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ON THE THEORY OF MULTIVALENT FUNCTIONS

By

Mamoru NUNOKAWA

I would like to dedicate this paper to the late Professor Shigeo Ozaki.

1. Introduction.

Let A(p) be the class of functions of the form
@® f(2)=Z anz" (ap#0; peN={1,2,3,--})
n=p

which are regular in |z| <1
A function f(2) in A(p) is said to be p-valently starlike ift

ReZ[50>0  (lel<D.
We denote by S(p) the subclass of A(p) consisting of functions which are
p-valently starlike in [z]|<1.
Further, a function f(z) in A(p) is said to be p-valently convex iff

1+Re zjf (®) 50 (zl<D).

Also we denote by C(p) the subclass of A(p) consisting of all p-valently convex

functions in |2|<1.

2. Preliminaries.

At first, we prove the following lemma by using the method of Ozaki [10].

LEMMA 1. Let f(x)€A(p) and

@ Re 2L (z> SK  in |=l<1
=
where K is a real bounded constant, then we have
f=)=+0 in 0<|z|<1L.

PROOF. Suppose that f(z) has a zero of order n (n=1) at a point a that
satisfies 0<|a|<1. Then f(z) can be written as f(2) =(z—a)?g(z), g(a)#0 and
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it follows that

zf'(z) _ nz + zg'(2)

f(=z) z—a g2

By a brief calculation, we have

i) P ~tnfoe -0 )

=na+0

which result contradicts (2), because (2) shows that zf’(z)/f(z) has no pole in
0<|z|<1. Therefore f(z) can not have any zero in 0<|z|<1.
Applying the same method as the proof of Lemma 1, we have the following

lemma.

LEMMA 2. Let f(2)€A(p) and

1+Re~2f]7l((7z)>>K in |z|<1,

where K is a real bounded constant, then
f(2)+#0 in 0<]z]<1.

We owe this lemma to Ozaki [10] and we owe the following lemma to Ozaki
[10, 11].

LEMMA 3. Let the function f(2) defined by (1) be in the class A(p) and
f®()+#0 for £=0,1,2,-+,p on |z|=1.

Then we have

L“:lld arg dff(z)lgg |d arg di*if(2)|

12|=1

for j=0,1,2,---,p—1, or, by a modification of the above inequalities,

2| | P AART)) 2x ) 2fUD(2)
go ‘]—%—Re—-—f(j)(z) ’dﬁégo IJ+1+Re~f7(jm(z) dao

for j=0,1,2,---, p—1, where z=¢ and 0L0<2x.

LEMMA 4. Let f(2) be regular in |z|£1 and f'(2)#0 on |z|=1.
If the next relation

2z zf” (Z)
So |1+Re—f,(z) d0<22(p+1)
holds, then f(z) is at most p-valent in |z|<1.

We owe this lemma to Umezawa [15, 17].
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LEMMA 5. If F(z) and G(2) are regular in |z|<1, F(0)=G(0)=0, G(2)
maps |2| <1 onto a many-sheeted region which is starlike with respect to the
origin, and Re(F' (2)/G'(2)) >0 in |2|<1, then

Re(F(2)/G(=))>0 in |2|<1.
We owe the above lemma to Sakaguchi [12] and Libera {4, Lemma 1].
Applying the same method as the proof of [4, Lemma 27, we can prove the

following lemma.
LEMMA 6. Let f(z)eS(p). Then

F(z)= 5 FOdES(p+D

or

272 ;
Re 126 >0 in |2i<1.
PrOOF. Put D(2)=2z2F'(2)=2zf(2) and N(2)=F(z), then D(z2) is (p+1)-
valently starlike with respect to the origin, since

D' (2) _ £ (=) .
RezD(z§ _1+Rezf<z§ >1>0 in [2]|<1.

By an easy calculation, we can have

D'(2)_ zf'(z) ;
RefN—,é>v—1+Re—f<—z—)—7>O in [2]<1.

Therefore we have

N'(z)

Re D' (2)

>0  in |z|<L

Applying Lemma 5, we have

Re]l\)]g% >0 in |zl<1

or

D(z)

Re N2

->0 in [2]<1.
This shows that

Re—zg((:)) >0 in |z]<L.

This complets our proof.

LEMMA 7. If f(2)eS(p), then f(2) is p-valent in |z|<1.
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PrROOF. From the definition of S(p) and Lemma 1, we have
f(=)+0 in 0<|z|<L.

Therefore we have

2 reltf (relt)
go Re F(rei® df=2p=

for an arbitrary r, 0<r<1.
This shows that f(z) is p-valent in |2|<1 [1, p. 212].
From the definition of C(p), Lemma 2 and [1, p. 2117, we have the following

lemma.
LEMMA 8. If f()eC(p), then f(2) is p-valent in |2|<1.

REMARK 1. Let f(2)€A(p). Then we can easily confirm that f(z) is p-
valently convex if and only if zf'(2) is p-valently starlike.

LEMMA 9. Let f(2)€A(p) and suppose there exists a positive integer j for
which

. (G+D .
J+Re£€’f’iﬁ(§Tz)>o in |z|<1
where 1<j<p.
Then we have
) ) .
=14ReEEE 0 i i<t

PrROOF. For the case p=1, from [5, 14] it is clear.
Therefor we assume p=2. Put

f(j—l)(z> —op—jtl_ ...
PG p—tDay, T

glz)=
Then we have

1+Re%§)>=1+faeiﬁ§:—g§l>1q in |z<1.

From Lemma 2, we have

") = S (2) . : _
©) g'(2) ST p—iTDas #0 in 0<|z|<1.

On the other hand, if f%“-2(2) has such a zero as z=a of multiplicity /(/=1)
in 0<|2[<1, then we can choose p such that 0<|a|<p<1 and so

fD#0 on z]=p,
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because if this reasoning is impossible, then from elementary analytic function

theory (for emample [2, Theorem 8.1.3, p. 198], we have
fUv()=0 in |a]<l|z[<1,
which contradicts
f4=D(2) #constant.

Applying the principle of the argument, Lemma 3, (3) and the assumption

of Lemma 9, we have the following inequalities:

27t(P+l)<S (i-1+Re L0 f{j(_’i)((z)) )do

2] . j
=) l] 1+Re ;{Cj D(<z>) }d&

_|darg ()|

. 29D (2)
j+ReZh S 'dﬁ

2z G+
<j+Re ZJ];;)( ()z) >d0

<), ldarg dif)]
where z=pe?’ and 0<0<2x.

But this result contradicts 2pr <2r(p+1).

This shows that f9U=(2)#0 in 0<|z|<1(fYP(2) has a zero 2=0 of order
p—i+1).

Therefore we have

2pn={"(i=1+Re-EL 2 )ar

J9P (=)
(= 2fP(2)
- e ‘d&
=2pr
for an arbitrary », 0<r<1, 2z=r¢%* and 0027,
This shows
@ j—14+RePE ~g in [ol<L

7

But if there is a point 2, satisfying |2¢|<1 and

: of "7’ (20
gl
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then we can choose a point z in some neighborhood of 2, in |2[<1 such that

i—-1+Re—;—f—j(_j:)(%z))<0.

This contradicts (4). Therefore we have

. ($2) .
]—1+Re%>0 in |2<L.

3. Statement of results.

THEOREM 1. Let f(z)€A(p) and suppose

G p+Re%>0 in |z]<lL

Then f(2) is p-valent in |z|<1 and

Ck+1
k+Re—zJJf(k)—+<;§zl>o in |2l<1

Sor k=0,1,2,.--, p—1.
This shows that f(z)eC(p) and f(2)=S(p).

PrROOF. From Lemma 9 and (5), we easily have

k+Re%e%§z)—>0 in |2/<1

for £=0,1,2, .-, p—1.
This shows that f(z) is p-valent in |2|<1, f(2)eC(p) and f(2)=S(p).

THEOREM 2. Let f(z)€A(p) and
(p+1> 1 X
p+ReiJj;T)(g§i)>——2— in |zI<1.
Then f(z) is p-valent in |z|<1.

Proor. For the case p=1, this is due to Umezawa [15, 17].

If we put
_ f(p—l) _
g(ZD— P(P_1)3'2"1;0 =z-+ ’ sz)
then we have
1+Re£§,——"((;)—>>%—p in |z|<1.

From Lemma 2, we have
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P () =p(p—1)-+3-2-a5g"(2) #0 in [z]<1.
On the other hand, if f@ ¥ (z) has a zero z=a of multiplicity Z(/=1) in
0<]z|<1, then we can choose r satisfying 0<|a|<r<1 such that
J@ ()0 on |[z|=
because if this supposition is impossible, then from elementary analytic function
theory (for example [2, Theorem 8.1.3, p. 198]), we have

[ U()=0 in Jja|<|z|<1.
This contradicts
S (2) = constant in |a|<|z[<1.

Applying the principle of the argument and Lemma 3, we have the following
inequalities :

® 2e(p+D < :T(p—l—%-Re Ji{;_”n((z)) Yo

2z

IIA

(p-12
p—1+Re—;~{;7_Té§)[dﬁ

0

Il

21 @ AT8 AP (D]

|
|
|
SI _ldarg d2f(2)|
k
|
)

lIA

2%

PR g

O]
o+ L+ ]Jf;p:(”;z) 1las
oy (p+ +Re zjff((;+(l>§z))d0+x
— 22 (p+1),

where z=re!? and 0<0<2x.
But this result contradicts 27(p+1)<2x(p+1). Thus it is not possible for
F@D(2) to vanish in 0<]z|<1.
From (6) we have
2fP ()
e |
={ . 14 arg & if ()| <2x(p+1)

% i

for an arbitrary r, 0<r<1, and z=re®.
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Repeating the same method as the above, we have [P 2(2), f@3(g),. -,
f"(2), f'(z) that do not vanish in 0<|z]<1 and for an arbitrary r, 0<r<1,

® J,.,.,1dare df®)|
Y 2f"(2).
_MHRe B o <an(p ).
From Lemma 4, (8) shows that f(2) is p-valent in |z| <1.
This is a generalization of the theorem in [11, 151.

Applying the same method as the proof of Theorem 2 and Lemma 4, we

have the following theorems.
THEOREM 3. Let f(2)€EA(p) and suppose

ﬁ”]p—l—Re% d0<2z(p+1)

for an arbitary r, 0<r<1, and z=re'.
Then f(2) is p-valent in |z|<1.
This is a generalization of [10, 15, 16, 17].

THEOREM 4. Let f(2)EA(p) and
2x 2fPD(2)
[+ RGOS an < 4e

for an arbitrary r, 0<r<1, and z=re®.
Then f(z) is p-valent in |z|<1.

THEOREM 5. Let f(2)€A(p) and suppose

p) .
Re%)—%>0 in |z|<1L.
Then we have
) .
Re%(]—;%>0 in |z|<1

or
foR)eSk)
for k=1,2,3,---,p.
PrOOF. For the case p=1, the theorem is trivial, so we assume p=2.
Put

[ ()

p(p—D~3-2ap

=gt ..,

glx)=
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Then we have

Re Zgé? f{‘p(-l’l))((z)) >0 in |2}<1.

This shows that g(2) is univalently starlike in |2|<1.

An application of Lemma 6 shows that

z B £ (2)
J@ai= PGp-D35a, =P
or
Re ;{;"2,12%50 in |z|<1.
Applying the same method as the above over again, we have
R (2)eSk)
or
k
Re ;{2‘ >0 in JeI<L.

for £=1,2,3,.--,p. This completes our proof.

THEOREM 6. Let f(2)€A(p) and if there exists a positive integer g(1=<
q<p) that satisfies
23 (q
j Re Ji{; lf(z)) do<27(p+1—g)

for an arbitrary r, 0<r<1, and z=re*, then we have

Re 2/ P(x) fz{;(kf)((@) >0 in |z|<1

or
FED(R) ES(p+1-E)
fOT‘ k=1, 2, 3’ s q

PrROOF. From the principle of the argument and the assumption, we have

égzx‘Re—f%'dﬁg2ﬁ(P+l—q)

for an arbitrary r, 0<r<1, and z=re.

Therefore we must have
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(€3] .
Re;—(]:_-r%go in z|<1.
Applying the same method as the proof of Theorem 1, we can show
(€3] .
Re—;{—;j%>0 in |z[<1

or

fae@RESP+1-g).
Integrating @V (z), then from Lemma 6, we have
fePeSp+2-g).
Repeating the same method as the above, we can complete the proof of
Theorem 6.

Applying the same method as the proof of Theorem 1 and 2, we can easily
prove

THEOREM 7. Suppose f(2)€C(p). Then we have f(2)=S(p).

REMARK 2. For the case p=1, C(p) and S(p) are the subclasses of classical
univalent functions which are convex and starlike respectively, and S(1)DC(L).

It is worth noting that for p=2, then S(»p)DC(p), if f(2) is not normalized
such that f(2)= % anz®, (ap#0).

AL W. Goodﬁgn noticed Remark 2 [1, p. 212].

THEOREM 8. Let f(2)€A(p) and if there exists a (p—k+1)-valent starlike
Sunction g(z)= 3 baz" (bp-r1#0) that satisfies
=p—k+l

n

) Re—z%%—) >0 in |2l<1,

&

then f(2) is p-valent in |z| <1

ProoF. For the case p=1, it is well-known in [3]. So we assume p=>2.

If we put g(2)==2¢’(z), then from Remark 1, ¢(2) is a (p—£~i+1)-valently
convex function. From Theorem 7, ¢(z) is (p—k-1)-valently starlike in |2]<1
and from (9) we can have

Re J:k;(;)) >0 in |z/<1.

Applying Lemma 5 repeatedly, we have

Rejg((:)) >0 in |z[<1




On the theory of multivalent functions 283

where $%7(2) =g (2), $(0)=9'(0)=¢"(0) =+ =§*2(0) =0.
Then from Lemma 6, ¢(z) is a (p—1)-valently starlike function.
On the other hand, if we put G(z) =2¢(2), then we have

2G'(z) _ darg G(z) _ darg z6(2)
G do do

—14 . darg $(2)

Re

for an arbitrary r, 0<r<1, z=re* and 0<6<2n, and furthermore we have

(G- (o 22

=2pz.

It shows that G(z) is p-valently starlike in |z|<1.

Therefore we have

Re zg(i? ~Re zg((;)) >0 in |e|<1

where G(z) is a p-valently starlike function.
From [6, 18], f(2) is p-valent in |z|<1. This completes our proof.
Let f(z)eA(p) and let @ be a real number. Then f(z) is said to be p-

valently a-convex in |z|<1 iff

(10) Re[(l—a)_f?{;ﬂp_jfg_ +a(1+3f$;@)}>o

holds in |2|<1.

This is a generalization of a-convex functions [7, 8, 9].

THEOREM 9. Let f(z) defined by (1) be p-valently a-convex in |z|<1 and
let (a—1) not be a positive integer.
Then we have that f(2) is p-valent in |z|<1 and
o ( < .
Re—;.é_n((—zz))>0 n |z|<1
for £=1,2,3,---,p.

ProoF. For the case a=1, from the assumption we have

11) 1+Re%)z—>»~>0 in |z|<L
If we put
g(z) = L2 =z+-,

p(p—1)3-2-ap
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then from (11) we have

1+Re28 22) 23,((2)) >0 in |z|<1,

and so g(z)eC().
By Marx-Strohhicker’s theorem [5, 147, we have

Re fo('z()z) —Re ]‘i{; sz(z% >l in |z|<1
Then, from Theorem 5, we have
k>
Re % Jz,é 1)((2% >0 in |z|<1

for £=1,2,3,--,p
Next, we assume that @ is not a positive integer. Applying the same method
as the proof of [13, Theorem 2] (It is the same idea as the proof of Lemma 1),
we can prove that f@P(2)#0 in 0<|z|<l and f®@(2)#0 in 0<|z|<1.
Because, if f1(2) has a zero of order » (n=1) at a point 8 such that 0<|8|<
1, then fV(2) may be put
SEPR)=(=-Pg(=), g(B)#0.
Then by an easy calculation, we can have
im(z— _a) 2P 2f@(z)
lim =D {03y o1+ o0y}
=B(n—a)=0

But this is a contradiction to (10), because

—a) 2P (2) 2f P (2)
(=0 Fomny o+ o)
has no zero in |z|<1. Therefore f»~V(2) can not have any zero in 0<|z|<1.
Then from the assumption (10), f»(z) has no zero in 0<|z|<1 either.
Hence we have that f?(2)#0 in 0<|2|<1 and fP(2)#0 in 0<]|z|<1.
Therefore, if we put p(2) =2/ P (2)/f®V(2) in (10), then we can obtain

Re[p(2) — ia—%log ?2(=)1>0

for an arbitrary 7, 0<r<1 and z=re’.

Applying the same method as the proof of [7], we can have

[§7]
Re f{;ﬁff) >0 in o<l

From Theorem 5, it follows that
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Re—fz—fk(_—kf%>0 in |z|<1

for £=1,2,8, -, p.
This completes our proof.
Applying the same method as the proof of [13, Theorem 2] and Theorem 5,

we can prove

THEOREM 10. Let f(z)€A(p) and suppose

(p+1) (p) .
Re(l-l— zﬁ(z)(zgz) - ;’](;_pl)((zz)) >> —% in lz|<1.

Then we have

Re%:i_,%>0 in |2l<1

for k=1,2,3,---,p.

THEOREM 11. Let f(2)€A(p) and if f(2) satisfies the following condition
2¢ 2P (2)

{. 1+ReZLES | a0 san

for an arbitrary r, 0<r<1 and z=re", then FED(HeS(p+1-k)
for k=1,2,3,--,p—1.

PrROOF. From the principle of the argument and assumption, we have

12) 477§S§”<1+Re7aéﬁ(_ﬁ))((zz)7>d0
< S: ‘ 1+ Resz[g;‘_pl’)((zz% ‘ W<

for an arbitrary r, 0<r<1 and z=re’.
Applying the same reason as in the proof of Theorem 1 and from (12), we

can have

1+Re—%(é))—>0 in |z|<L

From the definition of the class C(p), this shows f®?(2)eC(2).

Then from Theorem 7, we have f@2(2)eS(2).
Applying Theorem 5, we have

JFED(yeS(p+1-k)

for £=1,2,3, -, p—1. This completes our proof.
The author is indebted to the referee for helpful comments and suggestions.
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