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DUAL LIE ALGEBRAS OF HEISENBERG

POISSON LIE GROUPS

By

KentaroMikami* and Fumio Narita

Abstract. In this note, we shall classify all the dual Lie algebra

structures induced by multiplicativePoisson tensors on an arbitrary

dimensional Heisenberg Lie group.

1. Introduction

According to Drinfel'd [1], a Poisson structure of a Lie group L is called

multiplicativeif the multiplication of L is a Poisson map with respect to the

Poisson structure. A Lie group with a multiplicative is called a Poisson (Lie)

group.

In terms of Poisson tenson re: L^/＼2TL, multiplicativityis equivalent to

Tz(ah)=Tla7c{b)+Trbiz(a) a, b^L

where la and ra are the left and right translation of aeL respectively.

Let 7rr:L―>A2I be a Posisson tensor after identifying TL with Lxl by

right translations where I is the Lie algebra of L. Then multiplicativity is

also equivalent to nr being a 1-cocycle of Adjoint representation ([6]).

A multiplicative Poisson structure defines a Lie algebra structure for the

dual space I* of Lie algebra I by

<[>, r], £>= <* Ar, denr($)>

where a, re I*, $el (cf. [1]).

In cases of semi-simple Lie groups, all multiplicative Poisson structures are

classifiedby terms of cohomology of its Lie algebra. In cases of abelian Lie

groups, the situation is rather simple. The simplest case of non-abelian Lie

group is (ax+b)-group and the multiplicative Poisson structures on {ax+b)-

group is characterized in [3]. A Heisenberg group is neither semi-simple nor

abelian, but is almost abelian. In this note, we shall classify all the dual Lie

algebras structures induced by multiplicative Poisson tensors on an arbitrary
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dimensional Heisenberg Lie group. We prepare notation and state some results

on Heisenberg Lie algebras/groups in section 2. In section 3, we shall classify

the dual Lie algebra structures induced by arbitrary dimensional Heisenberg

Poisson Lie groups of the firsttype. In section 4, we shall classify multiplica-

tive Poisson tensors of the second type on arbitrary dimensional Heisenberg

Lie groups and its dual Lie algebra structures.

2. Notation and review of Heisenberg Poisson Lie groups

We recall the structure of Heisenberg Lie algebra along to [4].

A Lie algebra I)is Heisenberg if 2(^)(:=the center of I)) is 1-dimensional

and the derived algebra t)'of t)is Z(t>).

For a Heisenberg Lie algebra I),a=t)/.Z(I))is abelian. Fix a non-zero vector

u,,G2(|). Then we have a linear symplectic structure Qo on a by the relation

＼_hlth^―Q^projihi), proj(h2))vo for hu /i2ef}

where proj: f)―>ctis the canonical projection.

Take a ao<Bt)*satisfying <<r0,Vo>=l- Then t)=Ker(o0)(&Rvo and Ker(a0)

set. Hereafter we use this decomposition f)=a0J?i>o and often use symplectic

terminology as

2. £°=the "inverse" of Qo, which is defined as Q＼p, ^)=<p, $>

3. QXP, V>)=Q0(t, v)

4. a* is defined by <<r,£>=i20((j*,|). (<7#)k=<r and (|b)#=|

5. For the dual map N of M(=End(a) defined by (Np, £>=</>,M^>, we

have

flW, )?k)=<6k,MVy=Qa(%, My)

6. Let S1={|Ga|i20(|, S)=0} for a subset Sea.

If ^ is a Heisenberg Lie algebra, the corresponding connected and simply

connected Lie group H is called the Heisenberg group. We can parametrize

H with fj by using the exponential map as

/i1/i2s/i1+ /i2+[/i1,/i2]/2.

I. Szymczak and S. Yakrzewski [4] list up all the multiplicative Poisson

tensors on a Heisenberg group as follows.

Proposition 1 (cf. [4]). Each Multiplicative Poisson structure z on a Hei

senberg group H is one of the following two forms:
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(i) 7tr(h)=v0AM($), where h=$+Avo^aRRvo and M^End(a)

(ii) 7cr(h)=voA(XA+M($))+l/2($AA+Qo(.$, A)Q°),

where h=£+Avo(^a(&RvQ, A is a non-zerovectorof a=Ker(o0), and M^End(a)

must satisfy

M£=Q0(A, BX+Q0(G, B-IA)A+QO(A, $)B

for some vectorB<=a=Ker(o0) and some constantI.

Among multiplicative Poisson tensors, there is a subclass including those

induced by r-matrices. In case of Heisenberg groups, we have the following.

Proposition 2. MultiplicativePoisson structure x of the form

7i(h)=Tlhr-Trhr h<=L

is of the first type with MJo=JotM, where Jo is a matrix representation of the

linear symplectic form Qo corresponding to the Heisenberg Lie algebra.

In particular, multiplicative Poisson structure that comes from r-matrix is

characterized by MJo=JotM and M2=0.

Proof. Let {vu ■■■,v2n} be a basis of a consisting of left invariant vector

fields. They are related as

[yi, vo]=0.

Let r=(l/2)'2t pijViAvjJr'2iqkVkAv() be an arbitrary constant 2-vector, where
i,j k

Pz={pij)ijis a skew-symmetric matrix. For %{h)―Tlhr―Trhr, we have nr{h)

= Adh(r)―r and denr(%+AvQ)=ad(i+xVo)(r). Thus,

de7rr(v0)=0

de7Cr(Vi)=V0A S ^o(yj, Vj)pjkVk.
j,k

We see that this ttis a multiplicative Poisson tensor by Proposition 1 or cal-

culating the Schouten bracket O, n~]directly, iz is of the firsttype with M―

(1lQo(Vi, Vj)pjk)i,kjthat is, M=J0P. Skew-symmetry of P implies MJo=JotM.
j

Since

[r,r] = ― v0A 2 pijQoiuj, vk)pkivt/＼vi

i.j, k,I

we have [r, r]=0 if and only if 2 PtjQoivj,vk)Pki=O for each z, /. That is
.7,A

equivalent to M2~0. ■
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When the dimension of a Lie group is 2 or 3, there is a notion of non-

degeneracy for multiplicativePoisson tensors due to DrinfePd [2]. For 3-

dimensional Heisenberg group, we have the following.

Proposition 3. On 3-dimensional Heisenberg group, multiplicativePoisson

structures of the second type are non degenerate in the sense of Drinfel'd [2].

Proof. Use the same notation in the proof of Proposition 2 with n―1

We consider the following diagram.

and the conclusion follows.

de7t
Ali)

r

Through this map, vo/＼vy and v0Avz go to zero, and v^fw-i goes to der:r(v0)

We see that

de7tr(v0)=0 (if the first type)

denr(v0)=v0AA-t0 (if the second type)

3. Structure of dual Lie algebras induced by multiplicative

Poisson tensors of the first type

It is natural to ask if given two multiplicative Poisson tensors are equi-

valent or not. On a general Lie group L, equivalence of two multiplicative

Poisson tensors it and %' means that there is a Lie group isomorphism 0 that

is a Poisson map between tc and it'. Then we have K'(0(a))=0*(7t(a)) and

it'r(a)=0*7cr(0-1(a)). We thereby, have

deit'r{x)=R*de7Zr{(R*)-＼x))

where xgI. We callit' the induced Poisson tensor by rt and 0.

In case of Heisenberg groups, Lie group automorphisms are equal to Lie

algebra automorphisms. We use the same symbol 0 instead of the differential

0* of 0. A Lie algebra isomorphism 0 of the Heisenberg Lie algebra is

defined by

where c^O and w satisfiesQ0(<p/-,(pr))―cQ9{^,tj).

Proposition 4. A multiplicativePoisson tensor it' of the first type induced

by it and 0 above is also of the firsttype with the corresponding matrix M' =

cipMip'1.
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A multiplicative Poisson tensor k' of the second type induced by iz and 0

above is also of the second type and the relations are

A' = (p(A)

M＼S)=c<pM<p-KZ)-^tio<p-＼£)<p{A)-^ii(A)Z-^Q^, <p(A))<p(fi*)

+Q0(<pA, $)(<pB +
l-<p([i*)).

Proof. The case of the first type is easy so that we omit proof of it.

We discuss the second type. Denote de7ir and deTc'r by y and y', re

spectively. We have

= 0{voA(j(-ft<><p-＼£)+k)A + M<p-K&)

= 0{v*)/＼(-(-(i°<p-KS) + X)0(A) + 0{M<p-＼S)))

+ j0{(p'1($)A0(A)+~Qo((p-＼$), A)0(Q°)

+ j(<p(<p-l($))+ti°<p-K£)v0)A((p(A)+fi(A)vo)+jQo(<p-＼a A)0(Q°)

+ j($+fi°<p-＼$)v0)A(<p(A)+Ii(A)i,<0)+jQ0((p-＼$), A)0(Q°)

= v0A((-ii°<p-＼$)+Z)<pA + c<pM<p-＼£))+j£A<p(A)

+ j!n°<p-1&voA<p(A)-jfi(A)voAs+^Qo(<p-1(%), A)0(Q°)
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((-ti'<p-K$)+Z)<pA + c<pM<p-K$)+jti-<p-＼&<p(A)-jti(A)$)

+ j%A<p(A)+jQ0(<p-＼$), A)0(Q°)

VvAfaA + apMy-W-jfiotp-^tyW-jftiAK)

+ -tA(p(A)+-Q^, <p{A))(D{Q≫)

= v0A(x<pA + c<pM<p-＼%)-j{i°<p-＼$)(p(A)-jiu(A)$)

+ -2$A<p(A)+^Q0(£, <p(A))(cQ≪-v0A<p(ii*))

=v0AU(pA + c<pM<p-＼$)-~ fio<p-＼e)(p(A)

-jpt(A)$--Q0($, (p(A))<p(fi*))+j£A<p(A)+jQ0($, <p(A))Q°

using the next lemma. Thus, we complete the proof.

With the same notationin Proposition4, we have

Lemma 1.

Proof.

<R*(a), voy=<a, 0(vo)>=<Go, cvo} = c

= cQ＼ft, (^-1)?)k)=c</i, (p-^)

□
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= cQ0(pi*, <p-17))=Q0(<p(ft*l V)
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We consider the dual Lie algebra induced by multiplicative Poisson tensor

7rr(/i)=t;0AM(£) (A=?+;vo£ttc2(l)))

of the first type on a Heisenberg group.

Let {<?!, a 2, ■■■,a2n, #<>} be the dual basis of {vu v2, ･･･, v2n, v0}. From the

definition of dual Lie algebra, we have

{.Oj, Ok]=Q and [<r0, ai]―Noj (j, k ―＼,■･･, 2n),

where N is the dual of M. We denote by [･, -~＼Nthis Lie bracket in order to

show that it is defined by N.

If M=0, then the dual Lie algebra is abelian. We consider the case of

Mi=0. Then, the induced Lie algebra is a semidirect product of the abelian

Lie algebra R2n and R. If two dual Lie algebra structures induced by M and

M' are isomorphic, then the derived Lie algebras are also isomorphic and it

turns out that the rank of M and M' should be equal.

Two Lie algebra structures [･, ･'jx and [･, ･]#- are isomorphic if and only

if there is a linear isomorphism ＼ of Rin+1 satisfying

＼(lx, ylN)=l＼(x), W{yy]N. (x, ytER*n+1).

Identifying R2n +1= R2nxR, we can split the linear map ＼ on R2n+1 as

＼(o0)=z0+ka0

for ＼/a<=R2n, where p. is a linear functional on R2n, ra is a constant vector in

R2n and X is some constant number.

The relations that they must satisfy are the following.

[Jl{o)N'<p{T)-lJl{T)N'<J){<j)= <d

4>(N(o))=hY(<P(a))-fi(a)N'(T0)

Suppose that a linear isomorphism W provided with ft-^O. Then we may as-

sume that fi(ai)=l and Ker(fi)=((a2, ■･■,o2n))- The relations above yield
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Im(N)dKer(fjt)

^OV(<r1))=^'(^(<r1))-iV/(ro)

<p(N(oj))=AN'(4)(<jj))=0 (7>2).

Since ＼is a linear isomorphism, ＼＼Rmis a monomorphism. Thus, fi(N(Oj))=0

and <p(N(Oj))=0 imply N(aj)=0 for /^2 and the rank of TV and A'V must be at

most 1. In other words, if we deal with M and M' with the rank greater

than 1, fi must be 0. Then, it turns out <p is a linear isomorphism of RZn,

A-£Q, and (p(N(a))=AN'(<p(a)). Conversely, if ,V and N' satisfy the relations

above, then we can define a Lie algebra isomorphism between [･, ･]# and

If the rank of N is equal to 1, then we have to study 2 cases depending

on A/'2―0 or not. If N2=0, then the derived algebra is a subalgebra of the

center, i.e., [Ij*,f)*]YVc2(I)*,[･, ･]#)･ W iV2--0, then the derived algebra is

not a subalgebra of the center, i.e., [§*,I)*]at<£55(1)*,[･, -]iv)- Thus, the Lie

algebras defined by N with iV2=0 and N with iW-0 are not isomorphic.

Let us consider N and N' with N2=Nn―0. Then we find a linear bijec-

tion (p on i?2n satisfying (pi＼1=N/(pand can define a Lie algebra isomorphism ＼

between [･, ･]# and [･, -].v-

Consider N and iV with ./Vz^0 and ./W-0. Then we find a non-zero con-

stant ^ and a linear bijection 0 on R2n satisfying <pN=XN'<p and can define a

Lie algebra isomorphism ^between [･, -~＼Nand [･, -J.V by 0 and X.

Thus, we have the following result.

Theorem 1.

plicative Poisson

follows.

On a Heisenberg group, the dual Lie algebras induced by multi-

structures of the first type are solvable and characterized as

1) // M=0, then the induced dual Lie algebra is abelian.

2) // M-^0, then the dual Lie algebra is semidirect product of the abelian

Lie algebra R2n and R and the Lie algebra isomorphism classes are characterized

by the relation

PM=IM'P

for some non-singular matrix P and some non-zero constant X.

In the case of 3-dimensional, we can state our theorem in another way by

using Tasaki-Umehara invariant (cf. [5]).

Let {ai, a2, aa] be the dual basis of {uu vz,vo＼. From the definition of

dual Lie algebra, we have
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[<7i, O^―O

where TV is the dual of M.
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We consider the case of M^O. By direct calcula-

tion of Killing form and cofactor matrix of structure constants, we see that

Tasaki-Umehara invariant is

y
trace (Nf

det(N)

trace(M)2

det(M)

if det(M):pO, because trace(N)=trace(M), det(N)=det(M).

When det(N)=det(M)=O, Tasaki-Umehara invariantof the dual Lie algebra

is oo if trace{M)i^Q.

When det(N)=det(M)=O and trace(N)=trace(M)=O, the dual Lie algebra

is a Heisenberg Lie algebra.

Thus, we have the followingresult which is a corollaryof Theorem 1.

Corlolary 1. On 3-dimensional Beisenberg group, the dual Lie algebras

induced by multiplicativePoisson structures of the firsttype are solvable and are

characterized as follows.

1) // M―0, then the induced dual Lie algebra is abelian.

2) // M^O and trace{M)―det(M)=O, then the induced dual Lie algebra is

a Beisenberg Lie algebra.

3) // det(M) or trace(M) ±0, then the induced dual Lie algebra is charac-

terized by Tasaki-Umehara invariant trace(M)z/det(M).

4. Structures of multiplicative Pofsson tensors of the second type

and their dual Lie algebras

In this section, we restrictourselves to the multiplicative Poisson tensors

of the second type. We first study of endomorphisms M which appear in

multiplicative Poisson tensors of the second type. Since multiplicative Poisson

tensor M of the second type in Proposition 1 is defined by A, B and /, we can

write M as M,A B t).

Proposition 5. For M=M(AiB.D^End(a),

1) M satisfiesQ0(M%, r))-Q0($, Mr))=2lQ0(A, $)Q0(A, yj)for V$, i?Ga.

2) // A and B are linearly dependent, then we have two cases.

a) // /=o, then M=0.

b) // l=£0,then Ker(M)=A＼ Im(M)=RA, and rank M=l.

3) // A and B are linearly independent, then we have two cases.

a) // QJA, B)=0, then Ker(M)=(RA+RB)＼ Im{M)=RA+RB, and
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rank M―2.

b) // QQ(A, B)^0, then M is non-singular.

Proposition 6. For the function {A, B, 1)^Mia.b.d, M(A,b,i)= Mia>,b>,i')if

and onlyif AAB = A'AB' and ll'^O and ＼, ," , or AAB = A'AB' and 1=
I l'=l a

/'=0.

Proof. Comparing the rank of the both sides of M(A,B,i)= M(A'iB',i'),we

have two conditions below.

Qa(A, B)=Q0(A', B') (C-l)

£,(£,B-IA)A+QO(A, £)B=Q0(£, B'-l'A')A'+Q,(A>, $)B' (C-2)

When AAB^O, then the rankMu,B,i)7^2. Using Proposition 5, we see A'AB'

=^0. Condition (C-2) implies that

A' = aA+fiB

B' = a'A+fi'B .

Plugging them to (C-l), we have the following.

If 1=0, then Z'=0 and ^IA5 = A/A5/.

If Z^o, then l'±0 and ^l^aA, l'=l/a＼ and ylA.S^^'AB'.

Similarly, when AAB=0, then the rankM(A,B,i)^l- Using Proposition 5,

we see /1/A5/=O. Condition (C-2) implies that

/

0 implies /'=

f A' = aA

0, or li^O implies <

l'= l/a2

Theorem 2. The space of equivalence classes of all

tensors of the second type is 1-dimensional real space R.

are (Ao, 0, /) where Ao is any fixed non-zero vector.

n

multiplicative Poisson

Their representatives

Proof. Each multiplicative Poisson tensor of the second type is determined

by (A, M(a.b.i)) and Mu.b.d is determined as explained in Proposition 5 and

is parametrized in the space

{(A, AAB, l)＼A,fiea}.

Lie algebra automorphism action on the parameter space is as

0-(A, AAB, l)={tpA, <pA/＼(p(B+^-c[x*y /)

where 0 is defined by
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0(£+Xvo)=<p£+(ft(£)+Xc)vo> ci=O, <p satisfying Q0(<p£, <pi))=cQ0(£, rj)

We can take fi as B+(l/2c)[t*=0 and we can take <p so that <pA

vector).
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Ao (constant

m

Theorem 3. On a Heisenberg group, the dual Lie algebras induced by multi-

plicative Poisson tensors of the second type are all solvable and are classified into

two classes by li^O or 1=0.

Proof. Theorem 2 guarantee that we can put A=A0 (constant) and JB=O

for each multiplicative Poisson tensor of the second type. Then M£=

/20(£,―IAO)AQ. According to the definition of the dual Lie algebra induced by-

multiplicative Poisson tensor, we have

[<?o,r]j=<r, AoX(To+lAfi

I>, r]^=y≪r, A0><t-<o, A^t)-^-(o/＼t, Q°>Al

When Z^-0, using the transformation / such that /(<70)=(l//)o>o and f＼anih(v0)―

identity, we calculate the induced Lie algebra structure [[･, ･■]]==/~1[/(-), /(･ -)]j-

Then we have

[[>o, r]] = <r, A0Xoo+Al)

[[(?,t]] =
4"≪t,

A0><x-<a, A0>t)-1<<jAt, Q°)Al

This is independent of / and is equal to [･, -^i- Thus, / is a Lie algebra iso-

morphism between [･, --]i and [･, ･-]i-

Next, we show that [･, --]i and [･, ･･],,are never isomorphic. We can

take a symplectic basis {au a2> ･･･,o%n-＼,o2n} with respect to Q° so that

[(To,≪?*]?= 0 (k^2)

[Oj, 0k~＼l=-
Q＼Oj, Ok)

2
<72 (/, k>2)

where A＼―a2and Q°(au ai)=Q0(a3, ≪r4)=･■･= Q＼a2n-u <72J=1. For each vector

v, we consider the kernel of adv that is the stabilizer at v of adjoint action, and

its dimension. We call here this number by the nullity of v, namely nullity(v)

=dim Ker(adv). For example, nullity(ao)=2n, nullity(a1)=l, nullity(<j2)=2n,

nullity((ik)=2n―1(&^3). The nullity is invariant under Lie algebra isomor-
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phisms, namely if /: g―>Iis a Lie algebra isomorphism, then nullity
%{v)=

nullity[(f{v))for each 1/G9. On the Lie algebra (Ij*,[･, ■･]>.)we can calculate

the nullity of an arbitrary vector <r= S}=o ai°".7as

nullity(a)=l if d^O

nullity(a)=2n ―＼ if a,=0 and a^O for some /(^3)

nullity(a)―2n if Qi=0, 0^=0(7^3), but ao or a2=fc0.

(It may be remarkable that the statements above do not include the parameter /.)

Suppose that there is a Lie algebra isomorphism ^between (lj*,[･, --]i)

and (1^*,[･, ･･](>)･Then, considering the nullity of each vector yields that the

matrix representation of W has the form

.7=0

W(a2) :=^b2n(ToJrbo2<72

Since W is a linearisomorphism, we have

(bj =0)

bii(b00bi2―b0ib20)Det[(bjk)j,k3.a']^0 .

F([(70lo^^VPoo, Wa{＼Qimplies

aOo(l―Gu)+g2o=O and aos(l―aii)+ a22=0 .

W([<ju (r2]1)=[F(T1> ^2]0 implies

a20(l―Cn)=0 and fl22(l―an)=0 .

These 5 equations can not coincide, thereby we have no Lie algebra isomorphism

between (f)*,[-, -.]i)and (f>*,[･, --]o).

Finally, we show that these Lie algebras are solvable. It comes from

direct computation of their derived algebras. In fact, £)2Q=Rzr, and 5)3g=0.

In particular, since ―adZlZj=
22 y=o ,

. o, we have

(-adZl)kz0―z0-＼-klz2 (fe>l).

Thus, they are not nilpotent. D

Remark. In the 3-dimensional case, we can compute Tasaki-Umehara

invariant. If /=0, then the matrix of structure constants is skew-symmetric.
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If 1^0, then X=4 and is independent of /. Thus, we have two equivalence

classes induced by multiplicative Poisson structures of the second type.
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