# ON THE THEORY OF MULTIVALENT FUNCTIONS 

By<br>Mamoru NunOKawa

I would like to dedicate this paper to the late Professor Shigeo Ozaki.

## 1. Introduction.

Let $A(p)$ be the class of functions of the form

$$
\begin{equation*}
f(z)=\sum_{n=p}^{\infty} a_{n} z^{n} \quad\left(a_{p} \neq 0 ; p \in N=\{1,2,3, \cdots\}\right) \tag{1}
\end{equation*}
$$

which are regular in $|z|<1$.
A function $f(z)$ in $A(p)$ is said to be p -valently starlike iff

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad(|z|<1)
$$

We denote by $S(p)$ the subclass of $A(p)$ consisting of functions which are p-valently starlike in $|z|<1$.

Further, a function $f(z)$ in $A(p)$ is said to be p-valently convex iff

$$
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad(|z|<1)
$$

Also we denote by $C(p)$ the subclass of $A(p)$ consisting of all $p$-valently convex functions in $|z|<1$.

## 2. Preliminaries.

At first, we prove the following lemma by using the method of Ozaki [10].
Lemma 1. Let $f(z) \in A(p)$ and

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>K \quad \text { in } \quad|z|<1 \tag{2}
\end{equation*}
$$

where $K$ is a real bounded constant, then we have

$$
f(z) \neq 0 \quad \text { in } \quad 0<|z|<1
$$

PROOF. Suppose that $f(z)$ has a zero of order $n(n \geqq 1)$ at a point $\alpha$ that satisfies $0<|\alpha|<1$. Then $f(z)$ can be written as $f(z)=(z-\alpha)^{n} g(z), g(\alpha) \neq 0$ and Received August 11, 1986. Revised November 11, 1986.
it follows that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{n z}{z-\alpha}+\frac{z g^{\prime}(z)}{g(z)}
$$

By a brief calculation, we have

$$
\begin{aligned}
\lim _{z \rightarrow \alpha}(z-\alpha) \frac{z f^{\prime}(z)}{f(z)} & =\lim _{z \rightarrow \alpha}\left(n z+(z-\alpha) \frac{z g^{\prime}(z)}{g(z)}\right) \\
& =n \alpha \neq 0
\end{aligned}
$$

which result contradicts (2), because (2) shows that $z f^{\prime}(z) \mid f(z)$ has no pole in $0<|z|<1$. Therefore $f(z)$ can not have any zero in $0<|z|<1$.

Applying the same method as the proof of Lemma 1, we have the following lemma.

Lemma 2. Let $f(z) \in A(p)$ and

$$
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>K \quad \text { in } \quad|z|<1
$$

where $K$ is a real bounded constant, then

$$
f^{\prime}(z) \neq 0 \quad \text { in } \quad 0<|z|<1 .
$$

We owe this lemma to Ozaki [10] and we owe the following lemma to Ozaki [10, 11].

Lemma 3. Let the function $f(z)$ defined by (1) be in the class $A(p)$ and $f^{(k)}(z) \neq 0$ for $k=0,1,2, \cdots, p$ on $|z|=1$.

Then we have

$$
\int_{|z|=1}\left|d \arg d^{j} f(z)\right| \leqq \int_{|z|=1}\left|d \arg d^{j+1} f(z)\right|
$$

for $j=0,1,2, \cdots, p-1$, or, by a modification of the above inequalities,

$$
\int_{0}^{2 \pi}\left|j+\operatorname{Re}-\frac{\left.z f^{(j+1)} z\right)}{f^{(j)}(z)}\right| d \theta \leqq \int_{0}^{2 \pi}\left|j+1+\operatorname{Re} \frac{z f^{(j+2)}(z)}{f^{(j+1)}(z)}\right| d \theta
$$

for $j=0,1,2, \cdots, p-1$, where $z=e^{i \theta}$ and $0 \leqq \theta \leqq 2 \pi$.
Lemma 4. Let $f(z)$ be regular in $|z| \leqq 1$ and $f^{\prime}(z) \neq 0$ on $|z|=1$.
If the next relation

$$
\int_{0}^{2 \pi}\left|1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta<2 \pi(p+1)
$$

holds, then $f(z)$ is at most $p$-valent in $|z| \leqq 1$.
We owe this lemma to Umezawa [15, 17].

Lemma 5. If $F(z)$ and $G(z)$ are regular in $|z|<1, F(0)=G(0)=0, G(z)$ maps $|z|<1$ onto a many-sheeted region which is starlike with respect to the origin, and $\operatorname{Re}\left(F^{\prime}(z) / G^{\prime}(z)\right)>0$ in $|z|<1$, then

$$
\operatorname{Re}(F(z) / G(z))>0 \quad \text { in } \quad|z|<1
$$

We owe the above lemma to Sakaguchi [12] and Libera [4, Lemma 1].
Applying the same method as the proof of [4, Lemma 2], we can prove the following lemma.

Lemma 6. Let $f(z) \in S(p)$. Then

$$
F(z)=\int_{0}^{z} f(t) d t \in S(p+1)
$$

or

$$
\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0 \quad \text { in }|z|<1 .
$$

Proof. Put $D(z)=z F^{\prime}(z)=z f(z)$ and $N(z)=F(z)$, then $D(z)$ is $(\mathrm{p}+1)$ valently starlike with respect to the origin, since

$$
\operatorname{Re} \frac{z D^{\prime}(z)}{D(z)}=1+\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>1>0 \quad \text { in } \quad|z|<1
$$

By an easy calculation, we can have

$$
\operatorname{Re} \frac{D^{\prime}(z)}{N^{\prime}(z)}=1+\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } \quad|z|<1
$$

Therefore we have

$$
\operatorname{Re} \frac{N^{\prime}(z)}{D^{\prime}(z)}>0 \quad \text { in } \quad|z|<1
$$

Applying Lemma 5, we have

$$
\operatorname{Re} \frac{N(z)}{D(z)}>0 \quad \text { in } \quad|z|<1
$$

or

$$
\operatorname{Re} \frac{D(z)}{N(z)}>0 \quad \text { in } \quad|z|<1
$$

This shows that

$$
\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}>0 \quad \text { in } \quad|z|<1
$$

This complets our proof.
Lemma 7. If $f(z) \in S(p)$, then $f(z)$ is $p$-valent in $|z|<1$.

Proof. From the definition of $S(p)$ and Lemma 1, we have

$$
f(z) \neq 0 \quad \text { in } \quad 0<|z|<1 .
$$

Therefore we have

$$
\int_{0}^{2 \pi} \operatorname{Re} \frac{r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)} d \theta=2 p \pi
$$

for an arbitrary $r, 0<r<1$.
This shows that $f(z)$ is p -valent in $|z|<1$ [1, p. 212].
From the definition of $C(p)$, Lemma 2 and [1, p. 211], we have the following lemma.

Lemma 8. If $f(z) \in C(p)$, then $f(z)$ is $p$-valent in $|z|<1$.
Remark 1. Let $f(z) \in A(p)$. Then we can easily confirm that $f(z)$ is $p$ valently convex if and only if $z f^{\prime}(z)$ is p-valently starlike.

Lemma 9. Let $f(z) \in A(p)$ and suppose there exists a positive integer $j$ for which

$$
j+\operatorname{Re} \frac{z f^{(j+1)}(z)}{f^{(j)}(z)}>0 \quad \text { in } \quad|z|<1
$$

where $1 \leqq j \leqq p$.
Then we have

$$
j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

Proof. For the case $p=1$, from [5,14] it is clear.
Therefor we assume $p \geqq 2$. Put

$$
g(z)=\frac{f^{(j-1)}(z)}{p(p-1) \cdots(p-j+2) a_{p}}=z^{p-j+1}+\cdots .
$$

Then we have

$$
1+\operatorname{Re} \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=1+\operatorname{Re} \frac{z f^{(j+1)}(z)}{f^{(j)}(z)}>1-j \quad \text { in } \quad|z|<1
$$

From Lemma 2, we have

$$
\begin{equation*}
g^{\prime}(z)=\frac{f^{(j)}(z)}{p(p-1) \cdots(p-j+2) a_{p}} \neq 0 \quad \text { in } \quad 0<|z|<1 \tag{3}
\end{equation*}
$$

On the other hand, if $f^{(j-1)}(z)$ has such a zero as $z=\alpha$ of multiplicity $l(l \geqq 1)$ in $0<|z|<1$, then we can choose $\rho$ such that $0<|\alpha|<\rho<1$ and so

$$
f^{(j-1)}(z) \neq 0 \quad \text { on } \quad|z|=\rho,
$$

because if this reasoning is impossible, then from elementary analytic function theory (for emample [2, Theorem 8.1.3, p. 198], we have

$$
f^{(j-1)}(z) \equiv 0 \quad \text { in } \quad|\alpha|<|z|<1
$$

which contradicts

$$
f^{(j-1)}(z) \not \equiv \text { constant. }
$$

Applying the principle of the argument, Lemma 3, (3) and the assumption of Lemma 9, we have the following inequalities:

$$
\begin{aligned}
2 \pi(p+l) & \leqq \int_{0}^{2 \pi}\left(j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right) d \theta \\
& \leqq \int_{0}^{2 \pi}\left|j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right| d \theta \\
& =\int_{|z|=r}\left|d \arg d^{j-1} f(z)\right| \\
& \leqq \int_{|z|=r}\left|d \arg d^{j} f(z)\right| \\
& =\int_{0}^{2 \pi}\left|j+\operatorname{Re} \frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right| d \theta \\
& =\int_{0}^{2 \pi}\left(j+\operatorname{Re} \frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right) d \theta \\
& =2 p \pi
\end{aligned}
$$

where $z=\rho e^{i \theta}$ and $0 \leqq \theta \leqq 2 \pi$.
But this result contradicts $2 p \pi<2 \pi(p+l)$.
This shows that $f^{(j-1)}(z) \neq 0$ in $0<|z|<1\left(f^{(j-1)}(z)\right.$ has a zero $z=0$ of order $p-j+1$ ).

Therefore we have

$$
\begin{aligned}
2 p \pi & =\int_{0}^{2 \pi}\left(j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right) d \theta \\
& =\int_{0}^{2 \pi}\left|j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}\right| d \theta \\
& =2 p \pi
\end{aligned}
$$

for an arbitrary $r, 0<r<1, z=r e^{i \theta}$ and $0 \leqq \theta \leqq 2 \pi$.
This shows

$$
\begin{equation*}
j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)} \geqq 0 \quad \text { in } \quad|z|<1 . \tag{4}
\end{equation*}
$$

But if there is a point $z_{0}$ satisfying $\left|z_{0}\right|<1$ and

$$
j-1+\operatorname{Re} \frac{z_{0} f^{(j)}\left(z_{0}\right)}{f^{(j-1)}\left(z_{0}\right)}=0,
$$

then we can choose a point $z$ in some neighborhood of $z_{0}$ in $|z|<1$ such that

$$
j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}<0
$$

This contradicts (4). Therefore we have

$$
j-1+\operatorname{Re} \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}>0 \quad \text { in } \quad|z|<1 .
$$

## 3. Statement of results.

Theorem 1. Let $f(z) \in A(p)$ and suppose

$$
\begin{equation*}
p+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}>0 \quad \text { in } \quad|z|<1 . \tag{5}
\end{equation*}
$$

Then $f(z)$ is $p$-valent in $|z|<1$ and

$$
k+\operatorname{Re} \frac{z f^{(k+1)}(z)}{f^{(k)}(z)}>0 \quad \text { in } \quad|z|<1
$$

for $k=0,1,2, \cdots, p-1$.
This shows that $f(z) \in C(p)$ and $f(z) \in S(p)$.
Proof. From Lemma 9 and (5), we easily have

$$
k+\operatorname{Re} \frac{z f^{(k+1)}(z)}{f^{(k)}(z)}>0 \quad \text { in } \quad|z|<1
$$

for $k=0,1,2, \cdots, p-1$.
This shows that $f(z)$ is p -valent in $|z|<1, f(z) \in C(p)$ and $f(z) \in S(p)$.
Theorem 2. Let $f(z) \in A(p)$ and

$$
p+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}>-\frac{1}{2} \quad \text { in } \quad|z|<1 .
$$

Then $f(z)$ is $p$-valent in $|z|<1$.
Proof. For the case $p=1$, this is due to Umezawa [15, 17].
If we put

$$
g(z)=\frac{f^{(p-1)}}{p(p-1) \cdots 3 \cdot 2 \cdot a_{p}}=z+\cdots, \quad p \geqq 2,
$$

then we have

$$
1+\operatorname{Re} \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}>\frac{1}{2}-p \quad \text { in } \quad|z|<1
$$

From Lemma 2, we have

$$
f^{(p)}(z)=p(p-1) \cdots 3 \cdot 2 \cdot a_{p} g^{\prime}(z) \neq 0 \quad \text { in } \quad|z|<1 .
$$

On the other hand, if $f^{(p-1)}(z)$ has a zero $z=\alpha$ of multiplicity $l(l \geqq 1)$ in $0<|z|<1$, then we can choose $r$ satisfying $0<|\alpha|<r<1$ such that

$$
f^{(p-1)}(z) \neq 0 \quad \text { on } \quad|z|=r,
$$

because if this supposition is impossible, then from elementary analytic function theory (for example [2, Theorem 8.1.3, p. 198]), we have

$$
f^{(p-1)}(z) \equiv 0 \quad \text { in } \quad|\alpha|<|z|<1
$$

This contradicts

$$
f^{(p-1)}(z) \not \equiv \text { constant } \quad \text { in } \quad|\alpha|<|z|<1 .
$$

Applying the principle of the argument and Lemma 3, we have the following inequalities:

$$
\begin{align*}
2 \pi(p+l) & \leqq \int_{0}^{2 \pi}\left(p-1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right) d \theta  \tag{6}\\
& \leqq \int_{0}^{2 \pi}\left|p-1+\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-1)}(z)}\right| d \theta \\
& =\int_{|z|=r}\left|d \arg d^{p-1} f(z)\right| \\
& \leqq \int_{|z|=r}\left|d \arg d^{p} f(z)\right| \\
& =\int_{0}^{2 \pi}\left|p+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right| d \theta \\
& =\int_{0}^{2 \pi}\left|p+\frac{1}{2}+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}-\frac{1}{2}\right| d \theta \\
& <\int_{0}^{2 \pi}\left|p+\frac{1}{2}+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right| d \theta+\pi \\
& =\int_{0}^{2 \pi}\left(p+\frac{1}{2}+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right) d \theta+\pi \\
& =2 \pi(p+1),
\end{align*}
$$

where $z=r e^{i \theta}$ and $0 \leqq \theta \leqq 2 \pi$.
But this result contradicts $2 \pi(p+1) \leqq 2 \pi(p+l)$. Thus it is not possible for $f^{(p-1)}(z)$ to vanish in $0<|z|<1$.

From (6) we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|p-1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right| d \theta  \tag{7}\\
& \quad=\int_{|z|=r}\left|d \arg d^{p-1} f(z)\right|<2 \pi(p+1)
\end{align*}
$$

for an arbitrary $r, 0<r<1$, and $z=r e^{i \theta}$.

Repeating the same method as the above, we have $f^{(p-2)}(z), f^{(p-3)}(z), \cdots$, $f^{\prime \prime}(z), f^{\prime}(z)$ that do not vanish in $0<|z|<1$ and for an arbitrary $r, 0<r<1$,

$$
\begin{align*}
& \int_{|z|=r}|d \arg d f(z)|  \tag{8}\\
& \quad=\int_{0}^{2 \pi}\left|1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta<2 \pi(p+1)
\end{align*}
$$

From Lemma 4, (8) shows that $f(z)$ is p-valent in $|z|<1$.
This is a generalization of the theorem in [11, 15].
Applying the same method as the proof of Theorem 2 and Lemma 4, we have the following theorems.

THEOREM 3. Let $f(z) \in A(p)$ and suppose

$$
\int_{0}^{2 \pi}\left|p+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right| d \theta<2 \pi(p+1)
$$

for an arbitary $r, 0<r<1$, and $z=r e^{i \theta}$.
Then $f(z)$ is $p$-valent in $|z|<1$.
This is a generalization of $[10,15,16,17]$.
THEOREM 4. Let $f(z) \in A(p)$ and

$$
\int_{0}^{2 \pi}\left|1+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right| d \theta<4 \pi
$$

for an arbitrary $r, 0<r<1$, and $z=r e^{i \theta}$.
Then $f(z)$ is p-valent in $|z|<1$.
THEOREM 5. Let $f(z) \in A(p)$ and suppose

$$
\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

Then we have

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

or

$$
f^{(p-k)}(z) \in S(k)
$$

for $k=1,2,3, \cdots, p$.
PROOF. For the case $p=1$, the theorem is trivial, so we assume $p \geqq 2$.
Put

$$
g(z)=\frac{f^{(p-1)}(z)}{p(p-1) \cdots 3 \cdot 2 \cdot a_{p}}=z+\cdots
$$

Then we have

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}=\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>0 \quad \text { in }|z|<1
$$

This shows that $g(z)$ is univalently starlike in $|z|<1$.
An application of Lemma 6 shows that

$$
\int_{0}^{z} g(t) d t=\frac{f^{(p-2)}(z)}{p(p-1) \cdots 3 \cdot 2 \cdot a_{p}} \in S(2)
$$

or

$$
\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } \quad|z|<1 .
$$

Applying the same method as the above over again, we have

$$
f^{(p-k)}(z) \in S(k)
$$

or

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1 .
$$

for $k=1,2,3, \cdots, \mathrm{p}$. This completes our proof.
Theorem 6. Let $f(z) \in A(p)$ and if there exists a positive integer $q(1 \leqq$ $q \leqq p$ ) that satisfies

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)}\right| d \theta \leqq 2 \pi(p+1-q)
$$

for an arbitrary $r, 0<r<1$, and $z=r e^{i \theta}$, then we have

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

or

$$
f^{(k-1)}(z) \in S(p+1-k)
$$

for $k=1,2,3, \cdots, \mathrm{q}$.
Proof. From the principle of the argument and the assumption, we have

$$
\begin{aligned}
& 2 \pi(p+1-q) \leqq \int_{0}^{2 \pi} \operatorname{Re} \frac{z f^{(q)}(z)}{f^{(p-1)}(z)} d \theta \\
& \quad \leqq \int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)}\right| d \theta \leqq 2 \pi(p+1-q)
\end{aligned}
$$

for an arbitrary $r, 0<r<1$, and $z=r e^{i \theta}$.
Therefore we must have

$$
\operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)} \geqq 0 \quad \text { in } \quad|z|<1
$$

Applying the same method as the proof of Theorem 1, we can show

$$
\operatorname{Re} \frac{z f^{(q)}(z)}{f^{(q-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

or

$$
f^{(q-1)}(z) \in S(p+1-q) .
$$

Integrating $f^{(q-1)}(z)$, then from Lemma 6, we have

$$
f^{(p-2)}(z) \in S(p+2-q)
$$

Repeating the same method as the above, we can complete the proof of Theorem 6.

Applying the same method as the proof of Theorem 1 and 2, we can easily prove

Theorem 7. Suppose $f(z) \in C(p)$. Then we have $f(z) \in S(p)$.
Remark 2. For the case $p=1, C(p)$ and $S(p)$ are the subclasses of classical univalent functions which are convex and starlike respectively, and $S(1) \supset C(1)$.

It is worth noting that for $p \geqq 2$, then $S(p) \perp C(p)$, if $f(z)$ is not normalized such that $f(z)=\sum_{n=p}^{\infty} a_{n} z^{n}, \quad\left(a_{p} \neq 0\right)$.
A. W. Goodman noticed Remark 2 [1, p. 212].

Theorem 8. Let $f(z) \in A(p)$ and if there exists a $(p-k+1)$-valent starlike function $g(z)=\sum_{n=p-k+1}^{\infty} b_{n} z^{n},\left(b_{p-k+1} \neq 0\right)$ that satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{(k)}(z)}{g(z)}>0 \quad \text { in } \quad|z|<1 \tag{9}
\end{equation*}
$$

then $f(z)$ is $p$-valent in $|z|<1$.
Proof. For the case $p=1$, it is well-known in [3]. So we assume $p \geqq 2$.
If we put $g(z)=z \varphi^{\prime}(z)$, then from Remark $1, \varphi(z)$ is a $(p-k+1)$-valently convex function. From Theorem 7, $\varphi(z)$ is $(p-k+1)$-valently starlike in $|z|<1$ and from (9) we can have

$$
\operatorname{Re} \frac{f^{(k)}(z)}{\varphi^{\prime}(z)}>0 \quad \text { in } \quad|z|<1
$$

Applying Lemma 5 repeatedly, we have

$$
\operatorname{Re} \frac{f^{\prime}(z)}{\phi(z)}>0 \quad \text { in } \quad|z|<1
$$

where $\phi^{(k-2)}(z)=\varphi(z), \phi(0)=\phi^{\prime}(0)=\phi^{\prime \prime}(0)=\cdots=\phi^{(k-2)}(0)=0$.
Then from Lemma $6, \phi(z)$ is a $(p-1)$-valently starlike function.
On the other hand, if we put $G(z)=z \phi(z)$, then we have

$$
\begin{aligned}
\operatorname{Re} \frac{z G^{\prime}(z)}{G(z)} & =\frac{d \arg G(z)}{d \theta}=\frac{d \arg z \phi(z)}{d \theta} \\
& =1+\frac{d \arg \phi(z)}{d \theta}>1
\end{aligned}
$$

for an arbitrary $r, 0<r<1, z=r e^{i \theta}$ and $0 \leqq \theta \leqq 2 \pi$, and furthermore we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \operatorname{Re} \frac{z G^{\prime}(z)}{G(z)} d \theta & =\int_{0}^{2 \pi}\left(1+\frac{d \arg \phi(z)}{d \theta}\right) d \theta \\
& =2 p \pi
\end{aligned}
$$

It shows that $G(z)$ is $p$-valently starlike in $|z|<1$.
Therefore we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{\phi(z)}=\operatorname{Re} \frac{z f^{\prime}(z)}{G(z)}>0 \quad \text { in } \quad|z|<1
$$

where $G(z)$ is a $p$-valently starlike function.
From [6, 18], $f(z)$ is $p$-valent in $|z|<1$. This completes our proof.
Let $f(z) \in A(p)$ and let $\alpha$ be a real number. Then $f(z)$ is said to be $p$ valently $\alpha$-convex in $|z|<1$ iff

$$
\begin{equation*}
\operatorname{Re}\left[(1-\alpha) \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}+\alpha\left(1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right)\right]>0 \tag{10}
\end{equation*}
$$

holds in $|z|<1$.
This is a generalization of $\alpha$-convex functions [7, 8, 9].
THEOREM 9. Let $f(z)$ defined by (1) be p-valently $\alpha$-convex in $|z|<1$ and let $(\alpha-1)$ not be a positive integer.

Then we have that $f(z)$ is $p$-valent in $|z|<1$ and

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in }|z|<1
$$

for $k=1,2,3, \cdots, p$.
PROOF. For the case $\alpha=1$, from the assumption we have

$$
\begin{equation*}
1+\operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)}>0 \quad \text { in } \quad|z|<1 \tag{11}
\end{equation*}
$$

If we put

$$
g(z)=\frac{f^{(p-1)}(z)}{p(p-1) \cdots 3 \cdot 2 \cdot a_{p}}=z+\cdots
$$

then from (11) we have

$$
1+\operatorname{Re} \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}>0 \quad \text { in } \quad|z|<1
$$

and so $g(z) \in C(1)$.
By Marx-Strohhäcker's theorem [5, 14], we have

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}=\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>\frac{1}{2}>0 \quad \text { in } \quad|z|<1
$$

Then, from Theorem 5, we have

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

for $k=1,2,3, \cdots, p$.
Next, we assume that $\alpha$ is not a positive integer. Applying the same method as the proof of [13, Theorem 2] (It is the same idea as the proof of Lemma 1), we can prove that $f^{(p-1)}(z) \neq 0$ in $0<|z|<1$ and $f^{(p)}(z) \neq 0$ in $0<|z|<1$. Because, if $f^{(p-1)}(z)$ has a zero of order $n(n \geqq 1)$ at a point $\beta$ such that $0<|\beta|<$ 1 , then $f^{(p-1)}(z)$ may be put

$$
f^{(p-1)}(z)=(z-\beta)^{n} g(z), \quad g(\beta) \neq 0
$$

Then by an easy calculation, we can have

$$
\begin{gathered}
\lim _{z \rightarrow \beta}(z-\beta)\left\{(1-\alpha) \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}+\alpha\left(1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right)\right\} \\
=\beta(n-\alpha) \neq 0
\end{gathered}
$$

But this is a contradiction to (10), because

$$
(1-\alpha) \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}+\alpha\left(1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right)
$$

has no zero in $|z|<1$. Therefore $f^{(p-1)}(z)$ can not have any zero in $0<|z|<1$. Then from the assumption (10), $f^{(p)}(z)$ has no zero in $0<|z|<1$ either.

Hence we have that $f^{(p-1)}(z) \neq 0$ in $0<|z|<1$ and $f^{(p)}(z) \neq 0$ in $0<|z|<1$. Therefore, if we put $p(z)=z f^{(p)}(z) / f^{(p-1)}(z)$ in (10), then we can obtain

$$
\operatorname{Re}\left[p(z)-i \alpha \frac{\partial}{\partial \theta} \log p(z)\right]>0
$$

for an arbitrary $r, 0<r<1$ and $z=r e^{i \theta}$.
Applying the same method as the proof of [7], we can have

$$
\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

From Theorem 5, it follows that

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

for $k=1,2,3, \cdots, p$.
This completes our proof.
Applying the same method as the proof of [13, Theorem 2] and Theorem 5, we can prove

THEOREM 10. Let $f(z) \in A(p)$ and suppose

$$
\operatorname{Re}\left(1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}-\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right)>-\frac{1}{2} \quad \text { in } \quad|z|<1
$$

Then we have

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

for $k=1,2,3, \cdots, p$.
THEOREM 11. Let $f(z) \in A(p)$ and if $f(z)$ satisfies the following condition

$$
\int_{0}^{2 \pi}\left|1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right| d \theta \leqq 4 \pi
$$

for an arbitrary $r, 0<r<1$ and $z=r e^{i \theta}$, then $f^{(k-1)}(z) \in S(p+1-k)$ for $k=1,2,3, \cdots, p-1$.

Proof. From the principle of the argument and assumption, we have

$$
\begin{align*}
4 \pi & \leqq \int_{0}^{2 \pi}\left(1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right) d \theta  \tag{12}\\
& \leqq \int_{0}^{2 \pi}\left|1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right| d \theta \leqq 4 \pi
\end{align*}
$$

for an arbitrary $r, 0<r<1$ and $z=r e^{i \theta}$.
Applying the same reason as in the proof of Theorem 1 and from (12), we can have

$$
1+\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>0 \quad \text { in } \quad|z|<1
$$

From the definition of the class $C(p)$, this shows $f^{(p-2)}(z) \in C(2)$.
Then from Theorem 7, we have $f^{(p-2)}(z) \in S(2)$.
Applying Theorem 5, we have

$$
f^{(k-1)}(z) \in S(p+1-k)
$$

for $k=1,2,3, \cdots, \mathrm{p}-1$. This completes our proof.
The author is indebted to the referee for helpful comments and suggestions.

Acknowledgement. I would like to thank Prof. W. M. Causey for much help during the preparation of this paper at the University of Mississippi.

## References

[1] Goodman, A. W., On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223.
[2] Hill, E., Analytic Function Theory, Vol. 1, Chelsea, New York, 1959.
[3] Kaplan, W., Close-to-convex schlicht functions, Michigan Math J. 1 (1952), 169-185.
[4] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
[5] Marx, A., Untersuchungen über schlichte Funktionen, Math. Ann. 107 (1932), 4067.
[6] Livingston, A. E., p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161-179.
[7] Miller, S. S., Mocanu, P. and Reade, M. O., All $\alpha$-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
[8] Mocanu, P. and Reade, M. O., On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
[9] -, The order of starlikeness of certain univalent functions, Notices Amer. Math. Soc. 18 (1971), 815.
[10] Ozaki, S., On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1941), 45-87.
[11] - On the theory of multivalent functions in a multiply connected domain, Sci. Rep. Tokyo Bunrika Daigaku A. 4 (1944), 115-135.
[12] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan. 11 (1959), 72-75.
[13] Sakaguchi, K. and Fukui, S., On alpha-starlike functions and related functions, Bull. Nara Univ. Education. 28 (1979), 5-12.
[14] Strohhäcker, E., Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.
[15] Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan. 4 (1952), 194-202.
[16] -, Star-like theorems and convex-like theorems in an annulus, J. Math. Soc. Japan. 6 (1954), 68-75.
[17] -, On the theory of univalent functions, Tôhoku Math. J. 7 (1955), 212-228.
[18] ——, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.

Department of Mathematics Gunma University Aramaki, Maebashi, 371<br>Japan

