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AUSLANDER-REITEN QUIVER CONTAINS
A STABLE COMPLETE SLICE

By
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0. Introduction

Tilting modules and associated tilted algebras, introduced by Brenner and
Butler in [7] and generalized by Happel and Ringel [12, 13] has been shown in
[1, 8, 12, 13, 14, 16, 18, 19] to be of interest in representation theory. Recall [12]
that a module 74 over a finite-dimensional algebra A is called a tilting module
provided it satisfies the following three properties:

(1) proj dima(TW)<1

(2) Exty(Ta4, T4=0

(3) There is an exact sequence 0—s A,—— T,

direct sums of summands of 7.
An algebra B is called a tilted algebra if there is an hereditary algebra A and a
tilting module T4 such that B=End(T,). Tilted algebras together with recently
developed covering techniques provide a rather general setting for dealing with
arbitrary representation-finite algebras, that is, algebras with finitely many non-
isomorphic finitely generated indecomposable modules. Happel and Ringel showed
in [12] (see also [6, 15]) that representation-finite tilted algebra have the following
nice characterization in the term of the associated Auslander-Reiten quiver: A
connected representation-finite algebra B is a tilted algebra if and only if the
Auslander-Reiten quiver of B contains a complete slice, that is, a set § of inde-
composable modules with the following properties

(i) Given any indecomposable module X, § contains precisely one module
from the orbit {"X;reZ} of X, where r=D7Tr and r~'=T¥D and t~'=TrD are
the Auslander-Reiten operators [3].

»T{—0 with 7, 7" being

(ii) If Xo—>X,—X,—> ... —>X, is a chain of non-zero maps and inde-
composable modules, and X,, X, belong to , then all X; belong to .

(i) There is no oriented cycle of irreducible maps U,—>U,~—> . .. — U,
— U, with all U; in S.
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Recently two interesting classes of representation-finite algebras, PHI algebras
considered by Simson-Skowronski [18, 19] and trivial extension algebras investigated
by Hughes-Waschbiisch [16] (see also [14]), have been completely classified by
invariants involving only tilted algebras. In general the Auslander-Reiten quiver
of such algebras contains no complete slice but the Auslander-Reiten quiver
modulo projective-injectives has a complete slice of a Dynkin class.

In this paper we shall give a rather simple description of all algebras having
this property. We use many ideas and extend results from [12, 16, 19].

We use the term algebra to mean finite-dimensional algebra over a fixed com-
mutative field K and the term module to mean a finitely generated right module.
Algebras, as is usual in representation theory, are assumed to be basic and con-
nected. For any algebra A and an A-module M we shall denote by E4(M) the
A-injective envelope of M, by P4M) the A-projective cover of M, by topa(M) the
top of M, by socs(M) the socle of M, by rad(M) the radical of M. For any inde-
composable projective-injective A-module @, define g4(soc4(@))=tops(®). Further,
we will denote by mod A the category of (finite dimensional) A-modules and by
ind A the full subcategory of mod A formed by the chosen representatives of the
isomorphism classes of indecomposable modules. We will frequently ignore the
distinction between the isomorphism class of a module and the module itself. Left
modules will usually be regarded as right modules over the opposite algebra. We
shall denote by D: mod A——>mod A°" the usual duality Homg(-, K). We will
use freely the properties of irreducible maps, almost split sequences, almost split
morphisms, and the Auslander-Reiten operators t=DT¥ and '=T7rD. For any
algebra A, we will denote by I'4 the Auslander-Reiten quiver of A [10]. For
definitions and further details we refer to [2, 3, 4, 5, 10]. Finally, for the defini-
tion of valued quivers and of the Cartan class of a valued quiver we refer to [11,
171

1. Main result

In this section we formulate the main result of the paper. Let A be a con-
nected basic algebra over a field K and let € be a connected component of /4.
Then a subquiver $ of § is said to be path-complete if, whenever M and N are
vertices of S and there isa path M—— ... —L— ... —>N in €, L is a vertex
of §&. We say that a full subquiver S of & is a stable complete slice of € if the
following conditions are satisfies:

(1) & is path-complete.

(2) There is no oriented cycles X,—X,— ... —X,— X, with all X; in
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(3) S has no projective-injective modules.

(4) Given any non-projective-injective module X in €, $ contains precisely
one module from the orbit {"X;7eZ} of X

It is easy to see that S is a stable complete slice in € if and only if S is a
complete slice of the full subquiver & of € obtained by suppressing the vertices
corresponding to projective-injective indecomposable modules.

A complete slice S of € is of Dynkin class 4 provided S, considered as a
nonoriented graph, is a Dynkin graph 4. It follows from [9] that if A is a con-
nected representation-finite hereditary algebra, then the vertices of I", correspond-
ing to the indecomposable projective A-modules form in /"4 a complete slice of
Dynkin class. If A is a hereditary representation-finite algebra, and T4 a tilting
module, then the Cartan class of the tilted algebra B=End(7,) is defined to be
that of A (see [16]).

For any algebra A, we will denote by F(A), the set of isomorphism classes
of simple A-modules.

A system C of Dywkin class 4 is defined to be C=(B, n, m, Fy, F}), where B
is a tilted algebra of Dynkin class 4, #» and m are nonnegative integers, and Fy,
F are chains

Fy:F(B=F,DFD>...DF,
Fy:F(B®)=F,D>F>...OF,
of nonempty subsets of F(B) and F(B°P).

Then the algebra R(C), for a given system C=(B, n, m, Fy, F}), is defined to
be R(C)=R(—m), where the sequence of algebras

B=R(0), RQ1), -+, Rn), R(-=1), -+, R(—m)
is obtained as follows:
E@), I
R(D:( 0, R<0>>
where I(1)=S@1EB(S), E(1)=Ends(I(1)), and I(1) has the canonical structure of
E(1)— R(0)—bimodule. Let i>1 and write oruy=0;; similarly as in [19] one shows
that the set F(R(?) of R(i)-simples has a natural identification with the union of
F(R(i—1)) and a new set of simples Fi={ow0i_,*+-0.(S);SeF;}. Then R@GE+1), for

i=1, -+, n—1, is the triangular matrix algebra
. EG+1), 1G+1)
RGi+1)=
S Ry

where I(i+1)=s(29 Fray(oi---0:(S)) and E(i+1)=Endru([(i+1)). Further, R(—1) is
€F;+1
the triangular matrix algebra

Ri—T)= <R<n>, 1<—1>)

0, E(—-1)
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where I(’I)ZSQ,ER("’W (S) and E(—1)=Endgmy? (I(—1)). Finally, for —m<i<g—2,
R(i) is the trianéular matrix algebra

- (RG+D), 1)
K@) *< 0, E(z'))
where I()= P Erai1yo? (0541 -+ 64(S)) and E@)=Endpq.ner (I1(0)).
SGF;

We can now formulate the main result of this paper.

THEOREM. Let A be a connected finite-dimensional basic algebra. Then A is
representation-finite and "4 contains a stable complete slice of a Dynkin class if
and only if A is isomorphic to an algebra R(C) for some system C of a Dynkin
class.

2. Proof of the theorem

First we shall show that for any system C=(B, n, m, Fy, F.) of a Dynkin
class, the algebra R(C) is representation-finite and /'g, contains a stable complete
slice of a Dynkin class. We will apply results from [16].

Let C=(B, n, m, Fy, F%) be a system of a Dynkin class 4 and consider the
doubly infinite matrix algebra without identity

U Bues Mo,
B. M,
Bﬂ+l /an—‘l

O
Il

in which matrices are assumed to have only finitely many entries different from
zero, B,=Band M,=gD(B)g for all integers #, all remaining entries are zero, and
the multiplication is induced from the canonical maps BRzD(B)—D(B), D(B)RzB
—D(B), and zero maps D(B)QsD(B)—>0. Hughes and Waschbiisch proved in
[16] that mod B has almost split sequences, the stable Auslander-Reiten quiver
sl'g is isomorphic to Z4 and that for any indecomposable projective B-module P,
Hompg(F, X)+0 only for a finite number of nonisomorphic indecomposable B-modules
X. It is not hard to see that all algebras R(0)=25, R(1), ---, R(n), R(-1), - - -, R(—m)
occuring in the definition of ®R(C) are full finite subcategories of B. Then from
[2, §3], the algebras R(i) are representation-finite and consequently R(C)=R(—m)
is so. Now it suffices to prove that ['g., contains a stable complete slice of a
Dynkin class. By assumption I’z contains a complete slice %. We shall prove
that the modules from % being no projective-injective R(C)-modules form a stable
complete slice in I'ge,. First observe that the set i’ of all modules from ¥
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being no projective-injective B-modules form a stable complete slice in /"5, Let X be
the set of all (isomorphism classes of) indecomposable projective R(n)-modules Qe X
such that top(@)e FIRn))NF(B). From [20] we know that all modules from X are
also injective R(n)-modules. Choose a module @, from X such that rad(Q,) is not
successor in 'z of any module rad(Q’) for @’¢X. Note that rad(@,) is a B-module.
Consequently, rad(Q,) is an injective B-module isomorphic to Homzw, (B, @) and
the algebras T\=Endgu,(BPHQ:) and

Ci,, rad(0y)
(o, ")
where C,=Ends(rad(@Q,)), are isomorphic. Algebra 7', is representation-finite as a
full subcategory of B. Moreover, just as in [16, 3.5, 3.6], we see that M’ is a
stable complete slice in /'y, provided rad(®,) is not projective B-module. On the
other hand, if rad(@,) is projective-injective (as B-module), then rad(@,) belongs to
M and M’ U{rad(@,)} forms a stable complete slice in /'y, Moreover, since all
modules from X are projective-injective R(z)-modules, if ¥Y=radR#x)Q), for QeX,
is a projective-injective 7,-module, then Y is a projective-injective B-module and
so belongs to M. Then we can repeat this procedure taking 7 instead of B.
Consequently, after a finite number of steps, we obtain R(#) and the modules Z
from 9 being no projective-injective R(n)-modules form a stable complete slice in
I'rey. Then the corresponding R(»)°P-modules D(Z) form a stable complete slice
in I"gayor. Considering R(C)°P-modules € whose tops belong to F/(R(C))\F'(R(x)),
and applying above arguments, we conclude that the modules D(Z), where Z ranges
over all modules Z from M being no projective-injective R(C)-modules, form a
stable complete slice in I'g,». Consequently, ['g«, contains a stable complete
slice § being a connected subgraph of the complete slice ¥ of ['z. Since W is
of Dynkin class, § is so and we are done.

At the end of this paper we shall give an example showing that the graphs
M and S can be different.

Now let A be a representation-finite algebra and let "4 contains a stable
complete slice . M={M,, ---, My} of Dynkin class 4. We shall show that A is
isomorphic to an algebra R(C) for some system C=(B, #n, m, Fy, Fi) of Dynkin
class 4.

We start with the following lemma.

LeMMA 1. Under the above assumption, I'4 has no oriented cycle.

Proor. Assume that "4 has an oriented cycle

Xo—Xi— ... —X,—X,.
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Since 7", has a stable complete slice, one of the modules Xo, X, -+ X, is projec-
tive-injective. Indeed, in the opposite case, similarly as in [12, Prop. 8.1] one
proves that there is an oriented cycle Y,—» Y— i ¥V, —Y, with all
modules Y, from %, but this is a contradiction to the stable slice condition (2).
Denote by © the full subcategory of ind A formed by all non-projective-injective
modules. From the stable slice condition (4), for each module X of ®, there is
exactly one module M; from . and one integer z such that X=¢(M,), and put
z=2z(X). Suppose that there is an irreducible map X=70"OM)— Y=:"D (M)
between two objects X and Y from ®. Then 2(X)=2(Y) and there is an irredu-
cible map M;—— M, or 2(X)=2(Y)+1 and there is an irreducible map M;— M,.
Indeed, if 2(X)=2(Y) then obviously there is an irreducible map M;—M,;. If
2(X)<0 and 2(Y)>0, then there is a chain of irreducible maps M;— - - - ——* @O ()
— P (M;)—>- .- —>M; and by the stable slice condition 4), 2(X)=2(Y)=0.
Consider the case 2(X)>2z(Y)>0. Then there is an irreducible map FP-FIO(M])
—>Mj, hence a chain of irreducible maps M;——* OO (M ... S}, and,
by the stable slice condition 4), 2(X)=2(Y)+1. Similarly, if 2(Y)>2(X)>0, there
isa chain of irreducible maps M;—— =DM — ... 5 M, and 2Y)—z2(X)>0,
contrary to the stable slice conditions (1) and (4). Analogically one proves that
2(X)=2(Y)+1 if 2(X)#2(Y), 2(X)<0, 2(Y)<0. Finally, if 2(X)>0, 2(Y)<0, then
2(X)=1, 2(Y)=0; and 2(X)=0, 2(Y)=—1 in case 2(X)>0 and 2(Y)<0.

Consequently one of the modules in the cycle X X;— - —> X, — X, is
projective-injective. Without loss of generality we can assume that this is X,. If
X; is projective-injective, then Xiev=rad(Xy), Xiri=X,/s0c(X5), Xi1=7(X;,,), and
#(Xi-1)=2(Xi:1)+1. Thus, from the above remarks, 2 X)) >2(Xp)= - - - > 2(X,) and we
get a contradiction. Therefore I"4 has no oriented cycles and the lemma is proved.

Denote by P4 (resp. 34) the set of projective (resp. injective) modules in ind
A and by 3, the sum P,US4. Let us denote by v: ¥y~—Y, and vt T——3,
two partial functions defined as follows: For each XeX,, v(X) is defined iff Xe$,,
and then v(X)=FE(top (X)); »~Y(X) is defined iff XeJ,, and then »~'(X)=P(soc(X)).
Then the set {\*(X); zeZ, v(X) is defined} is said to be the v-orbit of XeX,.

Let us denote by S$={S,, ---, S,} the set of all composition factors of modules
M, -, M;, and by B the algebra End (Pa(S)@ - - - @BP4S,). As in [16, Lemmas
3.2, 3.3] one proves that any v-orbit in X4 contains exactly one module from the
set {Pa(S)), - -+, Pa(Sy)} and that the set .9 considered as a set of B-modules is a
complete slice of I"'p of Dynkin class 4. In particular, B is a tilted algebra of
Dynkin class 4. Moreover, any v-orbit in X, is the v-orbit of some module P4(S;),
j=1,---,7, and we can define the function s: 34—Z such that, for XeJ,, s(X)
=i iff X=1¥(P4(S;)) for some j=1,---,7. Thus, for Xedy, s(X)<0 implies Xe$P.,,
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and s(X)>0 implies XeS,.

Let Ay=@Q: @ -+ @ Qn be some decomposition as a direct sum of indecompos-
able projective A-modules, #=max{s(X); XeX.), m= —min{s(X); XeY,}, and we
let Ay, —m<p<n, be the direct sum of all modules @, such that s(Qx)=p. Then
AA:pg%)mAp and put for —m<p<g<n, Ep,qundAgczép Ar). We will write simply
E, instead of E,, B, 0<p<mn, instead of E,. ,, and B, —m<qg< -1, instead of
Eq.n. Obviously the algebras B and E, are isomorphic.

In our proof an important role is played by the following lemma.

LEMMA 2. In the above notation, Hom4(A4p, Ay)=0 for p>q and q>p+1.

Proor. Suppose that Homa(A,, A)=#0 for some p>g. Then there are two
indecomposable summands X of A, and Y of A4, with Hom4(X, Y)=+0. First as-
sume p>0, ¢<0. In this case X is projective-injective, there is a sequence of
non-zero maps éL) Mi—' 2 X)—> - —— X V.. -_w“’(Y)—{Gt-) M;, im-
plying the corre;gf)onding sequence of irreducible maps, and we get a co;latlradiction
to the stable slice condition (3). If p=0 and f: X—>Y is a non-zero map, then
since »(X) is injective, there is a commutative diagram

where «, § are canonical epimorphisms, 7, ¢ canonical monomorphisms, and ob-

viously ¢+0. Similarly, there is a non-zero map %: v(X)—u(Y). But su(¥))=
t

g+1<0, »«(Y) is projective-injective, there is a sequence of irreducible maps @D M;

—r U X)) — (V) — - - Hé) M;, and we get a contradiction to the
stable slice conditions (1) and (3). If 0>Z}>q, then as above we conclude that
Homu(»#(X), v=?(¥Y))#0, but this is impossible since s(»-?(X))=0 and sG-?(¥))=
g—p<0. Finally, in the case p>¢>0, similarly, as in [19, Lemma p. 60], we prove
that Homa(v=%X), v-%Y))#0. Since, s@-UX))=p—¢>0, s¢-%Y¥))=0, from the first
part of our proof, it is impossible. Consequently, Homa(A,, Ay)=0 for p>g.
Now assume that Hom,(X, Y)+#0 for p<g-—1 and indecomposable direct sum-
mands X of A, and Y of A, If p>0, as in [19, Lemma p. 60], Hom,(~%(Y), X)
¢O., and since s((Y))=¢g-—-1>p we get a contradiction to the fact that
Homu(A,-y, Ap)=0. If p<0, »(X) is projective-injective, and, as in the first part
of the proof, we conclude that Homa(Y, v(X))#0. This is a contradiction since
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sX))=p+1<g=s(Y) and Hom4(A4, A,.1)=0. Therefore, Hom,(4, A,)=0 for
p+1<q and the lemma is proved.
In our proof we shall need the following fact.

LeMMA 3. For p<0, Hom4(A,, A) is a projective-injective A°P-module.
Proor. Let X be an indecomposable direct summand of Homu(A,, 4). Then

D(X)= E(D(top 4op(X)) = E(top4(¥Y)=u(Y) for Y=Hom (X, A). Since Y is a direct
summand of A, and s(Y)=p+1<0, «(Y) is a projective-injective A-module.
Hence X=D((Y)) is a projective-injective A°”-module and we are done.

Now we shall define a system C=(B, n, m, Fy, Fy) where B=End.(A,), #=
max{s(X); Xe¥,}, m=—min{s(X); XeX,}. The canonical action of B on tops(4,)
(resp. topaor(Hom 4(A,, A))) enabling us to identify the set F(B) (resp. F(B’)) with
the set Fy(resp. F}) of simple A-module (resp. A°”-module) components of topa(Ao)
(resp. of to topser(Homs(As, A))). Then F, consists of the simple components of
of soc4(A,) (a summand of F,=top(A,)); for 1<i<n, F;., consists of the simples
S in F, such that ¢4(S) is a component of soc,(A;.;). Similarly, /] consists of
the simple components of socer(Hom4(A_,, A)) (a summand of F); for 1<j<m,
F}., consists of the simples S in F; such that ¢%er(S) is a component of
socgor(Hom(A-;-., A)).

From Lemma 2 it follows that A=FEnd4(A,) is isomorphic to the matrix algebra

En aMnpy 0
0 Eﬂ—l Bl n-2 0
0
£, M, 0
0 E, oM, 0
0 E, _ M, 0
0 -
0
E—m+l —m-HM-—m
0 En

where ;. M; is the E;.-Ei-bimodule Hom(A: Aisy).
the algebras B; and R(®), i=0, ---,n, are isomorphic.

First we shall prove that
We shall proceed by indu-

ction, using [19, Proposition 2] and Lemma 2. For i=0, B,=R(0) by definition.
Assume that for some i>0 there is an isomorphism /: B;—-R(i). Observe that

there is a canonical isomorphism of algebras
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Ei-}—l) i»lMi
Bi4-15< )
0, B

Then Amgﬂom,,@Ak, A;.1) is an injective Bi,-module and ;. M;= Hom(o As,
Aqyy) is an injective B;-module as the greatest Bi-submodule of A, Smnlarly as
in [19, Proposition 2] we conclude that the algebras E;., and Endp,(;.,M;) are iso-
morphic. By definition of A, and I(G+1) it is not hard to see that IG+1)=
H(;.,M;) where H: mod B;—mod R(:) is the functor induced by 4 Hence B;.,=
R@+1) and consequently B,=R(n). Further, using Lemma 3 and repeating the
above arguments for A°”-modules, we get isomorphisms of algebras B; and R(j),
j==1,--, —m. Then A=B ,=R(-m)=R(C) and this completes the proof of
the theorem.

We end the paper with an example illustrating previously considered questions.

Let B be the tilted algebra of Dynkin class D, given by the bounden quiver
algebra (see [10]) KQ/I, where

B2
3 \
a>1
and / is generated by the composed arrows ay and §y. Consider the system C=
(B, 1, 1, Fy, F}) where F, consists of one simple B-module given by the vertex 4

and F| consists of one simple B°’-module given by the vertex 3. Then it is easy
to see that R(C) is the bounden quiver algebra KQ’/I’ where

Q: 4~—Z—~>

T / \‘A 3r
\1

and I’ is generated by ay, f7, yo and &a-p8. Then a straightforward calculation
shows that I"g, is of the form

Q" 24T,

P] Sz P3/P2\
/ \ e N
Ssr > rad (Pa)_)P37P3/83'\ ﬂSs B P4 _554 __"P4»““e’54'
/
“p, S, Py/P,

where P;=P(S;) and S; denotes the simple module given by the vertex i. Here,
P;, P, and P, are projective-injective and the modules S,, S; and P;/S,; form a
stable complete slice of class A,, so different from the Dynkin class of B On the
other hand, R(C) is isomorphic to the algebra R(C) where C is the system (B, 2,
1, Fy, F) and B is the path algebra of 1<—3—>2, F,=F, (resp. F!) consists
of the simple B-module (resp. B°-module) given by the vertex 3.
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