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HOMOGENEOUS TOTALLY REAL SUBMANIFOLDS OF S6

By

Katsuya Mashimo

It is well-known that the 6-diniensional sphere S6 admits an almost complex

structure. Among all submanifolds of almost complex manifold, there are two

typical classes of submanifolds: namely the classof holomorphic submanifolds and

the class of totally real submanifolds. By using a recent result of Harvey and

Lawson [5],a cone over a 2-dimensional holomolphic (or a 3-dimensional totally

real) submanifold of S6 is a stable minimal submanifold of R1.

On the existence of such submanifolds, a satisfying result on holomorphic sub-

manifolds was obtained by R. Bryant [1],i.e.,he proved that every compact Rie-

mann surface can be realized as a holomorphic curve of S6.

On the contrary, we do not have such a satisfying result on the existence of

3-dimensional totallyreal submanifolds of Ss. In this paper we classify 3-dimen-

sional compact totallyreal submanifolds of S6,which are obtained as orbits of closed

subgroups of G2.

1. Cayley algebra and the exceptional simple Lie group G2

In this section we give a brief review on Cayley algebra and the exceptional

simple Lie group G2.

Let H be the skew field of all quaternions. Then the Cayley algebra Ca over

R is Ca ―H+H with the following multiplication:

(q, r) ■(s, t)―(qs ―tr, tq+rs), q, r, s, t$.H

where "―" means the conjugation in H. We define a conjugation in Ca by (q, r)

=(q, ―r), Q, f£H, and an inner product < , > by

(x, y} = (x ･ y+y ･ x)＼2,x, yeCa.

Let 1, i, j, k be the standard basis of H. Then eo = (l, 0), ei=(i, 0), e2= (j, 0),

es= (k, 0), 04= (Q, 1), <?5= (0, i), e6= (0, j), e7= (0, k) form an orthonormal basis of

Ca. We put

Cao = {xeCa＼x+x = O}= Zil1 Rej.
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Then we have the following multiplication table

(1.1) et'ej=

1

2

3

4

5

6

7

~e0

63

e2

e5

― e6

-07

-02

-e0

-e-i

― 65

e4

e0

― e*

#4

ea

<?3

e3

-<?o

01

― e5

<?4

― <?o

The Cayley algebra Ca is neither commutative nor associative. But we have

fIta -fr＼11att7≪nrr

Lemma 1.1. (1) // x, yGCa0, then x ･ y=―y ■x.

(2) For any x, y, z£Ca,

x ･ O ■y) = (x ･ x) ･ y,

(x ･ y, x ■z) = (x, x}(y, z) .

(3) Let x, y, z Ca be mutually orthogonal unit vectors. Then

x ■(y ･ z)=y ･ 0 ･ x)= z ■(x ･ y).

For the proof, we refer to [4].

It is well-known that the group of all automorphisms of Ca is a compact con-

nected simple Lie group of type R2 ([4]). So we denote it by G%. Then G2 leaves

the vector e0 and the subspace Ca0 invariant. Furthermore G2 leaves the inner

product <,> invariant. So we may regard G2 as a subgroup of SO(7)=SO(Ca0).

Lemma 1.2. Let vu vz, vz be mutually orthogonal unit vectorsin Ca0 with {vx ･

Vz, #3>= Q. Then there exists a {unique) automorphism g of Ca such that g(ei)=Vi

i=l, 2, 3.

For the proof of Lemma 1.2, we refer to [5].

Let Gij,l^i^j-^1 be the skew symmetric transformation on Ca0 defined by

― ej,

0.

if k=j,

if k=i,

otherwise.

Then the Lie algebra(S2 of G2 is spanned by the following vectors in the Lie

algebra So(7)of SO(7).
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aG3i + bGie + cG51,

aGi2 + bGi7 + cG6&,

aGoi + bGn+cGe2,

aGu + bG12+cGs6,

aGn + bG24+cG-o3,

aGGi + bG3i+cG25, a + b+c = O, a, b, cgR
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§2. Stability of cones over totallyreal submanif olds

In this section we briefly summalize the results of Harvey and Lawson [5]

and study the cones over 3-dimensional totallyreal submanifolds of S6.

Let M be an n-dimensional Riemannian manifold and let GP{M) be the bundle

of p-planes of M. Then we can regard GP(M) as a subset of the p-th exterior

power AP(M) of the tangent bundle of M in a natural manner. Then any exterior

p-form on M can be considered as a function on GP{M). The comass of an exterior

p-form ^ is defined by

||0||*= supfeOpCJf)0(£).

Assuming ||0||*= 1, we put

G(^)={feGp(M)|^)=l}.

A p-dimensional, oriented C'-submanifold S of M is called a ^-manifold if the

oriented p-olane TVS) is contained in G(d>)for all xqS.

Theorem 2.1 (Harvey and Lawson, [5]). Let $ be a closedp-forrn with ||0||*= 1

and S be a compact <j>-manifold. Then Vol(S)^ Vol(S')for any compact submanifold

S' of M which is homologous to S.

In [5],Harvey and Lawson considered 2 calibrationson Ca0. Let <f>be a trili-

near function on Ca0 defined by

(j){x,y, z)―{x, y ･ z), x, y, zzCa0.

Then by Lemma 1.1 it is easily seen that 0 is a closed 3-form on Ca0. Further-

more 0 has comass one ([5]). We fix an orientation on Ca0 such that eu e2,･･ -,e7

is an oriented basis and let * be the Hodge star operator. Then *0 is a closed

4-form and also has comass one ([5]). A ^-manifold is called an associativesub-

manifold and a *<f>-manifold is called a coassociativesubmanifold.

Let S6 be the unit sphere in Ca0 centered at the origin. Then S6 has an al-

most complex structure / defined bv
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MX)=p-X, XcTVS6).

From the definition,/ is preserved by G2. A submanfold M of S6 is called a holo-

morphic submanifold (resp. totallyreal submanifold) if J(TP(M)) = TP(M) (resp. /(Tj>

(M)) is contained in the normal space NP(M)) for any pzM. We denote by CM

the cone over M.

Theorem 2.2. Let M be a 2-dimensional submanifold of S6. Then M is a

holomorphic submanifold of S6 if and only if CM― {0} is an associativesubmanifold

of Ca0.

The proof of the above Theorem is easy so that we omit it.

Theorem 2.3. Let M he a 3-dimensional submanifold of Sr＼ Then M is a

totallyreal submanifold of S6 if and only if CM-- {()}is a coassociativesubmanifold

of Ca0.

It is well-known that a submanifold M of SA is a minimal submanifold if and

only if CM―{0} is a minimal submanifold of RN~l. Thus we have the following

Corollary 2.4 (Ejiri, [3]). Any ^-dimensional totally real submaifold of S＼is

a minimal submanifold.

Proof of Theorem 2.3. "if" part. Let p be a point of M, and put p=u4.

Let uh, m6, u7 be an orthonormal basis of TP(M) and uu u2, us be an orthonormal

basis of the normal space NP(M) of M at p in Sr>such that uu u2, ■■･, u7 is oriented.

Since *</>(uiAu5Au6AU',) = <p(ulAU2AUz)―±l, we get at ･ uz=±uif u2 ■uz―±Ui and

us ■Ui=±u2. By Lemma 1.1, we get

</(≪i),Ui} ―(U4 ･ Uu Uy}―― (lli ･ Hi, Ki>

= ―(th, Uu u} = 0,

</(≪>),u2)=(Ui ■uu u2y=-<,ui ■u4, u2y

= ―<M4, Mi ･ ≪2>= 0,

= ―<M4, Mi ･ M3> = 0,

i.e.,J(ui) is contained in TP(M). Similarly we see that J(u2) and J(u3) are contained

in TP{M). Since / is non-singular and dim iVp(M) = dim Tp(7k0, we get J(TP(M)) =

NP(M).

" only if " part. Let w5, ≪6,?^7be an orthonormal basis of TP(M). By a simple

calculation, (FMsJ)(u6) is equal to the tangential part of m5 ･ ue to SHtf,where F is the
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covariant derivative of S6. Since Mis a totally real submanifold, uh ･ u6 is normal

to p. So (PuJ)(us) = u5 ■tie. In [3], Ejiri proved that (PuJ)(u6) is normal to M. By

Lemma 1.1 (ii),u5 ･ utiis normal to p ■uh and p ･ u6. Since NP(M) is of dimension

3 and u& ･ u6, p ■u^ are unit vectors, uh ■u6~±p ･ u<i. Similarly u& ･ u7=±p ･ u-0

and u-i･ u5= ±p ･ u6. Then it is easily seen that p ･ u&,p ･ u6, p ･ u-iform an ortho-

normal basis of TP(M). Thus by Lemma 1.1 we obtain

*0(pAu5Au6Au7)=±tfi(p ･ u&Ap ■thAp ■Uj)

= ±<p ■U6, (p ･ M6) ･ (P ･ ≪?)>=±1.

Therefore CM―{0} is a coassociative submanifold. Q.E.D.

Lemma 2.5. Let M, M be two totally real submanifolds of constant curvature

1/16 in S＼. Then there exists g$.G2 such that q{M)―M.

Proof. In [3], Ejiri proved that the normal connection F1 of a totally real sub-

manifold M of S＼is

(2.1) PlxJY=X- Y+J(PXY), X, YeTM.

Furthermore he proved that if M is a space of constant curvature then there

exists a local orthonormal frame field eu e2, ez such that

a(eu eJ^lS1'* M/2,

a(e2, ^2)=(~151/2 /ex + 101/8 Jes)/4,

a(e3, ^3)= (-51/6 /gl-10I/2 Je2)/A,

a{eu ez)=-51/2 fe2,

a(e2, et)=-101'* Je>/4,

a(eu e3)=-5w* Jea/4,

Feiei=0, i=l, 2, 3,

Kie2=-Fe2ei=-es/4,

Pe2ei=~Pe3ei=-el/4,

Pe3ei=-Pe1e3=-e2/4,

J(eu e2)―e3, J(e2, es)=eu J(e3, ey)=e2.

where a is the second fundamental form of M.

Take a point peM and a point p'eM. Let eu e2, e3 be an orthonormal frame

of M at p and ex＼ e2, es', be an orthonormal frame of M at p' with the above

properties. Then by a well-known rigidity theorem there exists a rigid motioi
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o-eO(7) such that o{p)―p＼ a{ei)= ei＼i=l, 2, 3. Since a preserves the second funda-

mental form a, a(Jei)=Jei, z= l, 2, 3. Put Vi―e2 ･ es, Vi=―J{e^), vz~e3 ･ eu v^―p,

Vt ―&＼,ve ―e3 and t>7= <?2. Define Vi, ･■･,2)7'in a similar manner. Then by Lemma

1.1, it is easily seen that vu ･･･■>v1and vx＼･■■,v1>satisfy the same table of multi-

plication (1.1), i.e., a is contained in G2. Q.E.D.

§3. 3-dimensional closed subgroups of G2

Let c be a compact simple Lie algebra and i be a maximal abelian subalgebra

of R. Let I be a complex simple 3-dimensional subalgebra of (Sc. Then there

exists a basis H, X+, X- of I such that

(3.1) [H, X+~＼= 2X+, [H, XJ]=-2X-, {X+, XJ] = H.

We may assume that // is contained in ic, in fact in (-l)1/2ic. Hence a(H) is a

real number for every root a of @>c with respect to ic. Furthermore a(H) = 0, 1

or 2 if a is a simple root [2, p.166]. The weighted Dynkin diagram with weight

a(H) added to each vertex a of the Dynkin diagram of (Sc is called the characte-

ristic diagram of I. Let I and I' be 3-dimensional simple Lie subalgebras of Rc.

Then I and V are mutually conjugate if and only if I and I' have the same chara-

cteristicdiagrams.

Mal'cev [7] classified the 3-dimensional complex simple subalgebras of (§2C･

From his classification,($2C has 4 types of 3-dimensional simple subalgebras as

follows.

10 0 1

I 0=j>0 II O^=^O

2 0 2 2
III oeee^o IV o^o

Let I be a 3-dimensional simple subalgebra of (S2. Then the complexification

Ic of I in (&2C corresponds to one of the above 4 characteristic diagrams. As a

special case of a Theorem of Siebenthal ([81,p.252), we have the folowing.

Lemma 3.1. Let I and V be 3-dimensional simple subalgebras of (§>2.If＼c and

2 2
V correspond to the characteristicdiagram o^=^o, then I and V are conjugate in

Similarly we can prove

Lemma 3.2. Let ＼and V be 3-dimensional simple subalgebras of ($2. // ic and
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10 0 1

I correspond to the characteristic diagram 0=^0 or 0=^0, then I and V are

conjugate in c2.

Now we give here an example of a basis Xu X2, Xz of I with [Xu X2] ―2X3,

＼_X2,X3] = 2X1, [X≫, Xii ―IXz. If I corresponds to the characteristic diagram I, then

Xi= ―G40 + G76,

(3.6) X2― ―G46 + G6t,

yi-3= ―(j"47~TVT66･

If 1 corresponds to the characteristic diagram II, then

Xi = ―2&23 ~t~G45 + ^76 ,

(3.7) Xz= ―2Gsi +G46 + VT67>

X$= ―2G12+G47 + G65.

If I corresponds to the characteristic diagram IV, then

X＼= 4G32+2G54 ―6G76,

(3.8) X2-61/2(G37+G26-2G15) + 101/2(G42-G35),

X3 = 61/2(G63+ G27-2G41) + 101/2(G26-G34).

Lemma 3.3. Let X be a 3-dimensional simple subalgebra of R2. // lc corre-

2 0

sponds to the characteristic diagram o==>o, then I is spanned by the following basis

Xu X2, X3 for some 0:

Xi― ―2G2i―2G65,

(3.9) X2 = - 2 cos ^(G32 + G76) - 2 sin fl(G72+ G63),

X3=-2cos^(G31 + G75)~2sm^GB3 + G71).

Proof. A simple computation shows that lc is conjugate to the Lie subalgebra

spanned by

//= 2(-iy2(G21 + G65),

(3.10) X+=-2(G32 + G76) + 2(-l)1/2(G31 + G75),

X-= 2(G32+G76)+2(-l)1/2(G31+G75).

Hence it is easily seen that 2≪=i Reu Re4, HilsRei are invariant irreducible

c
components of Ca0 under the action of the subalgebra spanned by H, X+ and X-

defined by (3.10). Therefore Ca0 has 2 invariant irreducible components Vu V2
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of dimension 3 and an invariant irreducible component Fo of dimension 1 under

the action of I. Let L be the Lie subgroup of G2 generated by I. Remark that.

L is isomorphic to SO(3) and the actions of L on Vi and F2 are equivalent to the

standard action of SO(3) on Rs. Let Vi be a unit vector in Fo. Take a one para-

meter subgroup K in L. Then there are determined (up to sign) unit vectors vx

in Vi and y5 in F2. Since #! ･ v4 is also a K-fixed vector and is normal to vx and

v4, vx ･ Vi is equal to v6 or ―v5. By a change of sign (if necessary) we have vt ･

Vi= vs. Let i>2 be a unit vector in Vi which is orthogonal to Vi and K be the

isotropy subgroup at v2. Then by a similar argument, we can choose a unit vector

vG in F2 such that v2 ■v±―v6. Put v3―Vi ■v2 and v7 = vs ■y4. Then by Lemma 1.2,

there exists an automorphism g of Ca such that g{e^)―Vi for f=l, 2, 4. Since #

is an automorphism of Ca, we have g(e3)= vs, g(es)= Vs, g(e6)―v6 and g(e1)= v1. Hence

V＼,v2,･■･, v-isatisfy the same multiplication table (1.1) as eu e%,･■･, e1. Let v3',be

a unit vector in Vi which is orthogonal to Vi and v2. Then v3' is of the form

V* = (cos ^)≪3+ (sin 0)v-i,

Take a suitable basis X, -X>, X3 of I. Then the restrictions of Xu X2 and X3 tc

Fi are represented bv the following matrices with respect to the basis vu v2 and

Vz :

/o

X,= 2

＼0

-2

0

0

0

0/

xt=
0

＼o

0

0

2

4

o/

X3 =

(°

0

＼2

0

0

0

°

1

0/

Put v7'= Vi ･ vs= ―(sin 60y3 +(cos 6)v7. Then v5, v6 and v7, form an orthonormal basis

of F2. Since ^ is contained in ($2,

X,(wB)=X1(t;1 ･ ≫4)= X(≫i) ･ t>4+ ≫i･ ^i(≫O

= ≫i･ Xi(vt)=-2ve.

By similar calculations, we get the representations of Xu X2 and X3 restricted to

Vz with respect to v5, vB and v7'. They are of the same form as X,, Xt and X3

as above. Express Xu X2 and X3 with respect to vu ･･-,v7. Then we see that 1

is conjugate to the subalgbra spanned by the following basis

Xi= ―2G2i―2G65,

-X2=-2cos0(G82+G?76)-2sin0(G72+G68),

.Ys=-2cos^(G8i + G75)-2sin^(G68 + G7I). Q.E.D.
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§4. Homogeneous totallyreal submanif olds of S6

In this section we classify 3-dimensional compact homogeneous totally real

submanifolds of S＼ which are obtained as orbits of closed subgroups of G2.

First we study one by one the 4 types of subgroups which are generated by

subalgebras listed in §3. In some cases it is convenient for us to find all orbits

which are 3-dimensional minimal submanifolds of S6U since a 3-dimensional totally

real submanif old of SI is a minimal submanif old by Corollary 2.4.

Case I. Reu Re2, Re3 and TijU R&j are irreducible invariant subspaces so

that each orbit is a small sphere or a great sphere. Therefore the orbit we are

looking for is a trivialone.

Case II. This case was studied by Harvey and Lawson [51

Theorem 4.1. Let L be the subgroup of G2 generated by the subalgebra spanned

by Xi, X2 and X3 defined by (3.7). Then there exists exactly one orbit which is a

"$-dimensional totallyreal submanifold of S6. // is the orbitthrough (51/2/3)ei+(2/3)

e5, which we denote bv Mu

Case III. For this case we have the following

Theorem 4.2. Let Lg be the subgroup of G2 generated by the subalgebra

spanned by Xu X2 and Xz defined by (3.5). Then there exists exactly one orbit

under Le which is a 3-dimensional totallyreal submanifold of S6. It is the orbit

through (2l/2/2)(e2+e5),which we denote by M2.

Proof. In this case, Lg is isomorphic to SO(3) and the action of Le on Ca0 is

equivalent to the direct sum of the adjoint action of SO(3) on §o(3,C) and the

trivialaction of SO(3) on R. Therefore by calculating the volume of each orbit

([6]),we can easily see that the only orbit through p―(2i/2/2)(e2+e5)is a 3-dimen-

sional minimal submanifold of S6 under the action of Le on Ca0. The tangent

space of the orbit at p is spanned by

Xl(p)= 2"＼ex-e,),

X2(p)=-2W2(cos0)e3-21/2(smd)e7,

Xt(p)= 21/2(sin^)e3-21/2(cos^)e7.

Consulting the multiplication table (1.1), we get

KXx{p))=P ･ Xl{p) = 2ei1

J(X2(p))=p ■Xi(p)=-cose(e1+ee)+sine(-e2 + e6),
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RXt(p))=p ■Xa(p) = cosff(-es + es)+ sm6(el + e,).

Therefore the orbit is a totally real submanifold.

Case IV. For this case we have the following

Q.E.D.

Theorem 4.3. Let L be the subgroup of Gz generated by the Lie subalgebra

spanned by Xu X2 and X& defined by (3.8). Then, under the action of L on Ca0,

there exist exactly 2-types of orbitsin S6 which are 3-dimensional totallyreal sub-

manifold of S6 up to the action of G%. They are

(1) the orbit through e%, which we denote by M3.

(2) the orbit through ee, which we denote by M4.

It is easily seen that M3 is of constant curvature 1/16. The proof of this

Theorem will be given in §6.

Let M be a compact 3-dimensional totally real subrnanifold of Ss, which is

obtained as an orbit of a closed subgroup L of G2. It is well-known that the di-

mension of L is smaller than or equal to 6 ([10]). If dim L=6, then M is a space

of constant curvature and, by a Theorem of Ejiri,the curvature of M is 1/16 ([3]).

And by Theorem 2.5 it (if exists)is congruent to Ms of Theorem 4.3. It is

known that if dim L^5, then dim L^4 ([10]). If dim L = 4, then the Lie algebra

I of L must be isomorphic to it(2),since L is compact. By a direct calculation we

see that it is isomorphic to the Lie subalgebra of @2 which is spanned by

X＼= ―2G23 + G45 + Gtb,

X2= ―2G31 + G46 + G57,

Xs= ―2Gi2+G47+G65,

/=≪(G45"G76) + &(G46-G57) + &(G47-G66), a, b, c&R.

Let Gs be the Lie subgroup of L whose Lie algebra is RXi+RX2 + RX3. Then

it is easily seen that L(p)~Gs(p) for any peSt. Thus we have the following

Theorem 4.4. Let M be a 3~dimensional totallyreal submanifold of S＼which

is obtained as an orbit of a closed subgroup of G2. Then M is congruent to one of

the Mi, M2, M3 or M4, unless it is a great sphere.

§5. Orbits In a sphere

In this section we prepare some Lemmata to prove Theorem 4.3.

Let G be a Lie subgroup of SO(N+1). Then G acts on the unit sphere Sf in

RN+X centered at the origin in a natural manner. Take a point p in S? and let
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M be the orbit of the action of G through p.

Let ($>be the Lie algebra of G. We denote by A* the vector fieldon S;v in-

duced by AeR. Then, by regarding A as a skew symmetric transfomation on

RN'＼ we have

A*{p=A(p), A R, />eSf.

Therefore the tangent space of M at p is

71,(M) = {A(i≫|Aec}.

Let NP{M) be the normal space of M in S7 at p. Regard the tangent space TP(M)

and the normal space NP(M) as subspaces of RN rl. Then RN+1 is decomposed

into the direct sum

(5.1) RN+1^Rp+Tp(M) + Np(M).

For a vector X in RN+＼ we denote by XT (resp. X^) the rp(M)-(resp. NP(M)-)

component of X with respect to the decomposition (5.1).

Lemma 5.1. Let G be a Lie subgroup ofSO(N+1). Let a be the second funda-

mental form of the orbit M―G{p). Then

(5.2) ≪G4*, B*)ip=(A(B(pW,

(5.3) FB*A*IP=(A(B(PW, A, BeR,

where F is the Riemannian connection of M.

Proof. Let D be the Riemannian connection of RN~l. Then

JJ^A ＼p= d/dtit^oA iexpaj3)(io

=dldtlt^A(exptB)(p)

=A(B(p)).

Since a(A* B*＼p=(DB*A*lP)N and rB*A*,p=(D/J+A*|P)r, we get (5.2) and (5.3).

Q.E.D.

Lemma 5.2. Let G be a Lie subgroup of SO(N+1) and fix an orbit M=G(p).

Let S be the complete connected totallygeodesic submanifold of Sf such that TP(S)

―Np(M). Then each G-orbitin Sf contains at least one point of S.

Proof. Take an arbitrary orbit M'-G(p'). Then there exists a point px in

M and a point pz in M' such that the distance between M and M is attained by

pi.and pz. Let r be the shortest geodesic joining pi and p2. Take an element

oQ.G such that a(p,)= p. Since <ris an isometry of S?, a(r)is also a geodesic and
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is normal to M at p. Therefore o(t)is contained in S and o(p2) is contained in

Sf]M. Q.E.D.

Now we consider the case that G is isomorphic to SU(2) or SO(3). Let B be

the Killing form of 8u(2). Then the basis Xu X2 and X3 with [X,, X2] = 2X3, [X2,

X3] = 2Xi and [X3, Xi] = 2X2 is orthonormal with respect to ―B/S. Let g0 be the

Riamannian metric on G which is the bi-invariant extension of ―BIS.

Lemma 5.3 (Sugahara, [9]). Let g be an inner product on §u(2). Then there

exists an element g in G such that

( i ) X'i = Ad(a)(Xi), i=l, 2, 3, are mutually orthogonal with respect to g.

(ii) g = ^,ft>i2+ i2ft>22+/?3tt>32,where fa are positive constants and oh( ･ )― go(Xi, ･ ), i=

1. 2. 3.

Remark 5.4. (i) Put a=exp(7tXi/4). Then Ad(a)(Xl)=Xu Ad(aXXt) = X3

and Ad(a)(Xz)= ―X2 so that X2 and h of Lemma 5.3 can be permuted. SimilarlyXx

and X2 (resp. Xx and h) are permuted by Ad(exp(TcXB/4)) (resp. Ad(exp (rX2/4))).

(ii) (G, g) is a space of constant curvature k if and only if ll = lz = h = l/k

g = (l/k)g0.

i

e.,

Lemma 5.5 (Sugahara, [9]). Let Xx＼ AY and AY be as in Lemma 5.3. Then

the one parameter subgroups r (T)= exp/A7, i―1, 2, 3, are geodesies of (G, g).
xi

Let (V, p) be an orthogonal representation of G and <, > be a G-invariant

inner product on V. Let M=G(p) be an orbit in the unit sphere S, through p.

Lemma 5.6. // dimM=3, then there exists an element a in G such that

{P{XiXo(p)＼ p(Xj)(a(p)))^O for i*j.

Proof. Define a map /: G―*-Si by

(5.4) f{o)= p{*){p), ezG.

Then f*(Xi)=p(Xi)(p). Let g be the metric on G induced by/. Then g is a left

invariant metric. Consider the inner product gse on the tangent space Te(G) at

the unit element e. Then by Lemma 5.3 there exists an element a in G such

that Ad{a~l){Xi),i=l, 2, 3, are mutually orthogonal with respect gie. Let Fa and

La be the right and left translations by a respectively. Then we have

(5.5) f*(dRa(X))=dldtit^f(exp(tX)o(p))=p(X){o(p)), Xe§u(2), p^.

Since Ad(o~l){Xi)and Ad(a-l)(X/) are orthogonal if i*?j,it follows from (5.5) that

0=g(Ad(<r1XXt), Ad(o-l)(Xi))
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= g(dLt-1(dR,(Xi)), dL^idRXXj)))

= g(dR.(Xt)), dR.(Xj))

= (MdRa(Xi)), MdRXXj))}

= (p{Xi){o{p)), P(Xj)(a(p))). Q.E.D.

Hereafter we may assume

(5.6) <p{Xi){p), P(XjXp)y = 0, ii=j,

if the orbit M―G(p) is of dimension 3.

Lemma 5.7. Let M―G(p) be a 3-dimensional orbit. Then f: G―>Si defined

by (5.4) is a minimal immersion if and only if

L&XtiXiiPW^Sp,

where k=<Xt(p), XlpY), j= l, 2, 3.

Proof. Since (5.6) holds at the initialpoint p, Xi―XijhU2 is an orthonormal

frame of Te(G). By the G-equivalence of the immersion /, we have only to verify

EiUaiXi, Xi)le= 0. Since Txi(t)= exptXi are geodesies of (G, g), by (5.2) we

get

(5.8) rari*^*ie= (.Yt(Xi(/>))r= 0.

By (5.3) / is a minimal immersion if and only if TaU≪{Xi, Xi) = 0. Therefore

TitU Xj(Xi(p)) is proportional to p if and only if / is a minimal immersion.

Now we assume that Hi3=iXi(Xi(p))=cp for some constant c. Then

c^iZiUxixipmup)

3. Q.E.D.

§6. Proof of Theorem 4.3

Let L be the Lie subgroup of G2 generated by the Lie subalgebra defined by

(3.8) and let P=TljUxjej be a point on St. Then the tangent space of L(p) is

spanned by

X＼{p)= ―4cX3e2+Ax2es--2xiei+2x4e5 ―6x1e6+QxeeT,

X2(p)^-2-6l/2x5e1 + (61/2x6-10l/2xi)e2+ (61/2x1-W/2x,)e3

+ 10i/2x2e4+ (2'6l/2x1+ 101/2x3)e5-61/2x2e6-6l/2x3e7,
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X3{p) = 2 ･ 6l/zxiel + (61 /2x7 +101 /zx,)ez - (61/2x6 +10' '2x,)e,

+ (l01/2x3-2-6t/2xl)e4-101/2x2e5 + 6l/2x3ee-6l/2x2e1.

We may assume that (5.6) holds at p, i.e.,

(6.l)i 5(xsx6―x2x7)+ I51/Z(xzx5―X3X4)―2xyXi= 0,

(6.1)2 5(x2x6+x3xi) + 151/Xx2,Xi+ x3Xa)~2xlx5―0,

(6.1)3 151/2(2#i#2+ xix1―x5x6)+ 6^4X5= 0.

Then by Lemma 5.5, the orbit L(p) is a minimal submanifold of Sfif and only

if

(6.2),

(6.2)2

(6.2)3

(6.2)4

(6.2).

(6.2)6

(6.2)7

where

(6.3),

(6.3)a

(6.3)3

-24(1/^ + 1/^!-4-151/a(lA-l/;8)ar8 =-3zlt

-16(1/^14 l/k2 + l/h)xt = - 3j;2,

-16(1/^ +1/% +1/23)^3 -4 ･151/2(l/i2 -1/^)^1 = -Sxs,

-(4/A1 + 10//t2+ 34A>4 + 2-151/5(l/^-lA)x7=-3x4>

-(4A +34A + 10/;.3)x5+2-151/2(l//3-l//i3)^7= -3x5,

-(36/;1 + 6/;2 + 6/;,)o;6+ 2-151/2(lA-lA)a;4 =-3a?6j

-(36/L+6/22 + 6/X3)x7 + 2-15l/Hl/h-l/?.3)x5 =-3x7,

Xx = 16(x22 + xa2)+4(x.iz + xB2) + 36(x,2 + x72),

l2 = 24xl2 + l6(x22 + x3°)+ lQx,l2 + 34x52 + 6(x<;2+ xi2)

+4 ･ 151/2(2^! xz ―x4x6 ― Xt,x7),

Zs = 24xl2 + 16(x22 + x32) + 34^,2 + 10^r,2+6(.r62 + x72)

―4 ･ 151 /2(2xiXz ―Xix6 ―x5x7).

Lemma 6.1. If xu x2, ･■-,x7, T,iU #≪2= 1, satisfy (6.1) and (6.2) then (Xu h, h)

is (16, 16, 16), (36, 6, 6) or (20+4-15I/2, 8, 20-4-151/2) up to permutation.

Proof. By adding (6.3),, (6.3)2, and (6.3)3, we get

(6.4) /}1+a2 + ^ = 48(.r12+ ･■･ +^72)=48.

If ^2#0, then we get 1/^x + lA+ 1/^ = 3/16 from (6.2)2. Thus we have

^3/(1/^,+ 1A +1/^8) = 16.
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The equalities hold if and only if ^1=^2 = ^3 = 16. Hereafter we assume #2=0.

Case 1. h―lj for some i, j, l^i^j^S.

By Remark 5.2, we may assume I2 = h without loss of generality.

If #^0, then we get x1= Xi= X,= 16 by (6.2),, and (6.4). If #3^0, we get *,=

^2=^3 = 16 by an argument similar to the case of #2=v0. If #4#0 or #5A=0, we get

Ui, It, ^) = (16, 16, 16) or (4, 22, 22). If (Xu h, Xs)= (4, 22, 22), then x1 = xt = x, = x,

= x1 = 0 by (6.2),, (6.2)8, (6.2),, (6.2)6 and (6.2)7 so that x4 ･ x5=0 by (6.1),. But

from (6.3)2 and (6.3)3, we get x^ ―x^. This is a contradiction. Thus we have

{h, h, ^)^(4, 22, 22). If x6*0 or x^O, then we get U,, h, ^3)= (16, 16, 16) or

(36, 6, 6).

Case 2. Xu h and lA are mutually different.

In this case we may assume ^!>^2>^3 by Remark 5.2.

If #1 = 0 (resp. x3 = 0), then x3 ―0 by (6.2)i (resp. #i = 0 by (6.2)3).

If #4 = 0 (resp. #6 = 0), then #6 = 0 by (6.2)4 (resp. #4 = 0 by (6.2)6).

If #5 = 0 (resp. #7 = 0), then #7 = 0 by (6.2)5 (resp. #5=0 by (6.2)7).

By (6.2)6 and (6.2)7, we get

By (6.2)4 and (6.2)5,we get

2 ･ 15l/2(X/kt-l/XtXx6X6-xix1)-2i(l/k,-l//La)xlxB = 0.

Thus we have x4x-o―0. Finally we have the following five subcases.

Subcase 2.1. Xo = xb=x-, = 0, XiXzXiXe^O.

Subcase 2.2. x2 ―xi ― x5 = x^ = XT = Q, XiXa^Q.

Subcase 2.3. xl = x2 = xs = xi = xe = Q, x5x^0.

Subcase 2.4. x2 = X4 ―^6=0, XiXzXsX^O.

Subcase 2.5. x^=x->_ = x^ ― Xrl= x-,― Q. ^orR^0.

Subcase 2.1. Put m=l/k, i=l, 2, 3. Since (6.2), and (6.2), (resp.(6.2)4 and

(6.2)6)have a non-trivial solution(xu xa) (resp. (xt1 x6)),we get

[3-24(^2 + ^) 4 ･ 151/2(^- fis) 1

(6.5), 0=(l/3)det
A ■151/2(≪2-us) 3- 16(/i!+ ^2+ A£3)J

= 3-8(2^1 + 5^2 + 5^8) + 128(^2 + A<8)(^i + jU2+i≪≫)-80(J≪2-iU
＼2

(6.5)≪

"3-(4^ + 10^+34^8)

0=(l/3)det

2 ･ 151/2(≪2-/i3)

2-151/2(//2-,≪3) I

3 ―(36^! + 6/^2+6/i3)J
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= 3 - 8(5/*, + 2/i2 + 5 fit)+ 4(2 fi,+17/*2 + 5/i3)(6/A + /≪2+ /*8)- 20(//2 - /<,)*.

By subtracting (6.5)2 from (6.5)!, we get

0=(j≪i ―/≪2)(1―2//J―2/i2 ―12/z3).

Since fii>fi2, we get

(6.6) /A+/i2 = l/2-6/*3.

By adding (6.5), and (6.5)2, we get

(6.7) 0=3~28(/i1 + ^2)-40/i3 + 24(//)+^)2+48/i32+80^l/i2+272(//1+/j2)/<s.

By substituting (6.6) into (6.7), we get

0=-(l-12/£,)8 +16^/<2.

From (6.4) and (6.6), we obtain

Mi = Ml -12^3)/2(48//3 -1).

Therefore we get

0=-(l-12^)2 + 8/i3(l-12^3)/(48^3-l).

As solutions of the above equation, we get A3 = l/fi3 = l2, 16, 36. If
//s=
l/12, we

get //,= //2= 0 from (6.6). Thus ^12. For ;s = 16, 36 we get (Xu X2, ^3) = (16, 16

16). (36. 6. 6) bv (6.6) and (6.8) resoectivelv. Therefore Subcase 2.1 cannot occur

Subcase 2.2. By (6.2),, (6.3)2 and (6.3)8, we get

16a?,4-18a;!2+ 5 = 0.

As solutions of the above equation we get x^^S/S, 1/2. If Xi2= 5/&, then (Alf X2,

;,)= (6, 36, 6), (6, 6, 36). Thus a?,2* 5/8. If x? = ＼/% (Zu h,
/?3)= (8,

20 + 4- 151/2,

20-4 ･ 1B1/2V

Subcase 2.3. Let p―x5e5+x7e7 be a solution of (6.1) and (6.2). Then from

Remark 5.2, exp (kXz/4)(P) is also a solution and A'sfor exp (nX2/4)(p) coincide(up

to permutation) with Xs for p.

It is easily seen that Vi = Re1 + Res + Re5 + Re7 is invariant under exp (7rX3/4).

- * * "I

We can see that the restriction exp(7rXs/4)| Vx is
*
0 0

0 Ol

0s, e7. Thus Subcase 2.3 is reduced to the Subcase 2.2.

Subcase 2.4. Let (xu 0, x3, 0

and (6.2) with Ulf h, Xa)= (a, b, c).

with respect to eu e3,

x5, 0, x7), XiXsXaXT^Q, be a solution of (6.1)

Then (~xu 0, x3, ―x5, 0, x7, 0) is also a solu-
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tion of (6.1) and (6.2) with (/lu2,z,h) ―{a, c, b). Thus Subcase 2.4 is reduced to

Subcase 2.1.

Subcase 2.5. By an argument similar to Subcase 2.3, Subcase 2.5 is reduced

to Subcase 2.2. Q.E.D.

Now we prove the existence and uniqueness (up to the action of G2) of orbits

in S＼which are minimal submanifolds of S＼and (Au Z2, /U) of Lemma 6.1 is (16,

16, 16), (36, 6, 6) or (4, 20-4 ･ 151/2, 20 + 4 ･ 151/2). First we prove the following

Lemma 6.2. There exists an orbit which is a totallyreal sub-manifold of S＼

and {Xu Xz, Xz) of Lemma 6.1 is (16, 16, 16). Such an orbit is unique up to the

action of G2.

Proof. Put (x＼,x2, ･･･,x1) ―(0, 1, 0, ･■-,()). Then we can easily verify that

(xu ･･･,x'7) is a solution of (6.1) and (6.2) with ki=/t2 = li = l6.

Apply the Lemma 5.2 to the orbit Af4―L(<?6). Then each orbit contains at

least one point of S={xxel + xlel-＼-xze$+ X(ie<i＼x2jrx2-irXB2jrx%2~1}.

Assume that an orbit M through p=xlel + xiei + x^e-^x^e^, is a minimal sub-

manifold of SI with ^ = ^2= ^3= 16. Then, since the induced metric on L is bi-in-

variant, (5.6) must hold at any point on the orbit. Therefore we get

Under the above conditions, we solve the equation ^1= ^2=^3 = 16. Then we have

(xu xi, x6, a?6)=±(0, 101/2/4, 0, ±61/2/2), ±(51/2/3, 0, 0, ±2/3) or ±(0, 101/2/4,

±61/2/4, ±301/2/8). It is easily verified that an orbit through each of the above

points is a totally real submanifold of S? and of constant curvature 1/16. Thus

by Lemma 2.5, they are congruent under the action of G2. Q.E.D.

Lemma 6.3. There exists a unique orbit which is a totally real submanifold of

S＼and (Xu x2, ^3) of Lemma 6.1 is (36, 6, 6) up to permutation.

Proof. By Remark 5.2, we may assume that i1 = 36, 22=^3 = 6. Since ^ = 36,

(6.3), and (6.4) yield

0=36(a;12+ ■■･ +xf)-16(x22 + x32)-4(xi2 + x52)-36(x6i + x72)

= 36a;,2+ 20(a;22+ x32) + 32(xt* + xb2)

so that xt = 0, i=l, ･･■,5. It is easily verified that (xu---,xs, x6, x7) = (0, ･ ･ -,0,

cos#, sin^) is a solution of (6.1) and (6.2) with ^ = 36, ^2= ^3 = 6. By a simple

computation, we get exp(^X3/6)(e6) = (cos(9)e6 + (sin6')g7. Hence these points are

contained in exactly one orbit. Furthermore we can easily see that this orbit is
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a totally real submanifold of St. Q.E.D.

Lemma 6.5. There exists a minimal submanifold of St such that (Xu X2, X≫)of

Lemma 6.1 is equal to (8, 20 + 4 ･ 15I/3, 20 ―4 ･ 151/2). But it is not a totally real

iiilvwinni fnlrl

Proof. It is easily verified that an orbit through each of the points ±(21/2/2,

0, ±21/2/2,0,･･･,0) is a minimal submanifold of SI In the way of proving Lemma

6.1, we proved that any orbit in SI which is a minimal submanifold such that (ki,

h, h) is equal to (8, 20+4 -151/2,20-4 ■151/2)is congruent to one of the orbits

through ±(21/2/2,0, ±21/2/2,0,･･･,0) under the action of G2. But by direct cal-

culations, they are not totallyreal submanifolds of S＼. Q.E.D.

Added in proof. Recently Dr. Tasaki proved the following; Let I and V be

semisimple Lie subalgebras of a compact semisimple Lie algebra q. If lc and Vc

are conjugate in gc, then i and I'are conkugate in q. Thus subalgebras in Lemma

3 9. are cnniii£*atpin na_
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