WEAKLY UNIFORM DISTRIBUTION MOD M
 FOR CERTAIN RECURSIVE SEQUENCES
 AND FOR MONOMIAL SEQUENCES

By
Kenji Nagasaka

0. Introduction.

In my preceding paper [2], recursive sequences defined by

$$
\begin{equation*}
u_{n+1} \equiv a \cdot u_{n}+b \cdot u_{n}^{-1}(\bmod m) \tag{1}
\end{equation*}
$$

were considered. We investigated conditions for which above defined recursive sequence with $a=b=1$ did not terminate and introduced the notion of uniform distribution in $(\boldsymbol{Z} / m \boldsymbol{Z})^{*}$ for non-terminating recursive sequences defined by (1). It was proved that every non-terminating recursive sequence defined by (1) was not uniformly distributed in $(\mathbb{Z} / m \mathscr{Z})^{*}$ except one special case.

In order to avoid the repetition of the word, "non-terminating", we define weakly uniform distribution mod m according to W. Narkiewicz [4]. Let $a=$ $\left\{a_{n}\right\}_{n=1,2}, \cdots$ be a sequence of integers. For integers $N \geq 1, m \geq 2$, and $j(0 \leq j \leq m$ $-1)$, let us define $A_{N}(a ; j, m)$ as the number of terms among $a_{1}, a_{2}, \cdots, a_{N}$ satisfying the congruence $a_{n} \equiv j(\bmod m)$ and similarly $B_{N}(a ; m)$ as the number of terms $a_{n}, 1 \leq n \leq N$, that are relatively prime to m.

A sequence $a=\left\{a_{n}\right\}_{n=1,2,} \cdots$ of integers is said to be weakly uniformly distributed $\bmod m$ if, for all j prime to m,

$$
\lim _{N \rightarrow \infty} \frac{A_{N}(a ; j, m)}{B_{N}(a ; m)}=\frac{1}{\phi(m)}
$$

provided

$$
\lim _{N \rightarrow \infty} B_{N}(a ; m)=\infty
$$

where $\phi(\cdot)$ denotes the Euler totient function.
For recursive sequences defined by (1), uniform distributions in $(\boldsymbol{Z} / m \boldsymbol{Z})^{*}$ are equivalent to weakly uniform distributions mod m.

In this note, we shall consider recursive sequences defined by

$$
\begin{align*}
v_{n+1} \equiv & a_{k}\left(v_{n}^{k}+v_{n}^{-k}\right)+a_{k-1}\left(v_{n}^{k-1}+v_{n}^{-(k-1)}\right)+\cdots \tag{2}\\
& +a_{1}\left(v_{n}+v_{n}^{-1}\right)+a_{0}(\bmod m)
\end{align*}
$$

which is symmetric with respect to v_{n} and v_{n}^{-1}. We shall consider also recursive sequences defined by

$$
\begin{equation*}
w_{n+1} \equiv a \cdot w_{n}^{k}+b \cdot w_{n}^{-k}(\bmod m) \tag{3}
\end{equation*}
$$

It will be proved that these recursive sequences are not weakly uniformly distributed mod m except for some special cases.

Uniform distribution properties mod m of monomial sequences are known by B. Zane [5]. We obtain almost similar results for weakly uniform distribution $\bmod m$ of monomial sequences in the last section.

1. Symmetric recursion formula.

We considered in [2] a recursive sequence $u=\left\{u_{n}\right\}_{n=1,2}, \cdots$ defined by

$$
\begin{equation*}
u_{n+1} \equiv u_{n}+u_{n}^{-1}(\bmod m) \tag{4}
\end{equation*}
$$

We introduced a function g_{1} corresponding to the recursion formula (4) defined by $g_{1}(s)=s+s^{-1}$ on the multiplicative group $G_{m}=(\boldsymbol{Z} / m Z)^{*}$.

If the sequence u is weakly uniformly distributed $\bmod m$, then the corresponding function g_{1} is necessarily bijective on G_{m}. The function g_{1} satisfies a functional equation

$$
\begin{equation*}
g_{1}(s)=g_{1}\left(s^{-1}\right) \tag{5}
\end{equation*}
$$

for all s in G_{m}, which gave Theorem 5 in [2] together with the bijectivety of g_{1}.
We now determine recursion formulae to which corresponding functions g satisfy the same functional equation as (5). Let us consider the function g_{1} as a function h_{1} with two variables, s and s^{-1}. The functional equation (5) is identical to the symmetricness of the function h_{1}. It is now enough to determine all symmetric functions of s and s^{-1}.

Every symmetric function can be represented as a polynomial of fundamental symmetric functions. In this case, two fundamental symmetric functions are $s+$ s^{-1} and $s \cdot s^{-1}=1$, and so every symmetric function $h\left(s, s^{-1}\right)$ is a polynomial of $\left(s+s^{-1}\right)$.

Applying Newton's binomial theorem to the expansion of $\left(s+s^{-1}\right)^{n}$, the coefficient of s^{k} is $\left(\begin{array}{c}(n+k) / 2\end{array}\right)$ which coincides with that of s^{-k}, where the symbol $\binom{x}{r}$ is the generalized binomial coefficient [1]. Hence the function satisfying (5) can be represented by

$$
\begin{equation*}
g(s)=a_{k}\left(s^{k}+s^{-k}\right)+a_{k-1}\left(s^{k-1}+s^{-(k-1)}\right)+\cdots+a_{1}\left(s+s^{-1}\right)+a_{0} \tag{6}
\end{equation*}
$$

and the corresponding recursion formula is (2).
We shall prove the
Theorem 1. No recursive sequence $v=\left\{v_{n}\right\}_{n=1,2,} \cdots$ is weakly uniformly distributed mod m except for

$$
v_{n+1} \equiv v_{n}+v_{n}^{-1}(\bmod 3)
$$

and for

$$
v_{n} \equiv v_{n}^{2}+v_{n}+1+v_{n}^{-1}+v_{n}^{-2}(\bmod 3)
$$

Note. The sequence defined by the latter congruence is substantially identical with the sequence defined by the former, since

$$
v_{n}^{2} \equiv v_{n}^{-2} \equiv 1(\bmod 3) \text { for all } n .
$$

Proof. If a recursive sequence $v=\left\{v_{n}\right\}_{n=1,2}, \cdots$ is weakly uniformly distributed $\bmod m$, then the function g in (6) corresponding to the recursion formula (2) is necessarily bijective from $G_{m}=(\boldsymbol{Z} / m \boldsymbol{Z})^{*}$ to G_{m}. The function g satisfies $g(s)=g\left(s^{-1}\right)$, from which and from the bijectivity of g we deduce that

$$
s \equiv s^{-1}(\bmod m),
$$

or equivalently to

$$
\begin{equation*}
s^{2} \equiv 1(\bmod m) \tag{7}
\end{equation*}
$$

for all s in G_{m}.
(i) Case of odd m's. For any odd integer m, the multiplicative group G_{m} contains 2 as an element. Substituting 2 in (7), we obtain $m=3$.

From Fermat's theorem, $s^{3} \equiv s(\bmod 3)$ for all s in $\boldsymbol{Z} / 3 \boldsymbol{Z}$, then we may restrict ourselves to the following recursion formulae:

$$
v_{n+1} \equiv a_{2}\left(v_{n}^{2}+v_{n}^{-2}\right)+a_{1}\left(v_{n}+v_{n}^{-1}\right)+a_{0}(\bmod 3) .
$$

Direct calculation shows that only the following two recursion formulae:

$$
v_{n+1} \equiv v_{n}+v_{n}^{-1}(\bmod 3)
$$

and

$$
v_{n+1} \equiv v_{n}^{2}+v_{n}+1+v_{n}^{-1}+v_{n}^{-2}(\bmod 3)
$$

generate weakly uniformly distributed sequences mod 3.
(ii) Case of even m 's. We denote r the smallest positive odd integer other
than the unit element in the multiplicative group $G_{m}=(\boldsymbol{Z} / m \boldsymbol{Z})^{*}$. Substituting r in (7), we have $m=r^{2}-1$. The smallestness of $r \neq 1$ in G_{m} assures that m is divisible by all primes p_{j} less than r, which signifies

$$
\begin{equation*}
\Pi_{j=1}^{\Pi(r)-1} p_{j}<r^{2}-1 . \tag{8}
\end{equation*}
$$

The inequality (8) holds, from the prime number theorem, for only small values of r. Indeed (8) is valid only for $r=3,5,7$ and 9 . Considering prime factors of $r^{2}-1$ for above values of r satisfying (8), it is enough to consider the following two cases: $m=8$ and $m=24$.

On $G_{8}=(\boldsymbol{Z} / 8 \boldsymbol{Z})^{*}$, the function $g_{1}(s)$ takes only two distinct values, from which g is not bijective on G_{8}. Similarly g is neither bijective on $G_{24}=(\boldsymbol{Z} / 24 \boldsymbol{Z})^{*}$. Thus we complete the proof.
2. Recursive sequences defined by $\boldsymbol{w}_{n+1} \equiv \boldsymbol{a} \cdot \boldsymbol{w}_{n}^{k}+\boldsymbol{b} \cdot \boldsymbol{w}_{n}^{-k}(\bmod \boldsymbol{m})$.

We now consider recursive sequences $w=\left\{w_{n}\right\}_{n=1,2} \cdots$ defined by

$$
\begin{equation*}
w_{n+1} \equiv a \cdot w_{n}^{k}+b \cdot w_{n}^{-k}(\bmod m), \tag{3}
\end{equation*}
$$

that is a generalization of the recursion formula (1) considered in [2]. We obtain
Theorem 2. No recursive sequence $w=\left\{w_{n}\right\}_{n=1,2,}, \cdots$ defined by (3) is weakly uniformly distributed mod m except for $a=b=k=1$ and $m=3$.

Proof. The corresponding function f to the recursion formula (3) is

$$
\begin{aligned}
f(s) & =a \cdot s^{k}+b \cdot s^{-k} \\
& =a \cdot s^{k}+b\left(s^{k}\right)^{-1} .
\end{aligned}
$$

If a recursive sequence $w=\left\{w_{n}\right\}_{n=1,2,} \cdots$ is weakly uniformly distributed $\bmod m$, then the function f from $G_{m}=(\boldsymbol{Z} \mid m \boldsymbol{Z})^{*}$ is bijective to G_{m}, from which we deduce that the function f_{k} from G_{m} defined by

$$
f_{k}(s)=s^{k}
$$

is also bijective to G_{m}, since f may be considered as a function of s^{k}. Then the following congruential equation

$$
\begin{equation*}
s^{k} \equiv c(\bmod m) \tag{9}
\end{equation*}
$$

has only one solution in G_{m} for all c in G_{m}.
Setting $c=a$ and $c=b$, we denote the unique solution in (9) a_{0} and b_{0}, respectively. Then the function f corresponding to (3) satisfies a functional equation:

$$
\begin{equation*}
f(s)=f\left(b_{0} \cdot a_{0}^{-1} \cdot s^{-1}\right) \tag{10}
\end{equation*}
$$

for all s in G_{m}. The bijectivity of f and (10) shows that

$$
\begin{equation*}
s \equiv b_{0} \cdot a_{0}^{-1} \cdot s^{-1}(\bmod m) \tag{11}
\end{equation*}
$$

for all s in the multiplicative group G_{m}.
Substituting for $s=1$, we have

$$
c \equiv d(\bmod m),
$$

which is a special case in Theorem 1. Thus the proof is completed.

3. Monomial Sequences.

In the preceding section, the solvability of (9) is a necessary condition for weakly uniform distribution $\bmod m$ of $w=\left\{w_{n}\right\}_{n=1,2}, \cdots$. Thus we are naturally led to consider distribution properties of monomial sequences.

Let us consider, for nonnegative integer k, monomial sequences $m(k ; a)=\{a$. $\left.n^{k}\right\}_{n=1,2,} \cdots$. If a monomial sequence $m(k ; a)$ is weakly uniformly distributed mod m, then the following congruential equation

$$
\begin{equation*}
a \cdot s^{k} \equiv c(\bmod m) \tag{12}
\end{equation*}
$$

has a unique solution in $G_{m}=(\boldsymbol{Z} / m \boldsymbol{Z})^{*}$ for all c in G_{m} and a is necessarily prime to m. Then multiplying a^{-1} to (12), it is enough to consider the unique solvability of (9) for all c in the multiplicative group G_{m}.

Let m be a composite integer such that

$$
\begin{equation*}
m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\left(\alpha_{i} \geq 1\right) \tag{13}
\end{equation*}
$$

where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes. Then (9) has only one solution if and only if

$$
\begin{equation*}
s^{k} \equiv c\left(\bmod p_{i}^{\alpha_{i}}\right) \tag{14}
\end{equation*}
$$

has only one solution for each $i, 1 \leq i \leq r$. In order to determine whether a monomial sequence $m(k ; a)$ is weakly uniformly distributed $\bmod m$, it is enough to consider (14) for each i.

Starting from small values of k, we trivially obtain from the theory of linear congruences

Theorem 3. Monomial sequence $m(1 ; a)$ of degree one is weakly uniformly distributed mod m if and only if a is relatively prime to m.

Likewise to uniformly distributed sequences of integers, we call an integer sequence $b=\left\{b_{n}\right\}_{n=1,2,} \cdots$ to be weakly uniformly distributed if b is weakly uniformly distributed mod m for all integers $m \geq 2$. Dirichlet's prime number theorem
asserts us that the sequence of prime numbers is an example of weakly uniformly distributed sequences of integers.

From Theorem 3, we derive
Corollary. $m(1 ; a)$ is not weakly uniformly distributed except for $a= \pm 1$.
For monomial sequences $m(2 l ; a)$ of even degree, we get a negative answer to weakly uniform distribution $\bmod m$.

Theorem 4. No monomial sequence $m(2 l ; a)$ of even degree is weakly uniformly distributed mod m except for $m=2$ and odd integer a.

Proof. For the case of $l=0$, the statement of the Theorem is evident.
Setting now that $l \geq 1$ and we suppose that a monomial sequence $m(2 l ; a)$ is weakly uniformly distributed mod m, where m is of the form (13). Then, the congruence

$$
\begin{equation*}
s^{2 l} \equiv c\left(\bmod p_{i}^{q i}\right) \tag{15}
\end{equation*}
$$

has only one solution. From the unique existence of (15) for all c in $G_{p_{i} i_{i}}=(\boldsymbol{Z} /$ $\left.p_{i}^{\alpha_{i}^{i}} \boldsymbol{Z}\right)^{*}$, we deduce that $2 l$ and $\dot{\varphi}\left(p_{i}^{\alpha_{i}^{i}}\right)$ are relatively prime, which is impossible for odd prime p.

We now restrict ourselves to the modulus of the form 2^{α} and next Proposition (Theorem 63 in [3]) is useful.

Proposition. The numbers $\pm 5, \pm 5^{2}, \cdots, \pm 5^{2^{8-2}}$ form a reduced residue system modulo 2^{β} when $\beta \geq 3$.

That signifies

$$
\begin{equation*}
G_{2^{\alpha}}=\left(\boldsymbol{Z} / 2^{\alpha} \boldsymbol{Z}\right)^{*}=\left\{ \pm 5, \pm 5^{2}, \cdots, \pm 5^{2^{\alpha-2}}\right\} \tag{16}
\end{equation*}
$$

Suppose further that

$$
\begin{equation*}
2 l=2^{r} \cdot l^{\prime}, \text { where } l \text { ' is an odd integer, } \tag{17}
\end{equation*}
$$

and consider the following congruence

$$
\begin{equation*}
s^{2 l} \equiv c\left(\bmod 2^{a}\right) \tag{18}
\end{equation*}
$$

From (16), we may put, for $\alpha \geq 3$,

$$
\begin{align*}
& c \equiv(-1)^{x} \cdot 5^{h}\left(\bmod 2^{\alpha}\right) \tag{19}\\
& s \equiv(-1)^{x} \cdot 5^{x}\left(\bmod 2^{\alpha}\right) \tag{20}
\end{align*}
$$

where h, x, λ and μ are nonnegative integers. By introducing (19) and (20) in (18), we get

$$
5^{2 \times l} \equiv(-1)^{\lambda} \cdot 5^{h}\left(\bmod 2^{\alpha}\right)
$$

Hence the number λ is even. Then again from (16) and introducing (17), we obtain

$$
2^{r} \cdot l^{\prime} \cdot \mathrm{x} \equiv h\left(\bmod 2^{\alpha-2}\right)
$$

This implies $h \equiv 0\left(\bmod 2^{r}\right)$.
Then we derive that the congruential equation (18) has solutions if $c \equiv 5^{h}(\bmod$ $\left.2^{r}\right)$ with $h \equiv 0\left(\bmod 2^{r}\right)$; otherwise it has no solution. We henceforth conclude that no monomial sequence $m(2 l ; a)$ is weakly uniformly distributed $\bmod 2^{\alpha}$ when $\alpha \geq 3$.

For $\alpha=1$ and $\alpha=2$, we examine $m(2 l ; a)$ directly and obtain that $m(2 l ; a)$ is weakly uniformly distributed mod 2 for odd a. Thus we complete the proof.

For monomial sequences of odd degree we obtain first positive answers to weakly uniform distribution $\bmod m$.

Theorem 5. Monomial sequences $m(k ; a)$ of odd degree are weakly uniformly distributed mod 2^{α} for every $\alpha \geq 1$, provided a is odd.

Proof. For $\alpha=1$ and $\alpha=2$, direct calculations gives the statement of the Theorem 5.

For $\alpha \geq 3$, using the same representations as in (19) and (20),

$$
\begin{equation*}
s^{k} \equiv c\left(\bmod 2^{\alpha}\right) \tag{21}
\end{equation*}
$$

may be rewritten by

$$
(-1)^{\mu} \cdot 5^{\mathrm{x} k} \equiv(-1)^{\lambda} \cdot 5^{h}\left(\bmod 2^{\mu}\right)
$$

Hence $\mu \equiv \lambda(\bmod 2)$ and again from Proposition

$$
\mathrm{x} \cdot k \equiv h\left(\bmod 2^{\alpha-2}\right)
$$

Since k is odd, this linear congruential equation has only one solution. Therefore, the congruence (21) has exactly one solution for all c in $G_{2^{\alpha}}$, which completes the the proof.

ThEOREM 6. If k is odd, then there exist infinitely many primes p such that a monomial sequence $m(k ; a)$ is weakly uniformly distributed mod p^{α} for all $\alpha \geq 1$, provided a and p are relatively prime.

Proof. Theorem 3 asserts the statement of Theorem 6 for $k=1$. Hence we suppose that k is greater than 1.

From the proof of Theorem 4 and Theorem 5 , we know that $m(k ; a)$ is weakly uniformly distributed mod p^{α} if k is prime to $\phi\left(p^{\alpha}\right)$. By Dirichlet's theorem the arithmetic progression

$$
2+k, 2+2 k, \cdots, 2+m k, \cdots
$$

contains an infinite number of primes. Let $p=2+m k$ be any such prime satisfying $p>a$. If d is a divisor of $p-1=1+m k$ and if d is also a divisor of k, then k must be a divisor of 1 . It follows that k is relatively prime to $\phi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$. The proof is now completed.

We get, however, a negative answer to weakly uniform distribution mod m for monomial sequences of odd degree greater than one.

ThEOREM 7. If k is an odd integer greater than one, then there exist infinitely many primes p such that $m(k ; a)$ is not weakly uniformly distributed mod p.

Proof. It is enough to prove the existence of an infinite number of primes p for which $p-1$ are not prime to k. Again by Dirichlet's theorem, there exist infinitely many primes p in the following arithmetic progression

$$
1+k, 1+2 k, \cdots, 1+m k, \cdots
$$

Let $p=1+m k>k$ be any such prime, then

$$
(k, p-1)=(k, m k)=k>1
$$

where (a, b) denotes the greatest common divisor of two integers a and b. Thus the proof is finished.

REMARK. No monomial sequence $m(k ; a)$ is weakly uniformly distributed except for $m(1 ; \pm 1)$.

References

[1] Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. Third Ed. John Wiley and Sons, New York et al. 1968.
[2] Nagasaka, K., Distribution property of recursive sequences defined by $u_{n_{+1}} \equiv u_{n}+u_{n}^{-1}$ $(\bmod m)$. Fibonacci Q. 22 (1984), 76-81.
[3] Nagell, Y., Introduction to Number Theory. Chelsea Publishing Company, New York 1964.
[4] Narkiewicz, W., Uniform distribution of sequences of integers. Journées Arithmétiques 1980. Edited by J.V. Armitage. London Mathematical Society Lecture Note Series 56. Cambridge University Press, London (1982), 202-210.
[5] Zane, B., Uniform distribution modulo m of monomials. Amer. Math. Monthly 71 (1964), 162-164.

> Department of Mathematics
> Faculty of Education
> Shinsyu University
> Nagano Pref.
> 380 Japan

