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ON REPRESENTATION-FINITE ALGEBRAS WHOSE

AUSLANDER-REITEN QUIVER CONTAINS

A STABLE COMPLETE SLICE

By

Jerzy Nehring and Andrzej Skowronski

0. Introduction

Tilting modules and associated tilted algebras, introduced by Brenner and

Butler in [7] and generalized by Happel and Ringel [12, 13] has been shown in

[1, 8, 12, 13, 14, 16, 18, 19] to be of interest in representation theory. Recall [12]

that a module TA over a finite-dimensional algebra A is called a tiltingmodule

provided it satisfiesthe following three properties:

(1) proj &＼mA(TA)Kl

(2) ExUTA, Ta) = 0

(3) There is an exact sequence 0―>AA―>T'A―>TA'―>0 with T, T" being

direct sums of summands of T.

An algebra B is called a tiltedalgebra if there is an hereditary algebra A and a

tilting module TA such that B=End(TA). Tilted algebras together with recently

developed covering techniques provide a rather general setting for dealing with

arbitrary representation-finitealgebras, that is, algebras with finitelymany non-

isomorphic finitelygenerated indecomposable modules. Happel and Ringel showed

in [12] (see also [6, 15]) that representation-finitetiltedalgebra have the following

nice characterizationin the term of the associated Auslander-Reiten quiver: A

connected representation-finitealgebra B is a tilted algebra if and only if the

Auslander-Reiten quiver of B contains a complete slice,that is, a set S of inde-

composable modules with the following properties

(i) Given any indecomposable module X, S contains precisely one module

from the orbit {zrX;r$Z} of X, where r=DTr and r~l= TrD and v~l= TrD are

the Auslander-Reiten operators [3].

(ii) If Xo―>Xi―>X2―. .. ―>Xr is a chain of non-zero maps and inde^

composable modules, and Xo, Xr belong to S, then all Xt belong to S.

(iii) There is no oriented cycle of irreducible maps Uo―>UX-―>･. .. ―£/,

>TL wifh nil rL in .C
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Recently two interesting classes of representation-finitealgebras, PHI algebras

considered by Simson-Skowronski [18, 19] and trivialextension algebras investigated

by Hughes-Waschbtisch [16] (see also [14]), have been completely classified by

invariants involving only tiltedalgebras. In general the Auslander-Reiten quiver

of such algebras contains no complete slice but the Auslander-Reiten quiver

modulo protective-injectiveshas a complete slice of a Dynkin class.

In this paper we shall give a rather simple description of all algebras having

this property. We use many ideas and extend results from [12, 16, 19].

We use the term algebra to mean finite-dimensionalalgebra over a fixed com-

mutative fieldK and the term module to mean a finitelygenerated right module.

Algebras, as is usual in representation theory, are assumed to be basic and con-

nected. For any algebra A and an A-module M we shall denote by EA{M) the

^4-injective
envelope of M, by PA(M) the yl-projectivecover of M, by top^(M) the

top of M, by socA(M) the socle of M, by rad(M) the radical of M. For any inde-

composable projective-injectiveA-module Q, define GA(socA(Q))= to^A(Q)- Further,

we will denote by mod A the category of (finite dimensional) A-modules and by

ind A the full subcategory of mod A formed by the chosen representatives of the

isomorphism classes of indecomposable modules. We will frequently ignore the

distinctionbetween the isomorphism class of a module and the module itself. Left

modules will usually be regarded as right modules over the opposite algebra. We

shall denote by D: mod A―mod Aop the usual duality Homx(-, K). We will

use freely the properties of irreducible maps, almost split sequences, almost split

morphisms, and the Auslander-Reiten operators z ―DTr and rx ―TrD. For any

algebra A, we will denote by FA the Auslander-Reiten quiver of A [10]. For

definitionsand further details we refer to [2, 3, 4, 5, 10]. Finally, for the defini-

tion of valued quivers and of the Cartan class of a valued quiver we refer to [11,

17].

1. Main result

In this section we formulate the main result of the paper. Let A be a con-

nected basic algebra over a field K and let S be a connected component of Fa.

Then a subquiver S of (£is said to be path-complete if, whenever M and N are

vertices of S and there is a path M―. ..―>L―. .. ―>N in c, L is a vertex

of S- We say that a full subquiver S of ^ is a stable complete sliceof (5 if the

following conditions are satisfies:

(1) ,5 is path-complete.

(2) There is no oriented cycles Xo―>Xi―. . .―>Xr―>XQ with all Xt in

S.
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S has no projective-injectlvemodules.

Given any non-projective-injectivemodule X in 6, S contains precisely

one module from the orbit {rrX;r^Z} of X.

It is easy to see that S is a stable complete slicein (£if and only if S is a

complete slice of the full subquiver <?(£of & obtained by suppressing the vertices

corresponding to projective-injectiveindecomposable modules.

A complete slice S of (£is of Dynkin class A provided S, considered as a

nonoriented graph, is a Dynkin graph A. It follows from [9] that if A is a con-

nected representation-finitehereditary algebra, then the vertices of FA correspond-

ing to the indecomposable projective ^-modules form in F A a complete slice of

Dynkin class. If A is a hereditary representation-finitealgebra, and TA a tilting

module, then the Cartan class of the tiltedalgebra B― End(7＼i)is defined to be

that of A (see [16]).

For any algebra A, we will denote by F(A), the set of isomorphism classes

of simple ^.-modules.

A system C of Dynkin class A is defined to be C=(B, n, m, F*, F'*),where B

is a tilted algebra of Dynkin class A, n and m are nonnegative integers, and F*,

F* are chains

F*:F{B) = FoZ)F1iD...z>Fn

F^:F(Bop)=F0ZiF1^...z>Fm

of nonempty subsets of F(B) and F(B°P).

Then the algebra <R(C),for a given system C=(B, n, m, F*, F*), is defined to

be <R(C)= R(―m), where the sequence of algebras

B=R(0), RQ), ･■■, R(n), R(-l), ■■-, R(-m)

iq nhtairiprla≪follows･

where 7(1)= c£*(S),

S£F,

£(l)-i?(0)-bimodule.

R(l)4Eilh/(1))

£1(l)= EndB(/(l)), and 1(1) has the canonical structure of

Let ?>1 and write <jRci->=Oi;similarly as in [19] one shows

that the set F(R(i)) of i?(?)-simpleshas a natural identificationwith the union of

F(R(i―l)) and a new set of simples Fi={<w-i-･-ffi(S) ;SeFi}. Then R(i + 1), for

z= l, ･･･, n ―1, is the triangular matrix algebra

≪*≫-
(EV: r)

■■(Ji(S))and E(i+l) = End≪

ibra

^-"-l 0 , £(-l)j

where 7(i+ l)= c Fjt^(at-･ -oi(S))and E(i +1) = EndR^(1(1 + 1)). Further, R(-l) is

thp trianp-iiiarmatrix algebra



136 Jerzy Nehring and Andrzei Skowronski

where/(-1)=R£'≪(w)op(S) and £(-!) = End≪<,,<≫(/(-I)). Finally,for -m<i^-2,

R(i) is the triangular matrix algebra

R(i) =
/R(i + 1), l(i}＼

＼ 0 , E(i)J

where I(i)= R ERiin->op("u, ･･･ ff-i(S))and E0')= Endfi(^o<>?>(/(*)).
S£Fi

We can now formulate the main result of this paper.

Theorem. Let A be a connected finite-dimensional basic algebra. Then A is

representation-finiteand f＼ contains a stable complete slice of a Dynkin class if

and only if A is isomorphic to an algebra 3i{C) for some system C of a Dynkin

class.

2. Proof of the theorem

First we shall show that for any system C=(B, n, m, F*, F'*)of a Dynkin

class, the algebra £R(C)is representation-finiteand /"'skocontains a stable complete

slice of a Dynkin class. We will apply results from [16].

Let C~(B, n, m, F*, F*) be a system of a Dynkin class A and consider the

doubly infinitematrix alsebra without identity

B=

Bn-X Mn-t

Bn Mn

Bn+l Mw+1

in which matrices are assumed to have only finitely many entries different from

zero, Bn=B and Mn=BD(B)B for all integers n, all remaining entries are zero, and

the multiplication is induced from the canonical maps BRBD(B)―>D(B), D(B)RBB

―≫D(B), and zero maps D(B)<g)BD(B)―(). Hughes and Waschbiisch proved in

[16] that mod B has almost split sequences, the stable Auslander-Reiten quiver

sPb is isomorphic to ZA and that for any indecomposable projective
jB-module

P,

Homs(F, X)^0 only for a finite number of nonisomorphic indecomposable jB-modules

X. It is not hard to see that all algebras R(0)=B, R(l), ■■-,R(n), R(-l), ･ ･･, R{-m)

occuring in the definition of 31{C) are full finite subcategories of B. Then from

[2, §3], the algebras R(i) are representation-finite and consequently <R(C) = R(―iri)

is so. Now it suffices to prove that Psi.cc-)contains a stable complete slice of a

Dynkin class. By assumption PB contains a complete slice 3i- We shall prove

that the modules from 3i being no projective-injective £R(C)-modules form a stable

complete slice in Pg>rc>. First observe that the set 3ir of all modules from 3i
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being no projective-injective5-modules form a stable complete slicein FB- Let Xbe

the set of all (isomorphism classesof)indecomposable projectivei?(≪)-modulesQsX

such that tov(Q)eF(R(ri))＼F(B). From [20] we know that all modules from Xare

alsoinjective i?(w)-modules. Choose a module Qi from X such that rad(Q0 is not

successor in FB of any module rad(Q') for Q'eX. Note that rad(Q0 is a i5-module.

Consequently, rad(Qi) is an injective ^-module isomorphic to Horn ≪(≪)(.£?,QJ and

the algebras T^End^^CRc^) and

＼0, B )

where C1 = EndB(rad(Q1)), are isomorphic. Algebra 7＼is representation-finiteas a

full subcategory of B. Moreover, just as in [16, 3.5, 3.6], we see that 31' is a

stable complete slicein FTl provided rad(Q0 is not projective i?-module. On the

other hand, if rad(Q0 is projective-injective(as 5-module), then rad(Qi) belongs to

31 and 31' U {rad(Q0} forms a stable complete slice in FTl. Moreover, since all

modules from X are projective-injectivei?(w)-modules, if Y=radR(ri)(Q), for QcX,

is a projective-injective7＼-module, then Y is a projective-injective5-module and

so belongs to 3i- Then we can repeat this procedure taking Tx instead of B.

Consequently, after a finite number of steps, we obtain R{n) and the modules Z

from 31 being no projective-injectivei?(w)-rnodulesform a stable complete slicein

Frw. Then the corresponding R(n)op-mod[iles D{Z) form a stable complete slice

in rBm°p. Considering iR(C)OJ)-modules Q whose tops belong to F'(3i{C))＼F'(R(ri)),

and applying above arguments, we conclude that the modules D(Z), where Z ranges

over all modules Z from M being no projective-injective£R(C)-modules, form a

stable complete slice in F^g^p. Consequently, F^cy contains a stable complete

slice S being a connected subgraph of the complete slice 3i of FB- Since 31 is

of Dynkin class,S is so and we are done.

At the end of this paper we shall give an example showing that the graphs

31 and
<5
can be different.

Now let A be a representation-finitealgebra and let Fa contains a stable

complete slice 3i ―{Mu ･･･, Mt] of Dynkin class A. We shall show that A is

isomorphic to an algebra <R(C) for some system C=(B, n, m, F*, F*) of Dynkin

class A.

We start with the following lemma.

Lemma 1. Under the above assumption, FA has no oriented cycle

Proof. Assume that FA has an oriented cycle

Ji.o *-A-i *■･ ･ ･ >JCr *-s(.o
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Since F A has a stable complete slice,one of the modules Xo, Xu ■･ -Xr is projec-

tive-injective. Indeed, in the opposite case, similarly as in [12, Prop. 8.1] one

proves that there is an oriented cycle Yo―>YX―> >YS―>Y0 with all

modules Yj from 31, but thisis a contradiction to the stable slice condition (2).

Denote by 53 the fullsubcategory of ind A formed by all non-projective-injective

modules. From the stable slice condition (4),for each module X of R, there is

exactly one module Mi from 3d and one integer z such that X―rz(Mi), and put

z = z(X). Suppose that there is an irreducible map X=rZiX＼Mi)―>Y=zHX＼Mj,

between two objects X and Y from <£>.Then z{X) = z{Y) and there is an irredu-

cible map Mi―>Mj or z(X) = z(Y) + l and there is an irreducible map Mj―>Mi

Indeed, if z(X) = z(Y) then obviously there is an irreducible map Mi―>Mj. IJ

2(X)<0 and z(Y)^Q, then there is a chain ofirreducible maps Mi―-* ･
■ yrZCX)(Mi

―>rz^＼Mj)― >Mj and by the stable slice condition (4), z(X) = z(Y) = 0

Consider the case z(X)>z(Y)>0. Then there is an irreducible map
TZ(X'>~Z(-ri(Mi

―>Mj, hence a chain of irreducible maps Mj―r*c*)-2ra°-1(Mi)―>
>Mt and

by the stable slice condition (4), z(X) = z(Y) + l. Similarly,if z(Y)>z(X)>0, then

is a chain of irreducible maps Mt―^W)Ja＼j―* >Mj and z(Y)-z(X)>(l

contrary to the stable slice conditions (1) and (4). Analogically one proves tha

z(X)=z(Y) + l if z(X)i=z(Y), z(X)<0, z(Y)<0. Finally,if z(X)>0, z(Y)^O, thei

z(X) = l, z(Y) = 0; and z(X) = 0, z(Y)=-l in case z(X)>0 and z(Y)<0.

Consequently one of the modules in the cycle Xo―>XX ･･･―>Xr―>X0 i

projective-injective.Without loss of generality we can assume that thisis Xu I

Xi is projective-injective,then Xi-i = rad(J£i),Xi+i―Xi/soc(Xi), Xi-i = T(Xi+i),am

z(Xi-i)= z(Xn.1)+ l. Thus, from the above remarks, z(Xo)>z(X2)> ■■･>z(X0) and w

get a contradiction. Therefore FA has no oriented cycles and the lemma is provec

Denote by ^A (resp. 2ta) the set of projective (resp. injective) modules in in

A and by IA the sum $aU3^. Let us denote by v. IA―>SA and v~l:SA―>%

two partial functions defined as follows: For each Xe2A, v(X) is defined iffXe%

and then v(X) = E(top (X)); v~＼X)is denned iff Xe^, and then v~l(X)=P(soc(X)

Then the set ＼v＼X);zzZ, v＼X) is defined} is said to be the y-orbit of XgIa.

Let us denote by S = {SU ■■,Sr} the set of all composition factors of module

Mu ･■･,Mt, and by B the algebra End^i^CS,)c ■･･ RPA(Sr)). As in [16, Lemma

3.2, 3.3] one proves that any v-orbitin IA contains exactly one module from th

set {PA(Si),■･■,PA(Sr)} and that the set 31 considered as a set of 5-modules is

complete slice of FB of Dynkin class A. In particular,B is a tiltedalgebra
(

Dynkin class A. Moreover, any v-orbitin IA is the y-orbitof some module PA(Sj

.7= 1,･･･,r, and we can define the function s: IA―>Z such that, for Xe2A, s(Ji

= i iff X=vi{PA{Si)) for some ; = 1, -･･,r. Thus, for Xe2A, s(X)<0 implies Xe93
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and s(X)>0 implies Xe3A.

Let AA ―Qi c ･･･ 0 Qm be some decomposition as a directsum of indecompos-

able projective ^-modules, n=ma.x{s(X); XgSa], m=―min{s(X); Xe2A}, and we

let Ap, ―m</><≪, be the direct sum of all modules Qk such that s(Qk)=p. Then
n q

AA― 0 Ap and put for ―m^p^q^n, Ep,q= EndA(@ Ak). We will write simply
P=-m fc=p

Ep instead of Ep,p, Bp, 0</><w, instead of E0,p, and Bq, ―m<<7<―1, instead of

Eq,n. Obviously the algebras B and Eo are isomorphic.

In our proof an important role is played by the following lemma.

Lemma 2. In the above notation, ＼＼ovaA{Ap,Aq) = Q for p>q and q>p+l.

Proof. Suppose that RomA(Ap, Aq)^0 for some p>q. Then there are two

indecomposable summands X of Ap and Y of Aq with YiomA{X, F)=£0. First as-

sume p>0, <7<0. In this case X is projective-injective,there is a sequence of

non-zero maps c Mt―>vx-p{X)―> >X― Y―> >v~%Y)―>R Mu im-

plying the corresponding sequence of irreducible maps, and we get a contradiction

to the stable slice condition (3). If p=0 and /: X―->F is a non-zero map, then

since v(X) is iniective. there is a commutative diagram

X > ＼m(/) ―^ Y

top(X)
ri

where a, /3are canonical epimorphisms, y, a canonical monomorphisms, and ob-

viously g^O. Similarly, there is a non-zero map h: v{X)―>v(Y). But s(v(Y))=

tg + l<0, v(Y) is projective-injective,there is a sequence of irreducible maps cMj

i=l
t

―y >v(X)― >v(Y)―> >■cMi, and we get a contradiction to the

stable sliceconditions (1) and (3). If 0>p>q, then as above we conclude that

RomA(v-p(X), v~p(Y))^0, but thisis impossible since s(≫-p(X))=0 and s(v-p(Y))=

q―p<0. Finally,in the case p>q>0, similarly, as in [19, Lemma p. 60],we prove

that Honu(y-%X), v~q(Y))^0. Since, s(v-q(X))=p-q>0, s(v-＼Y))= O, from the first

part of our proof, it is impossible. Consequently, RomA(Ap, Aq) = R for p>q.

Now assume that HonuCX, F)^0 for p<q ―l and indecomposable direct sum-

mands X of Ap and Y of Aq. If />>0, as in [19, Lemma p. 60], Hom^^-'CF), X)

^0, and since s(v~x(Y))~q-~l>p we get a contradiction to the fact that

HoiruCAg-i, Ap)=0. If p<0, v(X) is projective-injective,and, as in the first part

of the proof, we conclude that Hom4(F, v(X))^0. This is a contradiction since
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s(v(X))=p+Kq=s(Y) and RomA(Aq, Ap+l)= 0. Therefore, liomA(Ap, Aq)= Q for

p+l<q and the lemma is proved.

In our proof we shallneed the followingfact.

Lemma 3. For p<0, HomA(Ap, A) is a projective-injediveAop-module.

Proof. Let X be an indecomposable direct summand of ＼LomA(Ap, A). Then

D(X) s E(D(topAop(X)))s E(topA{ Y)) = v(Y) for Y= UomAop(X, A). Since Y is a direct

summand of Av, and s(v(F))=/>+l<0, v(Y) is a projective-injective^4-module.

Hence X=D(v{Y)) is a projective-injectiveAop-raodule and we are done.

Now we shall define a system C=(B, n, m, F*, F*) where B=EndA(A0), n ―

mzx{s(X); X$ZA}, m= ―min{s(X); X<=ZA}. The canonical action of B on top.4(A0)

(resp. topAop(llomA(A0, A))) enabling us to identify the set F{B) (resp. F{Bop)) with

the set F0(resp. Ff0)of simple yl-module (resp.
^4op-module)

components of topA(A0)

(resp. of to top^°p(HonuC40, A))). Then Ft consists of the simple components of

of soc^Ai) (a summand of F0 = top(A0))',for l<i<w., Fi,x consists of the vSimples

S in Fo such that aA(S) is a component of soc,i(A;+i).Similarly, F[ consists of

the simple components of soc,4<≫p(Hoitu(.A-i,A)) (a summand of F'o);for l</<m,

FJ+, consists of the simples S in Fo such that o{oP(S) is a component of

socAoK^omA(A-j-i, A)).

From Lemma 2 it follows that /l= End4(Ai) is isomorphic to the matrix algebra

0 En-i

0

0

E

0

0

0

0

0

-iM-2 0

0

0 E.M

where i+iMi is the En-i-Ei-bimodule HornuCAi, Ai+i). First we shall prove that

the algebras Bi and R(i),i―Q,･■･,≪,are isomorphic. We shall proceed by indu-

ction, using [19, Proposition 2] and Lemma 2. For i=Q, Bo = R(0) by definition.

Assume that for some i>0 there is an isomorphism //-:Bi―>R(i). Observe that

there is a canonical isomorphism of algebras
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/EUi, irlMi＼

＼ 0 , B, I

141

Then A+i = Horru(c Ak, Ai＼i)is an injectivei^-module and i+1Mi= Hom(R Ak,

Am) is an injective i?j-module as the greatest I?rsubmodule of Am. Similarly as

in [19, Proposition 2] we conclude that the algebras Eivl and EndBi(i+iMj) are iso-

morphic. By definitionof Am and /(z'+ l) it is not hard to see that I(i+ 1) =

H(mMi) where H: mod B%―mod R(i)is the functor induced by h. Hence Bi^x~

R(i+1) and consequently Bn=R(ri). Further, using Lemma 3 and repeating the

above arguments for Aop-modules, we get isomorphisms of algebras Bj and R(j),

j――1,･･･, ―m. Then A ―B-m^R(―m) ―M(C) and this completes the proof of

the theorem.

We end the paper with an example illustratingpreviously considered questions.

Let B be the tiltedalgebra of Dynkin class Dt given by the bounden quiver

algebra (see [101) KQ/L where

Q

/U2
T J^

and / is generated by the composed arrows ay and j3y. Consider the system C ―

(B, 1, 1, F*, F*) where Ft consists of one simple /^-module given by the vertex 4

and F[ consists of one simple Z?op-module given by the vertex 3. Then it is easy

to see that <R(C)is the bounden quiver algebra KQ''II' where

Q> 4

a

>4
r

and /' is generated by ay, fiy,ya and fa-jy/3

shows that Fauci is of the form

ss

/
Pi

xsx x

Then a straightforwardcalculation

PzlPz

X
rad (/>,)―-≫p,―+Pa/S,.

^Ss
―^ P4-^S, ― Pt.―>S4-

Si P./P,

where Pi=P(Si) and S$ denotes the simple module given by the vertex i. Here,

P3, Pi and P4, are projective-injectiveand the modules Si, S2 and P3/S3, form a

stable complete sliceof class A3, so different from the Dynkin class of B. On the

other hand, <R(C)is isomorphic to the algebra <R(C) where C is the system (B, 2,

1, F*, F'*) and B is the path algebra of 1<―3―>2, Fi ―F2 (resp. F[) consists

of the simple 5-module (resp. 5op-module) given by the vertex 3.
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