ON REPRESENTATION-FINITE ALGEBRAS WHOSE AUSLANDER-REITEN QUIVER CONTAINS
 A STABLE COMPLETE SLICE

By

Jerzy Nehring and Andrzej Skowroński

0. Introduction

Tilting modules and associated tilted algebras, introduced by Brenner and Butler in [7] and generalized by Happel and Ringel [12, 13] has been shown in $[1,8,12,13,14,16,18,19]$ to be of interest in representation theory. Recall [12] that a module T_{A} over a finite-dimensional algebra A is called a tilting module provided it satisfies the following three properties:
(1) $\operatorname{proj} \operatorname{dim}_{A}\left(T_{A}\right) \leqslant 1$
(2) $\operatorname{Ext}_{\boldsymbol{A}}^{1}\left(T_{A}, T_{A}\right)=0$
(3) There is an exact sequence $0 \longrightarrow A_{A} \longrightarrow T_{A}^{\prime \prime} \longrightarrow T_{A}^{\prime \prime} \longrightarrow 0$ with $T^{\prime}, T^{\prime \prime}$ being direct sums of summands of T.
An algebra B is called a tilted algebra if there is an hereditary algebra A and a tilting module T_{A} such that $B=\operatorname{End}\left(T_{A}\right)$. Tilted algebras together with recently developed covering techniques provide a rather general setting for dealing with arbitrary representation-finite algebras, that is, algebras with finitely many nonisomorphic finitely generated indecomposable modules. Happel and Ringel showed in [12] (see also [6, 15]) that representation-finite tilted algebra have the following nice characterization in the term of the associated Auslander-Reiten quiver: A connected representation-finite algebra B is a tilted algebra if and only if the Auslander-Reiten quiver of B contains a complete slice, that is, a set \mathcal{S} of indecomposable modules with the following properties
(i) Given any indecomposable module X, S contains precisely one module from the orbit $\left\{\tau^{r} X ; r \in Z\right\}$ of X, where $\tau=D \operatorname{Tr}$ and $\tau^{-1}=\operatorname{Tr} D$ and $\tau^{-1}=\operatorname{Tr} D$ are the Auslander-Reiten operators [3].
(ii) If $X_{0} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow \ldots \longrightarrow X_{r}$ is a chain of non-zero maps and indecomposable modules, and X_{0}, X_{r} belong to \mathcal{S}, then all X_{i} belong to \mathcal{S}.
(iii) There is no oriented cycle of irreducible maps $U_{0} \longrightarrow U_{1} \longrightarrow \ldots \longrightarrow U_{r}$ $\longrightarrow U_{0}$ with all U_{i} in \mathcal{S}.

[^0]Recently two interesting classes of representation-finite algebras, PHI algebras considered by Simson-Skowroński [18, 19] and trivial extension algebras investigated by Hughes-Waschbüsch [16] (see also [14]), have been completely classified by invariants involving only tilted algebras. In general the Auslander-Reiten quiver of such algebras contains no complete slice but the Auslander-Reiten quiver modulo projective-injectives has a complete slice of a Dynkin class.

In this paper we shall give a rather simple description of all algebras having this property. We use many ideas and extend results from [12, 16, 19].

We use the term algebra to mean finite-dimensional algebra over a fixed commutative field K and the term module to mean a finitely generated right module. Algebras, as is usual in representation theory, are assumed to be basic and connected. For any algebra A and an A-module M we shall denote by $E_{A}(M)$ the A-injective envelope of M, by $P_{A}(M)$ the A-projective cover of M, by $\operatorname{top}_{A}(M)$ the top of M, by $\operatorname{soc}_{A}(M)$ the socle of M, by $\operatorname{rad}(M)$ the radical of M. For any indecomposable projective-injective A-module Q, define $\sigma_{A}\left(\operatorname{soc}_{A}(Q)\right)=\operatorname{top}_{A}(Q)$. Further, we will denote by $\bmod A$ the category of (finite dimensional) A-modules and by ind A the full subcategory of $\bmod A$ formed by the chosen representatives of the isomorphism classes of indecomposable modules. We will frequently ignore the distinction between the isomorphism class of a module and the module itself. Left modules will usually be regarded as right modules over the opposite algebra. We shall denote by $D: \bmod A \longrightarrow \bmod A^{o p}$ the usual duality $\operatorname{Hom}_{K}(-, K)$. We will use freely the properties of irreducible maps, almost split sequences, almost split morphisms, and the Auslander-Reiten operators $\tau=D \operatorname{Tr}$ and $\tau^{-1}=\operatorname{Tr} D$. For any algebra A, we will denote by Γ_{A} the Auslander-Reiten quiver of A [10]. For definitions and further details we refer to $[2,3,4,5,10]$. Finally, for the definition of valued quivers and of the Cartan class of a valued quiver we refer to [11, 17].

1. Main result

In this section we formulate the main result of the paper. Let A be a connected basic algebra over a field K and let \mathbb{C} be a connected component of Γ_{A}. Then a subquiver \mathcal{S} of \mathbb{C} is said to be path-complete if, whenever M and N are vertices of \mathcal{S} and there is a path $M \longrightarrow \ldots \longrightarrow L \longrightarrow \ldots \longrightarrow N$ in $(5, L$ is a vertex of \mathcal{S}. We say that a full subquiver \mathcal{S} of $\mathbf{6}$, is a stable complete slice of $\mathbf{6}$, if the following conditions are satisfies:
(1) S is path-complete.
(2) There is no oriented cycles $X_{0} \longrightarrow X_{1} \longrightarrow \ldots \longrightarrow X_{r} \longrightarrow X_{0}$ with all X_{i} in s.
(3) S has no projective-injective modules.
(4) Given any non-projective-injective module X in $\mathfrak{C}, \mathcal{S}$ contains precisely one module from the orbit $\left\{\tau^{r} X ; r \in Z\right\}$ of X.

It is easy to see that \mathcal{S} is a stable complete slice in \mathfrak{C}, if and only if \mathcal{S} is a complete slice of the full subquiver $s ⿷ \in \mathbb{E}$ of obtained by suppressing the vertices corresponding to projective-injective indecomposable modules.

A complete slice \mathcal{S} of \mathbb{C} is of Dynkin class Δ provided \mathcal{S}, considered as a nonoriented graph, is a Dynkin graph Δ. It follows from [9] that if A is a connected representation-finite hereditary algebra, then the vertices of Γ_{A} corresponding to the indecomposable projective A-modules form in Γ_{A} a complete slice of Dynkin class. If A is a hereditary representation-finite algebra, and T_{A} a tilting module, then the Cartan class of the tilted algebra $B=\operatorname{End}\left(T_{A}\right)$ is defined to be that of A (see [16]).

For any algebra A, we will denote by $F(A)$, the set of isomorphism classes of simple A-modules.

A system C of Dynkin class Δ is defined to be $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$, where B is a tilted algebra of Dynkin class Δ, n and m are nonnegative integers, and F_{*}, F_{*}^{\prime} are chains

$$
\begin{aligned}
& F_{*}: F(B)=F_{0} \supset F_{1} \supset \ldots \supset F_{n} \\
& F_{*}^{\prime}: F\left(B^{o p}\right)=F_{0}^{\prime} \supset F_{1}^{\prime} \supset \ldots \supset F_{m}^{\prime}
\end{aligned}
$$

of nonempty subsets of $F(B)$ and $F\left(B^{o p}\right)$.
Then the algebra $\mathscr{R}(C)$, for a given system $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$, is defined to be $\mathscr{R}(C)=R(-m)$, where the sequence of algebras

$$
B=R(0), R(1), \cdots, R(n), R(-1), \cdots, R(-m)
$$

is obtained as follows:

$$
R(1)=\left(\begin{array}{cc}
E(1), & I(1) \\
0, & R(0)
\end{array}\right)
$$

where $I(1)=\underset{s \in P_{1}}{\oplus} E_{B}(S), E(1)=\operatorname{End}_{B}(I(1))$, and $I(1)$ has the canonical structure of $E(1)-R(0)$-bimodule. Let $i \geqslant 1$ and write $\sigma_{R(i)}=\sigma_{i}$; similarly as in [19] one shows that the set $F(R(i))$ of $R(i)$-simples has a natural identification with the union of $F(R(i-1))$ and a new set of simples $\bar{F}_{i}=\left\{\sigma_{i} \sigma_{i-1} \cdots \sigma_{1}(S) ; S \in F_{i}\right\}$. Then $R(i+1)$, for $i=1, \cdots, n-1$, is the triangular matrix algebra

$$
R(i+1)=\left(\begin{array}{cc}
E(i+1), & I(i+1) \\
0, & R(i)
\end{array}\right)
$$

where $l(i+1)=\underset{S \in F_{i+1}}{\oplus} F_{R(i)}\left(\sigma_{i} \cdots \sigma_{1}(S)\right)$ and $E(i+1)=\operatorname{End}_{R(i)}(I(i+1))$. Further, $R(-1)$ is the triangular matrix algebra

$$
R(-1)=\left(\begin{array}{cc}
R(n), & I(-1) \\
0, & E(-1)
\end{array}\right)
$$

where $I(-1)=\bigoplus_{s \in F_{1}^{\prime}} E_{R(n)^{o p}}(S)$ and $E(-1)=\operatorname{End}_{R(n)^{o p}}(I(-1)$. Finally, for $-m \leqslant i \leqslant-2$, $R(i)$ is the triangular matrix algebra

$$
R(i)=\left(\begin{array}{cc}
R(i+1), & I(i) \\
0, & E(i)
\end{array}\right)
$$

where $I(i)=\bigoplus_{S \in F_{i}^{\prime}} E_{R(i+1)}{ }^{\text {op }}\left(\sigma_{i+1} \cdots \sigma_{-1}(S)\right)$ and $E(i)=\operatorname{End}_{R(i+1)^{o p}}(I(i))$.
We can now formulate the main result of this paper.
Theorem. Let A be a connected finite-dimensional basic algebra. Then A is representation-finite and Γ_{A} contains a stable complete slice of a Dynkin class if and only if A is isomorphic to an algebra $\mathscr{R}(C)$ for some system C of a Dynkin class.

2. Proof of the theorem

First we shall show that for any system $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$ of a Dynkin class, the algebra $\mathcal{R}(C)$ is representation-finite and $\Gamma_{\mathscr{R}(C)}$ contains a stable complete slice of a Dynkin class. We will apply results from [16].

Let $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$ be a system of a Dynkin class Δ and consider the doubly infinite matrix algebra without identity

$$
\hat{B}=\left(\begin{array}{llllll}
\ddots & \ddots & & & & \\
& B_{n-1} & M_{n-1} & & & \\
& & B_{n} & M_{n} & & \\
& & & B_{n+1} & M_{n+1} \\
& & & & \ddots & \ddots \\
& & & & \ddots & \ddots \\
& & & & & \ddots
\end{array}\right)
$$

in which matrices are assumed to have only finitely many entries different from zero, $B_{n}=B$ and $M_{n}={ }_{B} D(B)_{B}$ for all integers n, all remaining entries are zero, and the multiplication is induced from the canonical maps $B \otimes_{B} D(B) \longrightarrow D(B), D(B) \otimes_{B} B$ $\longrightarrow D(B)$, and zero maps $D(B) \otimes_{B} D(B) \longrightarrow 0$. Hughes and Waschbüsch proved in [16] that mod B has almost split sequences, the stable Auslander-Reiten quiver ${ }_{s} \Gamma_{B}$ is isomorphic to $Z \Delta$ and that for any indecomposable projective B-module P, $\operatorname{Hom}_{B}(P, X) \neq 0$ only for a finite number of nonisomorphic indecomposable B-modules X. It is not hard to see that all algebras $R(0)=B, R(1), \cdots, R(n), R(-1), \cdots, R(-m)$ occuring in the definition of $R(C)$ are full finite subcategories of \hat{B}. Then from $[2, \S 3]$, the algebras $R(i)$ are representation-finite and consequently $\mathscr{R}(C)=R(-m)$ is so. Now it suffices to prove that $\Gamma_{\mathscr{R}(O)}$ contains a stable complete slice of a Dynkin class. By assumption Γ_{B} contains a complete slice \mathcal{M}. We shall prove that the modules from \mathcal{M} being no projective-injective $\mathscr{R}(C)$-modules form a stable complete slice in $\Gamma_{\mathscr{R}(C)}$. First observe that the set \mathscr{M}^{\prime} of all modules from \mathscr{M}
being no projective-injective B-modules form a stable complete slice in Γ_{B}. Let X be the set of all (isomorphism classes of) indecomposable projective $R(n)$-modules $Q \in X$ such that $\operatorname{top}(Q) \in F(R(n)) \backslash F(B)$. From [20] we know that all modules from X are also injective $R(n)$-modules. Choose a module Q_{1} from X such that $\operatorname{rad}\left(Q_{1}\right)$ is not successor in Γ_{B} of any module $\operatorname{rad}\left(Q^{\prime}\right)$ for $Q^{\prime} \in X$. Note that $\operatorname{rad}\left(Q_{1}\right)$ is a B-module. Consequently, $\operatorname{rad}\left(Q_{1}\right)$ is an injective B-module isomorphic to $\operatorname{Hom}_{R(n)}\left(B, Q_{1}\right)$ and the algebras $T_{1}=\operatorname{End}_{R(n)}\left(B \oplus Q_{1}\right)$ and

$$
\left(\begin{array}{cc}
C_{1}, & \operatorname{rad}\left(O_{1}\right) \\
0, & B
\end{array}\right)
$$

where $C_{1}=\operatorname{End}_{B}\left(\operatorname{rad}\left(Q_{1}\right)\right)$, are isomorphic. Algebra T_{1} is representation-finite as a full subcategory of B. Moreover, just as in [16, 3.5, 3.6], we see that \mathscr{M}^{\prime} is a stable complete slice in $I_{T_{1}}$ provided $\operatorname{rad}\left(Q_{1}\right)$ is not projective B-module. On the other hand, if $\operatorname{rad}\left(Q_{1}\right)$ is projective-injective (as B-module), then $\operatorname{rad}\left(Q_{1}\right)$ belongs to \mathscr{M} and $\mathscr{M}^{\prime} \cup\left\{\operatorname{rad}\left(Q_{1}\right)\right\}$ forms a stable complete slice in $\Gamma_{T_{1}}$. Moreover, since all modules from X are projective-injective $R(n)$-modules, if $Y=\operatorname{rad} R(n)(Q)$, for $Q \in X$, is a projective-injective T_{1}-module, then Y is a projective-injective B-module and so belongs to \mathscr{M}. Then we can repeat this procedure taking T_{1} instead of B. Consequently, after a finite number of steps, we obtain $R(n)$ and the modules Z from \mathcal{N} being no projective-injective $R(n)$-modules form a stable complete slice in $\Gamma_{R(n)}$. Then the corresponding $R(n)^{o p}$-modules $D(Z)$ form a stable complete slice in $\Gamma_{R(n)^{o p}}$. Considering $\mathscr{R}(C)^{o p}$-modules Q whose tops belong to $F^{\prime}(\mathcal{R}(C)) \backslash F^{\prime}(R(n))$, and applying above arguments, we conclude that the modules $D(Z)$, where Z ranges over all modules Z from M being no projective-injective $\mathscr{R}(C)$-modules, form a stable complete slice in $\Gamma_{\mathscr{R}(\sigma)^{o p}}$. Consequently, $\Gamma_{\mathscr{R}(C)}$ contains a stable complete slice \mathcal{S} being a connected subgraph of the complete slice \mathscr{M} of $\Gamma_{B}{ }_{B}$. Since \mathscr{M} is of Dynkin class, \mathcal{S} is so and we are done.

At the end of this paper we shall give an example showing that the graphs \mathscr{M} and \mathcal{S} can be different.

Now let A be a representation-finite algebra and let Γ_{A} contains a stable complete slice $\mathcal{M}=\left\{M_{1}, \cdots, M_{t}\right\}$ of Dynkin class Δ. We shall show that A is isomorphic to an algebra $\mathscr{R}(C)$ for some system $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$ of Dynkin class Δ.

We start with the following lemma.
Lemma 1. Under the above assumption, Γ_{A} has no oriented cycle.
Proof. Assume that Γ_{A} has an oriented cycle

$$
X_{0} \longrightarrow X_{1} \longrightarrow \ldots \longrightarrow X_{r} \longrightarrow X_{0}
$$

Since Γ_{A} has a stable complete slice, one of the modules $X_{0}, X_{1}, \cdots X_{r}$ is projec-tive-injective. Indeed, in the opposite case, similarly as in [12, Prop. 8.1] one proves that there is an oriented cycle $Y_{0} \longrightarrow Y_{1} \longrightarrow \cdots \longrightarrow Y_{s} \longrightarrow Y_{o}$ with all modules Y_{j} from \mathscr{M}, but this is a contradiction to the stable slice condition (2). Denote by \mathfrak{D} the full subcategory of ind A formed by all non-projective-injective modules. From the stable slice condition (4), for each module X of \mathfrak{D}, there is exactly one module M_{i} from \mathscr{M} and one integer z such that $X=\tau^{z}\left(M_{i}\right)$, and put $z=z(X)$. Suppose that there is an irreducible map $X=\tau^{z(X)}\left(M_{i}\right) \longrightarrow Y=\tau^{z(X)}\left(M_{j}\right)$ between two objects X and Y from \mathfrak{D}. Then $z(X)=z(Y)$ and there is an irreducible map $M_{i} \longrightarrow M_{j}$ or $z(X)=z(Y)+1$ and there is an irreducible map $M_{j} \longrightarrow M_{i}$. Indeed, if $z(X)=z(Y)$ then obviously there is an irreducible map $M_{i} \longrightarrow M_{j}$. If $z(X) \leqslant 0$ and $z(Y) \geqslant 0$, then there is a chain of irreducible maps $M_{i} \longrightarrow \cdots \longrightarrow \tau^{z(X)}\left(M_{i}\right)$ $\longrightarrow \tau^{z(Y)}\left(M_{j}\right) \longrightarrow \cdots \longrightarrow M_{j}$ and by the stable slice condition (4), $z(X)=z(Y)=0$. Consider the case $z(X)>z(Y)>0$. Then there is an irreducible map $\tau^{z^{z(X)}-z_{(X)}}\left(M_{i}\right)$ $\longrightarrow M_{j}$, hence a chain of irreducible maps $M_{j} \longrightarrow \tau^{z(X)-z(Y)-1}\left(M_{i}\right) \longrightarrow \cdots \longrightarrow M_{i}$ and, by the stable slice condition (4), $z(X)=z(Y)+1$. Similarly, if $z(Y)>z(X)>0$, there is a chain of irreducible maps $M_{i} \longrightarrow \tau^{z(Y)-z(X)} M_{j} \longrightarrow \cdots \longrightarrow M_{j}$ and $z(Y)-z(X)>0$, contrary to the stable slice conditions (1) and (4). Analogically one proves that $z(X)=z(Y)+1$ if $z(X) \neq z(Y), z(X)<0, z(Y)<0$. Finally, if $z(X)>0, z(Y) \leqslant 0$, then $z(X)=1, z(Y)=0$; and $z(X)=0, z(Y)=-1$ in case $z(X) \geqslant 0$ and $z(Y)<0$.

Consequently one of the modules in the cycle $X_{0} \longrightarrow X_{1} \longrightarrow \cdots \longrightarrow X_{r} \longrightarrow X_{0}$ is projective-injective. Without loss of generality we can assume that this is X_{1}. If X_{i} is projective-injective, then $X_{i-1}=\operatorname{rad}\left(X_{i}\right), X_{i+1}=X_{i} / \operatorname{soc}\left(X_{i}\right), X_{i-1}=\tau\left(X_{i+1}\right)$, and $z\left(X_{i-1}\right)=z\left(X_{i+1}\right)+1$. Thus, from the above remarks, $z\left(X_{0}\right)>z\left(X_{2}\right) \geqslant \cdots \geqslant z\left(X_{0}\right)$ and we get a contradiction. Therefore Γ_{A} has no oriented cycles and the lemma is proved.

Denote by \mathfrak{F}_{A} (resp. \Im_{A}) the set of projective (resp. injective) modules in ind A and by Σ_{A} the sum $\mathfrak{F}_{A} \cup \Im_{A}$. Let us denote by $\nu: \Sigma_{A} \longrightarrow \Sigma_{A}$ and $\nu^{-1}: \Sigma_{A} \longrightarrow \Sigma_{A}$ two partial functions defined as follows: For each $X \in \Sigma_{A}, \nu(X)$ is defined iff $X \in ß_{A}$, and then $\nu(X)=E(\operatorname{top}(X)) ; \nu^{-1}(X)$ is defined iff $X \in \mathfrak{J}_{A}$, and then $\nu^{-1}(X)=P(\operatorname{soc}(X))$. Then the set $\left\{\nu^{z}(X) ; z \in Z, \nu^{z}(X)\right.$ is defined $\}$ is said to be the ν-orbit of $X \in \Sigma_{A}$.

Let us denote by $\mathcal{S}=\left\{\mathrm{S}_{1}, \cdots, S_{r}\right\}$ the set of all composition factors of modules M_{1}, \cdots, M_{t}, and by B the algebra $\operatorname{End}_{A}\left(P_{A}\left(S_{1}\right) \oplus \cdots \oplus P_{A}\left(S_{r}\right)\right)$. As in [16, Lemmas 3.2, 3.3] one proves that any ν-orbit in Σ_{A} contains exactly one module from the set $\left\{P_{A}\left(S_{1}\right), \cdots, P_{A}\left(S_{r}\right)\right\}$ and that the set \mathscr{M} considered as a set of B-modules is a complete slice of Γ_{B} of Dynkin class Δ. In particular, B is a tilted algebra of Dynkin class Δ. Moreover, any ν-orbit in Σ_{A} is the ν-orbit of some module $P_{A}\left(S_{j}\right)$, $j=1, \cdots, r$, and we can define the function $s: \Sigma_{A} \longrightarrow Z$ such that, for $X \in \Sigma_{A}, s(X)$ $=i$ iff $X=\nu^{i}\left(P_{A}\left(S_{j}\right)\right)$ for some $j=1, \cdots, r$. Thus, for $X \in \Sigma_{A}, s(X) \leqslant 0$ implies $X \in \Re_{A}$,
and $s(X)>0$ implies $X \in \Im_{A}$.
Let $A_{A}=Q_{1} \oplus \cdots \oplus Q_{m}$ be some decomposition as a direct sum of indecomposable projective A-modules, $n=\max \left\{s(X) ; X \in \Sigma_{A}\right\}, m=-\min \left\{s(X) ; X \in \Sigma_{A}\right\}$, and we let $A_{p},-m \leqslant p \leqslant n$, be the direct sum of all modules Q_{k} such that $s\left(Q_{k}\right)=p$. Then $A_{A}=\stackrel{n}{p=-m} A_{p}$ and put for $-m \leqslant p \leqslant q \leqslant n, E_{p, q}=\operatorname{End}_{A}\left(\underset{k=p}{q}\left(\bigoplus_{k}\right)\right.$. We will write simply E_{p} instead of $E_{p, p}, B_{p}, 0 \leqslant p \leqslant n$, instead of $E_{0, p}$, and $B_{q},-m \leqslant q \leqslant-1$, instead of $E_{q, n}$. Obviously the algebras B and E_{0} are isomorphic.

In our proof an important role is played by the following lemma.
Lemma 2. In the above notation, $\operatorname{Hom}_{A}\left(A_{p}, A_{q}\right)=0$ for $p>q$ and $q>p+1$.
Proof. Suppose that $\operatorname{Hom}_{A}\left(A_{p}, A_{q}\right) \neq 0$ for some $p>q$. Then there are two indecomposable summands X of A_{p} and Y of A_{q} with $\operatorname{Hom}_{A}(X, Y) \neq 0$. First assume $p>0, q \leqslant 0$. In this case X is projective-injective, there is a sequence of non-zero maps $\underset{i=1}{\oplus} M_{i} \longrightarrow \nu^{1-p}(X) \longrightarrow \cdots \longrightarrow X \longrightarrow Y \longrightarrow \cdots \longrightarrow \nu^{-q}(Y) \longrightarrow \underset{i=1}{\oplus} M_{i}$, implying the corresponding sequence of irreducible maps, and we get a contradiction to the stable slice condition (3). If $p=0$ and $f: X \longrightarrow Y$ is a non-zero map, then since $\nu(X)$ is injective, there is a commutative diagram

where α, β are canonical epimorphisms, γ, σ canonical monomorphisms, and obviously $g \neq 0$. Similarly, there is a non-zero map $h: \nu(X) \longrightarrow \nu(Y)$. But $s(\nu(Y))=$ $q+1 \leqslant 0, \nu(Y)$ is projective-injective, there is a sequence of irreducible maps $\underset{i=1}{\oplus} M_{i}$ $\longrightarrow \cdots \longrightarrow \nu(X) \longrightarrow \cdots \longrightarrow \nu(Y) \longrightarrow \cdots \longrightarrow{\underset{i=1}{\oplus}}_{\oplus}^{\oplus} M_{i}$, and we get a contradiction to the stable slice conditions (1) and (3). If $0>p>q$, then as above we conclude that $\operatorname{Hom}_{A}\left(\nu^{-p}(X), \nu^{-p}(Y)\right) \neq 0$, but this is impossible since $s\left(\nu^{-p}(X)\right)=0$ and $s\left(\nu^{-p}(Y)\right)=$ $q-p<0$. Finally, in the case $p>q>0$, similarly, as in [19, Lemma p. 60], we prove that $\operatorname{Hom}_{A}\left(\nu^{-q}(X), \nu^{-q}(Y)\right) \neq 0$. Since, $s\left(\nu^{-q}(X)\right)=p-q>0, s\left(\nu^{-q}(Y)\right)=0$, from the first part of our proof, it is impossible. Consequently, $\operatorname{Hom}_{A}\left(A_{p}, A_{q}\right)=0$ for $p>q$.

Now assume that $\operatorname{Hom}_{A}(X, Y) \neq 0$ for $p<q-1$ and indecomposable direct summands X of A_{p} and Y of A_{q}. If $p \geqslant 0$, as in [19, Lemma p. 60], $\operatorname{Hom}_{A}\left(\nu^{-1}(Y), X\right)$ $\neq 0$, and since $s\left(\nu^{-1}(Y)\right)=q-1>p$ we get a contradiction to the fact that $\operatorname{Hom}_{A}\left(A_{q-1}, A_{p}\right)=0$. If $p<0, \nu(X)$ is projective-injective, and, as in the first part of the proof, we conclude that $\operatorname{Hom}_{A}(Y, \nu(X)) \neq 0$. This is a contradiction since
$s(\nu(X))=p+1<q=s(Y)$ and $\operatorname{Hom}_{A}\left(A_{q}, A_{p+1}\right)=0$. Therefore, $\operatorname{Hom}_{A}\left(A_{p}, A_{q}\right)=0$ for $p+1<q$ and the lemma is proved.

In our proof we shall need the following fact.
Lemma 3. For $p<0, \operatorname{Hom}_{A}\left(A_{p}, A\right)$ is a projective-injective $A^{o p}{ }^{-}$module.
Proof. Let X be an indecomposable direct summand of $\operatorname{Hom}_{A}\left(A_{p}, A\right)$. Then $D(X) \cong E\left(D\left(\operatorname{top}_{A}{ }^{o p}(X)\right)\right) \cong E\left(\operatorname{top}_{A}(Y)\right)=\nu(Y)$ for $Y=\operatorname{Hom}_{A^{\circ}}{ }^{\circ p}(X, A)$. Since Y is a direct summand of A_{p}, and $s(\nu(Y))=p+1 \leqslant 0, \nu(Y)$ is a projective-injective A-module. Hence $X \cong D(L(Y))$ is a projective-injective $A^{o p}$-module and we are done.

Now we shall define a system $C=\left(B, n, m, F_{*}, F_{*}^{\prime}\right)$ where $B=\operatorname{End}_{A}\left(A_{0}\right), n=$ $\max \left\{s(X) ; X \in \Sigma_{A}\right\}, m=-\min \left\{s(X) ; X \in \Sigma_{A}\right\}$. The canonical action of B on $\operatorname{top}_{A}\left(A_{0}\right)$ (resp. top $\left.A^{o \nu(} \operatorname{Hom}_{A}\left(A_{0}, A\right)\right)$) enabling us to identify the set $F(B)$ (resp. $\left.F\left(B^{o p}\right)\right)$ with the set F_{0} (resp. F_{0}^{\prime}) of simple A-module (resp. $A^{o p}$-module) components of top $A_{A}\left(A_{0}\right)$ (resp. of to top $A^{o p}\left(\operatorname{Hom}_{A}\left(A_{0}, A\right)\right)$). Then F_{1} consists of the simple components of of $\operatorname{soc}_{A}\left(A_{1}\right)$ (a summand of $F_{0}=\operatorname{top}\left(A_{0}\right)$); for $1 \leqslant i<n, F_{i=1}$ consists of the simples S in F_{o} such that $\sigma_{A}^{i}(S)$ is a component of $\operatorname{soc}_{A}\left(A_{i+1}\right)$. Similarly, F_{1}^{y} consists of the simple components of $\operatorname{soc}_{A}{ }^{o p(}\left(\operatorname{Hom}_{A}\left(A_{-1}, A\right)\right.$) (a summand of F_{0}^{\prime}); for $1 \leqslant j<m$, F_{j+1}^{\prime} consists of the simples S in F_{0}^{\prime} such that $\sigma_{A}^{j} o p(S)$ is a component of $\operatorname{soc}_{A}{ }^{o p(}\left(\operatorname{Hom}_{A}\left(A_{-j-1}, A\right)\right)$.

From Lemma 2 it follows that $A=\operatorname{End}_{A}\left(A_{A}\right)$ is isomorphic to the matrix algebra

where ${ }_{i+1} M_{i}$ is the $E_{i+1}-E_{i}$-bimodule $\operatorname{Hom}_{A}\left(A_{i}, A_{i+1}\right)$. First we shall prove that the algebras B_{i} and $R(i), i=0, \cdots, n$, are isomorphic. We shall proceed by induction, using [19, Proposition 2] and Lemma 2. For $i=0, B_{0}=R(0)$ by definition. Assume that for some $i \geqslant 0$ there is an isomorphism $h: B_{i} \longrightarrow R(i)$. Observe that there is a canonical isomorphism of algebras

$$
B_{i+1} \cong\left(\begin{array}{cc}
E_{i+1}, & { }_{i+1} M_{i} \\
0, & B_{i}
\end{array}\right)
$$

Then $A_{i+1} \cong \operatorname{Hom}_{A}\left(\underset{k=0}{i+1} A_{k}, A_{i+1}\right)$ is an injective B_{i+1}-module and ${ }_{i+1} M_{i}=\operatorname{Hom}\left(\underset{k=0}{i} A_{k}\right.$, A_{i+1}) is an injective B_{i}-module as the greatest B_{i}-submodule of A_{i+1}. Similarly as in [19, Proposition 2] we conclude that the algebras E_{i+1} and $\left.\operatorname{End}_{B_{i}(i+1} M_{i}\right)$ are isomorphic. By definition of A_{i+1} and $I(i+1)$ it is not hard to see that $I(i+1) \cong$ $H\left(i_{i+1} M_{i}\right)$ where $H: \bmod B_{i} \longrightarrow \bmod R(i)$ is the functor induced by h. Hence $B_{i+1} \cong$ $R(i+1)$ and consequently $B_{n} \cong R(n)$. Further, using Lemma 3 and repeating the above arguments for $A^{o p}$-modules, we get isomorphisms of algebras B_{j} and $R(j)$, $j=-1, \cdots,-m$. Then $A \cong B_{-m} \cong R(-m)=\mathscr{R}(C)$ and this completes the proof of the theorem.

We end the paper with an example illustrating previously considered questions.
Let B be the tilted algebra of Dynkin class D_{4} given by the bounden quiver algebra (see [10]) $K Q / l$, where

and I is generated by the composed arrows α_{γ} and $\beta \gamma$. Consider the system $\mathrm{C}=$ $\left(B, 1,1, F_{*}, F_{*}^{*}\right)$ where F_{1} consists of one simple B-module given by the vertex 4 and F_{1}^{\prime} consists of one simple $B^{o p}$-module given by the vertex 3 . Then it is easy to see that $\mathscr{R}(C)$ is the bounden quiver algebra $K Q^{\prime} / I^{\prime}$ where

$$
Q^{\prime}:
$$

and I^{\prime} is generated by $\alpha \gamma, \beta \gamma, \gamma \sigma$ and $\xi \alpha-\eta \beta$. Then a straightforward calculation shows that $\Gamma_{\mathcal{R}(G)}$ is of the form

where $P_{i}=P\left(S_{i}\right)$ and S_{i} denotes the simple module given by the vertex i. Here, P_{3}, P_{4} and P_{4}, are projective-injective and the modules S_{1}, S_{2} and P_{3} / S_{3}, form a stable complete slice of class A_{3}, so different from the Dynkin class of B. On the other hand, $\mathscr{R}(C)$ is isomorphic to the algebra $\mathscr{R}(\bar{C})$ where \bar{C} is the system $(\vec{B}, 2$, $1, \bar{F}_{*}, \bar{F}_{*}^{\prime}$) and \bar{B} is the path algebra of $1 \longleftrightarrow 3 \longrightarrow 2, \bar{F}_{1}=\bar{F}_{2}$ (resp. \bar{F}_{1}^{\prime}) consists of the simple \bar{B}-module (resp. $\bar{B}^{o p}$-module) given by the vertex 3 .

References

[1] Assem, I., Happel, D. and Roldán, O., Representation-finite trivial extension algebras, Preprint.
[2] Auslander, M., Representation theory of artin algebras I, Comm. Algebra, 1 (1974), 177-268.
[3] Auslander, M. and Reiten, I., Representation theory of artin algebras III, Comm. Algebra, 3 (1975), 239-294.
[4] Auslander, M. and Reiten, I., Representation theory of artin algebras IV, Comm. Algebra, 5 (1977), 443-518.
[5] Auslander, M. and Reiten, I., Representation theory of artin algebras VI, Comm. Algebra, 6 (1978), 257-300.
[6] Bongartz, K., Tilted algebras, Representation of algebras, Lecture Notes in Mathematics 903, (Springer, Berlin, 1981), 26-38.
[7] Brenner, S. and Butler, M.C.R., Generalization of the Bernstein-Gelfand-Ponomarev reflection funcłors, Representation theory II, Lecture Notes in Mathematics 832, (Springer, Berlin, 1980), 103-169.
[8] Bretscher, O. Läser, C. and Riedtmann, C., Selfinjective and simply connected algebras, Manuscripta Math., 36 (1981), 253-307.
[9] Dlab, V. and Ringel, C.M., Indecomposable representations of graphs and algebras, Memoirs of the American Mathematical Society, 173 (Providence, 1976).
[10] Gebriel, P., Auslander-Reiten sequences and representation-finite algebras, Representation theory I, Lecture Notes in Mathematics 381, (Springer, Berlin, 1980), 1-71.
[11] Happel, D. Preiser, U. and Ringel, C.M., Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, Representation theory II, Lecture Notes in Mathematics 832, (Springer, Berlin, 1980), 280-294.
[12] Happel, D. and Ringel, C.M., Tilted algebras, Trans. Amer. Math. Soc. 274, (1982), 399-443.
[13] Happel, D. and Ringel, C.M., Construction of tilted algebras, Representation theory II, Lecture Notes in Mathematics 903, (Springer, Berlin, 1981), 125-144.
[14] Hoshino, M., Trivial extensions of tilted algebras, Comm. Algebras, 10 (1982), 19651999.
[15] Hoshino, M., Happel-Ringelś theorem on tilted algebras, Tsukuba J. Math. 6, (1982), 289-292.
[16] Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
[17] Riedtmann, C., Algebren, Darstellungsköcher, Uberlagerungen und zurück, Comment. Math. Helv. 55, (1980), 199-224.
[18] Simson, D. and Skowroński, A., Extensions of artinian rings by hereditary injective modules, Proceedings of the third international conference on representation of algebras, Puebla, 1980, Lecture Notes in Mathematics 903, (Springer, Berlin, 1981), 315-330.
[19] Skowroński, A., A characterization of a new class of artin algebras, J. London Math. Soc. (2) 26, (1982), 53-63.
[20] Skowroński, A., On triangular matrix rings of finite representation type, Buill. Polon. Acad. Sci., 5/6 (1983), to appear.

Institute of Mathematics, Nicholas Copernicus
University Chopina 12/18, 87-100 Toruń, Poland.

[^0]: Received June 19, 1984.

