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SCALENE METRIC SPACES

By

Hisao Kato

Abstract. In this paper, we introduce the notion of scalene metric and study

it. In particular,we prove that a compactum with scalene metric is an AR and

a locally compact space with locally scalene metric is an ANR. Also, we show

that scalene metric subsets of a metric space play important roles as convex sub-

sets of a Banach space in some selection theorems, and the notion of scalene

metric gives another aspect which differsfrom that of E. Michael with respect to

the constructions of selections([6],[7],[8] and [9]).

0. Introduction.

A conipactum is a compact metric space and a connected compactum is a

continuum. It is well-known that a continuum is locally connected if and only if

it has a convex metric. Natually, the following problem is raised: Is there a

metric characterization of an absolute retract,i.e., AR or absolute neighborhood

retract, i.e., ANR? In this paper, we consider the following problem: Which

metric implies AR or ANR?

A metric p on a space X is said to be a scalene metric provided that if a, b

are different points of X, then there is a point c of X such that for each xtX,

either p(x,a)>p(x,c) or p(x,b)>p(x,c) holds. Scalene metric spaces are general-

ization of convex subsets in the Hilbert space h. In fact, take two points a, b of

a convex subset X in /2. Choose a point ce{x＼x= (l―t)a+ tb,0<Kl)cI. Clearly,

c satisfiesthe desired property. A metric p on a.space X is said to be a locally

scalene metric provided that for each point x of X there is a neighborhood U of

x in X such that the restrictionpu of p to U is a scalene metric.

We study some properties of scalene metrics and locally scalene metrics. In

particular,we prove that if a compactum has a scalene metric, then it is an AR.

Moreover, if a locally compact space has a locally scalene metric, then it is an

ANR. But the converse assertions are not true. Also, by using the notion of

scalene metric, we investigate some selection theorems from another aspect which

differsfrom that of E. Michael ([6],[7],[8] and [9]).
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In [8, (8.1)],Michael proved the following theorem.

Theorem (E. Michael). Let X be a topologicalspace, Y a Banach space, and

F(Y) the family of non-empty, closed, convex subsets of Y. If <p:X-*F(Y) is con-

tinuous, then it admits a continuous selection.

In the statement of the above theorem, we show that the family F(Y) of

non-empty, closed convex subsets of a Banach space Y is replacedby the family

S(Y) of non-empty, compact scalene metric subsets of a metric space Y.

The author wishes to thank the refereefor helpfulcomments.

1. Notations and preliminaries.

Let X be a matric space with metric p. For any subsets A and B of X, let

p(A, Z?)= inf {p(a, b}＼a£A,b&B). Also, let HP(A, 5) = max {supae,i p{a, B), sup6;B p(b, A)}.

Hp is called the Hausdorff metric. The hyperspace 2x={AaX＼A is non-empty

and compact} is metrized with Hp. It is well-known that X is a locally connected

continuum if and only if 2X is an AR [10]. Moreover, it was proved that 2X is

homeomorphic to the Hilbert cube Q = [ ―1,1]°°[2], Let a, bzX. We define the set

Ip(a,b) as follows: If a = b, lp(a,b) = {a} and if a＼b, Ip(a,b) ―{c£X＼max{p(x,a),

p{x,b))>p(x,c) for each xzX). Note that p is a scalene metric if and only if for

any a,beX lp{a,b)＼-<j>.A function ip: Y―>2X is lower semi-continuous if {y^Y＼<p(y)

fl V^(p} is open in Y for each open subset V of A'. A function cp: Y-+2X is upper

semi-continuous if {?/ Fj^(?/)c F} is open in F for each open subset 7 of I A

function cp: F-^2r is continuous if y5 is lower semi-continuous and upper semi-

continuous. A continuous selection for <p: Y-+2X is a continuous function s: F--X

such that s(y)e<p(y) for each yeY.

2. Examples of scalene metric spaces.

In this section, we give several examples in order to clarify the definitionof

scalene metric.

(2.1) Example. Let X be a dendrite, i.e.,1-dimensional compact AR, and let

peX. For y,zeX, let y^pz mean y lies on the unique arc in X from p to z.

Then (X, ^p) is a partiallyordered space, and hence X has a metric d which is

radially convex with respect to S.v- Define a metric p on X as follows [3,(2.16)]:

Let y,z X and let y/＼z denote the last point with respect to ^kp where the arc

from p to y intersects the arc from p to z. Set

p(y,z)= d(y,yAz) + d(yAz, z).



Then p is a scalene metric.

Scalene metric spaces 145

(2.2) Example. Let P be a 1-dimensional locally finite polyhedron with tri-

angulation T. For any points x, y of P which belong to 1-simplex (vo,Vi}£T, de-

fine d(x,y)=＼t ―t'＼,where x = tvo+ O-―t)vu y = t/v0+ (l―t;)vi. If points y, z belong

to a component of P, we define

p(y,z)=
f m

inf ＼Xd(xi, Xi+i) xo ―y, xm+i = z, xi (l^i^m) is a vertex of T and

each successive points x%, x^n belongs to 1-simplex of T i

Otherwise we define p(y,z)= l. Then for each x£P, pB is a scalene metric,

where B―{y^P＼p(x,y)'Sll2}. Hence P has a locally scalene metric p.

(2.3) Example. A scalene metric is not always convex. Recall that a metric

d on X is convex if for any two points x and y of X there is a point z of X such

that d(x,z)=d(z, y) = l/2-d(x, y). In the plane E2 with Euclidean metric p, con-

sider the set S={(x,y)eE2＼x2 + y'2―l,y^Q}. Clearly ps is scalene but convex.

3. Compact scalene metric spaces are ARs.

In this section, we study scalene or locally scalene metric spaces. In parti-

cular, we prove that a compactura with scalene metric is an AR and a locally

compact space with locally scalene metric is an ANR.

(3.1) Lemma. Suppose that X has a scalene metric p. Let a,b X and a^b.

If celp(a,b),then p(a,b)>p(a,c)>0 and p(a,b)>p(b,c)>0.

This follows immediately from the definitionof scalene metric.

(3.2) Lemma. // X has a scalene metric p, then for each xzX and t>0 ps

is a scalene metric, where B―{y X＼p(x,y)^t}. Furthermore, for any points a,bsX

Pa is scalene, where A―Ip(a,b).

Proof. We shall prove that pa is a scalene metric. Note that if ceA, either

p(x,a)^p(x, c) or p(x,b)^p(x,c) holds for each xeX. Let xi,xzgA and xi^x^.

Take a point celp(xu x2). Then we can easily see that celp(a,b)cA, which implies

that pA is scalene. Similarly, pB is scalene.

(3.3) Proposition. // a compactum X has a scalene metric p, then X is con

nected and locallyconnected.

Proof. Suppose, on the contrary, that X is not connected. There exist two
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disjointnonempty closed subsets A and B of X such that X=A＼jB. Since X is

compact, we can choose two points aeA and bzB such that p(A, B) = p(a,b)>0.

Since p is scalene, there is a point c£lp{a,b). Assume that ceA. By (3.1), we

have p(A, B)=p(a, h)>p(b, c),which is a contradiction. Hence X is connedted. Also,

by (3.2) we can see that X is locally connected.

(3.4) Proposition. Suppose that a compactum X has a scalene metric.

a, bzX and a^-b. Then IP{a,b)is a locallyconnected continuum containing a

b and diam/p(≪,b)=p(a, b).

Let

and

Proof. By (3.2) and (3.3),lp{a,b)is a locally connected continuum. We shall

prove that a, b lp(a,F). Suppose, on the contrary, that a$Ip(a,b). Since lp(a,b) is

compact, there is a point zelp(a,b) such that p(a,Ip(a,b))=p(a,z). Note that for

each xqX, either p(x,a)^p(x,z) or p(x,b)^p(x,z) holds. Choose a point c lf/(a,z).

Since Ip(a,z)clp(a,b), by (3.1) we have p(a,Ip(a,b))= p(a,z)>p(a,c) and c£l'p(a,b).

This is a contradiction. Similarly, belp(a,F). If cud£lp{a, b), then p(c2,a)>p{c2, d)

or p(cz,b)>p(cz,c1). By (3.1), p(a)b)>p(c2,c1). Hence diam/itf, b)= p(a,b).

(3.5) Proposition. // a locallycompact space X has a locally scalene metric

then X is locally connected.

This follows from (3.2) and (3.3).

(3.6) Example. In the statement of (3.3), we cannot omit the condition that

X is compact. Consider the following set in the real line E:

X={xgE＼0^x^1}-{1/2}.

Let p be the metric defined by p(x,y)=＼x―y＼for x,yeX. Then p is scalene and

X is locally compact but not connected.

(3.7) Example. In the statement of (3.5), we cannot omit the condition that

X is locally compact. Consider the following set in En with Euclidean metric p:

X={(xi,xit ･･ -,xn)zEn＼ each xi is a rational number}.

Then px is scalene but X is totallydisconnected.

(3.8) Example. The Euclidean metric p on En is scalene. Then if a,b£En

and a±vb,

L(a,b) = {x<=En＼x= ta+(l-t)b and 0<a<l}.

(3.9) Example. Let S2 be the unit sphere in Es. Define the metric p on S2 by
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p(x, y)―arc cos f 2 xtyi) for x=(xu x2, X*), y=(yi,y2,2/3)eS2.

Consider the following sets:

A = {xeSl＼p(a, x) + rtx, b) = p(a, b)},

w^-(^.a-f)≫d.-(o.^.-£)

147

X={x S2＼p(zo,x) + p(x,a')=p(zo, a') for some a'sA],

where zo=(0,0,1) (see Figure 1).

Then px is scalene and Ip(a,b)nA={a,b}. Note that Ijajj) is not an arc (see

IA 1＼＼

0

Ip (a,b)

Fig. 1.

The main result of this sectionis the following theorem.

(3.10) Theorem. // a compactum X has a sclene metric p, then X is an AR.

Proof. By (3.3), X is a locally connected continuum. Hence by [10], 2X is

an AR. Let A&x. Define a function fA :X-≫[0,oo) by

(1) fA(x) = sup{P(x,a)＼a£A}= Hp({x}, A).

Clearly /a is continuous. Consider the following:

(2) m(A)=mf{fA(x)＼xeX} and

f.T) R(A) = i.reX＼fJ.x)= m(A)＼.
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We shall prove that R(A) consists of only one point. If xu x2gR(A) and xx-^xz,

then there is a point c£lp(xi,x2). Since A is compact, there is a point aozA such

that fA(c)= p(aa,c). Then either fA(c)= p(a0,c)<p(a0, .xi)^fA(x})-m(A) or fA(c)=

p(a0,c)<p(a0, x2)^fA(x2) = m(A) holds, which implies that fA(c)<m(A). This is a

contradiction. Let us define a function r: 2J->Z by {r(A)}~R(A) for each Ag2x.

We must prove that r is continuous. Suppose, on the contrary, that there is a

sequence A, Au Az, ･ -･, of points in 2-r such that

(4)

(5)

Hp(An,A)<lln for each ≪= 1, 2, ■･･, and

limKAO^KA).

Let a=＼imr(An)- Since R(A) is a one point set, we see that fA(a)―fA(r(A))=e>0
n―>oo

Since lim/^B(r(An))==/,i(≪), there is a natural number w0 such that for each n^n0

7?~->.oo

(6) /AMAn))-fA(r(A))>2el3.

By (4), we can choose a natural number n^fio such that

(7) Hp(A,An)<el3 for each ≫^≪i.

Then by (6) and (7),for each n^nu

(8) fAn(r(A))^/A(r(A))+Hp{A, A0</^C4B))-2£/3+s/3

=fAn(r(An))-~sl3<m(An).

This is a contradiction. Hence r: 2X~^X. is continuous. Note that r({x})= x for

each xsX. This implies that X is an AR. This completes the proof.

(3.11) Theorem. // a locallycompact space X has a locallyscalenemetric,

then X is an ANR. Moreover, each point of X has a compact neighborhoodwhich

is an AR.

Proof. It follows from (3.2) and (3.10) that for each x X there is a compact

AR V such that x is an interior point of V in X. Hence X is an ANR (e. g., see

[1, p. 102]).

(3.12) Remark. In the statement of (3.10), we cannot replace "compaction"

by "locally compact space" (see (3.6)). Also, in the statement of (3.11), we can-

not omit the condition that X is locally compact (see (3.7)).

(3.13) Remark. There is a compact 2-dimensional AR X not admitting a

locally scalene metric. In fact, the space X in [1, p. 155, (4.17)] is one of such

compacta. It cannot be decomposed into a finiteor countable number of compact

ARs distinctfrom X. Bv (3.11). X does not admit a locally scalene metric.
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4, Some properties of scalene metric spaces.

In this section, we study further properties of scalene metric spaces.

149

(4.1) Proposition. Let X be a compactum with metric p. If a,b£X and a^b,

then IJa. b) is nhp.nin X.

Proof. Let celp(a,b). Since X is compact, there is a positive number e such

that max {p(x,a),p(x,b)}^p(x,c)+s for each xeX. Set U£c)= {x£X＼p(x,c)<e}. If

iicTT.(r＼thpn

p(x,y)^p{x, c)+ p(c,y)^max {p{x,a),p(x,b)}-e + p(c,y)

<max {p(x, a),p(x,b)}.

Hence Ulc)dp{a,b), which implies that Ip(a,b) is open in X

(4.2) Lemma. Let X be a compactum with scalene metric p. If a,beX, a^b

and e is a positivenumber, then there is a point c£lp{a,b)such that p{a,c)<p{a,b)

SIM/]rf//"Jli＼^"a-

Proof. By (3.4), belp(a,b). Choose a point celp(a,b) with p(b,c)<e. Since

c£lp(a,b), p(a,c)<p(a, b).

(4.3) Lemma. Let X be a compactum with scalene metric p. If a,b X, then

Ip(a,b)= {c£X＼max {p{x, a),p(x,b)}^p(x, c) for each xzX}.

Proof. We may assume that a^b. It is easily seen that if c£lp{a,b),

max {p(x,a),p(x,b)}^p{x,c) for each x$X. Conversely, let cgX such that

max {p(x,a),p{x, b)}^p(x, c) for each xeX. Then Ip(a,c)dp(a,b), and hence ce

TJa^c)dTJa~,l)).

(4.4) Proposition. Let X be a compactum with scalene metric p. If Kp: 2XX

[0,oo)->2x is the function defined by

KP(A, t)= {xeX＼p(x, A)^t} for Az2x and *e[0,cxd),

then Kp is continuous.

Proof. Suppose that Au A2, ･･･, is a sequence of closed subsets of X and tu

t2,･■･,is a sequence of positive numbers such that.lim An = A and lim.t≫= t. Then

it is easily seen that

(1) lim slidKiA,,,.DaKJA. t).
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Let yeKp(A,t) and e>0. Choose a point as A such that p(a,y)^t. By (4.2), there

is a point c X such that p(y,c)<e and p(a,c)<p(Ka,y)^t. Choose a natural number

n0 such that if n'^n0, there is a point anzAn such that p(an,a)<tn ―p(a,c). Then

we have

(2) p(an,c)^p(an, a)+ p(a,c)<tn.

Hence ceKp(An,tn) for each n^n0. This implies that

(3) lim inf K,(An, tn)3 /£,(A,t).

By (1) and (3),lim Kp(An,tn) = Kp(A,t). Therefore Kp is continuous.

A metric p defined on a space X is strongly convex provided that for each

a,b£X, there is only one point ceX such that p(a,c)= p(c,b)―ll2-p(a,b).

(4.5) Proposition. If a scalene metric is convex, then it is strongly convex.

Proof. Let X be a space with scalene metric p, and let a,b<zX and a^b.

Consider the set C={ceX＼p(a,c) = p(c,b)= ll2-p(a1b)}*<f>. We must show that C is

a one point set. Suppose, on the contrary, that there e'dst cuc2£C and d^c2.

Since p is a scalene metric, there is cogIp(c1,Cz).Then

p(a, b)^p(a,co) + P(b,Co)<±--p(a, b) + ^--p(a,b) = p(a, b).

Zi Zl

This is a contradiction. Hence p is strongly convex.

(4.6) Remark. Suppose that p is a scalene metric on a compactum X. If p

is convex (and hence strongly convex), the retraction r:2xsQ-≫X in the proof

of (3.10) is a cell-like map. Moreover, for each xeX, r~＼x) is contractible. For

let ^0=sup{/4(x)|^4. f~1(^)}^0. If to―0, r~＼x)is one point set. Assume that to>O.

Let us defined a function H:r~l(x)x[0, to]-^2x by

MAt)JnAt)t
°^=/^)'

A ' ; ＼B(x,t), Ux)^t^t0,

where Asr-＼x＼ V(A,t)={y<=X＼p(y,A)^2t and p(x,y)^fA(x)} and B(x,t) = {yeX＼

p(x,y)^t}. By (3.1), (3.2), (3.4) and the same argument as (4.4), H is continuous.

Next, we shall show that H(r-＼x)x[O,to])c:r-i(x). Let Aer~l(x) and 0^t^fA(x).

By the definitions of r and fA(x), H{A,t)£r~＼x). Let A£Y~＼x) and fA(x)<t^t0.

Note that r(H(A,to))=r(B(x,to))=x. We may assume that fA{x)<t<t0. Suppose,

on the contrary, that for some t (fA(x)<t<t0), r(H(A,t))=r(B(x,t))=x'^x. Then

fB<.x,v(x')<fB(x,v(x) = t. Let yeB(x,t0). If yeB(x,t), p(x',y)^fBcx,t)(x')<fB(x.f>(x)

= t<t0. If y$B(x,to)―B(x,t), there is a point y'sBixJ) such that p{x,y) = p(x,y')
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+ p(y',y) and p(x,y') = t, because p is convex and X is compact. Then

p{x', y)^p(x', y')+ p(y', y)<t+p(y', y) = p(x, y)^ta.

Since B(x,t0) is compact, fB<.x,tQ)(x')<t0, hence r(B(x,to))^x. This is a contradic-

tion. Thus r :2x = Q-^-X is a cell-like map.

But we cannot omit the condition that p is convex, as shown in the next

example.

(4.7) Example. There is a scalene metric p on a compactum X such that

the retraction r:2x = Q^>-X in the proof of (3.10) is not monotone. Consider the

following sets in the plane E2:

M={xsE2＼ta + (l-t)b, O^t^l},

N={xeE2＼x = t1b+ t2c+hd, tt^O (i= l,2,3) and h+h+t^l},

where ≪=(-l,0), b=(0,l), c = (l,0), rf=(3,O), and

X=M＼JN.

Let p be the Euclidean metric on E2. Then we can easily check that px is a

scalene metric. Let r: 2X-+X be the retraction in the proof of (3.10). Note that

r'(c)3{fl, d}. Then the point c is an isolated point of r~＼c). In fact, if Atr-＼c)

and 0<fA(c)^l, then r(B(c,fA(c))*c. Let c'= ―e + ―f, where e = (*
V2 ' V2

)

/=(l+/4(c), 0). Then fA(c')^fB(C,fA<:e≫(c')<fA(c).Hence c is an isolated point of

r~＼c).

Let A be a subset of a metric space X with metric p. Then A is scalene

convex in X provided that if a, bzA and a^b, there is a point cgA such that for

each xgX, max {p(x, a),p(x,b)}>p(x,c) holds. Note that every convex subset of h

is scalene convex in h, and if A is scalene convex in X, the restriction pA is a

scalene metric on A.

(4.8) Proposition. If A is a scalene convex, compact subset of a metric space

X with metric p, then there is the unique continuous retraction r: X->A such that

p(x,r(x))= p(x,A) for each xeX.

Proof. For xeX, let r(x) be a point of A with p(x,r(x)) = p(x,A). We have

to prove that such r(x) is unique. Suppose that there are points xo X, yo A

such that yo^r(xo) and p{xo,yo) ―p{xo, A). Since A is scalene convex, we can find

a point c£A such that p(x0, c)<max {p(x0, yo), p(x0, r{xo))}―p{xo, A). This is a con-

tradiction. Thus we have a function r:X~>A. We shall show that r is continu-

ous. Let xogX and xu x2, ･･ ･ be a sequence of points of X with lim xn=a?0-
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vSinceA is compact, we may assume that the sequence r(xi),r{x2),■･-,converges.

Tlipn

p(x0, r(xo)) = p(xo, A) = p(＼im xn, A)

= lira p(xn, A) = ＼im p(xn, fix*))

= p(lim xn, lim r{xn))

= p(x0, lim r(xn)) ･

Hence r(xo) ―Ym＼r{xn)- This implies that r is continuous. Obviously, r is a re-

traction from X to A.

(4.9) Example. There is a smooth arc A in the plane E2 with Euclidean

metric p such that pA is scalene but there is no neighborhood U of A in E2 in

which A is scalene convex. In fact,let An (n = l,2, ･･･) be the set of points (x, y)

gEz such that (~l)ny^0 and

/ 2≪ + l ＼

V 2n(n + l))
y +
n(n + l)

) V2

n(n + l)

r

Set A = {(0,0)}UU An (see Figure 2). Then A is a smooth arc and pA is scalene,

but there is no neighborhood U of A in Ez such that A is scalene convex in U.

Fig.2.

(4.10) Proposition. Let X be a compactum with scalenemetric p. Then for

any maps f,g:Y-+X, thereis a homotopy H':YxI-+X such that H(y,0) = f(y),

H(y,l)= g(y)and diam H({y}xl) = p(f(y),g(y))for each yeY.

This followsfrom (5.2) which willbe proved in the next section.

(4.11) Proposition. Let Y be a compactum with metric p and let Xu X?, ･･･

be an increasing sequence of subcompacta in Y. If each Xn is scalene convex in

Y, then X=(j Xn is an AR.
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Proof. Let rn: X-+Xn be the retraction such that

(1) p(x,rn(x))=-p(x,Xn) for xtX (see (4.8)).

By (3.10) and Dowker's result [4, p. 105], it is sufficient to show that for every

£>0 there is a homotopy H: Xxl^-X such that H{x,Qi)―x, H(x,l) = rno(x) and

p(H(x,t), x)<$ for each xeX, tel and some positiveintegers n0. Choose a positive

integer n0 such that XaUs/S(Xno). Without loss of generality, we may assume

that wo = l. By (4.10), for each n there is a map <f>n:XnxXnxI^>-Xn such that

(2) $n(x, y,0)= x , 0u(x,y,l) = y and

(3) pi4>n(x,y,t),x)^p{x,y) for each x,y£Xn and tel.

Consider the set

(4) XxJ={(x,t)£XxI＼0^t^P(x,X1)}.

Define a map p:XxI-+XxI by

(5) p(x,t)= (x,t-p(x,X1)) for (x,t) XxI.

Also, define a function G : Xx I-^-X by

Jar,

＼<f>n+i(.rn+i(x),rn(x),an(x,t))

fO,

where an(x,t)= ＼ {t~p{x,Xn+1))
{(p(x,Xn)-P(x,Xn+1)) '

if *=0,

if p(x,Xn+l) ―t,

if p(x, Xn+i)<t^p(x, Xn)

By (1),(2),(3),(4) and (6), we can prove that G is continuous. Finally, define H―

Gop:XxI-+XxI-+X. Then H(x,0) = x, H{x,l) = rl{x) and p(H(x, t),x)^3-P(x,X1)

^s for each xeX. This completes the proof.

(4.12) Example. In the statement of (4.11), we cannot conclude that X―

Un=i Xn has a scalene metric px- Consider the following sets in the 3-dimensional

space E% with Euclidean metric p:

Y={(x,y,z)&Es＼＼y＼^x, -l^z^l, x2 + y2+ z2^l and (x + l)2+ y2 + z2^32},

and for each n=2, 3,･･･,

Xn=YnUx,y,z)eE* (,+1)
2 / n+2＼2}

n )

Then Y=X=＼J%=lXn. It can be checked that each Xn is scalene convex in Y,

but py is not a scalene metric. In fact,if a―I

1

VI"
_1_ ≫

)

and b ―
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In general, the limit of scalene metric subspaces in a metric space with met-

ric p is not a scalene metric space with respect to p. We need the following

definition. Let Y be a metric space with metric p. A family {Xa} of subsets of

Y is uniformly scalene provided that for any s>0 and if aa,bn£Xa with p{aa,b^^-s,

then there are points cazXa such that if 5{an,bn)denotes inf {max {p(x, aa),p(x, ba)}
xexa

-p(x,ca)}, then inf o{aa,ba)>0

(4.13) Proposition. Let Y be a compactum with metric p. If a sequence {Xn}

of subcompacta of Y is uniformly scalene and lim Xn―X, then px is a scalene metric

of X. In Particular.X is an AR.

Proof. Let a,b£X and a^b. Put s = p(a,b). Choose sequences {an}, {bn} of

points such that an,bn£Xn, lim an = a and limbn = b. We may assume that p(an,bn)

^2e/3 for each n. Since {Xn} is uniformly scalene, there are points cnzXn and

some positive number 8 such that max {p{x, an), p(x, bn)}―p{x, cw)^<5 for each x£Xn-

We may assume that Vxm.cn―c£X. Then if xqX, for every xneXn we have

p{x, C)tkp(x, Xn) + p(xn, Cn)+ p(Cn, c)

^p(x, Xn) + max {p(xn, an), p(xn, bn)}+ p(cn, c)-S .

Choose a sequence xu x2, ･･･ of points such that xneXn and lim#≪=.£. Since

lim p(xn, an) = p{x, a) and lim p(xn, bn) = p(x, b), we have p(x, c)<max {p(x, a), p(x, b)}

for xeX. Hence c lp(a, b).

(4.14) Question. Let Y be a compactum with metric p and let {Xra} be a

sequence of subcompacta of Y. If /?xrais scalene (≪= 1,2, ･■･) and limX≪=X, is

V un AT??

(4.15) Question. If Xi (i=l, 2,3) is a compactum and Xh X2 and Xs=X1f]X2

admit scalene metrics, does XjUX2 admit a scalene metric? Does XxxX2 admit

a scalene metric?

In relation to (4.15), the following is clear.

(4.16) Proposition. // Xi and X2 admit scalene metrics and have only one

common toint. then X, I)X-> admits a scalene metric.

5. Scalene metrics and some selection theorems.

In this section, we shall prove some selection theorems in an aspect which

Hiffprc:fmm that nf TT.lVTirhapi
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(5.1) Theorem. Suppose that Y is any topological space and X is a metric

space with metric p. If <p: Y-^2X is continuous and pvW is a scalene metric for

each (p(y), then there is a continuous selection s: Y-+X for <p.

Proof. For every yeY, let s: Y^-X be the function defined by s(y) = ry(<p(y)),

where rv:2'Pm^>-(p{y) is defined as in the proof of (3.10). We have to prove that

5 is continuous. Let yo Y and ei>0. Note that

(1) M {frcVo-)(x)＼xG<p(.y0)-Utl/2(s(yo))}-m(<p(yo))= ei>0.

(for the definitions of /P(j,0)and m(<p(y0)), see the proof of (3.10)). Choose a neigh-

borhood V of y0 in Y such that if ?/g V, Hp{(p{y0),(p{y))<8-llA-m＼n{eue2}. We

show s(V)dUH(s(y0)). Suppose, on the contrary, that s(y)$Uei(s(y0)) for some yeV.

Choose a point yi£cp(y)such that p(yi,s(yo))<8. Note that yi^s(y). Then we have

(2) f9w(vi)^&Vu s(yo))+m((p(y0)) + Hp(<p(y0),<p(y))<m(<p(yo))+2d.

On the other hand, choose a point yi <p(y0)such that p(s(y),y2)<d. Note that y-

G<p(yo)―Us1/2(s(yo)). Then by (1) and (2), we have

(3) m((p(y))=f9W(s(y))^fvCyo)(y2)-p(s(y), y2)-Hp(<p(y), <p(y0))

^m(<p(yo))+e2-2d

^m(<p(y0))+2d>fvOj)(yi).

This is a contradiction. Hence s: Y-^-X is continuous. This completes the proof

(5.2) Theorem. Let X, Y, p and <p be as in the preceding theorem. If f, g

Y-+X are continuous selections for <p, then there is a homotopy hiYxl^-X suo

that h(y,0)=f(y＼ h(y,l) = g(y), h({y}xl)cz<p(y) and di^m(h{{y}Xl)) = p{f(y),g(y)) fa

Proof. Define a function ＼: Y-+2X by

(1) ＼(y)=I^Jf^U(^jc:<p{y) for each 7/eF.

Then ＼ is continuous.

To prove this, we first show that ＼ is upper semi-continuous. Let yeY and

£>0. Note ＼(y)= {c <p(y)＼max{p(x, f(y)), p(x, g(y))}^p(x, c) for x£(p{y)}. For each

ce<p(y)-Ut/2(W(y)), let ≪(c)= sup {p(x, c)-max {p(x, /(?/)),p(x, g{y))}＼x£(p{y)}.Then we

have

(2) inf {a(c)＼ce<p(y)-U^my))} = ei>0 .

Put 5=l/4-min {£,£4>0. Since <p:F-^2X is continuous, there is a neighborhood V

of y in Y such that for z V, df(z), f(y))<d, p(g(z),g(y))<5 and Hp{<p{z),(p{y))<d.
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We show that if zgV, ＼(z)c.Ui(＼(y)). Suppose, on the contrary, that for some

zgV, ＼(z)(tU/x＼(y)). Choose a point czW{z) such that c$U*(W(y)) and a point co£

<p(y) such that p(c,co)<8. Since co£<p(y)― Ue,/z{＼{y)), there is a point xo <p(y) such

that a{co) ―p{xQ, c0) ―max {p(x0, f(y)), p(x0, f/(?/))}^si>0. Let xx£(p(z) with ^o, a-,)<<5.

Then by (2) we have

(3) p(c, xj)^:p(co, xo) ―p(c, Co) ―p(xo, xi)

>max {/?(x0, f(y)), p(x0, g(y))}+s1-2d

^max {p(xu f(z)), p(xu g(z))}-25+e1-2d

~^max {p(xu /(≪)),|o(ari,0(2))}.

(3) implies that cW(z). This is a contradiction. Hence ＼ is upper semi-continuous.

Next, we show that ＼ is lower semi-continuous. Let co^＼(y) and s>0. By

(4.2), there is a point clelPlfW(f(y),g(y)) such that p(co,Ci)<sl2. Put s^infimax

{jo(.r,f{y)), p(x, g{y)))~p{x,Ci)＼x <p(y)}>0. Since <p is continuous, there is a neigh-

borhood F of y in F such that if zgV, Hp(<p(z),<p(y))<ll4-mm{e,ei}=5>0 and

p(f(z),f(y))<d, p(g{z),g(y))<6. Let 2 F. Take a point ce<p(z) with p(c,Ci)<8.

For each xg^(^), choose a point x'o.(p{y) with p{x,x')<8. Then we have

(4) ^(c, x)^p{c, d) + p{cu x') + p(xf, x)

^max {p{x', /(1/)), K*-', g(2/))}-ei+25

<max {^, /(≪)), ^>(;r,g(2))}-£l+4o

^max {p{x, /(≪)),K^, g(z))} ･

Hence c£lPHJf(z),g(z))cz＼(z). Note that

(5) (0(6% 6-0)^KC' Ci) + |O(Ci,Co)<c .

This implies that ＼ is lower semi-continuous. Hence ＼ is continuous.

Next, we define a homotopy h: Yxl-+X as follows. Since pww is a scalene

metric, there is a retraction ry＼2'Hv)^＼(y). Define a homotopy F: YxI->X by

F(?/, t)= ry(Kp(f(y), t-p(fiy), g(y)))f]＼(y)) for y F, ^/.

By (4.4) and the proof of (3.10), F is continuous. Then

(6) F({y}xl)cz＼(y), F{y,0) = f(y) and F(y,l)^ry(＼(y)) for yeY.

Similarly, we have a homotopy G: Yxl-^X such that

(7) G({y}xl)cz＼(y), G(y,0) = g(y) and G(y,＼) = ry(W{y)) for 7/eF.

By (6) and (7), define a homotopy h: Yxl->X by

＼H(yf2t), if 0^^1/2,

'(?/)
j 1G(v,2-2^),

if 1/2^^1.
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Since diarn W(y)= p(f(y),g(y)＼we have diam h({y}xl)-p(f(y), g(y)). This completes

the nroof.

(5.3) Corollary. Let X and Y be metricspaces and p be a metric on X. If

f:X―*Y is a proper open map and p/-hv>is scalene for each yzY, then f is a

fiberhomotopy equivalence.In particular,if X is an ANR, then Y is an ANR.

(5.4) Corollary. Let Y be a complete metric space and X be a compactum

with metric p. If <p:Y->2X is upper {or lower) semi-continuous and p9W is a

scalene metric for each y£Y, then there is a dense Gg-subset Y' of Y and a con-

tinuous selections: Y'^-X for <p＼Y':Y'-+2X.

(5.4) follows from (5.1) and [5, Corollary 1, p. 71].

References

[ 1 ] Borsuk, K., Theory of retract, Monografie Matematyczne, Vol. 44, Warszawa, Poland,

1967.

[ 2 ] Curtis, D.W. and Schori, R. M., Hyperspaces of Peano continua are Hilbert cubes, Fund.

Math. 101 (1978), 19-38.

[ 3 ] Goodykoontz, J.T. Jr. and Nadler, S. B. Jr., Whitney levels in hyperspaces of certain

Peano continua, Trans. Amer. Math. Soc. 274 (1982), 671-694.

[ 4 ] Dowker, C. H., Homotopy extension theorem, Proc. London Math. Soc. 6 (1959), 100-

1ifi

[5]

[6]

[7]

[8]

[9]

Kuratowski, K., Topology, Vol. II, Academic Press, New York, 1968.

Michael, E., Continuous selections I, Ann. of Math. 63 (1956), 361-382.

, Continuous selections II, Ann. of Math. 64 (1956), 562-580.

, Continuous selections III, Ann. of Math. 65 (1957), 375-390.

, Convex structures and continuous selections, Canadian J. Math. 11 (1959),

556-575.

[10] Wojdysiawski, M., Retractes absolus et hyperespaces des continus, Fund. Math. 32

(1939). 184-192.

Institute of Mathematics

University of Tsukuba

Ibaraki, 305 Japan


