to ARC by 0(a#&)=SaCo><8)i>(aa))&. Then A#§B is

isomorphic to ^(A#§B)^A<S>C ; the inverse map from 0(A#%B) to A#frB is

given by aRb-^^aw#u{aw)b. Clearly if A and B are algebras, 1#1 maps

to l(g)l. □

Before stating a useful corollary to Theorem 2.3, we give an immediate

application of the theorem.

Example 2.4. Let H be a commutative Hopf algebra, let L be an H-

module ring and define an H― //-bimodule ring structure on L by h->m=m<―h

for all h^H, m^L. Let A be a right //-comodule ring and consider (A#§L)#hH

= A#§(L#£H).

If L does not have a 1, identify L with the //―//-bimodule subring Lx {0}

in L1, and L#£H with the subring (Lx {0})#£H=L#£H of Ll#£H.

Now the right //-action on L#£H is right strongly Ll#jjH~miiQt (cf. [8,

Example 1.9]). For, let u: H->L1#£H be defined by u{h)―l#h, where we

write 1 for the multiplicativeidentity (0, 1) in L1. Then v, the convolution

inverse of u, is given by v(h)=l#S(h). Since H is commutative, u and v are

both algebra maps, and, for h, g^H, m^L,

Thus, by Theorem 2.3, if A is a right //-comodule algebra, {A#fjL)#jjH=

AR(L#£H), and (A#§L1)#£H^A^(L1#£H).

For example, L could be any //―//-bimodule subring of H* with the in-

action described in Example 1.2 (i). In particular, if H―kG, G an abelian

group, L might be P or P1 of Example 1.6(i). Or, suppose U is a cocommuta-

tive pointed Hopf algebra over a field k such that G=G(U), the group of
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grouplikes, is abelian, and suppose A is a G-graded ^-algebra. If L―U1 is the

irreducible component of U containing 1 [23, 8.1], then (A#jtGL)#kGkG =

A#ka(L#dGkG) = A(g)kGU where the G-action on U is given by g-^>h= h<^g=

ghg'1. U

Corollary 2.5. Let H be a Hopf algebra with bijectiveantipode S, let A

be a right H-comodule ring and L an H― H-bimodule ring. Let X be the natural

ring homomorphism from L#£H to End(L) defined by l{m#h){t)=m{h-*t), and

suppose X is an embedding. Let p be the map from H to End(L) induced by the

right H-action on L, i.e. p{h)(t)=t*-h, and suppose that for all h^H,

p(h)X(L#fjH)QX(L#£H). Then A#§(L#£H) = AR(L#£H).

Proof. Identify L#£H with its image under X and give X(L#£H) a right

i/-module structure via X. Note that p(hg)―p(g)p(h), so that p°S is an alge-

bra map. Now the right inaction on X{L#iH) is right strongly End(L)-inner

since X{m#h)^g=X{m^g#h)=Yip(gw)X{m#h)p{S(gm)) ([6] or [8, Proposition

5.131). The statement then follows from Theorem 2.3. □

Example 2.6. Note that the duality theorem of Blattner and Montgomery

[9, Theorem 2.1] or [19, Theorem 5], and its generalization to Hopf algebras

over Dedekind rings [10, Theorem 5] can be viewed as cases of Corollary 2.5.

For here X is an embedding [9, Proposition 2.2] or [19, Lemma 5], [10, Pro-

position 6], and the i?L-condition guarantees the rest. (See also [6] for details

of this point of view.) □

Example 2.7. Let G be a group, let H be the group ring kG, and let

P^H* be the ring of projections described in Example 1.6(i). For A a right

&G-comodule algebra, it is shown in [4] using the Morita theory of [2], or by

direct computation in [5] for A a right &G-comodule ring, that (A#kGP)#kokG

= MGn(A), the ring of matrices over A with rows and columns indexed by G

and with finitelymany nonzero entries. Actually this duality result follows

easily from Corollary 2.5.

Identify End(P) with MG°＼k), the ring of column finite matrices over k

with rows and columns indexed by G; elements of P are viewed as column

matrices. Then J.(pg#h)―Eeigfl, the matrix with 1 in the (g, gh)-th position

and zeroes elsewhere, and it is easy to verify that X is a ring isomorphism

from P#fGkG onto M%＼k). Since X(P#£GkG)=M%＼k) is a left ideal of MG°＼k),

Corollary 2.5 applies, and A#§(P#£H) = AR(P#£H) = A6dMGn(k)^MG＼A).
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Note that the isomorphism in [5] from (A#^GP)#kakG to Mln(A), namely

(a#pg)#h-**2,t(EGatg-iEt:gh is precisely the map taking a#(pg#h) to Sa≪≫(8>

p(S(aw))X(pg#h). n

Example 2.8. For P and G as in Example 2.7,let N be a normal subgroup

of G, and let A be an N-graded ring. Consider (A#i%P)#kGkN=(A#fNP)#iNkN

^A#fN(P#£NkN). Then X(P#fNkN)QEnd(P) is the subring T of M%＼k) with

nonzero entries only in the (g, gn)-slots, g^G, jjgJV. For me AT, p(m~l)<B

End(P) is the matrix (Emt,t)teG (we use this notation to mean the matrix with

a 1 in the mt-row and ^-column for all t^G, zeroes elsewhere). T is not a

left ideal of McG°＼k)but for any ni(EN, (Emt.t)teaEg,gn = Emg,tn^T since

{mgY'gn^g^m-'gn&N. Therefore A#?N(P#fNkN)^ART. U

The next example discusses duality for the G-set G/H where H is a (not

necessarily normal) subgroup of G and G/H is the set of cosets gfH, i<=I, of

H in G. As in Example 1.6(iii),Pgih is the ring generated by idempotents

puo, tGi. For G finite,this example yields [20, Corollary 2.18]. Note that

[20, 2.18] is also a corollary of the smash data approach of [15]. (See Remark

3.10-)

Example 2.9. Let G be a group with subgroup H, and let P and PH de-

note the rings generated by the projections in HomOG, k) and Horn(6//, k)

respectively. Let A be a G-graded ring; we will show that (A#kaP)#kHkH=

M${A#?GPGIH).

Recall from Example 1.6(iii)that kG acts on PGIH on the right by pzgii^g

―Pig-ietian(* consider A#wPgih- Now A#kaPGiH is a right k//-comodule ring

under the map y defined by

r(a#pig0)―^k&I.m&Hagkmgi-i#plg0Rm .

It is easily checked that J gives a right comodule structure; we show that T

preserves multiplication. For a#ptgii, b#pigjl^A#tGPGiH, we obtain,

(a#pig.1)(b#ptgjx)='£teGabt#pit-igi]pigji―'ZinziHabgingri#pLgji,

since pit-igiiPtgpis nonzero if and only if gj=t~lg,;n for some neE Then

TG£neHabgingj-i#pZgji) = ^kei.m.neH(abgingrl)gkmgj-i#Plgjl<8)m

―S*e/,m, neHagkmn-lgi-lbgingj-l#Pigfi(&in-

On the other hand,
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r(a#pUiMb#Puji)

=(12kei,s£HagkSgi-i#pigii(£)s)('2i(Ei,h<=Hbglhgri#Pigji<S)h)

― '2lk,l<E.I,h,Sf=HQ>gksgi-lbglh.gi-l#p£gjh-lgi-lgilpLgrt<S)Sh

―^Jkei,h,sen(lgksgi-ibgihgj-i#pigi-]<S>sh

287

―'£jkei,h,m.tEHa'gkm.h-lgjbgihgj-l#Ptgjl(£)Wl,

so that A#§}PGih is a right £//-comodule ring.

Thus, since PH is a kH― &//-bimodule ring, by Lemma 1.7 it makes sense

to form the left £//-module ring (/i#Jo/W)#f/f/V and we show that the left

£//-module rings {A#k-GPGiH)#fHPH and A#^GP are isomorphic. Let Q map

A#fGP to {A#fGPGiH)#fHPH by Q(a#pgin)=(a#puo)#pn for /e/. This map

is clearly a bijection;it remains to prove that Q preserves multiplication and

the left k//-module structure.

Now,

Q(a#pgin)Q(b#pgjn)=((a#pZgii)#pnX(b#pigJi)#pm)

= Tikei,!ieH(a#ptgii){bgkhgri#ptgji)#ph-lnPm

= ^>Jk<=l(a#Plgil)(bgknm-lgj-l#Plgfi)#Pm

:=*2ik<=i(abgknm-igj-i#pigjmn-igk-igiipigji)#pm

= (abginm-igri#Plgjl)#Pm

=Q(.(a#p8in){b#pgjm)).

Also Q is a left £//-module map since

Q(rn->(a#pgin))=Q(a#pgtnm-i)=(a#ptsti)#Pnm-i=(a#Ptti])#m->Pn ■

Now we have that

{A#f-GP)#iHkH=({A#$GPGIH)#'£HPH)#{HkH

= {A#fGPGIH)#^(PH#{HkH) by Lemma 1.8

= M%＼A#£GPGIH) by Example 2.7.

If A is graded by H rather than G, and H is normal then we are back in

the situation of Example 2.8. Here A#^gPg/h = A^Pg/h and Mfra(A<g>PG/n)=

A(g)M＼rn(PG/H)= A(g)T, where T is the ring of matrices described in Example

2.8. The isomorphism Q : M%a(PGiH)->T is given by Q(pigiiEn,h)=Egin,gih. □

Example 2.10. Now let S be a cancellative semigroup, let P be as in Ex-

ample 1.6(ii)and X as in Example 2.7. We willshow that for a ring A graded
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by 5, although A#ks(P#iskS) is not isomorphic to AR/i(P#fskS), it can be

viewed as a set of matrices with entries from A, with multiplication different

from the usual multiplicationin Msol(^4).

Since S is cancellative, it is stilltrue that the map I from P#{skS to

M!n(£)gM§ol(/0 = End(P) is an embedding. Also the right S-action on X{P#fskS)

stillappears to be Ms01(k)-strongly inner. For pg<-m is pw if S contains a

(unique) element w with g―mw; otherwise pg<-m=0. Define u, v in

Hom(kS, M%ol(.k))by u(m)=(EWimw)w&s and v{m)=(Emt,t)t&s- Then if mw~g

for some w<e.S, u(m)k(pg#h)v(m)=EWjWh and the product is 0 otherwise, so

that u(m)/L(pg#h)v(m)=A(pg#h)<―m. Also note that v(ms)=v(m)v(s). The

problem is that although u{m)v(m) is the identity in Mf＼k), v{m)u{m)=

{Emw,mw)w&s which is not the identity.

However, A#is(P#k:skS) can stillbe viewed as a set of matrices over A

but with a different multiplication from the usual matrix multiplication. Con-

sider the subset of M|n(v4) of matrices where elements from As must lie in the

sg-th row and gt-th column for some g, ?eS. Such a matrix with one non-

zero entry as will be written asESgigt. Define a multiplication on this set of

matrices by

(QsE/sg,gt)"＼Ovt^vm,m.v>)-―&sVvE'Sg,gt＼＼-t^vht,vht)heGJ-t^vm,rnw

f asbvESg,mw = asbvEsvhihtw if g―vh and ht―m for some /ieS

{ 0 otherwise

It is straightforward to check that this multiplicationis associative and that

A#%s(P#jfskS) is isomorphic to this ring of matrices via as#(pg#t)->asESg,gt.

D

3. Inner coactions and duality

In this finalsection, we consider inner coactions and related duality theorems.

Definition 3.1.(cf. [8, Definition 2.2]) Let R be a left(right) //-comodule

ring such that H(g)R (R<g)H) is a subring of a ^-algebra T. The i/-coaction

on i? is called T-inner (or justinner if T=HRR or R<g>H) if there is w^HJ(T)

such that for all r(ER,

(3.1.1) Sr(_1>(g)r(o>= u/(l<g>r)M'-1 (Sr<≪(8)r(i)= M'(r01)u;-1).

The coaction is called strongly left (right) T-inner if, for all y<E.R such that

u;(l(g>:y)=2fci(g>rie//R/?(u;(3;Rl)=SriR/i(e7?Rif),
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(3.1.2) HA(ht)Rri = '2hiRwa<g>ri) (Sri(8)A(/i<)=SM;(rt(g)l)0/ii).

Remark 3.2. If H is finitelygenerated projective over k, then //-coactions

correspond to //*-actions,and an //-coactionis (strongly) inner if and only if

the corresponding //^-action is (strongly) inner [8, Proposition 2.61. □

Example 3.3. Let H be a Hopf algebra with bijective antipode and M a

finitely generated projective left //-comodule. Since M is finitelygenerated

projective, we may identify Horn (A/, HRM) with //(g>End(M); let Q: H<g)

End(M)―≫Hom(M, //RM) be the natural isomorphism with inverse

0 : Hom(M, //(g)M)->//(g)End(M).

It is shown in [17, Section 2] that End(M) is a left //-comodule algebra

with the //-comodule structure map 1 from End(M) to //(g)End(M) given by

Z(/)(m)=2 (/(^(o)))(-i)S(m(-1))(g)/(m(0))(0),

[17, Propositions 2.5, 2.6, 2.11 and Lemma 2.7]. (Note that the structures in

[17] are on the right; the arguments for left comodule structures are essentially

the same.)

We show that this is a strongly inner coaction. Let aM be the comodule

structure map for M and let 0(aM)=Hihi(g)<pi, and <P(S<S)l-aM)=^>jgj(3<pj^

i/0End(M). Then, for /eEnd(M), meM,

S^*^0y≫i-/-0>(≫t)=S/iiS(m(-1))Ry)i(/(m(o)))

= S(/(wCo)))c-o5(m(_1))(g)/(m(o))(o)=Z(/Xm).

Note that 0(aM) and $(S(g)l-aj,/)are multiplicativeinverses in //REnd (M) and

also that '5jb.(ht)(g)<Pi=l>lhi(g)hk(g)(pkipi,so that this coaction is left strongly

inner.

If // is finitely generated projective, this //-coaction corresponds to the

usual strongly inner right //*-action on End(M) implemented by ≪://*->

End(M), where M(/i*)(m)=S/i*(w(_1))mC0), v(g*X )=2g*(S(m<_1)))m(0) (cf- Ex"

ample 2.2(ii)).

Finally note that this coaction is a special case of an //-coaction on

Hom(M, AO, M, N, //-comodules, M finitely generated projective over k [17,

p. 572]; in [25], this structure is generalized to define a Hopf algebra analogue

to HOM(M, AO, the graded homomorphisms from M to N, M, N G-graded

modules. □

The next theorem is the coaction analogue to Theorem 2.3. We give the

result only for left strongly inner coactions, but of course an analogous result
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holds for right coactions.

Theorem 3.4. Let A be a left H-module ring and B a left H-comoduh

ring such that H(£)B is a subring of an algebra C. Suppose the left H-coactio?

of B is strongly C-inner implemented by c E<U(C). Furthermore, suppose c(l(g)&'

and c-＼l<g>b)are in HRB for all b^B. Then A#£B^ARB.

Proof. Map A<g>B to A#£B by ^(a^b)=^hi^a#bi where c(l(g)6)=

Hhigtbt. Then, if c(l(g)0)=2fc*(g>&t,

$(a<g)b)$(d<g)e)='2(hi->a#bi)(hk-+d#bk)

= H(hi-^aXbic_ohk->d)#biwbk .

Now, for all i,

S*.≪1)6i(.1)/≫*<8)6icO)^=c(l(8)Wc-1(23*/i*R6*)=c(10&t)c-1c(l(8)e)

=c(106i)(10e)=2Blifi(Om<S)6(Ome where c(lRW=Sm/i(O≪06(i)≫.

So,

$(a<g)b)$(d<g)e)='Et.n(hi-*aXh(i)m-+d)#b(})me

=HhUo->aXhi(ti->d)#bte by (3.1.2)

―$(adRbe).

The map 0 is bijectivewith inverse 0, <p(a#b)='2igj->a(g)ej where c~＼l(g)b)

= JlgjRej. For then 4>-0(aRb)=Hijg(i)jhi->a(g,e(i)j where c-1(l(g)6i)=a^(*)j<E

e(*)y. Since l(g)b=c-1c(lRb)=^ic-＼lRbi)(hiRl)=^ijg(i)jhiRe(i)j> </>■$is the

identity on A#fiB. Similarly <j>-<pis the identity on A<g)B.

Note that if B has a 1, then c^HJiH^B), say c=23/^(8)^. Then m =

Ss(^i)cietl7(5), and (3.1.2)implies that m2=m, so that u ―l. Then if /I also

has a 1, 0(l<g)l)=l#l. D

Remark 3.5. In view of Example 3.3, one wonders if a situation parallel

to that of the Blattner-Montgomery duality theorem (see Example 2.6) holds

here. Let k be a field,H a Hopf algebra and L a Hopf subalgebra of H°;

suppose H and L have bijective antipodes. The smash product H#§L is de-

fined (in fact by Example 1.6(iv), H#§L = H#£L) and the map X: H#§L->

End (if) given by X(h#m)(g)―h(m-^g)=J]hgwm(gm) is an embedding [9, Pro-

position 2.2]. Give ImU)£End(i/) a left //-comodule algebra structure via X,

i.e., J}X(h#m)(i-l)(3X(h#m)w==^hw(g)X(hm#rn). (If His finite dimensional,

this is the comodule structure from Example 3.3.)

For k a field, the natural map Q: H6§End (H)~->Eom (H, H6$H) given by
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0(Sfc><8>&)(/O=S/ijR&(fc) is an embedding. Then Q(HRk{H#$L)) is a subring

of Hom(//, H&H) where multiplicationin Hom(//, H(g)H) is given by ≪*/3(/i)

=(m-tw<g)l)(l<g)a)P(h), for a, j8eHom(//,//<g>#), /ie#. The identity in

Hom(//, H(&H) is the map taking /i to l(g)/i. Now it is easily checked that A

is a unit in Hom(i/, HRH) with inverse (S(g)l)A. Also for 10X(h#m)(E

HRX(H#§L)QEom(H, HRH),

so that the left comodule structure on X(H#§L) is Hom(i/, //(g)H)-inner. In

particular,if L―k and we identify H with X(H#k)^End(H), we see that the

//-coaction A is Hom(H, HRH)-mner even though by [8, Example 2.4], the

coaction is outer if H is not trivial.

A restrictionparallel to the i?L-condition of [9] in this case would seem

to be that A<BH(g)X(H#^L). This is a rather strong condition. For suppose

there are s*.ti^H, m^L such that for all h<=H,

Then h = ^ha-)e(hiz->)=^(sis(ti))mi(h) for all h, so that the elements ste(ti)

span H, i.e. H is finite dimensional over k.

However, even if A does not lie in HRX{H#%L), Theorem 3.4 can be used

to produce an example analogous to Example 2.7. □

Example 3.6. [4], [5] Let G, H-kG, and P be as in Example 2.7, and

let A be a ring on which G acts on the leftas a group of automorphisms. By-

Lemma 1.8,{A#iGkG)#fGP=A#{G(kG#$GP); we show that Theorem 3.4 implies

[5, Theorem 3.1], namely that A#{G{kG#c£GP) = AR(kG#iGP)^MG＼A).

Identify kG#^GP with M%n{k) by mapping g#ph to Egh,h. Let M<=McG°＼kG)

^kG(S)MGn(k) be the matrix with g in the g-th row and column and zeroes

elsewhere; we write M=(gEgig)gf=G. Then M^1=(h~iEh,h)heG. Now, for Est,t

geM&W, M(＼REu.t)M-l=sRE,t,t = sRX(s#pt). Also for all Es,t^M%＼k),

M(l(g>£,.t)and M-^lR^) liein /^G(g)Mgn(^),and (ARl)M(lR£,.t)=sRs(8)£,.t

= s(8)M(l(g)£,it),so that the &G-coaction of Mgn(/fe)is strongly MGo＼kG)-lnner,

and Theorem 3.4 applies. Thus A#{G{kG#i-GP) = ARMGa(k) = MGHA). □

Example 3.7. The argument in Example 3.6 can be repeated for

(A#jfGkH)#$}P=A#fG(kH#i<GP) where H is any subgroup of G. Then

A#UkH#?GP) = ARl{kH#?GP) isthesubring of MGn(A) such that the (h, g)-th

slotmay containa nonzero entry only if he~l^H. □
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Example 3.8. Example 3.6 can be generalized to cancellative semigroups.

Let S be a cancellative semigroup, let kS be the semigroup ring and let P be

as in Example 1.6(ii). Suppose A is a ring such that there is a semigroup

homomorphism a from S to Aut(^4); let G be the smallest subgroup of Aut(A)

containing the image of a. Then A is a left &G~module ring, W is a left

&G-comodule ring via a, and, by a straightforward generalization of Lemma 1.8.

(A#fGkS)#?sP = A#ifG(kS#?GP).

Now map kS#f-GP to M%＼k) by mapping s#pt to Egt,t as usual; this map

may no longer be onto as it was in Example 3.6 but since S is cancellative,it

is stillan embedding. Now the &S-coaction is strongly Msol(£G)-inner imple-

mented by M=O(s)£S]S)s&s, M~i={a{tyiEt,t)t^s, and an argument as in Example

3.6 shows that A#{G(kS#fsP) = AR(kS#^sP). □

Remark 3.9. Abrams duality theorem [1, Theorem 2.4] is a refinement of

the situation in Example 3.8. The semigroup arising from taking the morphisms

of a category and adjoining a zero element is usually not cancellative. How-

ever, if the set of nonzero elments has the cancellation property, then by con-

sidering only matrices with zero entries in the row and column indexed by 0,

and by taking a from the nonzero elements of the semigroup to Aut(A), an

argument similar to that above yields [1, Theorem 2.4]. □

Remark 3.10. Finally we note that although we were able to describe

[20, 2.18] in terms of smash products and inner actions, we seem unable to

similarly describe [20, 2.20] in terms of coactions. For, even for A = R#{GkG,

the ring A does not seem to decompose as a ring into a smash product of the

form {R#kH)#k[_G/H~＼, H a (not necessarily normal) subgroup of G, since

kG^kHRikrG/Hl as coalerebras but not as rings. In F151. Koooinen is ablekG = kH6§krG/H~＼ as coalgebras but not as rings. In

to generalize both of these results from [20] using quintuples called smash data

which include a bialgebra H, a right //-comodule algebra B and a left //-module

coalgebra C, so that a smash product #(H; C, B) is defined (see Remark 1.5).

We also note that other duality theorems involving the G-set G/H have

been proved by Liu Shaoxue [16]. □
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