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WEAKLY UNIFORM DISTRIBUTION MOD M

FOR CERTAIN RECURSIVE SEQUENCES

AND FOR MONOMIAL SEQUENCES

By

KeniiNagasaka

0. Introduction.

In my preceding paper [2],recursive sequences defined by

(1) un+i= a -un+b ･ Un1 (mod m)

were considered. We investigated conditions for which above defined recursive

sequence with a=b = l did not terminate and introduced the notion of uniform

distributionin (Z/mZ)* for non-terminating recursive sequences defined by (1). It

was proved that every non-terminating recursive sequence defined by (1) was not

uniformly distributedin (Z/mZ)* except one special case.

In order to avoid the repetition of the word, " non-terminating", we define

weakly uniform distribution mod m according to W. Narkiewicz [4]. Let a=

{#n}n=i,2,･･■be a sequence of integers. For integers N>1, m>2, and j (0<j<m

―1),let us define A^(a; j, m) as the number of terms among au a2,■■-,aN satis-

fying the congruence an=j (mod m) and similarly Bn (a', m) as the number of

terms an, l<n<N, that are relatively prime to m.

A sequence a={an}n=i^, ･･･ of integers is said to be weakly uniformly distri-

buted mod m if, for allj prime to m,

,. AN(a; j, m) 1

n^> Bjv(a; m) (p{m)'

provided

lim Bn(g I m)=co,

where <p(･ ) denotes the Euler totient function.

For recursive sequences denned by (1), uniform distributions in (Z/mZ)* are

equivalent to weakly uniform distributions mod m.

In this note, we shall consider recursive sequences defined by
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(2) vn,l= ak(vkn+ irnk)+ a,c^(vkn-1+ v^k-l")+ ■■■

+ a1(vn+ Vn1)+a0 (mod m),

which is symmetric with respect to vn and vj,＼We shall consider also recursive

sequences defined by

(3) wn+i= a ･ w% + b ■Wvk (mod m).

It will be proved that these recursive sequences are not weakly uniformly distri-

buted mod m except for some special cases.

Uniform distribution properties mod m of monomial sequences are known by

B. Zane [5]. We obtain almost similar results for weakly uniform distribution

mod m of monomial sequences in the last section.

1. Symmetric recursion formala.

We considered in [2] a recursive sequence u = {un}n=＼,z,■･■defined by

(4) Un+i^Un + u^ (mod m).

We introduced a function gx corresponding to the recursion formula (4) defined by

g,(s)= 5+ s"1 on the multiplicative group Gm = (ZlmZ)*.

If the sequence u is weakly uniformly distributed mod m, then the correspond-

ing function gx is necessarily bijectiveon Gm. The function gx satisfiesa functional

equation

(5) gi(s)=(/i(s-1)

for all s in Gm, which gave Theorem 5 in [2] together with the bijectivety of gx.

We now determine recursion formulae to which corresponding functions g

satisfy the same functional equation as (5). Let us consider the function gx as a

function hx with two variables, 5 and s~l.The functional equation (5) is identical

to the symmetricness of the function hx. It is now enough to determine all sym-

metric functions of 5 and s~l.

Every symmetric function can be represented as a polynomial of fundamental

symmetric functions. In this case, two fundamental symmetric functions are s+

s"1 and s ･ s~x= l, and so every symmetric function h(s,s~l)is a polynomial of

(s+s-1).

Applying Newton's binomial theorem to the expansion of (s+s"1)71, the coeffi-

cient of sk is ((B+fc)/2)which coincides with that of s~k,where the symbol (?) is

the generalized binomial coefficient[1]. Hence the function satisfying (5) can be

represented by
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0(s)=tf*(s*+s-*)+at-I(s*-1+s-t*-1>)+ ･･･ +a1(s + s~1)+ ao,

and the corresponding recursion formula is (2)

We shall prove the

Theorem 1. No recursive sequence v ―{vn}n=i,2,■･■is weakly uniformly distri-

buted mod m except for

Vn^=Vn + Vnl(mod 3)

and for

Vnn^vl + Vn+ l + Vn'+ v^2 (mod 3).

Note. The sequence defined by the latter congruence is substantiallyidentical

with the sequence defined by the former, since

vi= Vn2= l (mod 3) for all n.

Proof. If a recursive sequence v={vn}n=＼,i,･･･ is weakly uniformly distributed

mod m, then the function g in (6) corresponding to the recursion formula (2) is

necessarily bijectivefrom Gm = (ZlmZ)* to Gm. The function g satisfiesg(s)= g(s~1),

from which and from the bijectivityof g we deduce that

s^s'1 (mod m),

or equivalently to

(7) s2= l (mod m),

for all s In Gm.

( i ) Case of odd m's. For any odd integer m, the multiplicative group Gm

contains 2 as an element. Substituting 2 in (7), we obtain m ―3.

From Fermat's theorem, ss~s (mod 3) for all s in Z/3Z, then we may restrict

ourselves to the following recursion formulae:

yB+1= a2(y≪+ ^T2)+ (2i(yK+ ^1) + ≪o(mod 3).

Direct calculation shows that only the following two recursion formulae:

VnH^Vn + Vn1 (mod 3)

and

vn+i=v2n+Vn+l+v^+Vn2 (mod 3)

generate weakly uniformly distributed sequences mod 3.

(ii) Case of even m's. We denote r the smallest positive odd integer other
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than the unit element in the multiplicative group Gm―(ZI?nZ)*. Substituting r in

(7),we havem=r2 ―1. The smallestness of ri=-＼in Gm assures that m is divisible

by all primes pj less than r, which signifies

(8) JJ^Pj^-l.

The inequality (8) holds, from the prime number theorem, for only small values

of r. Indeed (8) is valid only for r=3, 5,7 and 9. Considering prime factors of

r2―1 for above values of r satisfying (8),it is enough to consider the following

two cases: m=8 and m=24.

On G8 = (Z/8Z)*, the function gt(s)takes only two distinctvalues, from which

g is not bijective on G8. Similarly g is neither bijective on G24 = (Z/24Z)*. Thus

we complete the proof.

2. Recursive sequences defined by wn,Ti^a ･ w% + b ･ w^k (mod m).

We now consider recursive sequences w={wn}n=ui, ■■■denned by

(3) wn+1=a ･ u%+b ･ Wnk (mod m),

that is a generalization of the recursion formula (1) considered in [2]. We obtain

Theorem 2. No recursive sequence w―{wn}n=＼,2,･■■defined by (3) is weakly

uniformly distributedmod m except for a=b = k = l and w―3.

Proof. The corresponding function / to the recursion formula (3) is

f{s)= a ･ sk+ b ･ s~k

= a ･ sk+ b(sk)-1.

If a recursive sequence w={wn}n=u2, ･･･ is weakly uniformly distributed mod m,

then the function / from Gm ―(ZlmZ)* is bijective to Gm, from which we deduce

that the function fk from Gm defined by

fk(s)= sk

is also bijective to Gm, since / may be considered as a function of sk. Then the

following congruential equation

(9) sfc=c (mod m)

has only one solution in Gm for all c in Gm.

Setting c―a and c= b, we denote the unique solution in (9) a0 and b0, respec-

tively. Then the function / corresponding to (3) satisfiesa functional equation:

(10) /(s)=/(6o ･ a^ ■s-1)
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for all s in Gm. The bijectivityof / and (10) shows that

(11) s=b0 ･ do1 ･ S"1 (mod m)

for all s in the multiplicative group Gm.

Substituting for s = l, we have

c=d (mod m),

which is a specialcase in Theorem 1. Thus the proof is completed,

3. Monomial Sequences.

In the preceding section, the solvability of (9) is a necessary condition for

weakly uniform distribution mod m of w―{wn}n=i,2,■･■■Thus we are naturally

led to consider distributionproperties of monomial sequences.

Let us consider, for nonnegative integer k, monomial sequences m(k; a)= {a ･

nk}n=i,2,････ If a monomial sequence m{k; a) is weakly uniformly distributed mod

m, then the following congruential equation

(12) a ･ sk= c (mod m)

has a unique solution in Gm = (ZlmZ)* for all c in Gm and a is necessarily prime

to m. Then multiplying a~l to (12),it is enough to consider the unique solvability

of (9) for all c in the multiplicative group Gm.

Let m be a composite integer such that

(13) m=pli ･ p? ■･･ pV (ai>l),

where pu p2,---,pr are distinct primes. Then (9) has only one solution if anc

only if

(14) sk=c (mod pi*)

has only one solution for each i, l<i<r. In order to determine whether a mono

mial sequence m(k; a) is weakly uniformly distributed mod m, it is enough t<

consider (14) for each i.

Starting from small values of k, we triviallyobtain from the theory of linea

Theorem 3. Monomial sequence m(l; a) of degree one is weakly uniformly

distributedmod m if and only if a is relativelyprime to m.

Likewise to uniformly distributed sequences of integers, we callan integer

sequence b = {bn}n=i,z,-" to be weakly uniformly distributed if b is weakly uni-

formlv distributed mod m for allintegers m>2. Dirichlet'scrime number theorem
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asserts us that the sequence of prime numbers is an example of weakly uniformly

distributed sequences of integers.

From Theorem 3. we derive

Corollary. m{＼; a) is not weakly uniformly distributedexcept for a~±l.

For monomial sequences m(2l; a) of even degree, we get a negative answer

to weakly uniform distribution mod m.

Theorem 4. No monomial sequence m(2l; a) of even degree is weakly uni

formly distributedmod m exceptfor m=2 and odd integer a.

Proof. For the case of /=0, the statement of the Theorem is evident.

Setting now that l>＼ and we suppose that a monomial sequence m(2l; a) is

weakly uniformly distributed mod m, where m is of the form (13). Then, the

congruence

(15) s*l= c (mod #<)

has only one solution. From the unique existence of (15) for all c in GPi≪i―(ZI

PilZ)*, we deduce that 2/ and ytpl1) are relatively prime, which is impossible for

odd prime p.

We now restrict ourselves to the modulus of the form 2" and next Proposition

(Theorem 63 in [3]) is useful.

Proposition. The numbers ±5, ±53,･ ･･, ±52 ~2form a reduced residue system

modulo 2? when $>3.

That signifies

(16)

(17)

G2a = (ZI2aZ)* = {±5, ±52,---, ±52"~2}

Suppose further that

2l=2r ･ /'.where /'is an odd integer.

and consider the following congruence

(18) su=c (mod 2a).

From (16), we may put, for a>3,

(19) c=(-l)< ･ 5ft(mod 2"),

(20) s~(-iy ･ 5* (mod 2*),

where A, x, X and /*are nonnegative integers. By introducing (19) and (20)in (18),

we get
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52x'= (-iy ･ 5ft(mod 2").

Hence the number X Is even. Then again from (16) and introducing (17), we

obtain

2r■V ■x=A (mod 2"-2).

This implies h=0 (mod 2r).

Then we derive that the congruential equation (18) has solutionsif c=5ft (mod

2") with h=0 (mod 2r); otherwise it has no solution. We henceforth conclude that

no monomial sequence m(2l; a) is weakly uniformly distributedmod 2" when a>3.

For a ―I and a ―2, we examine m(2l; a) directly and obtain that m(2l; a) is

weakly uniformly distributed mod 2 for odd a. Thus we complete the proof.

For monomial sequences of odd degree we obtain first positive answers to

wpaklv nnifrvrm riistrii-iiiHnnmnrl ■m

Theorem 5. Monomial sequences m(k; a) of odd degree are weakly uniformly

distributedmod 2" for every a>l, provided a is odd.

Proof. For ≪= 1 and a = 2, direct calculations gives the statement of the

Theorem 5.

For a>3, using the same representations as in (19) and (20),

(21) s*=c (mod 2")

may be rewritten by

(-1)" -5xk~(-iy ･ 5h (mod 2").

Hence n = X (mod 2) and again from Proposition

x ･ k=h (mod 2"~2).

Since k is odd, thislinear congruential equation has only one solution. Therefore,

the congruence (21) has exactly one solution for all c in G2a, which completes the

fhp nrnnf.

Theorem 6. // k is odd, then, there existinfinitelymany primes p such that

a monomial sequence m{k; a) is weakly uniformly distributedmod pa for all a>l,

provided a and p are relativelyprime.

Proof. Theorem 3 asserts the statement of Theorem 6 for k = l. Hence we

suppose that k is greater than 1.

From the proof of Theorem 4 and Theorem 5, we know that m{k; a)is weakly

uniformly distributed mod pa if k is prime to <f>(pa).By Dirichlet'stheorem the

arithmetic Droeression
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2+k, 2 + 2k,---, 2 + tnk,-'-

contains an infinitenumber of primes. Let p=2+mk be any such prime satisfying

p>a. If d is a divisorof p ―1= 1+mk and if d is also a divisor of k, then k must

be a divisor of 1. It follows that k is relatively prime to (p(pa)=pa~＼p―l).The

proof is now completed.

We get, however, a negative answer to weakly uniform distribution mod m

for monomial sequences of odd degree greater than one.

Theorem 7. If k is an odd integer greater than one, then there existinfinitely

many primes p such that m(k; a) is not weakly uniformly distributedmod p.

Proof. It Is enough to prove the existence of an infinite number of primes

p for which p―＼ are not prime to k. Again by Dirichlet'stheorem, there exist

infinitelymany primes p in the following arithmetic progression

1 + k, l+2k,---, 1 + mk,---.

Let p=l+mk>k be any such prime, then

(k, p-l) = (k, mk) = k>l,

where {a, b) denotes the greatest common divisor of two integers a and b. Thus

the proof is finished.

Remark. No monomial sequence m(k; a) is weakly uniformly distributed

except for m(l; ±1).
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