COVERING PROPERTIES IN COUNTABLE PRODUCTS

By

Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a σ discrete closed refinement, and metacompact (countably metacompact) if every open cover (countable open cover) of X has a point finite open refinement. A space X is said to be metalindelöf if every open cover of X has a point countable open refinement. A collection \mathcal{U} of subsets of a space X is said to be interior-preserving if $\operatorname{int}(\cap \mathcal{CV}) = \cap \{\operatorname{int} V : V \in \mathcal{CV}\}$ for every $\mathcal{CV} \subset \mathcal{U}$. Clearly, an open collection \mathcal{U} is interior-preserving if and only if $\cap \mathcal{CV}$ is open for every $\mathcal{CV} \subset \mathcal{U}$. A space X is said to be orthocompact if every open cover of X has an interior-preserving open refinement. Every paracompact Hausdorff space is subparacompact and metacompact, and every metacompact space is countably metacompact, metalindelöf and orthocompact. The reader is refered to D.K. Burke [4] for a complete treatment of these covering properties and some informations of their role in general topology.

Let \mathcal{DC} be the class of all spaces which have a discrete cover by compact sets. The topological game $G(\mathcal{DC}, X)$ was introduced and studied by R. Telgársky [19]. The games are played by two persons called Players I and II. Players I and II choose closed subsets of II's previous play (or of X, if n=0): Player I's choice must be in the class \mathcal{DC} and II's choice must be disjoint from I's. We say that Player I wins if the intersection of II's choices is empty. Recall from [19] that a space X is said to be \mathcal{DC} -like if Player I has a winning strategy in $G(\mathcal{DC}, X)$. The class of \mathcal{DC} -like spaces includes all spaces which admit a σ -closure-preserving closed cover by compact sets, and regular subparacompact, σ -C-scattered spaces.

Paracompactness and Lindelöf property of countable products have been studied by several authors. In particular, if X is a separable metric space or X is a regular Čech-complete Lindelöf space or X is a regular C-scattered Lindelöf space, then $X^{\omega} \times Y$ is Lindelöf for every regular hereditarily Lindelöf space Y. The first result is due to E. Michael (cf. [14]) and the second one

Received June 10, 1992, Revised February 1, 1993.

is due to Z. Frolik [9] and the third one is due to K. Alster [1]. K. Alster [2] also proved that if Y is a perfect paracompact Hausdorff space and X_n is a scattered paracompact Hausdorff space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} Y_n$ is paracompact. Furthermore, the author [17] proved that if Y is a perfect paracompact Hausdorff (regular hereditarily Lindelöf) space and X_n is a paracompact Hausdorff (regular Lindelöf) \mathcal{DC} -like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is paracompact (Lindelöf).

The aim of this paper is to consider subparacompactness, metacompactness, metalindelöf property and orthocompactness of countable products. We show that if Y is a perfect subparacompact space and X_n is a regular subparacompact \mathcal{DC} -like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is subparacompact. We also prove that if X_n is a regular metacompact \mathcal{DC} -like (C-scattered) space for each $n \in \omega$, then $\prod_{n \in \omega} X_n$ is metacompact. We also prove that if X_n is metacompact. Furthermore, let Y be a hereditarily metacompact space and X_n be a regular metacompact \mathcal{DC} -like (C-scattered) space for each $n \in \omega$. Then the following statements are equivalent: (a) $Y \times \prod_{n \in \omega} X_n$ is metacompact. For metalindelöf property, it will be shown that if Y is a hereditarily metalindelöf space and X_n is a regular metalindelöf \mathcal{DC} -like (C-scattered) space for each n each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_n$ is metalindelöf.

In this paper, we deal with infinite spaces. No separation axioms are assumed. However, regular spaces are assumed to be T_1 . Let |A| denote the cardinality of a set A. The letter ω denotes the set of natural numbers.

Given a cover \mathcal{U} of a space X, and $Y \subset X$, let $\mathcal{U}|Y = \{U \cap Y : U \in \mathcal{U}\}$. For each $x \in X$, let $\mathcal{U}_x = \{U \in \mathcal{U} : x \in U\}$ and let $\operatorname{ord}(x, \mathcal{U}) = |\mathcal{U}_x|$. Let \mathcal{U}^F be the collection of all finite unions of elements of \mathcal{U} .

We use the finite sequences in the proofs. So we adopt the following notations for them: Let A be a set, and let $\mathcal{P}(A)$ be the set of all nonempty subsets of A. Let $A^0 = \{\emptyset\}$. For each $n \ge 1$, A^n denotes the set of all *n*-sequences of elements of A and $A^{<\omega} = \bigcup_{n \in \omega} A^n$. If $\tau = (a_0, \dots, a_n) \in A^{<\omega}$ and $a \in A$, then $\tau \oplus a$ denotes the sequence (a_0, \dots, a_n, a) and $\tau_- = (a_0, \dots, a_{n-1})$ if $n \ge 1$ and $\tau_- = \emptyset$ if n = 0.

2. Topological games.

For the class \mathcal{DC} and a space X, the *topologizal game* $G(\mathcal{DC}, X)$ is defined as follows: There are two players I and II (the pursuer and evader). They alternatively choose consecutive terms of a sequence $\langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n \rangle$ \cdots of subsets in X. When each player chooses his term, he knows \mathcal{DC} , X and their previous choices.

For a space X, let 2^X denote the set of all closed subsets of X. A sequence $\langle E_0, F_0, E_1, F_1, \dots, E_n, F_n, \dots \rangle$ of subsets in X is a *play* of $G(\mathcal{DC}, X)$ if it satisfies the following conditions: For each $n \in \omega$,

- (1) E_n is the choice of Player I,
- (2) F_n is the choice of Player II,
- (3) $E_n \in 2^X \cap \mathcal{DC}$,
- (4) $F_n \in 2^X$,
- (5) $E_n \cup F_n \subset F_{n-1}$, where $F_{-1} = X$,
- (6) $E_n \cap F_n = \emptyset$.

Player I wins if $\bigcap_{n \in \omega} F_n = \emptyset$ (Player II has no place to run away). Otherwise Player II wins.

A finite sequence $\langle E_0, F_0, E_1, F_1, \dots, E_m, F_m \rangle$ is said to be *admissible* if it satisfies the above conditions (1)-(6) for each $n \leq m$.

Let s' be a function from $\bigcup_{n \in \mathbb{N}} (2^X)^{n+1}$ into $2^X \cap \mathcal{DC}$. Let

 $\mathcal{S}_0 = \{F : \langle s'(X), F \rangle \text{ is admissible for } G(\mathcal{DC}, X) \}$.

Moreover, we can inductively define

$$\mathcal{S}_n = \{ (F_0, F_1, \dots, F_n) \colon \langle E_0, F_0, E_1, F_1, \dots, E_n, F_n \rangle$$

is admissible for $G(\mathcal{DC}, X)$, where $F_{-1} = X$ and
 $E_i = s'(F_0, F_1, \dots, F_{i-1})$ for each $i \leq n \}$.

Then the restriction s of s' to $\bigcup_{n \in \omega} S_n$ is said to be a strategy for Player I in $G(\mathcal{DC}, X)$. We say that the strategy s is a winning one if Player I wins every play $\langle E_0, F_0, E_1, F_1, \cdots, E_n, F_n, \cdots \rangle$ such that $E_n = s(F_0, F_1, \cdots, F_{n-1})$ for $n \in \omega$.

Next, we define another (winning) strategy for Player I in $G(\mathcal{DC}, X)$, which depends only on the preceding choice of Player II.

A function s from 2^x into $2^x \cap \mathcal{DC}$ is said to be a stationary strategy for Player I in $G(\mathcal{DC}, X)$ if $s(F) \subset F$ for each $F \in 2^x$. We say that the s is winning if he wins every play $\langle s(X), F_0, s(F_0), F_1, s(F_1), \cdots \rangle$. That is, a function s from 2^x into $2^x \cap \mathcal{DC}$ is a stationary winning strategy if and only if it satisfies

(i) $s(F) \subset F$ for each $F \in 2^X$,

(ii) if $\{F_n : n \in \omega\}$ is a decreasing sequence of closed subsets of X such that $s(F_n) \cap F_{n+1} = \emptyset$ for each $n \in \omega$, then $\bigcap_{n \in \omega} F_n = \emptyset$.

The following lemma shows that there is no essential difference between the winning strategy and the stationary winning strategy. LEMMA 2.1 (F. Galvin and R. Telgársky [10]). Player I has a winning strategy in $G(\mathcal{DC}, X)$ if and only if he has a stationary winning strategy in it.

As described in the introduction, a space X is \mathcal{DC} -like if Player I has a winning strategy in $G(\mathcal{DC}, X)$.

LEMMA 2.2 (R. Telgársky [19]). If a space X has a countable closed cover by \mathcal{DC} -like sets, then X is a \mathcal{DC} -like space.

Recall that a space X is *scattered* if every non-empty subset A of X has an isolated point of A, and C-scattered if for every non-empty closed subset A of X, there is a point of A which has a compact neighborhood in A. Then scattered spaces and locally compact Hausdorff spaces are C-scattered. Let X be a space. For each $F \in 2^X$, let

 $F^{(1)} = \{x \in F : x \text{ has no compact neighborhood in } F\}$.

Let $X^{(0)} = X$. For each successor ordinal α , let $X^{(\alpha)} = (X^{(\alpha-1)})^{(1)}$. If α is a limit ordinal, let $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$. Notice that a space X is C-scattered if and only if $X^{(\alpha)} = \emptyset$ for some ordinal α . If X is C-scattered, let $\varepsilon(X) = \inf \{\alpha : X^{(\alpha)} = \emptyset\}$. We say that $\varepsilon(X)$ is the C-scattered height of X. For each $x \in X$, we denote by $\alpha_X(x)$ the ordinal such that $x \in X^{(\alpha_X(x))} - X^{(\alpha_X(x)+1)}$. Let X be a regular C-scattered space. If A is either open or closed in X, then A is C-scattered. More precisely, if A is an open subset of X, then $A^{(\alpha)} = X^{(\alpha)} \cap A$ for each $\alpha < \varepsilon(X)$ and if A is a closed subset of X, then $A^{(\alpha)} \subset A \cap X^{(\alpha)}$ for each $\alpha < \varepsilon(X)$. Therefore, if $x \in A$, then $\alpha_A(x) \le \alpha_X(x)$ and hence, $\varepsilon(A) \le \varepsilon(X)$. A space X is said to be σ -scattered (σ -C-scattered) if X is the union of countably many closed scattered (C-scattered) subspaces.

LEMMA 2.3 (R. Telgársky [19]). (a) If a space X has a σ -closure-preserving closed cover by compact sets, then X is a \mathcal{DC} -like space.

(b) If X is a regular subparacompact, σ -C-scattered space, then X is \mathcal{DC} -like space.

LEMMA 2.4 (G. Gruenhage and Y. Yajima [11], Y. Yajima [21]). (a) If X is a regular subparacompact (metacompact) \mathcal{DC} -like space, then $X \times Y$ is subparacompact (metacompact) for every subparacompact (metacompact) space Y.

(b) If X is a regular C-scattered metacompact space, then $X \times Y$ is metacompact for every metacompact space Y.

568

For topological games, the reder is referred to R. Telgársky [18], [19] and Y. Yajima [21].

3. Preliminaries.

Let Z be a space and $\{Y_i: i \in \omega\}$ be a countable collection of spaces. For $Z \times \prod_{i \in \omega} Y_i$, we denote by \mathscr{B} the collection of all basic open subsets of $Z \times \prod_{i \in \omega} Y_i$. Let us denote by \mathscr{R} the collection of closed subsets of $Z \times \prod_{i \in \omega} Y_i$ consisting of sets of the form $R = E_R \times \prod_{i \in \omega} R_i$, where E_R is a closed subset of Z and there is an $n \in \omega$ such that for each $i \leq n$, R_i is a closed subset of Y_i and for each i > n, $R_i = Y_i$. For each $B = U_B \times \prod_{i \in \omega} B_i \in \mathscr{B}$ and $R = E_R \times \prod_{i \in \omega} R_i \in \mathscr{R}$, we define $n(B) = \inf\{i \in \omega: B_j = Y_j \text{ for } j \geq i\}$ and $n(R) = \inf\{i \in \omega: R_j = Y_j \text{ for } j \geq i\}$. We call n(B) and n(R) the length of B and R respectively. Let $\mathcal{K} = \{\prod_{i \in \omega} K_i: K_i \text{ is a compact subset of } Y_i \text{ for each } i \in \omega\}$. For each $z \in Z$ and $K \in \mathscr{K}$, let $K_{(z, K)} = \{z\} \times K$.

LEMMA 3.1 (D. K. Burke [3], [4]). The following are equivalent for a space X.

- (a) X is subparacompact,
- (b) Every open cover of X has a σ -locally finite closed refinement,

(c) For every open cover \mathcal{U} of X, there is a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x\in X$, there is an $n\in\omega$ with $\operatorname{ord}(x, \mathcal{V}_n)=1$.

It is well known that a space X is metacompact (metalindelöf) if and only if for every open cover \mathcal{U} of X, \mathcal{U}^F has a point finite (point countable) open refinement. In order to study subparacompactness of $Z \times \prod_{i \in \omega} Y_i$, we need the following lemma.

LEMMA 3.2. Let Z be a space and $\{Y_i: i \in \omega\}$ be a countable collection of spaces. Assume that all finite subproducts of $Z \times \prod_{i \in \omega} Y_i$ are subparacompact. If, for every open cover \mathcal{O} of $Z \times \prod_{i \in \omega} Y_i$, \mathcal{O}^F has a σ -locally finite refinement consisting of elements of \mathfrak{R} , then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. Let \mathcal{O} be an open cover of $Z \times \prod_{i \in \omega} Y_i$. We may assume that $\mathcal{O} \subset \mathcal{B}$. By the assumption, there is a σ -locally finite refinement $\bigcup_{m \in \omega} \mathcal{R}_m$ of \mathcal{O}^F , consisting of elements of \mathcal{R} . Fix $m \in \omega$. For each $R = E_R \times \prod_{i \in \omega} R_i \in \mathcal{R}_m$, let $\{O(R, k):$ $k=0, \dots, j(R)\} \text{ be a finite subcollection of } \mathcal{O} \text{ such that } R\subset_{k=0}^{j(R)} O(R, k). \text{ Let } O(R, k)=U_{R,k}\times\prod_{i\in\omega}O(R, k)_i \text{ for each } k\leq j(R), \text{ and let } n=\max\{n(R), n(O(R, k)): k\leq j(R)\}. \text{ Put } R(n)=E_R\times\prod_{i=0}^n R_i \text{ and } O(R, k, n)=U_{R,k}\times\prod_{i=0}^n O(R, k)_i \text{ for each } k\leq j(R). \text{ Let } \mathcal{O}(R)=\{O(R, k, n): k\leq j(R)\}. \text{ Then } R(n)\subset\cup\mathcal{O}(R). \text{ Rince } Z\times\prod_{i=0}^n Y_i \text{ is subparacompact and } R(n) \text{ is a closed subspace of } Z\times\prod_{i=0}^n Y_i, R(n) \text{ is subparacompact. Thus there is a } \sigma\text{-discrete closed refinement } \bigcup_{t\in\omega} \mathcal{D}_t(R) \text{ of } \mathcal{O}(R) | R(n). \text{ For each } t\in\omega, \text{ let } \mathcal{D}_t'(R)=\{D\times\prod_{i>n}Y_i: D\in\mathcal{D}_i\}. \text{ Put } \mathcal{G}_{m,t}=\cup\{\mathcal{D}_t'(R): R\in\mathcal{R}_m\} \text{ for each } m, t\in\omega. \text{ Then } \bigcup_{m,t\in\omega} \mathcal{G}_{m,t} \text{ is subparacompact. The proof is completed.}$

In order to study metacompactness and metalindelöf property of countable products of *C*-scattered spaces, we need the following.

LEMMA 3.3. Let X be a regular C-scattered metacompact (metalindelöf) space. For every open over \mathcal{U} of X, there is a point finite (point countable) open cover \mathcal{CV} of X such that: For each $V \in \mathcal{CV}$,

- (a) clV is contained in some member of U,
- (b) $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon(X)$.

PROOF. We prove this lemma by induction on the C-scattered height $\varepsilon(X)$ for the sake of completeness. Let X be a locally compact metacompact (metalindelöf) Hausdorff space (i.e. $\varepsilon(X)=1$). Thus there is a point finite (point countable) open cover \mathcal{V} of X satisfying the condition (a) such that for each $V \in \mathcal{CV}$, clW is compact. Clearly \mathcal{V} satisfies the condition (b). Let X be a regular C-scattered metacompact (metalindelöf) space and $\varepsilon = \varepsilon(X)$, and assume that for each $\alpha < \varepsilon$, the lemma holds. Then there is a point finite (point countable) open cover \mathcal{W} of X such that (cf. R. Telgársky [18, Theorem 1.6]): Let $W \in \mathcal{W}$.

- (i) clW is contained in some member of U,
- (ii) If ε is a successor ordinal, then $(clW)^{(\varepsilon-1)}$ is compact,
- (iii) If ε is a limit ordinal, then $(clW)^{(\alpha)} = \emptyset$ for some $\alpha < \varepsilon$.

Case 1. ε is a limit ordinal. By induction hypothesis, for each $W \in \mathcal{W}$, there is a point finite (point countable) open collection $\mathcal{CV}'(W)$ in *clW* such that $\mathcal{CV}'(W)$ covers *clW* and for each $V \in \mathcal{CV}'(W)$, $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon$. Put $\mathcal{CV}(W) = \mathcal{CV}'(W) | W$ for each $W \in \mathcal{W}$ and $\mathcal{CV} = \bigcup \{\mathcal{CV}(W) : W \in \mathcal{W}\}$. Then \mathcal{CV} satisfies the conditions (a) and (b). Case 2. ε is a successor ordinal. Let $\mathcal{W}_0 = \{W \in \mathcal{W} : \varepsilon(clW) = \varepsilon\}$, and $\mathcal{W}_1 = \mathcal{W} - \mathcal{W}_0$. Take a $W \in \mathcal{W}_1$. Then $\varepsilon(clW) < \varepsilon$. By induction hypothesis, there is a point finite (point countable) open collection $\mathcal{V}'(W)$ in clW such that $\mathcal{V}'(W)$ covers clW and for each $V \in \mathcal{V}'(W)$, $(clV)^{(\alpha)}$ is compact for some $\alpha < \varepsilon$. Put Put $\mathcal{V}(W) = \mathcal{V}'(W) | W$ for each $W \in \mathcal{W}_1$. Take a $W \in \mathcal{W}_0$. Since $\varepsilon(clW) = \varepsilon$, $(clW)^{(\varepsilon-1)}$ is compact. Let $\mathcal{V} = \mathcal{W}_0 \cup (\cup \{\mathcal{V}(W) : W \in \mathcal{W}_1\})$. Then \mathcal{V} satisfies the conditions (a) and (b).

The proof is completed.

4. Subparacompactness.

We firstly study subparacompactness of $Z \times \prod_{i \in \mathbb{Z}} Y_i$.

THEOREM 4.1. If Z is a perfect subparacompact space and Y_i is a regular subparacompact \mathcal{DC} -like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. Without loss of generality, we may assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. Indeed, put $X = \bigoplus_{i \in \omega} Y_i \cup \{a\}$, where $a \notin \bigcup_{i \in \omega} Y_i$. The topology of X is as follows: Every Y_i is an open-and-closed subspace of X and a is an isolated point in X. Since every Y_i is a regular subparacompact \mathcal{DC} -like space, by Lemma 2.2, X is a regular subparacompact \mathcal{DC} -like space. $Z \times \prod_{i \in \omega} Y_i$ is a closed subspace of $Z \times X^{\omega}$. Therefore, if $Z \times X^{\omega}$ is subparacompact, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Put $\mathcal{O}' = \{B \in \mathcal{B} : B \subset O \text{ for some } O \in \mathcal{O}^F\}$. For each $z \in Z$ and $K \in \mathcal{K}$, there is an $O \in \mathcal{O}^F$ such that $K_{(z,K)} \subset O$. Then, by Wallace theorem in R. Engelking [8], there is a $B \in \mathcal{B}$ such that $K_{(z,K)} \subset B \subset O$. Thus we have $B \in \mathcal{O}'$. Define $n(K_{(z,K)}) = \inf\{n(O) : O \in \mathcal{O}' \text{ and } K_{(z,K)} \subset O\}$.

Let s be a stationary winning strategy for Player I in $G(\mathcal{DC}, X)$. Let $R = E_R \times \prod_{i \in \omega} R_i \in \mathcal{R}$ such that for each $i \leq n(R)$, we have already obtained a compact set $C_{\lambda(R,i)}$ of R_i . $(C_{\lambda(R,n(R))} = \emptyset$. $C_{\lambda(R,i)} = \emptyset$ may be occur for i < n(R).) Fix $i \leq n(R)$. If $C_{\lambda(R,i)} \neq \emptyset$, let $F_{\Gamma(R,i,m)} = R_i$ for each $m \in \omega$. Put $\Lambda(R, i) = \{\lambda(R, i)\}$ and $\Gamma(R, i, m) = \{\gamma(R, i, m)\}$ for each $m \in \omega$. Let $\mathcal{C}(R, i) = \{C_{\lambda} : \lambda \in \Lambda(R, i)\} =$ $\{C_{\lambda(R,i)}\}$ and $\mathfrak{L}(R, i, m) = \{F_T : \gamma \in \Gamma(R, i, m)\} = \{F_{\Gamma(R, i, m)}\}$ for each $m \in \omega$. Put $\mathfrak{L}(R, i) = \bigcup_{m \in \omega} \mathfrak{L}(R, i, m)$. Assume that $C_{\lambda(R,i)} = \emptyset$. Then there is a discrete collection $\mathcal{L}(R, i) = \{C_{\lambda} : \lambda \in \Lambda(R, i)\}$ of compact subsets of X such that $s(R_i) =$ $\cup \mathcal{L}(R, i)$. Since R_i is a closed subspace of X, R_i is a subparacompact space. Then there is a family $\mathcal{F}(R, i) = \bigcup_{m \in \omega} \mathcal{F}(R, i, m)$, where $\mathcal{F}(R, i, m) = \{F_r : r \in \mathbb{R} \mid i \leq n\}$

 $\Gamma(R, i, m)$, of collections of closed subsets in R_i (and hence, in X), satisfying (1) $\mathfrak{F}(R, i)$ covers R_i ,

- (2) Every member of $\mathcal{F}(R, i)$ meets at most one member of $\mathcal{C}(R, i)$,
- (3) $\mathcal{F}(R, i, m)$ is discrete in X for each $m \in \omega$.

In each case, for $\gamma \in \bigcup_{m \in \omega} \Gamma(R, i, m)$, let $K_{\gamma} = F_{\gamma} \cap C_{\lambda}$ if $F_{\gamma} \cap C_{\lambda} \neq \emptyset$ for some (unique) C_{λ} . If $F_{\gamma} \cap (\bigcup C(R, i)) = \emptyset$, then we take a point $p_{\gamma} \in F_{\gamma}$ and let $K_{\gamma} = \{p_{\gamma}\}$. Thus, if $C_{\lambda(R,i)} \neq \emptyset$, then $K_{\gamma(R,i,m)} = F_{\gamma(R,i,m)} \cap C_{\lambda(R,i)} = C_{\lambda(R,i)}$ for each $m \in \omega$. For $\eta = (m_{0}, \dots, m_{n(R)}) \in \omega^{n(R)+1}$, let $\Delta_{R,\eta} = \Gamma(R, 0, m_{0}) \times \dots \times \Gamma(R, n(R), m_{n(R)})$. For each $\eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \Delta_{R,\eta}$, let $K(\delta) = K_{\gamma(\delta,0)} \times \dots \times K_{\gamma(\delta,n(R))} \times \{a\} \times \dots \times \{a\} \times \dots$, and let $\mathcal{K}_{R,\eta} = \{K(\delta) : \delta \in \mathcal{A}_{R,\eta}\}$. Then $\mathcal{K}_{R,\eta} \subset \mathcal{K}$. For each $z \in E_{R}, \eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \mathcal{A}_{R,\eta}$, let $r(K_{(z, K(\delta))}) = \max\{n(K_{(z, K(\delta))}), n(R)\}$. Fix $z \in E_{R}, \eta \in \omega^{n(R)+1}$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(R))) \in \mathcal{A}_{R,\eta}$, let $n(K_{(z, K(\delta))}) = n(O_{z,\delta})$. Then we can take a subset $H_{(z, K(\delta))} = H_{z,\delta} \times \prod_{i \in \omega} H_{(z, K(\delta)),i}$ of $Z \times X^{\omega}$ such that

- (4) $H_{z,\delta}$ is an open neighborhood of z in E_R such that $H_{z,\delta} \subset U_{z,\delta}$,
- (5) $H_{z,\delta} \times \prod_{i=0}^{n(K(z,K(\delta)))^{-1}} cl H_{(z,K(\delta)),i} \times X \times \cdots \times X \times \cdots \subset O_{z,\delta},$
- (6-1) For each *i* with $n(K_{(z, K(\delta))}) \leq i \leq r(K_{z, K(\delta)})$, let $H_{(z, K(\delta)), i} = F_{r(\delta, i)}$,

(6-2) For each $i < n(K_{(z, K(\delta))})$ with $i \le n(R)$, $H_{(z, K(\delta)), i}$ be an open subset of $F_{\tau(\delta, i)}$ such that $K_{\tau(\delta, i)} \subset H_{(z, K(\delta)), i} \subset clH_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,

(6-3) For each *i* with $n(R) < i < n(K_{(z, K(\delta))})$, let $H_{(z, K(\delta)), i} = \{a\}$,

(6-4) In case of that $r(K_{(z, K(\delta))})=n(R)$, let $H_{(z, K(\delta)), i}=X$ for n(R) < i. In case of that $r(K_{(z, K(\delta))})=n(K_{(z, K(\delta))})>n(R)$, let $H_{(z, K(\delta)), i}=X$ for $n(K_{(z, K(\delta))}) \le i$.

Then we have $K_{(z, K(\delta))} \subset H_{(z, K(\delta))}$. For each $j \in \omega$, let $V_j(K(\delta)) = \{z \in E_R : n(K_{(z, K(\delta))}) = j\}$ and $\mathcal{H}_j(K(\delta)) = \{H_{z,\delta} : n(K_{(z, K(\delta))}) = j\}$. Fix $j \in \omega$. Then $\bigcup_{k=0}^{j} V_k(K(\delta)) = \bigcup \{H_{z,\delta} : n(K_{(z, K(\delta))}) \le j\} = \bigcup_{k=0}^{j} (\bigcup \mathcal{H}_k(K(\delta)))$. Since Z is a perfect space, $V_j(K(\delta))$ is an F_{σ} -set in E_R . Since E_R is subparacompact, there is a family $\mathcal{D}_{\eta,\delta,j} = \bigcup_{k\in\omega} \mathcal{D}_{\eta,\delta,j,k}$, where $\mathcal{D}_{\eta,\delta,j,k} = \{D_{\xi} : \xi \in \mathbb{Z}_{\eta,\delta,j,k}\}$, of collections of closed subsets in E_R (and hence, in Z) satisfying

(7) Every member of $\mathcal{D}_{\eta,\delta,j}$ is contained in some member of $\mathcal{H}_{j}(K(\delta))|$ $V_{j}(K(\delta)),$

(8) $\mathcal{D}_{\eta,\delta,j}$ covers $V_j(K(\delta))$,

(9) $\mathcal{D}_{\eta,\delta,j,k}$ is discrete in Z for each $k \in \omega$.

For $k \in \omega$ and $\xi \in \mathbb{Z}_{\eta, \delta, j, k}$, take a $z(\xi) \in V_j(K(\delta))$ such that $D_{\xi} \subset H_{z(\xi), \delta} \cap V_j(K(\delta))$.

Put $F_{\delta} = \prod_{i=0}^{n(R)} F_{\gamma(\delta,i)} \times X \times \cdots X \times \cdots$ and $D_{\xi,\delta} = D_{\xi} \times F_{\delta}$. Then $\{D_{\xi,\delta} : \eta \in \omega^{n(R)+1}, \delta \in \mathcal{A}_{R,\eta}, j, k \in \omega \text{ and } \xi \in \mathcal{Z}_{\eta,\delta,j,k}\}$ is a collection of elements of \mathcal{R} such that for each $\eta \in \omega^{n(R)+1}, \delta \in \mathcal{A}_{R,\eta}, j, k \in \omega$ and $\xi \in \mathcal{Z}_{\eta,\delta,j,k}, D_{\xi,\delta} \subset R$ and $\{D_{\xi,\delta} : \eta \in \omega^{n(R)+1}, \delta \in \mathcal{A}_{R,\eta}, j, k \in \omega \text{ and } \xi \in \mathcal{Z}_{\eta,\delta,j,k}\}$ covers R.

(10) For each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$, $\{D_{\xi,\delta}: \delta \in \mathcal{A}_{R,\eta} \text{ and } \xi \in \mathcal{Z}_{\eta,\delta,j,k}\}$ is discrete in $Z \times X^{\omega}$.

Fix $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Let $(z, x) \in Z \times X^{\omega}$ and $x = (x_i)_{i \in \omega}$. For each $i \leq n(R)$, since R_i is a closed subset of X, we may assume that $x_i \in R_i$. Then, for each $i \leq n(R)$, there is an open neighborhood $B(x_i)$ of x_i in X such that $|\{\delta \in \Delta_{R,\eta} : \prod_{i=0}^{n(R)} B(x_i) \cap F_{\delta}(n(R)) \neq \emptyset\}| \leq 1$, where $F_{\delta}(n(R)) = \prod_{i=0}^{n(R)} F_{\tau(\delta,i)}$ for each $\delta \in \Delta_{R,\eta}$. Put $B'(x) = \prod_{i=0}^{n(R)} B(x_i)$ and $B(x) = B'(x) \times \prod_{i>n(R)} X_i$, where X_i is a copy of X for i > n(R). If $B'(x) \cap F_{\delta}(n(R)) = \emptyset$ for each $\delta \in \Delta_{R,\eta}$, then $Z \times B(x) \in \mathcal{B}$ and $(Z \times B(x)) \cap D_{\xi,\delta} = \emptyset$ for each $\delta \in \Delta_{R,\eta}$ and $\xi \in \Xi_{\eta,\delta,j,k}$. Otherwise, take a unique $\delta \in \Delta_{R,\eta}$ such that $B'(x) \cap F_{\delta}(n(R)) \neq \emptyset$. Since $\mathcal{D}_{\eta,\delta,j,k}$ is discrete in Z, there is an open neighborhood U of z in Z such that $|\{\xi \in \Xi_{\eta,\delta,j,k} : U \cap D_{\xi} \neq \emptyset\}| \leq 1$. Then $U \times B(x) \in \mathcal{B}$ and $|\{D_{\xi,\delta'} : D_{\xi,\delta'} \cap (U \times B(x)) \neq \emptyset, \delta' \in \Delta_{R,\eta}$ and $\xi \in \Xi_{\eta,\delta,j,k}\}| \leq 1$. Thus $\{D_{\xi,\delta} : \delta \in \Delta_{R,\eta}$ and $\xi \in \Xi_{\eta,\delta,j,k}\}$ is discrete in $Z \times X^{\omega}$.

For each $\eta \in \omega^{n(R)+1}$, $\delta \in \mathcal{A}_{R,\eta}$, $j, k \in \omega$ and $\xi \in \mathcal{I}_{\eta,\delta,j,k}$, let $G_{\xi,\delta} = D_{\xi} \times \prod_{i \in \omega} clH_{(z(\xi), K(\delta)), i} \subset D_{\xi,\delta}$ and $\mathcal{G}_{\eta,\delta,j,k}(R) = \{G_{\xi,\delta}: \xi \in \mathcal{I}_{\eta,\delta,j,k}\}$. Define $\mathcal{G}_{\eta,j,k}(R) = \bigcup \{\mathcal{G}_{\eta,\delta,j,k}(R): \delta \in \mathcal{A}_{R,\eta}\}$ for each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Then we have

(11) For each $\eta \in \omega^{n(R)+1}$, $j, k \in \omega$, every member of $\mathcal{G}_{\eta,j,k}(R)$ is contained in some member of \mathcal{O}' .

(12) For each $\eta \in \omega^{n(R)+1}$, *j*, $k \in \omega$, $\mathcal{G}_{\eta,j,k}(R)$ is discrete in $Z \times X^{\omega}$.

This is clear from (10).

(13) For each $\eta \in \omega^{n(R)+1}$, $j, k \in \omega$, every element of $\mathcal{G}_{\eta, j, k}$ has the length $\max\{j, n(R)+1\}$.

Fix $\eta \in \omega^{n(R)+1}$, $\delta = (\gamma(\delta), 0), \dots, \gamma(\delta, n(R))) \in \mathcal{A}_{R,\eta}$, $j, k \in \omega$ and $\xi \in \mathcal{Z}_{\eta, \delta, j, k}$. Then $n(K_{(z(\xi), K(\delta))}) = j$ and hence, $r(K_{(z(\xi), K(\delta))}) = \max\{j, n(R)\}$. Let $A \in \mathcal{P}(\{0, 1, \dots, r(K_{(z(\xi), K(\delta))})\})$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(R)$, i.e., $n(R) \ge j$. For each $i \in A$, let $R_{\xi, A, i} = F_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = clH_{(z(\xi), K(\delta)), i}$. For each i > n(R), let $R_{\xi, A, i} = X$. Put $R_{\xi, A} = D_{\xi} \times \prod_{i \in \omega} R_{\xi, A, i}$. In case of that j > n(R). For each $i \in A$ with $i \le n(R)$, let $R_{\xi, A, i} = F_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = r_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = R_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = R_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = R_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \le n(R)$, let $R_{\xi, A, i} = R_{\gamma(\delta, i)} - H_{(z(\xi), K(\delta)), i}$. Let n(R) $\langle i < j$. If $i \in A$, let $R_{\xi, A, i} = X - H_{(z(\xi), K(\delta)), i} = X - \{a\}$. If $i \notin A$, let $R_{\xi, A, i} = clH_{(z(\xi), K(\delta)), i} = \{a\}$. For $i \ge j$, let $R_{\xi, A, i} = X$. Put $R_{\xi, A} = D_{\xi} \times \prod_{i \in \omega} R_{\xi, A, i}$. In each case, $R_{\xi,A,i} \subset R_i$ for each $i \in \omega$. Notice that if $R_{\xi,A} \neq \emptyset$, then $n(R) < n(R_{\xi,A})$. By the definition, $D_{\xi,\delta} = G_{\xi,\delta} \cup (\cup \{R_{\xi,A}: A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(R)\}\})\})$. For each $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(R)\}\})$, let $\mathcal{R}_{\eta,\delta,j,k,A}(R) = \{R_{\xi,A}: \xi \in \Xi_{\eta,\delta,j,k} \text{ and } R_{\xi,A} \neq \emptyset\}$. For $j, k \in \omega$ and $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(R)\}\})$, define $\mathcal{R}_{\eta,j,k,A}(R) = \cup \{\mathcal{R}_{\eta,\delta,j,k,A}(R): \delta \in \mathcal{A}_{R,\eta}\}$. Then, by (10), we have

(14) Every $\mathcal{R}_{\eta, j, k, A}(R)$ is discrete in $Z \times X^{\omega}$.

Let $\mathcal{R}_{\eta,j,k}(R) = \bigcup \{ \mathcal{R}_{\eta,j,k,d}(R) \colon A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(R)\}\}) \}$. Then, by (14),

(15) For each $\eta \in \omega^{n(R)+1}$, $j, k \in \omega, \mathcal{R}_{\eta,j,k}(R)$ is locally finite in $Z \times X^{\omega}$.

(16) For each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$ with $\Re_{\eta, j, k} \neq \emptyset$, every element of $\Re_{\eta, j, k}$ has the length max $\{j, n(R)+1\}$.

Fix a $R_{\xi,A} = D_{\xi} \times \prod_{i \in \omega} R_{\xi,A,i} \in \mathcal{R}_{\eta,\delta,j,k,A}(R)$ for $\eta \in \omega^{n(R)+1}$, $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \mathcal{A}_{R,\eta}$, $j, k \in \omega, \xi \in \mathcal{I}_{\eta,\delta,j,k}$ and $A \in \mathcal{P}(\{0, 1, \cdots, \max\{j, n(R)\}\})$.

(17) For each $i \in A$ with $i \leq n(R)$ such that $C_{\lambda(R,i)} = \emptyset$, $s(R_i) \cap R_{\xi,A,i} = \emptyset$. Since $R_{\xi,A,i} = F_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i}$, $s(R_i) \cap R_{\xi,A,i} = (\bigcup C(R,i)) \cap (F_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i}) = K_{\gamma(\delta,i)} - H_{(z(\xi),K(\delta)),i} = \emptyset$.

For each $i \notin A$ with $i \leq n(R)$, a compact set $K_{\gamma(\delta,i)}$ is contained in $R_{\xi,A,i} = clH_{(\mathfrak{c}(\xi), K(\delta)), i}$. Let $C_{\lambda(R\xi,A,i)} = K_{\gamma(\delta,i)}$. For each $i \notin A$ with n(R) < i < j, let $C_{\lambda(R\xi,A,i)} = \{a\}$. For each $i \in A$, let $C_{\lambda(R\xi,A,i)} = \emptyset$.

For $t \in \omega$, we shall inductively construct an index set Φ_t and two collections \mathscr{G}_{τ} and \mathscr{R}_{τ} for each $\tau \in \Phi_t$ satisfying

(18) For $t \ge 1$ and $\tau \in \Phi_t$, $\tau_- \in \Phi_{t-1}$,

(19) For $t \in \omega$ and $\tau \in \Phi_t$, \mathcal{G}_{τ} and \mathcal{R}_{τ} are collections of elements of \mathcal{R} ,

(20) For $t \in \omega$ and $\tau \in \Phi_t$ with $\Re_{\tau} \neq \emptyset$, elements of \Re_{τ} have the same length.

Let $\Phi_0 = \omega^3$. For each $\tau = (m, j, k) \in \Phi_0$, let $\mathcal{G}_\tau = \mathcal{G}_\tau(Z \times X^\omega) = \mathcal{G}_{m,j,k}(Z \times X^\omega)$ and $\mathcal{R}_\tau = \mathcal{R}_\tau(Z \times X^\omega) = \mathcal{R}_{m,j,k}(Z \times X^\omega)$. Let $\tau = (m, j, k) \in \Phi_0$. By the construction, \mathcal{G}_τ and \mathcal{R}_τ are collections of elements of \mathcal{R} . Assume that $\mathcal{R}_\tau \neq \emptyset$. By (16), elements of \mathcal{R}_τ have the same length. Thus \mathcal{G}_τ and $\mathcal{R}_\tau, \tau \in \Phi_0$, satisfy the conditions (19) and (20). Assume that for $t \in \omega$, we have already obtained an index set Φ_i , for $i \leq t$, and families $\left\{\mathcal{G}_\tau : \tau \in \bigcup_{i=0}^t \Phi_i\right\}$, $\left\{\mathcal{R}_\tau : \tau \in \bigcup_{i=0}^t \Phi_i\right\}$ satisfying the conditions (18), (19) and (20). Take a $\tau \in \Phi_t$ with $\mathcal{R}_\tau \neq \emptyset$. By (20), elements of \mathcal{R}_τ have the same length. So we denote this length by $n(\tau)$. Let $\Phi_\tau =$ $\{\tau \oplus (\eta, j, k) : \eta \in \omega^{n(\tau)+1}, j, k \in \omega\}$. For each $R \in \mathcal{R}_\tau$ and $\eta \in \omega^{n(\tau)+1}, j, k \in \omega$, we denote $\mathcal{G}_{\eta,j,k}(R)$ and $\mathcal{R}_{\eta,j,k}(R)$ by $\mathcal{G}_{\tau \oplus (\eta,j,k)}(R)$ and $\mathcal{R}_{\tau \oplus (\eta,j,k)}(R)$ respectively. Define $\mathcal{G}_{\tau \oplus (\eta,j,k)} = \bigcup \{\mathcal{G}_{\tau \oplus (\eta,j,k)}(R) : R \in \mathcal{R}_\tau\}$ and $\mathcal{R}_{\tau \oplus (\eta,j,k)} = \bigcup \{\mathcal{R}_{\tau \oplus (\eta,j,k)}(R) : R \in$ $\mathcal{R}_\tau\}$. Let $\Phi_{t+1} = \bigcup \{\Phi_\tau : \tau \in \Phi_t$ and $\mathcal{R}_\tau \neq \emptyset\}$. Then, by (16) and the construction, Φ_{t+1} , families $\{\mathcal{G}_\mu : \mu \in \Phi_{t+1}\}$ and $\{\mathcal{R}_\mu : \mu \in \Phi_{t+1}\}$ satisfy the conditions (18), (19) and (20). Thus, for each $t \in \omega$, we have an index set Φ_t , families $\{\mathcal{G}_{\tau}: \tau \in \Phi_t\}$ and $\{\mathcal{R}_{\tau}: \tau \in \Phi_t\}$ satisfying the conditions (18), (19) and (20). Let $\Phi = \bigcup \{\Phi_t: t \in \omega\}$. Then $|\Phi| \leq \omega$.

By Lemmas 2.4 and 3.2, our proof is complete if we show

CLAIM. $\cup \{\mathcal{G}_{\tau} \colon \tau \in \Phi\}$ is a σ -locally finite closed refinement of \mathcal{O}' .

PROOF OF CLAIM. Let $\tau \in \Phi$. By (19), $\mathcal{Q}_{\tau} \subset \mathcal{R}$. By (11), every member of \mathcal{G}_{τ} is contained in some member of \mathcal{O}' . By (12), (15) and induction, \mathcal{G}_{τ} is locally finite in $Z \times X^{\omega}$. Assume that $\cup \{\mathcal{G}_{\tau} \colon \tau \in \Phi\}$ does not cover $Z \times X^{\omega}$. Take a point $(z, x) \in Z \times X^{\omega} - \bigcup \{ \bigcup \mathcal{G}_{\tau} : \tau \in \Phi \}$. Let $x = (x_i)_{i \in \omega}$. Take an $\eta(0) = m(0) \in \omega$ and $\delta(0) = \gamma(\delta(0), 0) \in \mathcal{A}_{Z \times X^{(0)}, \eta(0)} = \Gamma(Z \times X^{(0)}, 0, m(0))$ such that $x \in F_{\delta(0)}$. Put $\mathcal{G}(0) = \mathcal{G}(0)$ $\{F_{j(\delta(0),0)}\}$. Let $K(0) = K(\delta(0)) \in \mathcal{K}_{Z \times X} \omega, \eta(0)$ and let $j(0) = n(K_{(z, K(0))})$. Choose a $k(0) \in \boldsymbol{\omega} \text{ such that } (\boldsymbol{z}, \boldsymbol{x}) \in \bigcup \mathcal{G}_{\eta(0), j(0), k(0)}(Z \times X^{\boldsymbol{\omega}}) \cup (\bigcup \mathcal{R}_{\eta(0), j(0), k(0)}(Z \times X^{\boldsymbol{\omega}})). \text{ Let}$ $\tau(0) = (\eta(0), j(0), k(0)) \in \Phi_0. \text{ Take a } \xi(0) \in \Xi_{\eta(0), \delta(0), j(0), k(0)} \text{ such that } z \in D_{\xi(0)}.$ Put $\mathcal{H}(0) = \{H_{(z(\xi(0)), K(0)), i} : i \leq j(0)\}$. Since $(z, x) \notin \bigcup \mathcal{G}_{z(0)}$, there is an $A(0) \in \mathbb{C}$ $\mathscr{Q}(\{0, 1, \dots, j(0)\})$ such that $(z, x) \in R_{\xi(0), A(0)}, R_{\xi(0), A(0)} \in \mathscr{R}_{\tau(0)}(Z \times X^{\omega})$. By the definition, if $0 \in A(0)$, then $R_{\xi(0), A(0), 0} = F_{\gamma(\delta(0), 0)} - H_{(z(\xi(0)), K(0)), 0}$. We have 0 = $n(Z \times X^{\omega}) < n(R_{\xi^{(0)}, A^{(0)}}). \quad \text{For } R_{\xi^{(0)}, A^{(0)}}, \text{ take } \eta^{(1)} \in \boldsymbol{\omega}^{n(R_{\xi^{(0)}, A^{(0)}})^{+1}}, \ \delta^{(1)} = (\gamma(\delta^{(1)}), \beta^{(1)})^{-1} + (\gamma(\delta^{(1)}), \beta^{(1$ 0), ..., $\gamma(\delta(1), n(R_{\xi(0), A(0)}))) \in \mathcal{J}_{R\xi(0), A(0)}$, $\gamma^{(1)}$ such that $x \in F_{\delta(1)}$. Put $\mathcal{G}(1) = \{F_{\gamma(\delta(1), i)}: f_{\gamma(\delta(1), i)}\}$ $i \leq n(R_{\xi(0), A(0)})$ }. Let $K(1) = K(\delta(1)) \in \mathcal{K}_{R_{\xi(0), A(0)}, \eta(1)}$ and $j(1) = n(K_{(z, K(1))})$. Take a $k(1) \in \omega$ such that $(z, x) \in \bigcup \mathcal{G}_{\eta(1), j(1), k(1)}(R_{\xi(0), A(0)}) \cup (\bigcup \mathcal{R}_{\eta(1), j(1), k(1)}(R_{\xi(0), A(0)})).$ Let $\tau(1) = ((\eta(0), j(0), k(0)), (\eta(1), j(1), k(1))) \in \Phi_1$. Take a $\xi(1) \in E_{\eta(1), \delta(1), j(1), k(1)}$ such that $z \in D_{\xi(1)}$. Put $\mathcal{H}(1) = \{H_{(z(\xi(1)), K(1)), i} : i \leq \max\{j(1), n(R_{\xi(0), A(0)})\}\}$. Since $(z, x) \notin \bigcup \mathcal{G}_{\tau(1)}$, there is an $A(1) \in \mathcal{P}(\{0, 1, \dots, \max\{j(1), n(R_{\xi(0), A(0)})\}\})$ such that $(z, x) \in R_{\xi(1), A(1)}, R_{\xi(1), A(1)} \in \mathcal{R}_{\tau(1)}(R_{\xi(0), A(0)}). \text{ Then, if } i \in A(1) \text{ with } i \leq n(R_{\xi(0), A(0)}),$ then $R_{\xi(1),A(1),i} = F_{\gamma(\delta(1),i)} - H_{(z(\xi(1)),K(1)),i}$. We have $n(R_{\xi(0),A(0)}) < n(R_{\xi(1),A(1)})$. Continuing this matter, we can choose a sequence $\{\eta(t): t \in \omega\}$ of elements of $\omega^{<\omega}$, a sequence $\{\delta(t): t \in \omega\}$, a sequence $\{\Im(t): t \in \omega\}$ of collections, a sequence $\{K(t): t \in \omega\}$ of compact subsets in X^{ω} , where $K(t) = \prod_{i \in \omega} K(t)_i \in \mathcal{K}$, sequences $\{j(t): t \in \omega\}$, $\{k(t): t \in \omega\}$ of natural numbers, a sequence $\{\tau(t): t \in \omega\}$ of elements of Φ , where $\tau(t) = ((\eta(0), j(0), k(0)), \dots, (\eta(t), j(t), k(t)))$, a sequence $\{\xi(t) : t \in \omega\}$, a sequence $\{\mathcal{H}(t): t \in \boldsymbol{\omega}\}$ of collections, a sequence $\{A(t): t \in \boldsymbol{\omega}\}$ of finite subsets of ω , a sequence $\{R_{\xi(t), A(t)}: t \in \omega\}$ of elements of \mathcal{R} containing (z, x), where $R_{\xi(t),A(t)} = D_{\xi(t)} \times \prod_{i \in \omega} R_{\xi(t),A(t),i}$, satisfying the following: Let $t \in \omega$. Assume that we have already obtained sequences $\{\eta(i): i \leq t\}$, $\{\delta(i): i \leq t\}$, $\{\mathfrak{F}(i): i \leq t\}$, $\{K(i): i \in t\}$, $i \leq t\}, \ \{j(i) \colon i \leq t\}, \ \{k(i) \colon i \leq t\}, \ \{\tau(i) \colon i \leq t\} \ \{\xi(i) \colon i \leq t\}, \ \{\mathcal{H}(i) \colon i \leq t\}, \ \{A(i) \colon i \leq t\}$ and $\{R_{\xi(i),A(i)}: i \leq t\}$. Then

(21) $\eta(t+1) \in \boldsymbol{\omega}^{n(R_{\xi(t),A(t)})+1},$

 $\begin{array}{ll} (22) \quad \delta(t+1) = (\gamma(\delta(t+1), \ 0), \ \cdots, \ \gamma(\delta(t+1), \ n(R_{\xi(t), \ A(t)}))) \in \mathcal{A}_{R_{\xi(t), \ A(t)}, \ \eta(t+1)} \quad \text{such that} \\ x \in F_{\delta(t+1)}, \ \text{and} \ \ \mathcal{F}(t+1) = \{F_{\gamma(\delta(t+1), \ t)} : \ i \leq n(R_{\xi(t), \ A(t)})\}, \end{array}$

(23) $K(t+1) = K(\delta(t+1)) \in \mathcal{K}_{R\xi(t), A(t), \eta(t+1)},$

(24) $j(t+1) = n(K_{(z, K(t+1))}), k(t+1) \in \omega$ and $\tau(t+1) = ((\eta(0), j(0), k(0)), \cdots, (\eta(t+1), j(t+1), k(t+1))) \in \Phi_{t+1},$

 $\begin{array}{ll} (25) \quad \xi(t+1) \in \mathcal{Z}_{\xi(t+1),\,\delta(t+1),\,j(t+1),\,k(t+1),\,} \ \mathcal{H}(t+1) = \{H_{(z(\xi(t+1)),\,K(t+1)),\,i}: \ i \leq \max\{j(t+1),\,n(R_{\xi(t),\,A(t)})\}\} \ \text{and} \ A(t+1) \in \mathcal{P}(\{0,\,1,\,\cdots,\,\max\{j(t+1),\,n(R_{\xi(t),\,A(t)})\}), \end{array}$

(26) If $i \in A(t+1)$ with $i \leq n(R_{\xi(t), A(t)})$, then $R_{\xi(t+1), A(t+1), i} = F_{\gamma(\delta(t+1), i)} - H_{(z(\xi(t+1)), K(t+1)), i)}$

 $(27) \quad (z, x) \in R_{\xi(l+1), A(l+1)} = D_{\xi(l+1)} \times \prod_{i \in \omega} R_{\xi(l+1), A(l+1), i}, R_{\xi(l+1), A(l+1)} \in \mathcal{R}_{\tau(l+1)}(R_{\xi(l), A(l)}), \text{ and } n(R_{\xi(l), A(l)}) < nR_{\xi(l+1), A(l+1)}),$

(28) For each $i \leq n(R_{\xi(t),A(t)})$ with $i \in A(t+1)$ such that $C_{\lambda(R_{\xi(t),A(t)},i)} = \emptyset$, $s(R_{\xi(t),A(t),i}) \cap R_{\xi(t+1),A(t+1),i} = \emptyset$,

(29) For each $i \leq n(R_{\xi(t),A(t)})$ with $i \notin A(t+1)$ such that $C_{\lambda(R_{\xi(t),A(t)},i)} \neq \emptyset$, $K(t+1)_i = C_{\lambda(R_{\xi(t),A(t)},i)}$.

The rest of the proof is similar to that of Theorem 3.2 in the author [17]. However we include it here, because the method of it plays the fundamental role in this paper.

Assume that for each $i \in \omega$, $|\{t \in \omega : i \in A(t)\}| < \omega$. Then for each $i \in \omega$, there is a $t_i \in \omega$ such that $i \leq t_i$ and if $t \geq t_i$, then $i \notin A(t)$. Then, by (29),

(30) For each $i \in \omega$ and $t \ge t_i$, $K(t)_i = K(t_i)_i$.

Let $K = \prod K(t_i)_i \in \mathcal{K}$. There is an $O \in \mathcal{O}'$ such that $K_{(z,K)} \subset O$. By (27)

and (30), take a $t \ge 1$ such that $n(O) \le n(R_{\xi(t-1),A(t-1)})$ and if $i \le n(O)$, then $K(t)_i = K(t_i)_i$. Then we have $K_{(z,K(t))} \subset O$ and hence, $j(t) = n(K_{(z,K(t))}) \le n(O)$. Since $\xi(t) \in \mathbb{Z}_{\eta(t),\delta(t),j(t),k(t)}, n(K_{(z(\xi(t)),K(t))}) = j(t)$. For i with $n(O) \le i \le n(R_{\xi(t-1),A(t-1)})$, by the definition, $H_{(z(\xi(t)),K(t)),i} = F_{r(\delta(t),i)}$. Hence $A(t) \cap \{n(O), \cdots, n(R_{\xi(t-1),A(t-1)})\} = \emptyset$. Since $(z, x) \in R_{\xi(t),A(t)}$ and $R_{\xi(t),A(t)} \in \mathfrak{R}_{\tau(t)}(R_{\xi(t-1),A(t-1)})$, there is an $i \in A(t)$ such that $x_i \notin H_{(z(\xi(t)),K(t)),i}$. Thus i < n(O) and $x_i \in R_{\xi(t),A(t),i} = F_{r(\delta(t),i)} - H_{(z(\xi(t)),K(t)),i}$. Since $i \in A(t), t < t_i$. For each $t' > t, K(t')_i \subset R_{\xi(t),A(t),i}$. Thus $K(t_i)_i \subset R_{\xi(t),A(t),i}$. This is a contradiction. Therefore there is an $i \in \omega$ such that $|\{t \in \omega : i \in A(t)\}| = \omega$. Let $\{t \in \omega : i \in A(t)$ and $i \le n(R_{\xi(t),A(t)})\} = \{t_\rho : \rho \in \omega\}$. Let $\rho \in \omega$. Since $C_{\lambda(R_{\xi(t_\rho),A(t_\rho),i})} = \emptyset$, if $t_{\rho+1} = t_{\rho} + 1$, then, by (28), $s(R_{\xi(t_\rho),A(t_\rho),i}) \cap R_{\xi(t_{\rho+1}),A(t_{\rho+1}),i}) = C_{\lambda(R_{\xi(t_{\rho+1}-1),A(t_{\rho+1}),i})} \subset H_{(z(\xi(t_{\rho+1})),K(t_{\rho+1}),i)}$, by the definition, we have $s(R_{\xi(t_{\rho+1}),A(t_{\rho+1}),i) \subset H_{(z(\xi(t_{\rho+1})),K(t_{\rho+1}),i)}$. Since s is a stationary winning strategy

576

for Player I in $G(\mathcal{DC}, X)$, $\bigcap_{\rho \in \omega} R_{\xi(\iota_{\rho}), A(\iota_{\rho}), i} = \emptyset$. But $x_i \in \bigcap_{\rho \in \omega} R_{\xi(\iota_{\rho}), A(\iota_{\rho}), i}$, which is a contradiction. It follows that $\bigcup \{ \mathcal{G}_{\tau} : \tau \in \Phi \}$ is a cover of $Z \times X^{\omega}$. The proof is completed.

COROLLARY 4.2. If Z is a perfect subparacompact space and Y_i is a regular subparacompact space with a σ -closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

PROOF. This immediately follows from Theorem 4.1 and Lemma 2.3(a).

Similarly, by Theorem 4.1 and Lemma 2.3(b), we have

COROLLARY 4.3. If Z is a perfect subparacompact space and Y_i is a regular subparacompact, σ -C-scattered space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is subparacompact.

REMARK 4.4. Let M be the Michael line and let P be the space of irrationals. P is homeomorphic to ω^{ω} . The following are well-known (see D. K. Burke [4]).

(a) M is hereditarily paracompact but $M \times P$ is not normal and hence, not paracompact.

(b) $M \times P$ is hereditarily subparacompact and hereditarily metacompact (see also P. Nyikos [15]).

5. Metacompactness, orthocompactness and metalindelöf property.

THEOREM 5.1. If Y_i is a regular metacompact \mathcal{DC} -like space for each $i \in \omega$, then $\prod Y_i$ is metacompact.

PROOF. We may assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Similarly, let $\mathcal{O}' = \{B \in \mathcal{B} : B \subset \mathcal{O} \text{ for some } \mathcal{O} \in \mathcal{O}^F\}$. For $K \in \mathcal{K}$, there is an $\mathcal{O} \in \mathcal{O}^F$ such that $K \subset \mathcal{O}$. Then there is a $B \in \mathcal{B}$ such that $K \subset B \subset \mathcal{O}$. Define $n(K) = \inf\{n(\mathcal{O}) : \mathcal{O} \in \mathcal{O}'$ and $K \subset \mathcal{O}\}$. It suffices to prove that \mathcal{O}' has a point finite open refinement.

Let s be a stationary winning strategy for Player I in $G(\mathcal{DC}, X)$. Let $B = \prod_{i \in \omega} B_i \in \mathcal{B}$ such that for each $i \leq n(B)$, we have already obtained a compact set $C_{\lambda(B,i)}$ of clB_i . $(C_{\lambda(B,n(B))} = \emptyset$. $C_{\lambda(B,i)} = \emptyset$ may be occur for i < n(B).) We define $\mathcal{Q}(B)$ and $\mathcal{B}(B)$ of collections of elements of \mathcal{B} . Fix $i \leq n(B)$. If $C_{\lambda(B,i)}$

 $\neq \emptyset$, let $W_{\gamma(B,i)} = B_i$. Put $A(B, i) = \{\lambda(B, i)\}$ and $\Gamma(B, i) = \{\gamma(B, i)\}$. Let $\mathcal{C}(B, i) = \{C_{\lambda} : \lambda \in A(B, i)\} = \{C_{\lambda(B,i)}\}$, and $\mathcal{W}(B, i) = \{W_{\gamma} : \gamma \in \Gamma(B, i)\} = \{W_{\gamma(B,i)}\}$. Assume that $C_{\lambda(B,i)} = \emptyset$. Then there is a discrete collection $\mathcal{C}(B, i) = \{C_{\lambda} : \lambda \in A(B, i)\}$ of compact subsets of X such that $s(clB_i) = \cup \mathcal{C}(B, i)$. Since X is a regular metacompact space, there is a collection $\mathcal{W}(B, i) = \{W_{\gamma} : \gamma \in \Gamma(B, i)\}$ of open subsets in B_i (and hence, in X) satisfying

- (1) $\mathcal{W}(B, i)$ covers B_i ,
- (2) For each $\gamma \in \Gamma(B, i)$, clW_{γ} meets at most one member of C(B, i),
- (3) $\mathcal{W}(B, i)$ is point finite in B_i and hence, point finite in X.

In each case, for $\gamma \in \Gamma(B, i)$, $K_{\gamma} = clW_{\gamma} \cap C_{\lambda}$ if $clW_{\gamma} \cap C_{\lambda} \neq \emptyset$ for some (unique) C_{λ} . If $clW_{\gamma} \cap (\cup \mathcal{C}(B, i)) = \emptyset$, then we take a point $p \in W_{\gamma}$ and let $K_{\gamma} = \{p_{\gamma}\}$. Thus, if $C_{\lambda(B,i)} \neq \emptyset$, then $K_{\gamma(B,i)} = clW_{\gamma(B,i)} \cap C_{\lambda(B,i)} = C_{\lambda(B,i)}$. Put $\Delta_B = \Gamma(B, 0) \times \cdots \times \Gamma(B, n(B))$. For each $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$, let $K(\delta) = K_{\gamma(\delta,0)} \times \cdots \times K_{\gamma(\delta,n(B))} \times \{a\} \times \cdots \times \{a\} \times \cdots$, and let $\mathcal{K}_B = \{K(\delta) : \delta \in \Delta_B\}$. Then $\mathcal{K}_B \subset \mathcal{K}$. For each $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$, let $r(K(\delta)) = \max\{(n(K(\delta)), n(B)\})$. Fix a $\delta = (\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_B$. Take an $O(\delta) = \prod_{i \in \omega} O(\delta)_i \in \mathcal{O}'$ such that $K(\delta) \subset O(\delta)$ and $n(K(\delta)) = n(O(\delta))$. Since X is a regular space, there is an $H(\delta) = \prod_{i \in \omega} H(\delta)_i \in \mathcal{B}$ such that :

(4) $\prod_{i=0}^{n(K(\delta))-1} clH(\delta)_i \times X \times \cdots \times X \times \cdots \subset O(\delta),$

(5-1) For each *i* with $n(K(\delta)) \leq i \leq r(K(\delta))$, let $H(\delta)_i = X$,

(5-2) For each $i < n(K(\delta))$ with $i \leq n(B)$, let $H(\delta)_i$ be an open subset of X such that $K_{\tau(\delta,i)} \subset H(\delta)_i \subset clH(\delta)_i \subset O(\delta)_i$,

(5-3) For each i with $n(B) < i < n(K(\delta))$, let $H(\delta)_i = \{a\}$,

(5-4) In case of that $r(K(\delta))=n(B)$, let $H(\delta)_i=X$ for n(B) < i. In case of that $r(K(\delta))=n(K(\delta))>n(B)$, let $H(\delta)_i=X$ for $n(K(\delta)) \le i$.

Then we have $K(\delta)(\subset H\delta)$. Put $W(\delta) = \prod_{i=0}^{n(B)} W_{\gamma(\delta,i)} \times X \times \cdots \times X \times \cdots$. Then $\{W(\delta): \delta \in \mathcal{A}_B\}$ is a collection of elements of \mathcal{B} such that for each $\delta \in \mathcal{A}_B$, $W(\delta) \subset B$ and $\{W(\delta): \delta \in \mathcal{A}_B\}$ covers B. By the definition, we have

(6) $\{W(\delta): \delta \in \mathcal{A}_B\}$ is point finite in X^{ω} .

Fix a $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$. In case of that $r(K(\delta)) = n(B)$. For each $i \leq n(B)$, let $G(\delta)_i = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $G(\delta)_i = X$. Put $G(\delta) = \prod_{i \in \omega} G(\delta)_i$. In case of that $r(K(\delta)) = n(K(\delta)) > n(B)$. For each $i \leq n(B)$, let $G(\delta)_i = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i with $n(B) < i < n(K(\delta))$, let $G(\delta)_i = H(\delta)_i = \{a\}$. For each $i > n(K(\delta))$, let $G(\delta)_i = X$. Put $G(\delta) = \prod_{i \in \omega} G(\delta)_i$. Then we have $G(\delta) \subset$ $W(\delta)$. Define $\mathcal{Q}(B) = \{G(\delta) : \delta \in \Delta_B\}$. Then

- (7) Every member of $\mathcal{G}(B)$ is contained in some member of \mathcal{O}' .
- (8) $\mathcal{G}(B)$ is point finite in X^{ω} .
- This is clear from (6).

Fix $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$. Let $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$. In case of that $r(K(\delta)) = n(B)$. For each $i \in A$, let $B_{\delta, A, i} = W_{\gamma(\delta, i)} - clH(\delta)_i$. For each $i \notin A$ with $i \leq n(B)$, let $B_{\delta, A, i} = O(\delta)_i \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $B_{\delta, A, i} = X$. Put $B_{\delta, A} = \prod_{i \in \omega} B_{\delta, A, i}$. In case of that $r(K(\delta)) = n(K(\delta)) > n(B)$. For each $i \in A$ with $i \leq n(B)$, let $B_{\delta, A, i} = W_{\gamma(\delta, i)} - clH(\delta)_i$. For each $i \notin A$ with $i \leq n(B)$, let $B_{\delta, A, i} = O(\delta)_i \cap W_{\gamma(\delta, i)}$. Let $n(B) < i < n(K(\delta))$. If $i \in A$, let $B_{\delta, A, i} = X - clH(\delta)_i = X - \{a\}$. If $i \notin A$, let $B_{\delta, A, i} = H(\delta)_i = \{a\}$. For $i \geq n(K(\delta))$, let $B_{\delta, A, i} = X$. Put $B_{\delta, A} = \prod_{i \in \omega} B_{\delta, A, i}$. In each case, $B_{\delta, A, i} \subset B_i$ for each $i \in \omega$. We have that if $B_{\delta, A}$ $\neq \emptyset$, then $n(B) < n(B_{\delta, A})$. Let $\mathcal{B}_{\delta}(B) = \{B_{\delta, A}: A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$ and $B_{\delta, A} \neq \emptyset\}$. By the definition, $W(\delta) = G(\delta) \cup (\cup \mathcal{B}_{\delta}(B))$. Define $\mathcal{B}(B) = \cup \{\mathcal{B}_{\delta}(B): \delta \in \mathcal{A}_B\}$. Then, by (6), we have

(9) $\mathscr{B}(B)$ is point finite in X^{ω} .

Fix a $B_{\delta,A} = \prod_{i \in \omega} B_{\delta,A,i} \in \mathcal{B}_{\delta}(B)$ for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B$ and $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$.

(10) For each $i \in A$ with $i \leq n(B)$ such that $C_{\lambda(B,i)} = \emptyset$, $s(clB_i) \cap clB_{\delta,A,i} = \emptyset$. Since $B_{\delta,A,i} = W_{\gamma(\delta,i)} - clH(\delta)_i$, $s(clB_i) \cap clB_{\delta,A,i} \subset (\cup C(B,i)) \cap (clW_{\gamma(\delta,i)} - H(\delta)_i) = K_{\gamma(\delta,i)} - H(\delta)_i = \emptyset$.

For each $i \notin A$ with $i \leq n(B)$, since $clB_{\delta,A,i} = cl(O(\delta)_i \cap W_{\gamma(\delta,i)}) \supset O(\delta)_i \cap clW_{\gamma(\delta,i)}$, a compact set $K_{\gamma(\delta,i)}$ is contained in $clB_{\delta,A,i}$. Let $C_{\lambda(B_{\delta,A},i)} = K_{\gamma(\delta,i)}$. For each $i \notin A$ with $n(B) < i < n(K(\delta))$, let $C_{\lambda(B_{\delta,A},i)} = \{a\}$. For each $i \in A$, let $C_{\lambda(B_{\delta,A},i)} = \emptyset$.

Now we define \mathcal{G}_j and \mathcal{B}_j for each $j \in \omega$. Let $\mathcal{G}_0 = \mathcal{G}_0(X^{\omega}) = \mathcal{G}(X^{\omega})$ and $\mathcal{B}_0 = \mathcal{B}_0(X^{\omega}) = \mathcal{B}(X^{\omega})$. Assume that for $j \in \omega$, we have already obtained \mathcal{G}_j and \mathcal{B}_j . For each $B \in \mathcal{B}_j$, we denote $\mathcal{G}(B)$ and $\mathcal{B}(B)$ by $\mathcal{G}_{j+1}(B)$ and $\mathcal{B}_{j+1}(B)$ respectively. Define $\mathcal{G}_{j+1} = \bigcup \{\mathcal{G}_{j+1}(B) : B \in \mathcal{B}_j\}$ and $\mathcal{B}_{j+1} = \bigcup \{\mathcal{B}_{j+1}(B) : B \in \mathcal{B}_j\}$.

Our proof is complete if we show

CLAIM. $\cup \{\mathcal{G}_j: j \in \boldsymbol{\omega}\}$ is a point finite open refinement of \mathcal{O}' .

PROOF OF CLAIM. Let $j \in \omega$. By the construction, $\mathcal{G}_j \subset \mathcal{B}$. By (7), every member of \mathcal{G}_j is contained in some member of \mathcal{O}' . By (8), (9) and induction, \mathcal{G}_j is point finite in X^{ω} . Take a $x = (x_i)_{i \in \omega} \in X^{\omega}$. Let $\mathcal{A}(0) = \{\delta \in \mathcal{A}_{X^{\omega}} : x \in W(\delta)\}$. Then, by (6), $1 \leq |\mathcal{A}(0)| < \omega$. Let $\mathcal{K}(0) = \{K(\delta) : \delta \in \mathcal{A}(0)\}$. Put $\mathcal{H}(0) = \{H(\delta) : \delta \in \mathcal{A}(0)\}$, $\mathcal{W}(0) = \{W(\delta) : \delta \in \mathcal{A}(0)\}$ and $\mathcal{G}(0) = \{G(\delta) : \delta \in \mathcal{A}(0)\} \subset \mathcal{G}_0$. For each $\delta \in \mathcal{A}(0)$, let $\mathcal{A}(\delta) = \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$, and let $\mathcal{A}(0) = \cup \{\mathcal{A}(\delta) : \delta \in \mathcal{A}(0)\}$. Let $\mathcal{B}(0) = \cup \{\mathcal{B}_\delta(X^{\omega}) : \delta \in \mathcal{A}(0)\}$. Then $\mathcal{B}(0) \subset \mathcal{B}_0$. By the definition, for each $\delta = \gamma(\delta, 0) \in$ Hidenori TANAKA

 $\mathcal{A}(0)$ and $A \in \mathcal{A}(\delta)$ with $0 \in A$, $B_{\delta, A, 0} = W_{\gamma(\delta, 0)} - clH(\delta)_0$. Since $W(\delta) = G(\delta) \cup \mathcal{A}(\delta)$ $(\cup \mathscr{B}_{\delta}(X^{\omega}))$ for each $\delta \in \varDelta(0), 1 \leq |\mathscr{G}(0) \cup \mathscr{B}(0)| < \omega$. Observe that $(\mathscr{G}_{0} \cup \mathscr{B}_{0})_{x} \subset \mathscr{B}_{\delta}(X^{\omega})$ $\mathcal{G}(0) \cup \mathcal{B}(0)$. Take a $B \in \mathcal{B}(0)$. Let $\mathcal{A}(B) = \{ \delta' \in \mathcal{A}_B \colon x \in W(\delta') \}$ and let $\mathcal{A}(1) = \{ \delta' \in \mathcal{A}_B \colon x \in W(\delta') \}$ $\cup \{ \underline{\mathcal{A}}(B) \colon B \in \mathcal{B}(0) \}. \text{ Let } \mathcal{K}(1) = \{ K(\delta) \colon \delta \in \underline{\mathcal{A}}(1) \}. \text{ Put } \mathcal{K}(1) = \{ H(\delta) \colon \delta \in \underline{\mathcal{A}}(1) \},$ $\mathcal{W}(1) = \{W(\delta) : \delta \in \mathcal{A}(1)\}$ and $\mathcal{G}(1) = \{G(\delta) : \delta \in \mathcal{A}(1)\} \subset \mathcal{G}_1$. Define $\mathcal{A}(\delta)$ for each $\delta \in \mathcal{A}(1)$ $\mathcal{A}(1)$, and $\mathcal{A}(1)$ as before. Let $\mathcal{B}(1) = \bigcup \{ \mathcal{B}_{\delta}(B) : B \in \mathcal{B}(0) \text{ and } \delta \in \mathcal{A}(B) \} \subset \mathcal{B}_1.$ Let $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta(B)$ and $B \in \mathcal{B}(0)$. For each $A \in \mathcal{A}(\delta)$, if $i \in A$ with $i \leq n(B)$, then $B_{\delta_i, A, i} = W_{\gamma(\delta_i, i)} - clH(\delta)_i$. We have $|\mathcal{G}(1) \cup \mathcal{B}(1)| < \omega$ and $(\mathcal{G}_1 \cup \mathcal{B}_1)_x \subset \mathcal{G}(1) \cup \mathcal{B}(1)$. Continuing this matter, we can choose a collection $\{\mathcal{A}(j): j \in \boldsymbol{\omega}\}\$, a family $\{\mathcal{K}(j): j \in \boldsymbol{\omega}\}\$ of collections of compact subsets of $X^{\boldsymbol{\omega}}$, where for each $K \in \mathcal{K}(j)$ and $j \in \omega, K = \prod_{i \in \omega} K_i \in \mathcal{K}$, families $\{\mathcal{H}(j): j \in \omega\}$, $\{\mathcal{W}(j): j \in \omega\}, \{\mathcal{G}(j): j \in \omega\}$ of collections of elements of \mathcal{B} , a family $\{\mathcal{A}(j):$ $j \in \omega$ of collections of finite subsets of ω and a family $\{\mathcal{B}(j): j \in \omega\}$ of collections of elements of \mathcal{B} such that for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}(B), B \in \mathcal{A}(B)$ $\mathcal{B}(j-1)$, where $B_{\delta(-1), A(-1)} = X^{\omega}$, and $\mathcal{B}_{-1} = \mathcal{B}(-1) = \{X^{\omega}\}$, and $A \in \mathcal{A}(\delta)$, if $i \in A$ with $i \leq n(B)$, then $B_{\delta,A,i} = W_{\gamma(\delta,i)} - clH(\delta)_i$, and for each $j \in \omega$, $|\mathcal{G}(j) \cup \mathcal{B}(j)| < \omega$ and $(\mathcal{G}_j \cup \mathcal{B}_j)_x \subset \mathcal{G}(j) \cup \mathcal{B}(j)$. Assume that $x \in \bigcup \mathcal{B}_j$ for each $j \in \omega$. Then, by the construction, $x \in \bigcup \mathscr{B}(j)$ for each $j \in \omega$. Since $\mathscr{B}(j)_x$ is non-empty and finite for each $j \in \omega$, it follows from König's lemma (cf. K. Kunen [13]) that there are a sequence $\{\delta(j): j \in \omega\}$, a sequence $\{K(j): j \in \omega\}$ of compact subsets of X^{ω} , sequences $\{H(\delta(j)): j \in \omega\}$, $\{W(\delta(j)): j \in \omega\}$ of elements of \mathcal{B} , a sequence $\{A(j): j \in \omega\}$ of finite subsets of ω , a sequence $\{B_{\delta(j),A(j)}: j \in \omega\}$ of elements of \mathcal{B} such that: For each $j \in \omega$,

(11) $\delta(j) = (\gamma(\delta(j), 0), \cdots, \gamma(\delta(j), n(B_{\delta(j-1), A(j-1)}))) \in \Delta(j),$

(12) $K(j) = K(\delta(j)),$

(13) $A(j) \in \mathcal{A}(\boldsymbol{\delta}(j)),$

(14) For each $i \in A(j)$ with $i \leq n(B_{\delta(j-1),A(j-1)}), \quad B_{\delta(j),A(j),i} = W_{\gamma(\delta(j),i)} - clH(\delta(j))_i$

(15) $x \in B_{\delta(j), A(j)}$ and $B_{\delta(j), A(j)} \in \mathcal{B}(B_{\delta(j-1), A(j-1)})$. Furthermore we have

(16) $n(B_{\delta(j),A(j)}) < n(B_{\delta(j+1),A(j+1)})$ for each $j \in \omega$,

(17) For each $i \leq n(B_{\delta(j),A(j)})$ with $i \in A(j+1)$ such that $C_{\lambda(B_{\delta(j),A(j)},i)} = \emptyset$, $s(clB_{\delta(j),A(j)}) \cap clB_{\delta(j+1),A(j+1)} = \emptyset$,

(18) For each $i \leq n(B_{\delta(j), A(j)})$ with $i \notin A(j+1)$ such that $C_{\lambda(B_{\delta(j), A(j)}, i)} \neq \emptyset$, $K(j+1) = C_{\lambda(B_{\delta(j), A(j)}, i)}$.

By the similar proof of Claim in Theorem 4.1, we can show that there is an $i \in \omega$ such that $|\{j \in \omega : i \in A(j)\}| = \omega$. Let $\{j \in \omega : i \in A(j) \text{ and } i \leq n(B_{\delta(j), A(j)})\}$ $=\{j_k: k \in \omega\}$. Then we can prove that $s(clB_{\delta(j_k),A(j_k)}) \cap clB_{\delta(j_{k+1}),A(j_{k+1})} = \emptyset$ for each $k \in \omega$. Since s is a stationary winning strategy for Player I in $G(\mathcal{DC}, X), \bigcap_{k \in \omega} clB_{\delta(j_k),A(j_k)} = \emptyset$. But $x_i \in \bigcap_{k \in \omega} B_{\delta(j_k),A(j_k)}$, which is a contradiction. Thus there is a $k \in \omega$ such that $x \notin \cup \mathcal{B}_k$. Let $j = \inf\{k \in \omega: x \notin \cup \mathcal{B}_k\}$. Since $x \in \cup \mathcal{B}_{j-1}$, we have $x \in \cup \mathcal{G}_j$. For each k > j, every element of \mathcal{G}_k is contained in some member of \mathcal{B}_j . Therefore $(\cup \{\mathcal{G}_k: k \in \omega\})_x \subset \cup \{\mathcal{G}_k: k \leq j\}$. Since every \mathcal{G}_k is point finite in X^{ω} , it follows that $\cup \{\mathcal{G}_k: k \in \omega\}$ is a point finite open refinement of \mathcal{O}' . The proof is completed.

COROLLARY 5.2. If Y_i is a regular metacompact space with a σ -closurepreserving cover by compact sets for each $i \in \omega$, then $\prod_{i \in \omega} Y_i$ is metacompact.

PROOF. This follows from Theorem 5.1 and Lemma 2.3 (a).

For a T_i -space X, let $\mathcal{F}[X]$ denote the Pixley-Roy hyperspace of X (cf. E. K. van Douwen [7]). Every Pixley-Roy hyperspace is a hereditarily metacompact Tychonoff space and has a closure-preserving cover by finite sets. In [17], the author proved that if Z is a perfect paracompact Hausdorff space and Y_i is a T_i -space such that $\mathcal{F}[Y_i]$ is paracompact for each $i \in \omega$, then $Z \times \prod_{i \in \omega} \mathcal{F}[Y_i]$ is paracompact.

COROLLARY 5.3. If Y_i is a T_1 -space for each $i \in \omega$, then $\prod_{i \in \omega} \mathcal{F}[Y_i]$ is metacompact.

By D. K. Burke [4] and M. M. Čoban [6], every perfect metacompact (metalindelöf) space is hereditarily metacompact (hereditarily metalindelöf). Next, we show the following result.

THEOREM 5.4. Let Z be a hereditarily metacompact space and Y_i be a regular metacompact \mathcal{DC} -like space for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i=1}^{n} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact,
- (c) $Z \times \prod_{i \in a} Y_i$ is orthocompact.

PROOF. (a) \rightarrow (c) Obvious.

(c) \rightarrow (b) We shall modify the proof of Theorem 2.1 in N. Kemoto and Y. Yajima [12]. Assume that $Z \times \prod_{i \in \omega} Y_i$ is orthocompct. Let $\mathcal{O} = \{O_j : j \in \omega\}$ be a

countable open cover of $Z \times \prod_{i \in \omega} Y_i$. By their proof, it suffices to prove that there is a countable open refinement \mathcal{U} of \mathcal{O} such that for every infinite subcollection \mathcal{U}' of \mathcal{U} , $\operatorname{int}(\cap \mathcal{U}') = \emptyset$. Applying their technique to $Z \times \prod_{i \in \omega} Y_i$, we have a countable collection $\{G_{j,t}: j \in \omega \text{ and } t=0, 1\}$, where $G_{j,t}=Z \times H_{j,t}$ for each $j \in \omega$ t=0, 1, of open subsets of $Z \times \prod_{i \in \omega} Y_i$ such that

(i) For each $j \in \omega$, $\prod_{i \in \omega} Y_i = H_{j,0} \cup H_{j,1}$ and hence, $Z \times \prod_{i \in \omega} Y_i = G_{j,0} \cup G_{j,1}$,

(ii) For each infinite subset M of ω and each t=0, 1, $\operatorname{int}\{\cap\{H_{j,t}: j\in M\}\} = \emptyset$ and hence, $\operatorname{int}(\cap\{G_{j,t}: j\in M\}) = Z \times \operatorname{int}(\cap\{H_{j,t}: j\in M\}) = \emptyset$.

Let $\mathcal{U} = \{O_j \cap G_{j,t}: j \in \omega \text{ and } t=0, 1\}$. Then \mathcal{U} is a countable open refinement of \mathcal{O} such that for every infinite subcollection \mathcal{U}' of \mathcal{U} , $\operatorname{int}(\cap \mathcal{U}') = \emptyset$.

(b) \rightarrow (a) Assume that $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact. For each $i \in \omega$, take a point a_i in Y_i . Let \mathcal{O} be an open cover of $Z \times \prod_{i \in \omega} Y_i$ and let $\mathcal{O}' = \{B \in \mathcal{B} : B \subset \mathcal{O} \text{ for som } \mathcal{O} \in \mathcal{O}^F\}$. For each $z \in Z$ and $K \in \mathcal{K}$, define $n(K_{(z, K)})$ as the proof of Theorem 4.1.

Let s_i be a stationary winning strategy for Player I in $G(\mathcal{DC}, Y_i)$ for $i \in \omega$. As Theorem 5.1, take a $B = U_B \times \prod_{i \in \omega} B_i \in \mathcal{B}$ satisfying the following condition: For each $i \leq n(B)$, we have already obtained a compact set $C_{\lambda(B,i)}$ of clB_i . $(C_{\lambda(B,n(B))} = \emptyset$. $C_{\lambda(B,i)} = \emptyset$ may be occur for i < n(B).) Fix $i \leq n(B)$. If $C_{\lambda(B,i)} \neq \emptyset$, take the same $W_{\gamma(B,i)}$, $\Lambda(B, i)$, $\Gamma(B, i)$, $\mathcal{C}(B, i)$ and $\mathcal{W}(B, i)$ in Theorem 5.1. Assume that $C_{\lambda(B,i)} = \emptyset$. Then we take a discrete collection $\mathcal{C}(B, i) = \{C_i : \lambda \in \Lambda(B, i)\}$ of compact subset of Y_i such that $s_i(clB_i) = \cup \mathcal{C}(B, i)$, and a collection $\mathcal{W}(B, i) = \{W_{\gamma} : \gamma \in \Gamma(B, i)\}$ of open subsets in B_i (and hence, in Y_i) satisfying the condition (1')=(1), (2')=(2) in the proof of Theorem 5.1 and

(3') $\mathcal{W}(B, i)$ is point finite in B_i and hence, point finite in Y_i .

Define the same K_{γ} for $\gamma \in \Gamma(B, i)$ and \mathcal{A}_B in Theorem 5.1. For $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B$, let $K(\delta) = K_{\gamma(\delta, 0)} \times \dots \times K_{\gamma(\delta, n(B))} \times \{a_{n(B)+1}\} \times \dots \times \{a_k\} \times \dots$. Define \mathcal{K}_B as before. For each $z \in U_B$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B$, let $r(K_{(z, K(\delta))}) = \max\{n(K_{(z, K(\delta))}), n(B)\}$. Fix $z \in U_B$ and $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B$. Take an $O_{z,\delta} = U_{z,\delta} \times \prod_{i \in \omega} O_{z,\delta,i} \in \mathcal{O}'$ such that $K_{(z, K(\delta))} \subset O_{z,\delta}$ and $n(K_{(z, K(\delta))}), i \in \mathcal{A}_B$. Since Y_i is a regular space, there is an $H_{(z, K(\delta))} = H_{z,\delta} \times \prod_{i \in \omega} H_{(z, K(\delta)), i} \in \mathcal{B}$ such that:

 $(4') \quad H_{z,\delta} \times \prod_{i=0}^{n(K_{(z,K(\delta))})^{-1}} cl H_{(z,K(\delta)),i} \times Y_{n(K_{(z,K(\delta))})} \times \cdots \times Y_{k} \times \cdots \subset O_{z,\delta} \text{ and } z \in H_{z,\delta} \subset U_{B} \cap U_{z,\delta},$

(5'-1) For each *i* with $n(K_{(z, K(\delta))}) \leq i \leq r(K_{(z, K(\delta))})$, let $H_{(z, K(\delta)), i} = Y_i$,

(5'-2) For each $i < n(K_{(z, K(\delta))})$ with $i \leq n(B)$, let $H_{(z, K(\delta)), i}$ be an open subset

of Y_i such that $K_{\gamma(\delta,i)} \subset H_{(z,K(\delta)),i} \subset clH_{(z,K(\delta)),i} \subset O_{z,\delta,i}$,

(5'-3) For each *i* with $n(B) < i < n(K_{(z, K(\delta))})$, let $H_{(z, K(\delta)), i}$ be an open subset of Y_i such that $a_i \in H_{(z, K(\delta)), i} \subset clH_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,

(5'-4) In case of that $r(K_{(z, K(\delta))})=n(B)$, let $H_{(z, K(\delta)), i}=Y_i$ for n(B) < i. In case of that $r(K_{(z, K(\delta))})=n(K_{(z, K(\delta))})>n(B)$, let $H_{(z, K(\delta)), i}=Y_i$ for $n(K_{(z, K(\delta))}) \le i$.

Then we have $K_{(z, K(\delta))} \subset H_{(z, K(\delta))}$. For each $j \in \omega$, let $\mathcal{H}_{\delta, j} = \{H_{z, \delta} : n(K_{(z, K(\delta))}) \leq j\}$. Fix $j \in \omega$ and let $V_j(K(\delta)) = \{z \in U_B : n(K_{(z, K(\delta))}) \leq j\}$. Then $V_j(K(\delta)) = \bigcup \mathcal{H}_{\delta, j}$. Since Z is a hereditarily metacompact space, there is a family $\mathcal{O}_{\delta, j} = \{V_{\xi} : \xi \in \mathbb{Z}_{\delta, j}\}$, of collections of open sets in $V_j(K(\delta))$ (and hence, in Z) satisfying

(6') Every member of $\mathcal{W}_{\delta,j}$ is contained in some member of $\mathcal{H}_{\delta,j}$,

- (7') $\mathcal{CV}_{\delta, j}$ covers $V_j(K(\delta))$,
- (8') $\mathcal{CV}_{\delta,j}$ is point finite in $V_j(K(\delta))$ and hence, point finite in Z.

For each $\xi \in \Xi_{\delta,j}$, take a $z(\xi) \in V_j(K(\delta))$ such that $V_{\xi} \subset H_{z(\xi),\delta}$. Put $W_{\delta} = \prod_{i=0}^{n(B)} W_{\gamma(\delta,i)} \times Y_{n(B)+1} \times \cdots \times Y_k \times \cdots$ and $V_{\xi,\delta} = V_{\xi} \times W_{\delta}$. Then $\{V_{\xi,\delta} : \delta \in \Delta_B, j \in \omega \}$ and $\xi \in \Xi_{\delta,j}$ is a collection of elements of \mathcal{B} such that for each $\delta \in \Delta_B, j \in \omega \}$ and $\xi \in \Xi_{\delta,j}, V_{\xi,\delta} \subset B$ and $\{V_{\xi,\delta} : \delta \in \Delta_B, j \in \omega \}$ and $\xi \in \Xi_{\delta,j}, V_{\xi,\delta} \subset B$ and $\{V_{\xi,\delta} : \delta \in \Delta_B, j \in \omega \}$ and $\xi \in \Xi_{\delta,j}\}$ covers B. Clearly we have

(9') For each $j \in \omega$, $\{V_{\xi,\delta} : \delta \in \mathcal{A}_B \text{ and } \xi \in \mathcal{Z}_{\delta,j}\}$ is point finite in $Z \times \prod_{i \in \mathcal{I}} Y_i$.

Fix a $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B, j \in \omega$ and $\xi \in \Xi_{\delta, j}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(B)$. For each $i \leq n(B)$, let $G_{(z(\xi), K(\delta)), i} = O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $G_{(z(\xi), K(\delta)), i} = Y_i$. Put $G_{(z(\xi), K(\delta))} = V_{\xi} \times \prod_{i \in \omega} G_{(z(\xi), K(\delta)), i}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(K_{(z(\xi), K(\delta))}) > n(B)$. For each $i \leq n(B)$, let $G_{(z(\xi), K(\delta)), i}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(K_{(z(\xi), K(\delta))}) > n(B)$. For each $i \leq n(B)$, let $G_{(z(\xi), K(\delta)), i} = O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. For each i with $n(B) < i < n(K_{(z(\xi), K(\delta))})$, let $G_{(z(\xi), K(\delta)), i} = Q_{z(\xi), K(\delta)}$. For each $i \geq n(K_{(z(\xi), K(\delta))})$, let $G_{(z(\xi), K(\delta)), i} = V_{\xi} \times \prod_{i \in \omega} G_{(z(\xi), K(\delta)), i}$. Then we have $G_{(z(\xi), K(\delta))} \subset V_{\xi, \delta}$. Define $\mathcal{G}_{\delta, j}(B) = \{G_{(z(\xi), K(\delta))}: \xi \in \Xi_{\delta, j}\}$ and $\mathcal{G}_j(B) = \cup \{\mathcal{G}_{\delta, j}(B): \delta \in \mathcal{A}_B\}$. Then, by (9') and definition,

(10') For each $j \in \omega$, every member of $\mathcal{G}_j(B)$ is contained in some member of \mathcal{O}' .

(11') For each $j \in \omega$, $\mathcal{Q}_j(B)$ is point finite in $Z \times \prod_{i \in \omega} Y_i$.

Fix $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \Delta_B$, $j \in \omega$ and $\xi \in \Xi_{\delta,j}$. Let $A \in \mathcal{P}(\{0, 1, \dots, r(K_{(z(\xi), K(\delta))})\})$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(B)$. For each $i \in A$, let $B_{\xi, A, i} = W_{\gamma(\delta, i)} - clH_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leq n(B)$, let $B_{\xi, A, i} = O_{z, \delta, i} \cap W_{\gamma(\delta, i)}$. For each i > n(B), let $B_{\xi, A, i} = Y_i$. Put $B_{\xi, A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. In case of that $r(K_{(z(\xi), K(\delta))}) = n(K_{(z(\xi), K(\delta))}) > n(B)$. For each $i \in A$ with $i \leq n(B)$, let $B_{\xi, A, i} = W_{\gamma(\delta, i)} - clH_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leq n(B)$, let $B_{\xi, A, i} - O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. Let $n(B) < i < n(K_{(z(\xi), K(\delta))})$. If $i \in A$, let $B_{\xi, A, i} = Y_i - clH_{(z(\xi), K(\delta)), i}$. If $i \notin A$, let $B_{\xi, A, i} = O_{z(\xi), \delta, i}$. For $i > n(K_{(z(\xi), K(\delta))})$, let $B_{\xi, A, i} = Y_i$. Put $B_{\xi, A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. We have that $B_{\xi, A, i} \subset B_i$ for each $i \in \omega$ and if $B_{\xi, A} \neq \emptyset$, then $n(B) < n(B_{\xi, A})$. Since $n(K_{(z(\xi), K(\delta))}) \leq j$, for a subset $A \in \mathcal{P}(\{0, 1, \cdots, \max\{j, n(B)\}\})$, let $\mathcal{B}_{\delta, j, A}(B) = \{B_{\xi, A}: \xi \in \mathbb{Z}_{\delta, j}, B_{\xi, A}$ is defined and $B_{\xi, A} \neq \emptyset\}$. For $j \in \omega$, let $\mathcal{B}_j(B) = \bigcup \{\mathcal{B}_{\delta, j, A}(B): \delta \in \mathcal{A}_B$ and $A \in \mathcal{P}(\{0, 1, \cdots, \max\{j, n(B)\}\})$. Then we have

(12') Every $\mathcal{B}_{j}(B)$ is point finite in $Z \times \prod_{i \in \mathcal{D}} Y_{i}$.

Fix a $B_{\xi,A} = V_{\xi} \times \prod_{i \in \omega} B_{\xi,A,i} \in \mathcal{B}_{\delta,j,A}(B)$ for $\delta = (\gamma(\delta, 0), \dots, \gamma(\delta, n(B))) \in \mathcal{A}_B, j \in \omega, \xi \in \mathcal{I}_{\delta,j}$ and $A \in \mathcal{P}(\{0, 1, \dots, \max\{j, n(B)\}\})$. Then

(13') For each $i \in A$ with $i \leq n(B)$ such that $C_{\lambda(B,i)} = \emptyset$, $s_i(clB_i) \cap clB_{\xi,A,i} = \emptyset$. For each $i \leq n(B_{\xi,A})$, define a compact set $C_{\lambda(B_{\xi,A,i})}$ in $clB_{\xi,A,i}$ as Theorem 5.1.

Now we define \mathcal{G}_{τ} and \mathcal{B}_{τ} for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. For each $j \in \boldsymbol{\omega}$, let $\mathcal{G}_{j} = \mathcal{G}_{j}(Z \times \prod_{i \in \omega} Y_{i})$ and $\mathcal{B}_{j} = \mathcal{B}_{j}(Z \times \prod_{i \in \omega} Y_{i})$. Assume that for $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$, we have already obtained \mathcal{G}_{τ} and \mathcal{B}_{τ} . For each $B \in \mathcal{B}_{\tau}$ and $j \in \boldsymbol{\omega}$, we denote $\mathcal{G}_{j}(B)$ and $\mathcal{B}_{j}(B)$ by $\mathcal{G}_{\tau \oplus j}(B)$ and $\mathcal{B}_{\tau \oplus j}(B)$ respectively. Define $\mathcal{G}_{\tau \oplus j} = \bigcup \{\mathcal{G}_{\tau \oplus j}(B): B \in \mathcal{B}_{\tau}\}$ and $\mathcal{B}_{\tau \oplus j} = \bigcup \{\mathcal{G}_{\tau \oplus j}(B): B \in \mathcal{B}_{\tau}\}$.

Firstly we show that $\bigcup \{\mathcal{G}_{\tau} : \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset\}$ is a σ -point finite open refinement of \mathcal{O}' . Let $\tau \in \boldsymbol{\omega}^{<\omega}$ and $\tau \neq \emptyset$. By (10'), every element of \mathcal{G}_{τ} is contained in some member of \mathcal{O}' . By (11'), (12') and induction, for each $\tau \in \boldsymbol{\omega}^{<\omega}$ and $\tau \neq \emptyset$, \mathcal{G}_{τ} is point finite. Thus, it suffices to prove that $\bigcup \{\mathcal{G}_{\tau} : \tau \in \boldsymbol{\omega}^{<\omega} \text{ and} \tau \neq \emptyset\}$ is a cover of $Z \times \prod_{i \in \omega} Y_i$. However, the proof is similar to that of Claim in Theorem 4.1. Let $G_{\tau} = \bigcup \mathcal{G}_{\tau}$ for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. Then $\{G_{\tau} : \tau \in \boldsymbol{\omega}^{<\omega} \text{ and} \tau \neq \emptyset\}$ is a countable open cover of $Z \times \prod_{i \in \omega} Y_i$. Since $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact, there is a point finite open refinement $\{G'_{\tau} : \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset\}$ such that $G'_{\tau} \subset G_{\tau}$ for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \emptyset$. Then $\{G_{\tau} \cap G : G \in \mathcal{G}_{\tau}, \tau \in \boldsymbol{\omega}^{<\omega} \text{ and } \tau \neq \emptyset\}$ is a point finite open refinement of \mathcal{O}' . It follows that $Z \times \prod_{i \in \omega} Y_i$ is metacompact. The proof is completed.

REMARK 5.5. B. Scott [16] showed that if Y is orthocompact and Z is compact, metric and infinite, then $Y \times Z$ is orthocompact if and only if Y is countably metacompact. J. Chaber [5] constructed a scattered hereditarily orthocompact space Y which is not countably metacompact. Thus, for J. Chaber's space Y, $Y \times (\omega+1)$ is not orthocompact, even though both factors are hereditarily orthocompact and scattered (cf. Lemma 2.4). COROLLARY 5.6. Let Z be a hereditarily metacompact space and Y_i be a regular metacompact space with a σ -closurepreserving cover by compact sets for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i \in m} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in m} Y_i$ is countably metacompact,
- (c) $Z \times \prod_{i \in a} Y_i$ is orthocompact.

Since every σ -point countable collection of $Z \times \prod_{i \in \omega} Y_i$ is point countable, by the proof of the implication (b) \rightarrow (a) in Theorem 5.4, we have

THEOREM 5.7. If Z is a hereditarily metalindelöf space and Y_i is a regular metalindelöf \mathcal{DC} -like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

COPOLLARY 5.8. If Z is a hereditarily metalindelöf space and Y_i is a regular metalindelöf space with a σ -closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

We consider metacompactness, orthocompactness and metalindelöf property of countable products using *C*-scattered spaces.

THEOREM 5.9. If Y_i is a regular C-scattered metacompact space for each $i \in \omega$, then $\prod_{i \in \omega} Y_i$ is metacompact.

PROOF. We also assume that $Y_i = X$ for each $i \in \omega$ and there is an isolated point a in X. We shall modify the proof of Theorem 5.1. Let \mathcal{O} be an open cover of X^{ω} . Define the same \mathcal{O}' and n(K) for each $K \in \mathcal{K}$. We take a B = $\prod_{i \in \omega} B_i \in \mathcal{B}$ satisfying the condition of the proof of Theorem 5.1. Fix $i \leq n(B)$. If $C_{\lambda(B,i)} \neq \emptyset$, then we take the same $W_{\gamma(B,i)}$, $\Lambda(B, i)$, $\Gamma(B, i)$, $\mathcal{C}(B, i)$, and $\mathcal{W}(B, i)$. Assume that $C_{\lambda(B,i)} = \emptyset$. Since clB_i is a regular C-scattered metacompact space, by Lemma 3.3, there is a collection $\mathcal{W}(B, i) = \{W_{\gamma} : \gamma \in \Gamma(B, i)\}$ of open subsets in B_i satisfying the conditions (1'')=(1) and (2'')=(3) in the proof of Theorem 5.1 and

(3") For each $\gamma \in \Gamma(B, i)$, $(clW_{\gamma})^{(\alpha(\gamma))}$ is compact for some $\alpha(\gamma)$.

Let $\Lambda(B, i) = \Gamma(B, i)$ and $C(B, i) = \{(clW_{\lambda})^{(\alpha(\lambda))} : \lambda \in \Lambda(B, i)\}$.

Let $K_{\gamma} = (clW_{\gamma})^{(\alpha(\gamma))}$ for $\gamma \in \Gamma(B, i)$ and take Δ_B , $K(\delta)$ for $\delta \in \Delta_B$, \mathcal{K}_B , $r(K(\delta))$, $H(\delta)$, $W(\delta)$ and $G(\delta)$ for $\delta \in \Delta_B$, $\mathcal{G}(B)$, $B_{\delta,A}$, $\mathcal{B}_{\delta}(B)$ and $\mathcal{B}(B)$ for $\delta \in \Delta(B)$, $A \in \mathcal{P}(\{0, 1, \dots, r(K(\delta))\})$ as before satisfying the conditions (4'')=(4), (5''-i)=(5-i)for i=1, 2, 3 and 4, (6'')=(6), (7'')=(7), (8'')=(8) and (9'')=(9). Furthermore, we

Hidenori TANAKA

take the same \mathcal{G}_j and \mathcal{B}_j for each $j \in \omega$, and show that $\bigcup \{\mathcal{G}_j: j \in \omega\}$ is a point finite open refinement of \mathcal{O}' . Let $x = (x_i)_{i \in \omega}$. Take the same $\{\mathcal{\Delta}(j): j \in \omega\}$, $\{\mathcal{K}(j): j \in \omega\}$, $\{\mathcal{H}(j): j \in \omega\}$, $\{\mathcal{W}(j): j \in \omega\}$, $\{\mathcal{G}(j): j \in \omega\}$, $\{\mathcal{A}(j): j \in \omega\}$ and $\{\mathcal{B}(j):$ $j \in \omega\}$. Assuming $x \in \bigcup \mathcal{B}_j$ for each $j \in \omega$, we similarly choose a sequence $\{\delta(j):$ $j \in \omega\}$, a sequence $\{K(j): j \in \omega\}$ of compact subsets of X^{ω} , where for each $j \in \omega$, $K(j) = \prod_{i \in \omega} K(j)_i \in \mathcal{K}$, sequences $\{H(\delta(j)): j \in \omega\}$, $\{W(\delta(j)): j \in \omega\}$ of elements of \mathcal{B} , a sequence $\{A(j): j \in \omega\}$ of finite subsets of ω , a sequence $\{B_{\delta(j), A(j)}: j \in \omega\}$ of elements of \mathcal{B} satisfying the conditions $(10^{\prime\prime})=(11)$, $(11^{\prime\prime})=(12)$, $(12^{\prime\prime})=(13)$, $(13^{\prime\prime})=(14)$, $(14^{\prime\prime})=(15)$, $(15^{\prime\prime\prime})=(16)$ and $(16^{\prime\prime\prime})=(18)$. Then there is an $i \in \omega$ such such that $|\{j \in \omega: i \in A(j)\}| = \omega$. Let $\{j \in \omega: i \in A(j)$ and $i \leq n(B_{\delta(j), A(j)})\} = \{j_k:$ $k \in \omega\}$. We have

(17") For each $k \in \omega$, $\varepsilon(clW_{\gamma(\delta(j_{k+1}+1),i)}) < \varepsilon(clW_{\gamma(\delta(j_{k}+1),i)})$.

Fix $k \in \omega$ and take a $y \in clW_{\gamma(\delta(j_{k+1}+1),i)}$. Since $W_{\gamma(\delta(j_{k+1}+1),i)} \subset W_{\gamma(\delta(j_{k+1}+1),i)}$, $\alpha clW_{\gamma(\delta(j_{k+1}+1),i)}(y) \leq \alpha clW_{\gamma(\delta(j_{k+1}),i)}(y)$. Assume that $j_{k+1} = j_k + 1$. Then $W_{\gamma(\delta(j_{k+1}+1),i)} \subset B_{\delta(j_{k+1}),A(j_{k+1}),i}$ and

$$K(j_{k+1})_{i} = K_{\gamma(\delta(j_{k+1}), i)} = (clW_{\gamma(\delta(j_{k+1}), i)})^{\alpha(\gamma(\delta(j_{k+1}), i))} \subset H(\delta(j_{k+1}))_{i}.$$

Assume that $j_{k+1} > j_k + 1$. Then

$$K(j_{k}+1)_{i} = K_{\gamma(\delta(j_{k}+1),i)} = C_{\lambda(B_{\delta(j_{k}+1),A(j_{k}+1),i)}} = C_{\lambda(B_{\delta(j_{k}+1}-1),A(j_{k}+1-1),i)} \subset H(\delta(j_{k}+1))_{i}$$

In each case, we have $\alpha clW_{\gamma(\delta(j_{k}+1),i)}(y) < \alpha(\gamma(\delta(j_{k}+1),i))$. Hence $\alpha clW_{\gamma(\delta(j_{k}+1+1),i)}(y) < \alpha(\gamma(\delta(j_{k}+1),i))$. Therefore $\varepsilon(clW_{\gamma(\delta(j_{k}+1),i)}) \leq \alpha(\gamma(\delta(j_{k}+1),i))$. Since $\varepsilon(clW_{\gamma(\delta(j_{k}+1),i)}) = \alpha(\gamma(\delta(j_{k}+1),i)+1)$, we have $\varepsilon(clW_{\gamma(j_{k}+1+1),i)}) < \varepsilon(clW_{\gamma(\delta(j_{k}+1),i)})$.

Thus $\{\varepsilon(clW_{\tau(\delta(j_{k+1}),i)}): k \in \omega\}$ is an infinite decreasing sequence of ordinals, which is a contradiction. Thus there is a $k \in \omega$ such that $x \notin \bigcup \mathcal{B}_k$. Similarly, it follows that $\bigcup \{\mathcal{G}_j: j \in \omega\}$ is a point finite open refinement of \mathcal{O}' . The proof is completed.

Similarly, we have

THEOREM 5.10. Let Z be a hereditarily metacompact space and Y_i be a regular C-scattered metacompact space for each $i \in \omega$. Then the following are equivalent.

- (a) $Z \times \prod_{i \in m} Y_i$ is metacompact,
- (b) $Z \times \prod_{i \in \omega} Y_i$ is countably metacompact,
- (c) $Z \times \prod Y_i$ is orthocompact.

THEOREM 5.11. If Z is a hereditarily metalindelöf space and Y_i is a regular C-scattered metalindelöf space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_i$ is metalindelöf.

Acknowledgement.

The author would like to thank Mr. Seiji Fujii for his kindness.

References

- [1] Alster, K., A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
- [2] Alster, K., On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241-246.
- [3] Burke, D.K., On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- [4] Burke, D.K., Covering properties, in: Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, 347-422.
- [5] Chaber, J., Metacompactness and the class MOBI, Fund. Math. 91 (1976), 211-217.
- [6] Čoban, M.M., On the theory of p-spaces, Soviet Math. Dokl. 11 (1970), 1257-1260.
- [7] van Dowen, E.K., The Pixley-Roy topology on spaces of subsets, in: Set Theoretic Topology, ed. by G.M. Reed, Academic Press, New York, 1977, 111-134.
- [8] Engelking, General Topology, Heldermann, Berlin, 1989.
- [9] Frolik, Z., On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. 8 (1960), 747-750.
- [10] Galvin, F. and Telgársky, R., Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
- [11] Gruenhage, G. and Yajima, Y., A filter property of submetacompactness and its application to products, Topology Appl. **36** (1990), 43-55.
- [12] Kemoto, N. and Yajima, Y., Orthocompactness in infinite product spaces, preprint.
- [13] Kunen, K., Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [14] Michael, E., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), 199-214.
- [15] Nyikos, P., On the product of metacompact spaces I. Connections with hereditary compactness, Amer. Math. J. 100 (1978), 829-835.
- [16] Scott, B., Toward a product theory for orthocompactness, in: Studies in Topology ed. by N.M. Stavrakas and K.R. Allen, Academic Press, New York, 1975, 517-537.
- [17] Tanaka, H., A class of spaces whose countable product with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503-512.
- [18] Telgársky, R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [19] Telgársky, R., Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
- [20] Telgársky, R., Topological games: On the 50th Anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), 227-276.
- [21] Yajima, Y., Topological games and products III, Fund. Math. 117 (1983), 223-238.
- [22] Yajima, Y., Topological games and applications, in: Topics in General Topology, ed. by K. Morita and J. Nagata, North-Holland, Amsterdam, 1989, 523-562.

Department of Mathematics Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582, Japan