COVERING PROPERTIES IN COUNTABLE PRODUCTS

By
Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a σ discrete closed refinement, and metacompact (countably metacompact) if every open cover (countable open cover) of X has a point finite open refinement. A space X is said to be metalindelof if every open cover of X has a point countable open refinement. A collection \mathcal{U} of subsets of a space X is said to be interior-preserving if $\operatorname{int}(\cap \subset V)=\cap\{\operatorname{int} V: V \in C V\}$ for every $\subset V \subset V$. Clearly, an open collection \mathcal{U} is interior-preserving if and only if $\cap \subset)$ is open for every $\checkmark \vee \subset Q$. A space X is said to be orthocompact if every open cover of X has an interior-preserving open refinement. Every paracompact Hausdorff space is subparacompact and metacompact, and every metacompact space is countably metacompact, metalindelöf and orthocompact. The reader is refered to D.K. Burke [4] for a complete treatment of these covering properties and some informations of their role in general topology.

Let $\mathscr{D C}$ be the class of all spaces which have a discrete cover by compact sets. The topological game $G(\mathscr{D C}, X)$ was introduced and studied by R . Telgársky [19]. The games are played by two persons called Players I and II. Players I and II choose closed subsets of II's previous play (or of X, if $n=0$): Player I's choice must be in the class $\mathscr{D C}$ and II's choice must be disjoint from I's. We say that Player I wins if the intersection of II's choices is empty. Recall from [19] that a space X is said to be $\mathscr{D C}$-like if Player I has a winning strategy in $G(\mathscr{D C}, X)$. The class of $\mathscr{D C}$-like spaces includes all spaces which admit a σ-closure-preserving closed cover by compact sets, and regular subparacompact, σ - C-scattered spaces.

Paracompactness and Lindelöf property of countable products have been studied by several authors. In particular, if X is a separable metric space or X is a regular Čech-complete Lindelöf space or X is a regular C-scattered Lindelöf space, then $X^{\omega} \times Y$ is Lindelöf for every regular hereditarily Lindelöf space Y. The first result is due to E. Michael (cf. [14]) and the second one
is due to Z. Frolik [9] and the third one is due to K. Alster [1]. K. Alster [2] also proved that if Y is a perfect paracompact Hausdorff space and X_{n} is a scattered paracompact Hausdorff space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} Y_{n}$ is paracompact. Furthermore, the author [17] proved that if Y is a perfect paracompact Hausdorff (regular hereditarily Lindelöf) space and X_{n} is a paracompact Hausdorff (regular Lindelöf) $\mathscr{D C}$-like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_{n}$ is paracompact (Lindelöf).

The aim of this paper is to consider subparacompactness, metacompactness, metalindelöf property and orthocompactness of countable products. We show that if Y is a perfect subparacompact space and X_{n} is a regular subparacompact $\mathscr{D C}$-like space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_{n}$ is subparacompact. We also prove that if X_{n} is a regular metacompact $\mathscr{D C}$-like (C-scattered) space for each $n \in \omega$, then $\prod_{n \in \omega} X_{n}$ is metacompact. Furthermore, let Y be a hereditarily metacompact space and X_{n} be a regular metacompact $\mathscr{D C}$-like (C-scattered) space for each n $\in \omega$. Then the following statements are equivalent: (a) $Y \times \prod_{n \in \omega} X_{n}$ is metacompact ; (b) $Y \times \prod_{n \in \omega} X_{n}$ is countably metacompact and (c) $Y \times \prod_{n \in \omega} X_{n}$ is orthocompact. For metalindelöf property, it will be shown that if Y is a hereditarily metalindelöf space and X_{n} is a regular metalindelöf $\mathscr{D C}$-like (C-scattered) space for each $n \in \omega$, then $Y \times \prod_{n \in \omega} X_{n}$ is metalindelöf.

In this paper, we deal with infinite spaces. No separation axioms are assumed. However, regular spaces are assumed to be T_{1}. Let $|A|$ denote the cardinality of a set A. The letter ω denotes the set of natural numbers.

Given a cover \mathcal{U} of a space X, and $Y \subset X$, let $\mathcal{U} \mid Y=\{U \cap Y: U \in \mathcal{Q}\}$. For each $x \in X$, let $\mathcal{U}_{x}=\{U \in \mathcal{U}: x \in U\}$ and let $\operatorname{ord}(x, \mathcal{U})=\left|\mathcal{U}_{x}\right|$. Let \mathcal{Q}^{F} be the collection of all finite unions of elements of \mathcal{U}.

We use the finite sequences in the proofs. So we adopt the following notations for them: Let A be a set, and let $\mathscr{P}(A)$ be the set of all nonempty subsets of A. Let $A^{0}=\{\varnothing\}$. For each $n \geqq 1, A^{n}$ denotes the set of all n-sequences of elements of A and $A^{<\omega}=\bigcup_{n \in \omega} A^{n}$. If $\tau=\left(a_{0}, \cdots, a_{n}\right) \in A^{<\omega}$ and $a \in A$, then $\tau \oplus a$ denotes the sequence $\left(a_{0}, \cdots, a_{n}, a\right)$ and $\tau_{-}=\left(a_{0}, \cdots, a_{n-1}\right)$ if $n \geqq 1$ and $\tau_{-}=\varnothing$ if $n=0$.

2. Topological games.

For the class $\mathscr{D C}$ and a space X, the topologial game $G(\mathscr{C C}, X)$ is defined as follows: There are two players I and II (the pursuer and evader). They alternatively choose consecutive terms of a sequence $\left\langle E_{0}, F_{0}, E_{1}, F_{1}^{\prime}, \cdots, E_{n}, F_{n}\right.$,
$\cdots>$ of subsets in X. When each player chooses his term, he knows $\mathscr{D C}, X$ and their previous choices.

For a space X, let 2^{X} denote the set of all closed subsets of X. A sequence $\left\langle E_{0}, F_{0}, E_{1}, F_{1}, \cdots, E_{n}, F_{n}, \cdots\right\rangle$ of subsets in X is a play of $G(\mathscr{D C}, X)$ if it satisfies the following conditions: For each $n \in \omega$,
(1) E_{n} is the choice of Player I,
(2) F_{n} is the choice of Player II,
(3) $E_{n} \in 2^{X} \cap \mathscr{D C}$,
(4) $F_{n} \in 2^{X}$,
(5) $E_{n} \cup F_{n} \subset F_{n-1}$, where $F_{-1}=X$,
(6) $E_{n} \cap F_{n}=\varnothing$.

Player I wins if $\bigcap_{n \in \omega} F_{n}=\varnothing$ (Player II has no place to run away). Otherwise Player II wins.

A finite sequence $\left\langle E_{0}, F_{0}, E_{1}, F_{1}, \cdots, E_{m}, F_{m}\right\rangle$ is said to be admissible if it satisfies the above conditions (1)-(6) for each $n \leqq m$.

Let s^{\prime} be a function from $\bigcup_{n \in \omega}\left(2^{X}\right)^{n+1}$ into $2^{X} \cap \mathscr{D C}$. Let

$$
\mathcal{S}_{0}=\left\{F:\left\langle s^{\prime}(X), F\right\rangle \text { is admissible for } G(\mathscr{D C}, X)\right\}
$$

Moreover, we can inductively define

$$
\begin{aligned}
\mathcal{S}_{n}= & \left\{\left(F_{0}, F_{1}, \cdots, F_{n}\right):\left\langle E_{0}, F_{0}, E_{1}, F_{1}, \cdots, E_{n}, F_{n}\right\rangle\right. \\
& \text { is admissible for } G(\mathscr{D C}, X) \text {, where } F_{-1}=X \text { and } \\
& \left.E_{i}=s^{\prime}\left(F_{0}, F_{1}, \cdots, F_{i-1}\right) \text { for each } i \leqq n\right\} .
\end{aligned}
$$

Then the restriction s of s^{\prime} to $\bigcup_{n \in \omega} S_{n}$ is said to be a strategy for Player I in $G(\mathscr{D C}, X)$. We say that the strategy s is a winning one if Player I wins every play $\left\langle E_{0}, F_{0}, E_{1}, F_{1}, \cdots, E_{n}, F_{n}, \cdots\right\rangle$ such that $E_{n}=s\left(F_{0}, F_{1}, \cdots, F_{n-1}\right)$ for $n \in \omega$.

Next, we define another (winning) strategy for Player I in $G(\mathscr{D C}, X)$, which depends only on the preceding choice of Player II.

A function s from 2^{X} into $2^{X} \cap \mathscr{D C}$ is said to be a stationary strategy for Player I in $G(\mathscr{D C}, X)$ if $s(F) \subset F$ for each $F \in 2^{X}$. We say that the s is winning if he wins every play $\left\langle s(X), F_{0}, s\left(F_{0}\right), F_{1}, s\left(F_{1}\right), \cdots\right\rangle$. That is, a function s from 2^{X} into $2^{X} \cap \mathscr{D C}$ is a stationary winning strategy if and only if it satisfies
(i) $s(F) \subset F$ for each $F \in 2^{X}$,
(ii) if $\left\{F_{n}: n \in \omega\right\}$ is a decreasing sequence of closed subsets of X such that $s\left(F_{n}\right) \cap F_{n+1}=\varnothing$ for each $n \in \omega$, then $\bigcap_{n \in \omega} F_{n}=\varnothing$.

The following lemma shows that there is no essential difference between the winning strategy and the stationary winning strategy.

Lemma 2.1 (F. Galvin and R. Telgársky [10]). Player I has a winning strategy in $G(\mathscr{D C}, X)$ if and only if he has a stationary winning strategy in it.

As described in the introduction, a space X is $\mathscr{D C}$-like if Player I has a winning strategy in $G(\mathscr{D C}, X)$.

Lemma 2.2 (R. Telgársky [19]). If a space X has a countable closed cover by $\mathfrak{D C}$-like sets, then X is a \mathscr{D} C-like space.

Recall that a space X is scattered if every non-empty subset A of X has an isolated point of A, and C-scattered if for every non-empty closed subset A of X, there is a point of A which has a compact neighborhood in A. Then scattered spaces and locally compact Hausdorff spaces are C-scattered. Let X be a space. For each $F \in 2^{X}$, let

$$
F^{(1)}=\{x \in F: x \text { has no compact neigborhood in } F\} .
$$

Let $X^{(0)}=X$. For each successor ordinal α, let $X^{(\alpha)}=\left(X^{(\alpha-1)}\right)^{(1)}$. If α is a limit ordinal, let $X^{(\alpha)}=\bigcap_{\beta<\alpha} X^{(\beta)}$. Notice that a space X is C-scattered if and only if $X^{(\alpha)}=\varnothing$ for some ordinal α. If X is C-scattered, let $\varepsilon(X)=\inf \left\{\alpha: X^{(\alpha)}\right.$ $=\varnothing\}$. We say that $\varepsilon(X)$ is the C-scattered height of X. For each $x \in X$, we denote by $\alpha_{X}(x)$ the ordinal such that $x \in X^{\left(\alpha_{X}(x)\right)}-X^{\left(\alpha_{X}(x)+1\right)}$. Let X be a regular C-scattered space. If A is either open or closed in X, then A is C-scattered. More precisely, if A is an open subset of X, then $A^{(\alpha)}=X^{(\alpha)} \cap A$ for each $\alpha<\varepsilon(X)$ and if A is a closed subset of X, then $A^{(\alpha)} \subset A \cap X^{(\alpha)}$ for each $\alpha<\varepsilon(X)$. Therefore, if $x \in A$, then $\alpha_{A}(x) \leqq \alpha_{X}(x)$ and hence, $\varepsilon(A) \leqq \varepsilon(X)$. A space X is said to be σ-scattered (σ - C-scattered) if X is the union of countably many closed scattered (C-scattered) subspaces.

Lemma 2.3 (R. Telgársky [19]). (a) If a space X has a σ-closure-preserving closed cover by compact sets, then X is a $\mathscr{D C}$-like space.
(b) If X is a regular subparacompact, σ-C-scattered space, then X is $\mathfrak{D C}$-like space.

Lemma 2.4 (G. Gruenhage and Y. Yajima [11], Y. Yajima [21]). (a) If X is a regular subparacompact (metacompact) $\mathfrak{D C}$-like space, then $X \times Y$ is subparacompact (metacompact) for every subparacompact (metacompact) space Y.
(b) If X is a regular C-scattered metacompact space, then $X \times Y$ is metacompact for every metacompact space Y.

For topological games, the reder is refered to R. Telgársky [18], [19] and Y. Yajima [21].

3. Preliminaries.

Let Z be a space and $\left\{Y_{i}: i \in \omega\right\}$ be a countable collection of spaces. For $Z \times \prod_{i \in \omega} Y_{i}$, we denote by \mathscr{B} the collection of all basic open subsets of $Z \times \prod_{i \in \omega} Y_{i}$. Let us denote by \mathcal{R} the collection of closed subsets of $Z \times \prod_{i \in \omega} Y_{i}$ consisting of sets of the form $R=E_{R} \times \prod_{i \in \omega} R_{i}$, where E_{R} is a closed subset of Z and there is an $n \in \omega$ such that for each $i \leqq n, R_{i}$ is a closed subset of Y_{i} and for each $i>n$, $R_{i}=Y_{i}$. For each $B=U_{B} \times \prod_{i \in \omega} B_{i} \in \mathcal{B}$ and $R=E_{R} \times \prod_{i \in \omega} R_{i} \in \mathcal{R}$, we define $n(B)$ $=\inf \left\{i \in \omega: B_{j}=Y_{j}\right.$ for $\left.j \geqq i\right\}$ and $n(R)=\inf \left\{i \in \omega: R_{j}=Y_{j}\right.$ for $\left.j \geqq i\right\}$. We call $n(B)$ and $n(R)$ the length of B and R respectively. Let $\mathcal{K}=\left\{\prod_{i \in \omega} K_{i}: K_{i}\right.$ is a compact subset of Y_{i} for each $\left.i \in \omega\right\}$. For each $z \in Z$ and $K \in \mathcal{K}$, let $K_{(z, K)}=$ $\{z\} \times K$.

Lemma 3.1 (D. K. Burke [3], [4]). The following are equivalent for a space X.
(a) X is subparacompact,
(b) Every open cover of X has a σ-locally finite closed refinement,
(c) For every open cover \mathcal{U} of X, there is a sequence $\left\{\mathcal{V}_{n}\right\}_{n \in \omega}$ of open refinements of \mathcal{V} such that for each $x \in X$, there is an $n \in \omega$ with $\operatorname{ord}\left(x, \mathcal{V}_{n}\right)=1$.

It is well known that a space X is metacompact (metalindelöf) if and only if for every open cover \mathcal{U} of X, \mathcal{U}^{F} has a point finite (point countable) open refinement. In order to study subparacompactness of $Z \times \prod_{i \in \omega} Y_{i}$, we need the following lemma.

Lemma 3.2. Let Z be a space and $\left\{Y_{i}: i \in \omega\right\}$ be a countable collection of spaces. Assume that all finite subproducts of $Z \times \underset{i \in \omega}{ } Y_{i} Y_{i}$ are subparacompact. If, for every open cover \mathcal{O} of $Z \times \prod_{i \in \omega} Y_{i}, \mathcal{O}^{F}$ has a σ-locally finite refinement consisting of elements of \mathcal{R}, then $Z \times \prod_{i \in \omega} Y_{i}$ is subparacompact.

Proof. Let \mathcal{O} be an open cover of $Z \times \prod_{i \in \omega} Y_{i}$. We may assume that $\mathcal{O} \subset \mathscr{B}$. By the assumption, there is a σ-locally finite refinement $\underset{m \in \omega}{\bigcup} \mathcal{R}_{m}$ of \mathcal{O}^{F}, consisting of elements of \mathcal{R}. Fix $m \in \omega$. For each $R=E_{R} \times \prod_{i \in \omega} R_{i} \in \mathcal{R}_{m}$, let $\{O(R, k)$:
$k=0, \cdots, j(R)\}$ be a finite subcollection of \mathcal{O} such that $R \subset \bigcup_{k=0}^{j(R)} O(R, k)$. Let $O(R, k)=U_{R, k} \times \prod_{i \in \omega} O(R, k)_{i}$ for each $k \leqq j(R)$, and let $n=\max _{n}\{n(R), n(O(R, k))$: $k \leqq j(R)\}$. Put $R(n)=E_{R} \times \prod_{i=0}^{n} R_{i}$ and $O(R, k, n)=U_{R, k} \times \prod_{i=0}^{n} O(R, k)_{i}$ for each $k \leqq j(R)$. Let $\mathcal{O}(R)=\{O(R, k, n): k \leqq j(R)\}$. Then $R(n) \subset \cup \mathcal{O}(R)$. Rince $Z \times$ $\prod_{i=0}^{n} Y_{i}$ is subparacompact and $R(n)$ is a closed subspace of $Z \times \prod_{i=0}^{n} Y_{i}, R(n)$ is subparacompact. Thus there is a σ-discrete closed refinement $\underset{t \in \omega}{\cup} \mathscr{D}_{t}(R)$ of $\mathcal{O}(R) \mid R(n)$. For each $t \in \omega$, let $\mathscr{D}_{t}^{\prime}(R)=\left\{D \times \prod_{i>n} Y_{i}: D \in \mathscr{D}_{t}\right\}$. Put $\mathcal{G}_{m, t}=\cup\left\{\mathscr{D}_{t}^{\prime}(R)\right.$: $\left.R \in \mathscr{R}_{m}\right\}$ for each $m, t \in \omega$. Then $\bigcup_{m, t \in \omega} \mathcal{G}_{m, t}$ is a σ-locally finite closed refinement of \mathcal{O}. It follows from Lemma 3.1 that $Z \times \prod_{i \in \omega} Y_{i}$ is subparacompact. The proof is completed.

In order to study metacompactness and metalindelöf property of countable products of C-scattered spaces, we need the following.

Lemma 3.3. Let X be a regular C-scattered metacompact (metalindelöf) space. For every open over Q of X, there is a point finite (point countable) open cover \mathbb{C} of X such that: For each $V \in C V$,
(a) $c l V$ is contained in some member of U,
(b) $(c l V)^{(\alpha)}$ is compact for some $\alpha<\varepsilon(X)$.

Proof. We prove this lemma by induction on the C-scattered height $\varepsilon(X)$ for the sake of completeness. Let X be a locally compact metacompact (metalindelöf) Hausdorff space (i.e. $\varepsilon(X)=1$). Thus there is a point finite (point countable) open cover Q of X satisfying the condition (a) such that for each $V \in C V, c l W$ is compact. Clearly Q satisfies the condition (b). Let X be a regular C-scattered metacompact (metalindelöf) space and $\varepsilon=\varepsilon(X)$, and assume that for each $\alpha<\varepsilon$, the lemma holds. Then there is a point finite (point countable) open cover \mathscr{W} of X such that (cf. R. Telgársky [18, Theorem 1.6]): Let $W \in \mathscr{W}$.
(i) $c l W$ is contained in some member of Q,
(ii) If ε is a successor ordinal, then $(c l W)^{(\varepsilon-1)}$ is compact,
(iii) If ε is a limit ordinal, then $(c l W)^{(\alpha)}=\varnothing$ for some $\alpha<\varepsilon$.

Case 1. ε is a limit ordinal. By induction hypothesis, for each $W \in \mathscr{W}$, there is a point finite (point countable) open collection $\mathcal{V}^{\prime}(W)$ in $c l W$ such that $\mathcal{V}^{\prime}(W)$ covers $c l W$ and for each $V \in \mathscr{V}^{\prime}(W),(c l V)^{(\alpha)}$ is compact for some $\alpha<\varepsilon$. Put $\mathcal{V}(W)=\mathcal{V}^{\prime}(W) \mid W$ for each $W \in \mathscr{W}$ and $\mathcal{V}=\cup\{\mathcal{V}(W): W \in \mathscr{W}\}$. Then \mathcal{V} satisfies the conditions (a) and (b).

Case 2. ε is a successor ordinal. Let $\mathscr{W}_{0}=\{W \in \mathscr{W}: \varepsilon(c l W)=\varepsilon\}$, and $\mathscr{W}_{1}=$ $\mathscr{W}-\mathscr{W}_{0}$. Take a $W \in \mathscr{W}_{1}$. Then $\varepsilon(c l W)<\varepsilon$. By induction hypothesis, there is a point finite (point countable) open collection $C V^{\prime}(W)$ in $c l W$ such that $V^{\prime}(W)$ covers $c l W$ and for each $V \in V^{\prime}(W),(c l V)^{(\alpha)}$ is compact for some $\alpha<\varepsilon$. Put Put $\mathcal{V}(W)=\mathcal{C}^{\prime}(W) \mid W$ for each $W \in \mathscr{W}_{1}$. Take a $W \in \mathscr{W}_{0}$. Since $\varepsilon(c l W)=\varepsilon$, $(c l W)^{(\varepsilon-1)}$ is compact. Let $\mathcal{Q}=\mathscr{W}_{0} \cup\left(\cup\left\{\mathcal{V}(W): W \in \mathscr{W}_{1}\right\}\right)$. Then \mathcal{Q} satisfies the conditions (a) and (b).

The proof is completed.

4. Subparacompactness.

We firstly study subparacompactness of $Z \times \prod_{i \in \omega} Y_{i}$.
Theorem 4.1. If Z is a perfect subparacompact space and Y_{i} is a regular subparacompact $\mathscr{D C}$-like space for each $i \in \boldsymbol{\omega}$, then $Z \times \prod_{i \in \omega} Y_{i}$ is subparacompact.

Proof. Without loss of generality, we may assume that $Y_{i}=X$ for each $i \in \omega$ and there is an isolated point a in X. Indeed, put $X=\underset{i \in \omega}{\oplus} Y_{i} \cup\{a\}$, where $a \notin \bigcup_{i \in \omega} Y_{i}$. The topology of X is as follows: Every Y_{i} is an open-and-closed subspace of X and a is an isolated point in X. Since every Y_{i} is a regular subparacompact $\mathscr{D C}$-like space, by Lemma $2.2, X$ is a regular subparacompact $\mathscr{D C}$-like space. $Z \times \prod_{i \in \omega} Y_{i}$ is a closed subspace of $Z \times X^{\omega}$. Therefore, if $Z \times X^{\omega}$ is subparacompact, then $Z \times \prod_{i \in \omega} Y_{i}$ is subparacompact.

Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Put $\mathcal{O}^{\prime}=\left\{B \in \mathscr{B}: B \subset O\right.$ for some $\left.O \in \mathcal{O}^{F}\right\}$. For each $z \in Z$ and $K \in \mathcal{K}$, there is an $O \in \mathcal{O}^{F}$ such that $K_{(z, K)} \subset O$. Then, by Wallace theorem in R. Engelking [8], there is a $B \in \mathscr{B}$ such that $K_{(z, K)} \subset B \subset O$. Thus we have $B \in \mathcal{O}^{\prime}$. Define $n\left(K_{(z, K)}\right)=\inf \left\{n(O): O \in \mathcal{O}^{\prime}\right.$ and $\left.K_{(z, K)} \subset O\right\}$.

Let s be a stationary winning strategy for Player I in $G(\mathscr{D C}, X)$. Let $R=$ $E_{R} \times \prod_{i \in \omega} R_{i} \in \mathscr{R}$ such that for each $i \leqq n(R)$, we have already obtained a compact set $C_{\lambda(R, i)}$ of $R_{i} . \quad\left(C_{\lambda(R, n(R))}=\varnothing . \quad C_{\lambda(R, i)}=\varnothing\right.$ may be occur for $\left.i<n(R).\right)$ Fix $i \leqq n(R)$. If $C_{\lambda(R, i)} \neq \varnothing$, let $F_{\gamma(R, i, m)}=R_{i}$ for each $m \in \omega$. Put $\Lambda(R, i)=\{\lambda(R, i)\}$ and $\Gamma(R, i, m)=\{\gamma(R, i, m)\}$ for each $m \in \omega$. Let $\mathcal{C}(R, i)=\left\{C_{\lambda}: \lambda \in \Lambda(R, i)\right\}=$ $\left\{C_{\lambda(R, i)}\right\}$ and $\mathscr{F}(R, i, m)=\left\{F_{\gamma}: \gamma \in \Gamma(R, i, m)\right\}=\left\{F_{\gamma(R, i, m)}\right\}$ for each $m \in \omega$. Put $\mathscr{I}(R, i)=\bigcup_{m \in \omega} \mathscr{I}(R, i, m)$. Assume that $C_{\lambda(R, i)}=\varnothing$. Then there is a discrete collection $\mathcal{C}(R, i)=\left\{C_{\lambda}: \lambda \in \Lambda(R, i)\right\}$ of compact subsets of X such that $s\left(R_{i}\right)=$ $\cup \mathcal{C}(R, i)$. Since R_{i} is a closed subspace of X, R_{i} is a subparacompact space.

Then there is a family $\mathscr{I}(R, i)=\bigcup_{m \in \omega} \mathscr{F}(R, i, m)$, where $\mathscr{F}(R, i, m)=\left\{F_{\gamma}: \gamma \in\right.$ $\Gamma(R, i, m)$, of collections of closed subsets in R_{i} (and hence, in X), satisfying
(1) $\mathcal{F}(R, i)$ covers R_{i},
(2) Every member of $\mathscr{G}(R, i)$ meets at most one member of $\mathcal{C}(R, i)$,
(3) $\mathscr{F}(R, i, m)$ is discrete in X for each $m \in \omega$.

In each case, for $\gamma \in \bigcup_{m \in \omega} \Gamma(R, i, m)$, let $K_{\gamma}=F_{\gamma} \cap C_{i}$ if $F_{\gamma} \cap C_{i} \neq \varnothing$ for some (unique) C_{λ}. If $F_{\gamma} \cap(\cup \mathcal{C}(R, i))=\varnothing$, then we take a point $p_{r} \in F_{\gamma}$ and let $K_{r}=$ $\left\{p_{\gamma}\right\}$. Thus, if $C_{\lambda(R, i)} \neq \varnothing$, then $K_{\gamma(R, i, m)}=F_{\gamma(R, i, m)} \cap C_{\lambda(R, i)}=C_{\lambda(R, i)}$ for each $m \in \omega$. For $\eta=\left(m_{0}, \cdots, m_{n(R)}\right) \in \omega^{n(R)+1}$, let $\Delta_{R, \eta}=\Gamma\left(R, 0, m_{0}\right) \times \cdots \times \Gamma(R, n(R)$, $\left.m_{n(R)}\right)$. For each $\eta \in \omega^{n(R)+1}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(R))) \in \Delta_{R, \eta}$, let $K(\delta)=$ $K_{\gamma(\delta, 0)} \times \cdots \times K_{\gamma(\delta, n(R))} \times\{a\} \times \cdots \times\{a\} \times \cdots$, and let $\mathcal{K}_{R, \eta}=\left\{K(\delta): \delta \in \Delta_{R, \eta}\right\}$. Then $\mathscr{K}_{R, \eta} \subset \mathcal{K}$. For each $z \in E_{R}, \eta \in \omega^{n(R)+1}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(R))) \in \Delta_{R, \eta}$, let $r\left(K_{(z, K(\delta)}\right)=\max \left\{n\left(K_{(z, K(\delta))}\right), n(R)\right\}$. Fix $z \in E_{R}, \eta \in \omega^{n(R)+1}$ and $\delta=(\gamma(\delta, 0), \cdots$, $\gamma(\delta, n(R))) \in \Delta_{R, \eta}$. Take an $O_{z, \dot{\delta}}=U_{z, \dot{\delta}} \times \prod_{i \in \omega} O_{z, \delta, i} \in \mathcal{O}^{\prime}$ such that $K_{(z, K(\hat{\delta}))} \subset O_{z, \delta}$ and $n\left(K_{(2, K(\delta))}\right)=n\left(O_{2, \delta)}\right)$. Then we can take a subset $H_{(z, K(\partial))}=H_{2, \dot{\delta}} \times \prod_{i \in \mathscr{\mathscr { W }}} H_{(z, K(\delta)), i}$ of $Z \times X^{\omega}$ such that
(4) $H_{z, \delta}$ is an open neighborhood of z in E_{R} such that $H_{z, \delta} \sqsubset U_{2, \delta}$,
(5) $H_{z, \delta} \times \prod_{i=0}^{n(K(z, K(\delta)))-1} c l H_{(z, K(\delta)), i} \times X \times \cdots \times X \times \cdots \subset O_{z, \delta}$,
(6-1) For each i with $n\left(K_{(2, K(\hat{\partial}))}\right) \leqq i \leqq r\left(K_{z, K(\hat{\partial}))}\right)$, let $H_{(2, K(\hat{\partial}), i}=F_{\gamma(\delta, i)}$,
(6-2) For each $i<n\left(K_{(z, K(\delta))}\right)$ with $i \leqq n(R), H_{(z, K(\delta)), i}$ be an open subset of $F_{\gamma(\delta, i)}$ such that $K_{\gamma(\hat{0}, i)} \subset H_{(z, K(\hat{\partial}),, i} \subset c l H_{(z, K(\delta)), i} \subset O_{z, \delta, i,}$,
(6-3) For each i with $n(R)<i<n\left(K_{(z, K(\delta))}\right)$, let $H_{(z, K(\hat{\partial}), i}=\{a\}$,
(6-4) In case of that $r\left(K_{(z, K(\hat{\partial}))}\right)=n(R)$, let $H_{(z, K(\delta)), i}=X$ for $n(R)<i$. In case of that $r\left(K_{(z, K(\delta))}\right)=n\left(K_{(z, K(\delta))}\right)>n(R)$, let $H_{(z, K(\delta)), i}=X$ for $n\left(K_{(z, K(\delta))}\right) \leq i$.

Then we have $K_{(z, K(\hat{\delta}))} \subset H_{(z, K(\hat{\jmath}))}$. For each $j \in \omega$, let $V_{j}(K(\delta))=\left\{z \in E_{R}\right.$: $\left.n\left(K_{(\Omega, K(\delta))}\right)=j\right\}$ and $\mathscr{H}_{j}(K(\delta))=\left\{H_{z, \delta}: n\left(K_{(z, K(\delta))}\right)=j\right\}$. Fix $j \in \omega$. Then $\bigcup_{k=0}^{j} V_{k}(K(\delta))$ $=\bigcup\left\{H_{z, \dot{\delta}}: n\left(K_{(z, K(\hat{\partial}))}\right) \leqq j\right\}=\bigcup_{k=0}^{j}\left(\cup \mathscr{H}_{k}(K(\delta))\right)$. Since Z is a perfect space, $V_{j}(K(\delta))$ is an F_{σ}-set in E_{R}. Since E_{R} is subparacompact, there is a family $\mathscr{D}_{\eta, \delta, j}=$ $\bigcup_{k \in \omega} \mathscr{D}_{\eta, \dot{\delta}, j, k}$, where $\mathscr{D}_{\eta, \delta, j, k}=\left\{D_{\xi}: \xi \in \Xi_{\eta, \delta, j, k}\right\}$, of collections of closed subsets in E_{R} (and hence, in Z) satisfying
(7) Every member of $\mathscr{T}_{\eta, \delta, j}$ is contained in some member of $\mathscr{H}_{j}(K(\delta)) \mid$ $V_{j}(K(\delta))$,
(8) $\mathscr{D}_{\eta, \delta, j}$ covers $V_{j}(K(\delta))$,
(9) $\mathscr{D}_{\eta, \delta, j, k}$ is discrete in Z for each $k \in \omega$.

For $k \in \omega$ and $\xi \in \Xi_{\eta, \delta, j, k}$, take a $z(\xi) \in V_{j}(K(\delta))$ such that $D_{\xi} \subset H_{2(\xi), \dot{\delta}} \cap V_{j}(K(\delta))$.

Put $F_{\delta}=\prod_{i=0}^{n(R)} F_{\gamma(\delta, i)} \times X \times \cdots X \times \cdots$ and $D_{\xi, \delta}=D_{\xi} \times F_{\delta}$. Then $\left\{D_{\xi, \delta}: \eta \in \omega^{n(R)+1}, \delta \in\right.$ $\Delta_{R, \eta}, j, k \in \omega$ and $\left.\xi \in \Xi_{\eta, \delta, j, k}\right\}$ is a collection of elements of \mathscr{R} such that for each $\eta \in \omega^{n(R)+1}, \delta \in \Delta_{R, \eta}, j, k \in \omega$ and $\xi \in \Xi_{\eta, \dot{\delta}, j, k}, D_{\xi, \tilde{o}} \subset R$ and $\left\{D_{\xi, \delta}: \eta \in \omega^{n(R)+1}\right.$, $\delta \in \Delta_{R, \eta}, j, k \in \omega$ and $\left.\xi \in \Xi_{\eta, \delta, j, k}\right\}$ covers R.
(10) For each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega, \quad\left\{D_{\xi, \delta}: \delta \in \Delta_{R, \eta}\right.$ and $\left.\xi \in \Xi_{\eta, \delta, j, k}\right\}$ is discrete in $Z \times X^{\omega}$.

Fix $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Let $(z, x) \in Z \times X^{\omega}$ and $x=\left(x_{i}\right)_{i \in \omega}$. For each $i \leqq n(R)$, since R_{i} is a closed subset of X, we may assume that $x_{i} \in R_{i}$. Then, for each $i \leqq n(R)$, there is an open neighborhood $B\left(x_{i}\right)$ of x_{i} in X such that $\left|\left\{\delta \in \Delta_{R, \eta}: \prod_{i=0}^{n(R)} B\left(x_{i}\right) \cap F_{\bar{\delta}}(n(R)) \neq \varnothing\right\}\right| \leqq 1$, where $F_{\delta}(n(R))=\prod_{i=0}^{n(R)} F_{\gamma(\bar{o}, i)}$ for each $\delta \in$ $J_{R, \eta}$. Put $B^{\prime}(x)=\prod_{i=0}^{n(R)} B\left(x_{i}\right)$ and $B(x)=B^{\prime}(x) \times \prod_{i>n(R)} X_{i}$, where X_{i} is a copy of X for $i>n(R)$. If $B^{\prime}(x) \cap F_{\dot{\delta}}(n(R))=\varnothing$ for each $\delta \in \Delta_{R, \eta}$, then $Z \times B(x) \in \mathscr{B}$ and $(Z \times B(x)) \cap D_{\xi, \delta}=\varnothing$ for each $\delta \in \Delta_{R, \eta}$ and $\xi \in \Xi_{\eta, \delta, j, k}$. Otherwise, take a unique $\delta \in \Delta_{R, \eta}$ such that $B^{\prime}(x) \cap F_{\tilde{\delta}}(n(R)) \neq \varnothing$. Since $\mathscr{D}_{\eta, \hat{o}, j, k}$ is discrete in Z, there is an open neighborhood U of z in Z such that $\left|\left\{\xi \in \Xi_{\eta, \delta, j, k}: U \cap D_{\xi} \neq \varnothing\right\}\right| \leqq 1$. Then $U \times B(x) \in \mathscr{B}$ and $\mid\left\{D_{\xi, \delta^{\prime}}: D_{\xi, \delta^{\prime}} \cap(U \times B(x)) \neq \varnothing, \delta^{\prime} \in \Delta_{R, \eta}\right.$ and $\left.\xi \in \Xi_{\eta, \dot{o}^{\prime}, j, k}\right\} \mid$ \leqq 1. Thus $\left\{D_{\xi, \delta}: \delta \in U_{R, \eta}\right.$ and $\left.\xi \in \Xi_{\eta, \delta, j, k}\right\}$ is discrete in $Z \times X^{\omega}$.

For each $\eta \in \omega^{n(R)+1}, \delta \in \Delta_{R, \eta}, j, k \in \omega$ and $\xi \in \Xi_{\eta, \delta, j, k}$, let $G_{\xi, \delta}=D_{\xi} \times$ $\prod_{i \in \omega} c l H_{(z(\xi), K(\delta)), i} \subset D_{\xi, \delta}$ and $G_{\eta, \delta, j, k}(R)=\left\{G_{\xi, \delta}: \xi \in \Xi_{\eta, \delta, j, k}\right\}$. Define $G_{\eta, j, k}(R)=$ $\cup\left\{G_{\eta, 0, j, k}(R): \delta \in \Delta_{R, \eta}\right\}$ for each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$. Then we have
(11) For each $\eta \in \omega^{n(R)+1}, j, k \in \omega$, every member of $g_{\eta, j, k}(R)$ is contained in some member of \mathcal{O}^{\prime}.
(12) For each $\eta \in \omega^{n(R)+1}, j, k \in \omega, \mathcal{G}_{\eta, j, k}(R)$ is discrete in $Z \times X^{\omega}$.

This is clear from (10).
(13) For each $\eta \in \omega^{n(R)+1}, j, k \in \omega$, every element of $\mathcal{G}_{\eta, j, k}$ has the length $\max \{j, n(R)+1\}$.

Fix $\left.\eta \in \omega^{n(R)+1}, \delta=(\gamma(\delta), 0), \cdots, \gamma(\delta, n(R))\right) \in \Delta_{R, \eta}, j, k \in \omega$ and $\xi \in \Xi_{\eta, \delta, j, k}$. Then $n\left(K_{(z(\xi), K(\delta))}\right)=j$ and hence, $r\left(K_{(z(\xi), K(\bar{\partial}))}\right)=\max \{j, n(R)\}$. Let $A \in$ $\mathscr{P}\left(\left\{0,1, \cdots, r\left(K_{(z(\xi), K(\delta))}\right)\right\}\right)$. In case of that $r\left(K_{(z(\hat{\xi}), K(\hat{o}))}\right)=n(R)$, i. e., $n(R) \geqq j$. For each $i \in A$, let $R_{\xi, A, i}=F_{\gamma((\hat{, i)}}-H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leqq n(R)$, let $R_{\xi, A, i}=c l H_{(z(\xi), K(\delta)), i}$. For each $i>n(R)$, let $R_{\xi, A, i}=X$. Put $R_{\xi, A}=D_{\xi} \times \prod_{i \in \omega} R_{\xi, A, i}$. In case of that $j>n(R)$. For each $i \in A$ with $i \leqq n(R)$, let $R_{\tilde{\varepsilon}, A, i}=F_{\gamma(\delta, i)}-$ $H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leqq n(R)$, let $R_{\xi, A, i}=c l H_{(z(\xi), K(\delta)), i}$. Let $n(R)$ $<i<j$. If $i \in A$, let $R_{\xi, A, i}=X-H_{(z(\xi), K(\delta)), i}=X-\{a\}$. If $i \notin A$, let $R_{\xi, A, i}=$ $c l H_{(2(\xi), K(\partial)), i}=\{a\}$. For $i \geqq j$, let $R_{\xi, A, i}=X$. Put $R_{\xi, A}=D_{\xi} \times \prod_{i \in \Theta} R_{\xi, A, i}$. In each
case, $R_{\xi, A, i} \subset R_{i}$ for each $i \in \omega$. Notice that if $R_{\xi, A} \neq \varnothing$, then $n(R)<n\left(R_{\xi, A}\right)$. By the definition, $D_{\xi, \delta}=G_{\xi, \delta} \cup\left(\cup\left\{R_{\xi, A}: A \in \mathscr{P}(\{0,1, \cdots, \max \{j, n(R)\}\})\right\}\right)$. For each $A \in \mathscr{Q}(\{0,1, \cdots, \max \{j, n(R)\}\})$, let $\mathcal{R}_{\eta, \delta, j, k, A}(R)=\left\{R_{\xi, A}: \xi \in \Xi_{\eta, \delta, j, k}\right.$ and $\left.R_{\xi, A} \neq \varnothing\right\}$. For $j, k \in \omega$ and $A \in \mathscr{P}(\{0,1, \cdots, \max \{j, n(R)\}\})$, define $\mathcal{R}_{\eta, j, k, A}(R)=$ $\cup\left\{\mathcal{R}_{\eta, \delta, j, k, A}(R): \delta \in \Delta_{R, \eta}\right\}$. Then, by (10), we have
(14) Every $\mathcal{R}_{\eta, j, k, A}(R)$ is discrete in $Z \times X^{\omega}$.

Let $\mathbb{R}_{\eta, j, k}(R)=\cup\left\{\mathscr{R}_{\eta, j, k, A}(R): A \in \mathscr{P}(\{0,1, \cdots, \max \{j, n(R)\}\})\right\}$. Then, by (14),
(15) For each $\eta \in \omega^{n(R)+1}, j, k \in \omega, \mathscr{R}_{\eta, j, k}(R)$ is locally finite in $Z \times X^{\omega}$.
(16) For each $\eta \in \omega^{n(R)+1}$ and $j, k \in \omega$ with $\mathscr{R}_{\eta, j, k} \neq \varnothing$, every element of $\mathcal{R}_{\eta, j, k}$ has the length $\max \{j, n(R)+1\}$.

Fix a $R_{\xi, A}=D_{\xi} \times \prod_{i \in \omega} R_{\xi, A, i} \in \mathcal{R}_{\eta, \delta, j, k, A}(R)$ for $\eta \in \omega^{n(R)+1}, \quad \delta=(\gamma(\delta, 0), \cdots$, $\gamma(\delta, n(B))) \in \Delta_{R, \eta}, j, k \in \omega, \xi \in \Xi_{\eta, \delta, j, k}$ and $A \in \mathscr{Q}(\{0,1, \cdots, \max \{j, n(R)\}\})$.
(17) For each $i \in A$ with $i \leqq n(R)$ such that $C_{\lambda(R, i)}=\varnothing, s\left(R_{i}\right) \cap R_{\hat{f}, A, i}=\varnothing$.

Since $\quad R_{\xi, A, i}=F_{\gamma(\delta, i)}-H_{(z(\xi), K(\delta)), i}, \quad s\left(R_{i}\right) \cap R_{\xi, A, i}=(\cup \mathcal{C}(R, i)) \cap\left(F_{\gamma(\delta, i)}-\right.$ $H_{(z(\xi), K(\delta)), i}=K_{r(\hat{\delta}, i)}-H_{(z(\xi), K(\hat{\delta}), i}=\varnothing$.

For each $i \notin A$ with $i \leqq n(R)$, a compact set $K_{\gamma(\delta, i)}$ is contained in $R_{\xi, A, i}=$ $c l H_{(z(\xi), K(\delta)), i}$. Let $C_{\lambda(R \xi, A, i)}=K_{Y(\delta, i)}$. For each $i \notin A$ with $n(R)<i<j$, let $C_{\lambda\left(R_{\xi, A}, i\right)}=\{a\}$. For each $i \in A$, let $C_{\lambda\left(R_{\xi, 4}, i\right)}=\varnothing$.

For $t \in \omega$, we shall inductively construct an index set Φ_{t} and two collections \mathcal{G}_{t} and \mathscr{R}_{τ} for each $\tau \in \Phi_{t}$ satisfying
(18) For $t \geqq 1$ and $\tau \in \Phi_{t}, \tau_{-} \in \Phi_{t-1}$,
(19) For $t \in \omega$ and $\tau \in \Phi_{t}, \mathcal{G}_{\tau}$ and \mathcal{R}_{τ} are collections of elements of \mathcal{R},
(20) For $t \in \omega$ and $\tau \in \Phi_{t}$ with $\mathcal{R}_{t} \neq \varnothing$, elements of \mathcal{R}_{τ} have the same length.

Let $\bar{\Phi}_{0}=\omega^{3}$. For each $\tau=(m, j, k) \in \Phi_{0}$, let $G_{\tau}=\mathcal{G}_{\tau}\left(Z \times X^{\omega}\right)=\mathcal{G}_{m, j, k}\left(Z \times X^{\omega}\right)$ and $\mathscr{R}_{\tau}=\mathscr{R}_{\tau}\left(Z \times X^{\omega}\right)=\mathcal{R}_{m, j, k}\left(Z \times X^{\omega}\right)$. Let $\tau=(m, j, k) \in \Phi_{0}$. By the construction, \mathcal{G}_{τ} and \mathscr{R}_{τ} are collections of elements of \mathscr{R}. Assume that $\mathcal{R}_{\tau} \neq \varnothing$. By (16), elements of \mathscr{R}_{τ} have the same length. Thus G_{τ} and $\mathscr{R}_{\tau}, \tau \in \Phi_{0}$, satisfy the conditions (19) and (20). Assume that for $t \in \boldsymbol{\omega}$, we have already obtained an index set Φ_{i}, for $i \leqq t$, and families $\left\{\mathcal{G}_{\tau}: \tau \in \bigcup_{i=0}^{t} \Phi_{i}\right\},\left\{\mathcal{R}_{\tau}: \tau \in \bigcup_{i=0}^{t} \Phi_{i}\right\}$ satisfying the conditions (18), (19) and (20). Take a $\tau \in \Phi_{t}$ with $\mathcal{R}_{\tau} \neq \varnothing$. By (20), elements of \mathscr{R}_{τ} have the same length. So we denote this length by $n(\tau)$. Let $\bar{\Phi}_{\tau}=$ $\left\{\tau \oplus(\eta, j, k): \eta \in \omega^{n(\tau)+1}, j, k \in \omega\right\}$. For each $R \in \mathcal{R}_{\tau}$ and $\eta \in \omega^{n(\tau)+1}, j, k \in \omega$, we denote $\mathcal{G}_{\eta, j, k}(R)$ and $\mathcal{R}_{\eta, j, k}(R)$ by $\mathcal{G}_{\tau \oplus(\eta, j, k)}(R)$ and $\mathcal{R}_{\tau \oplus(\eta, j, k)}(R)$ respectively. Define $\mathcal{G}_{\tau \oplus(\eta, j, k)}=\cup\left\{\mathcal{G}_{\tau \oplus(\eta, j, k)}(R): R \in \mathcal{R}_{\tau}\right\}$ and $\mathcal{R}_{\tau \oplus(\eta, j, k)}=\cup\left\{R_{\tau \oplus(\eta, j, k)}(R): R \in\right.$ $\left.\mathcal{R}_{\tau}\right\}$. Let $\Phi_{t+1}=\cup\left\{\Phi_{\tau}: \tau \in \Phi_{t}\right.$ and $\left.\mathcal{R}_{\tau} \neq \varnothing\right\}$. Then, by (16) and the construction, Φ_{t+1}, families $\left\{\mathcal{G}_{\mu}: \mu \in \Phi_{t+1}\right\}$ and $\left\{\mathscr{R}_{\mu}: \mu \in \Phi_{t+1}\right\}$ satisfy the conditions (18),
(19) and (20). Thus, for each $t \in \omega$, we heve an index set Φ_{t}, families $\left\{\mathcal{G}_{\tau}\right.$: $\left.\tau \in \Phi_{t}\right\}$ and $\left\{\mathcal{R}_{\tau}: \tau \in \Phi_{t}\right\}$ satisfying the conditions (18), (19) and (20). Let $\Phi=$ $\cup\left\{\Phi_{\imath}: t \in \omega\right\}$. Then $|\Phi| \leqq \omega$.

By Lemmas 2.4 and 3.2, our proof is complete if we show
Claim. $\cup\left\{G_{2}: \tau \in \Phi\right\}$ is a σ-locally finite closed refinement of \mathcal{O}^{\prime}.
Proof of Claim. Let $\tau \in \Phi$. By (19), $\mathcal{G}_{\tau} \subset \mathcal{R}$. By (11), every member of G_{τ} is contained in some member of \mathcal{O}^{\prime}. By (12), (15) and induction, \mathcal{G}_{τ} is locally finite in $Z \times X^{\omega}$. Assume that $\cup\left\{G_{\imath}: \tau \in \Phi\right\}$ does not cover $Z \times X^{\omega}$. Take a point $(z, x) \in Z \times X^{\omega}-\cup\left\{\cup \mathcal{G}_{\tau}: \tau \in \Phi\right\}$. Let $x=\left(x_{i}\right)_{i \in \omega}$. Take an $\eta(0)=m(0) \in \omega$ and $\delta(0)=\gamma(\delta(0), 0) \in \Delta_{Z_{\times X^{\omega}}, \eta(0)}=\Gamma\left(Z \times X^{\omega}, 0, m(0)\right)$ such that $x \in F_{\bar{\delta}(0)}$. Put $\mathscr{F}(0)=$ $\left\{F_{\gamma(\delta(0), 0)}\right\}$. Let $K(0)=K(\delta(0)) \in \mathscr{K}_{Z^{\times} X^{\omega}, \eta(0)}$ and let $j(0)=n\left(K_{(z, K(0))}\right)$. Choose a $k(0) \in \omega$ such that $(z, x) \in \cup \mathcal{G}_{\eta(0), j(0), k(0)}\left(Z \times X^{\omega}\right) \cup\left(\cup \mathcal{R}_{\eta(0), j(0), k(0)}\left(Z \times X^{\omega}\right)\right)$. Let $\tau(0)=(\eta(0), j(0), k(0)) \in \Phi_{0}$. Take a $\xi(0) \in \Xi_{\eta(0), \delta(0), j(0), k(0)}$ such that $z \in D_{\xi(0)}$. Put $\mathscr{H}(0)=\left\{H_{(z(\xi(0)), K(0)), i}: i \leqq j(0)\right\}$. Since $(z, x) \notin \cup \mathcal{G}_{\tau(0)}$, there is an $A(0) \in$ $\mathscr{P}(\{0,1, \cdots, j(0)\})$ such that $(z, x) \in R_{\xi(0), A(0)}, R_{\xi(0), A(0)} \in \mathcal{R}_{\tau(0)}\left(Z \times X^{\omega}\right)$. By the definition, if $0 \in A(0)$, then $R_{\xi(0), A(0), 0}=F_{\gamma(\delta(0), 0)}-H_{(z(\xi(0)), K(0)), 0}$. We have $0=$
 $0), \cdots, \gamma\left(\delta(1), n\left(R_{\xi(0), A(0))}\right)\right) \in \Delta_{R \xi(0), A(0), \eta(1)}$ such that $x \in F_{\bar{\delta}(1)}$. Put $\mathcal{G}(1)=\left\{F_{\gamma} \gamma_{(\delta(1), i)}\right.$: $\left.i \leqq n\left(R_{\xi(0), A(0)}\right)\right\}$. Let $K(1)=K(\delta(1)) \in \mathscr{K}_{R \xi(0), A(0)}, \eta(1)$ and $j(1)=n\left(K_{(2, K(1))}\right)$. Take a $k(1) \in \omega$ such that $(z, x) \in \cup \mathcal{G}_{\eta(1), j(1), k(1)}\left(R_{\xi(0), A(0)}\right) \cup\left(\cup \mathcal{R}_{\eta(1), j(1), k(1)}\left(R_{\xi(0), A(0)}\right)\right)$. Let $\tau(1)=((\eta(0), j(0), k(0)),(\eta(1), j(1), k(1))) \in \Phi_{1}$. Take a $\xi(1) \in \Xi_{\eta(1), \delta(1), j(1), k(1)}$ such that $z \in D_{\xi(1)}$. Put $\mathscr{H}(1)=\left\{H_{(z(\xi(1)), K(1)), i}: i \leqq \max \left\{j(1), n\left(R_{\xi(0), A(0)}\right)\right\}\right\}$. Since $(z, x) \notin \cup \mathcal{G}_{\tau(1)}$, there is an $A(1) \in \mathscr{P}\left(\left\{0,1, \cdots, \max \left\{j(1), n\left(R_{\xi(0), A(0)}\right)\right\}\right\}\right)$ such that $(z, x) \in R_{\xi(1), A(1)}, R_{\xi(1), A(1)} \in \mathscr{R}_{z(1)}\left(R_{\xi(0), A(0)}\right)$. Then, if $i \in A(1)$ with $i \leqq n\left(R_{\xi(0), A(0)}\right)$, then $R_{\xi(1), A(1), i}=F_{\gamma(\delta(1), i)}-H_{(z(\xi(1)), K(1)), i}$. We have $n\left(R_{\xi(0), A(0)}\right)<n\left(R_{\xi(1), A(1)}\right)$. Continuing this matter, we can choose a sequence $\{\eta(t): t \in \omega\}$ of elements of $\omega^{<\omega}$, a sequence $\{\delta(t): t \in \omega\}$, a sequence $\{\mathscr{F}(t): t \in \omega\}$ of collections, a sequence $\{K(t): t \in \omega\}$ of compact subsets in X^{ω}, where $K(t)=\prod_{i \in \omega} K(t)_{i} \in \mathcal{K}$, sequences $\{j(t): t \in \omega\},\{k(t): t \in \omega\}$ of natural numbers, a sequence $\{\tau(t): t \in \omega\}$ of elements of Φ, where $\tau(t)=((\eta(0), j(0), k(0)), \cdots,(\eta(t), j(t), k(t)))$, a sequence $\{\xi(t): t \in \omega\}$, a sequence $\{\mathscr{H}(t): t \in \omega\}$ of collections, a sequence $\{A(t): t \in \omega\}$ of finite subsets of ω, a sequence $\left\{R_{\xi(t), A(t)}: t \in \omega\right\}$ of elements of \mathcal{R} containing (z, x), where $R_{\xi(t), A(t)}=D_{\xi(t)} \times \prod_{i \in \omega} R_{\xi(t), A(t), i}$, satisfying the following: Let $t \in \omega$. Assume that we have already obtained sequences $\{\eta(i): i \leqq t\},\{\delta(i): i \leqq t\},\{\mathscr{F}(i): i \leqq t\},\{K(i)$: $i \leqq t\},\{j(i): i \leqq t\},\{k(i): i \leqq t\},\{\tau(i): i \leqq t\}\{\xi(i): i \leqq t\},\{\mathscr{H}(i): i \leqq t\},\{A(i): i \leqq t\}$ and $\left\{R_{\xi(i), A(i)}: i \leqq t\right\}$. Then
(21) $\eta(t+1) \in \omega^{n\left(R_{\xi}(t), A(t)\right)+1}$,
(22) $\delta(t+1)=\left(\gamma(\delta(t+1), 0), \cdots, \gamma\left(\boldsymbol{\delta}(t+1), n\left(R_{\xi(t), A(t)}\right)\right)\right) \in \Delta_{R_{\xi}(t), A(t), \eta(t+1)}$ such that $x \in F_{\bar{\partial}(t+1)}$, and $\mathscr{F}(t+1)=\left\{F_{\gamma(\bar{o}(t+1), i)}: i \leqq n\left(R_{\xi(t), A(t))}\right)\right.$,
(23) $K(t+1)=K(\delta(t+1)) \in \mathscr{K}_{R \xi(t), A(t) \cdot \eta(t+1)}$,
(24) $j(t+1)=n\left(K_{(2, K(t+1))}\right), k(t+1) \in \omega$ and $\tau(t+1)=((\eta(0), j(0), k(0)), \cdots$, $(\eta(t+1), j(t+1), k(t+1))) \in \Phi_{t+1}$,
(25) $\xi(t+1) \in \Xi_{\xi(t+1), \dot{o}(t+1), j(t+1), k(t+1)}, \mathscr{H}(t+1)=\left\{H_{(z(\xi(t+1)), K(t+1)), i}: i \leqq\right.$ $\left.\max \left\{j(t+1), n\left(R_{\xi(t), A(t)}\right)\right\}\right\}$ and $A(t+1) \in \mathscr{P}\left(\left\{0,1, \cdots, \max \left\{j(t+1), n\left(R_{\xi(t), \Delta(t)}\right)\right\}\right)\right.$,
(26) If $i \in A(t+1)$ with $i \leqq n\left(R_{\xi(t), A(t)}\right)$, then $R_{\xi(t+1), A(t+1), i}=F_{\gamma(\hat{o}(t+1), i)}-$ $H_{(z(\xi(t+1)), K(l+1)), i}$,
(27) $(z, x) \in R_{\xi(t+1), A(t+1)}=D_{\xi(t+1)} \times \prod_{i \in \omega} R_{\xi(t+1), A(t+1), i}, \quad R_{\xi(t+1), A(t+1)} \in$ $\mathcal{R}_{r(t+1)}\left(R_{\xi(t), A(t)}\right)$, and $\left.n\left(R_{\xi(t), A(t)}\right)<n R_{\xi(t+1), A(t+1)}\right)$,
(28) For each $i \leqq n\left(R_{\xi(t), A(t)}\right)$ with $i \in A(t+1)$ such that $C_{z\left(R_{\xi}(t), A(t), i\right)}=\varnothing$, $s\left(R_{\xi(t), A(t), i)}\right) R_{\xi(t+1), \Delta(t+1), i}=\varnothing$,
(29) For each $i \leqq n\left(R_{\xi}(t), A(t)\right)$ with $i \notin A(t+1)$ such that $C_{\lambda\left(R_{\xi}(t), \Delta(t), i\right)} \neq \varnothing$, $K(t+1)_{i}=C_{i\left(R_{\xi}(t), \boldsymbol{A}(t), i\right)}$.

The rest of the proof is similar to that of Theorem 3.2 in the author [17]. However we include it here, because the method of it plays the fundamental role in this paper.

Assume that for each $i \in \omega,|\{t \in \omega: i \in A(t)\}|<\omega$. Then for each $i \in \omega$, there is a $t_{i} \in \omega$ such that $i \leqq t_{i}$ and if $t \geqq t_{i}$, then $i \notin A(t)$. Then, by (29),
(30) For each $i \in \omega$ and $t \geqq t_{i}, K(t)_{i}=K\left(t_{i}\right)_{i}$.

Let $K=\prod_{i \in \omega} K\left(t_{i}\right)_{i} \in \mathcal{K}$. There is an $O \in \mathcal{O}^{\prime}$ such that $K_{(z, K)} \subset O$. By (27) and (30), take a $t \geqq 1$ such that $n(O) \leqq n\left(R_{\xi(t-1), A(t-1)}\right)$ and if $i \leqq n(O)$, then $K(t)_{i}=$ $K\left(t_{i}\right)_{i}$. Then we have $K_{(z, K(t))} \subset O$ and hence, $j(t)=n\left(K_{(z, K(t))}\right) \leqq n(O)$. Since $\xi(t) \in \Xi_{\eta(t), \delta(t), j(t), k(t),} n\left(K_{(2(\xi(t)), K(t))}\right)=j(t)$. For i with $n(O) \leqq i \leqq n\left(R_{\xi(t-1), A(t-1)}\right)$, by the definition, $H_{(z(\xi(t)), K(t), i}=F_{\gamma(\delta(t), i)}$. Hence $A(t) \cap\left\{n(O), \cdots, n\left(R_{\xi(t-1), A(t-1)}\right)\right\}$ $=\varnothing$. Since $(z, x) \in R_{\xi(t), A(t)}$ and $R_{\xi(t), A(t)} \in \mathcal{R}_{\tau(t)}\left(R_{\xi(t-1), A(t-1)}\right)$, there is an $i \in$ $A(t)$ such that $x_{i} \notin H_{(z(\xi(t)), K(t)), i}$. Thus $i<n(O)$ and $x_{i} \in R_{\xi(t), A(t), i}=F_{\gamma(\delta(t), i)}-$ $H_{(z(\xi(t)), K(t)), i}$. Since $i \in A(t), t<t_{i}$. For each $t^{\prime}>t, K\left(t^{\prime}\right)_{i} \subset R_{\xi(t), A(t), i}$. Thus $K\left(t_{i}\right)_{i} \subset R_{\xi(t), A(t), i}$. Since $K\left(t_{i} \subset H_{(z(\xi(t)), K(t), i}\right.$, we have $K(t)_{i} \neq K\left(t_{i}\right)_{i}$. This is a contradiction. Therefore there is an $i \in \omega$ such that $|\{t \in \omega: i \in A(t)\}|=\omega$. Let $\left\{t \in \omega: i \in A(t)\right.$ and $\left.i \leqq n\left(R_{\xi(t), A(t)}\right)\right\}=\left\{t_{\rho}: \rho \in \omega\right\}$. Let $\rho \in \omega$. Since $C_{\lambda\left(R \xi\left(t_{\rho}\right), A\left(t_{\rho}\right), i\right)}=\varnothing$, if $t_{\rho+1}=t_{\rho}+1$, then, by (28), s($\left.R_{\xi\left(t_{\rho}\right), A\left(t_{\rho}\right), i}\right) \cap R_{\xi\left(t_{\rho+1}\right), A\left(t_{\rho+1}\right), i}$ $=\varnothing$. Assume that $t_{\rho+1}>t_{\rho}+1$. Since $K_{\gamma\left(\delta\left(t_{\rho}+1\right), i\right)}=C_{\lambda\left(R_{\left.\xi \xi(\rho+1) \cdot A\left(\iota_{\rho}+1\right), i\right)}\right.}=$ $C_{\lambda\left(R_{\left.\xi\left(\rho_{\rho+1}-1\right), A\left(t_{\left.\rho+1^{-1}\right)}\right), i\right)} \subset H_{\left(z\left(\xi\left(t_{\rho+1}\right)\right), K\left(t_{\rho+1}\right)\right), i} \text {, by the definition, we have }\right.}$ $s\left(R_{\xi\left(t_{\rho}\right), A\left(t_{\rho}\right), i}\right) \cap R_{\xi\left(t_{\rho+1}\right), A\left(t_{\rho+1}\right), i}=\varnothing$. Since s is a stationary winning strategy
for Player I in $G(\mathscr{D C}, X), \bigcap_{\rho \in \omega} R_{\xi\left(t_{\rho}\right), \Delta\left(t_{\rho}\right), i}=\varnothing$. But $x_{i} \in \bigcap_{\rho \in \omega} R_{\xi\left(t_{\rho}\right), \Delta\left(\iota_{\rho}\right), i}$, which is a contradiction. It follows that $\cup\left\{g_{\imath}: \tau \in \Phi\right\}$ is a cover of $Z \times X^{\omega}$. The proof is completed.

COROLLARY 4.2. If Z is a perfect subparacompact space and Y_{i} is a regular subparacompact space with a σ-closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is subparacompact.

Proof. This immediately follows from Theorem 4.1 and Lemma 2.3 (a).
Similarly, by Theorem 4.1 and Lemma 2.3 (b), we have
COROLLARY 4.3. If Z is a perfect subparacompact space and Y_{i} is a regular subparacompact, σ-C-scattered space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{\imath}$ is subparacompact.

Remark 4.4. Let M be the Michael line and let \boldsymbol{P} be the space of irrationals. \boldsymbol{P} is homeomorphic to ω^{ω}. The following are well-known (see D. K. Burke [4]).
(a) M is hereditarily paracompact but $M \times \boldsymbol{P}$ is not normal and hence, not paracompact.
(b) $M \times \boldsymbol{P}$ is hereditarily subparacompact and hereditarily metacompact (see also P. Nyikos [15]).

5. Metacompactness, orthocompactness and metalindelöf property.

Theorem 5.1. If Y_{i} is a regular metacompact $\mathscr{D C}$-like space for each $i \in \omega$, then $\prod_{i \in \omega} Y_{i}$ is metacompact.

Proof. We may assume that $Y_{i}=X$ for each $i \in \omega$ and there is an isolated point a in X. Let \mathcal{O} be an open cover of $Z \times X^{\omega}$. Similarly, let $\mathcal{O}^{\prime}=\{B \in \mathscr{B}$: $B \subset O$ for some $\left.O \in \mathcal{O}^{F}\right\}$. For $K \in \mathcal{K}$, there is an $O \in \mathcal{O}^{F}$ such that $K \subset O$. Then there is a $B \in \mathscr{B}$ such that $K \subset B \subset O$. Define $n(K)=\inf \left\{n(O): O \in \mathcal{O}^{\prime}\right.$ and $K \subset O\}$. It suffices to prove that \mathcal{O}^{\prime} has a point finite open refinement.

Let s be a stationary winning strategy for Player I in $G(\mathscr{D C}, X)$. Let $B=$ $\prod_{i \in \omega} B_{i} \in \mathcal{B}$ such that for each $i \leqq n(B)$, we have already obtained a compact set $C_{\lambda(B, i)}$ of $c l B_{i} . \quad\left(C_{\lambda(B, n(B))}=\varnothing . \quad C_{\lambda(B, i)}=\varnothing\right.$ may be occur for $\left.i<n(B).\right)$ We define $\mathcal{Q}(B)$ and $\mathscr{B}(B)$ of collections of elements of \mathscr{B}. Fix $i \leqq n(B)$. If $C_{\lambda(B, i)}$
$\# \varnothing$, let $W_{\gamma(B, i)}=B_{i}$. Put $\Lambda(B, i)=\{\lambda(B, i)\}$ and $\Gamma(B, i)=\{\gamma(B, i)\}$. Let $\mathcal{C}(B, i)=\left\{C_{\lambda}: \lambda \in A(B, i)\right\}=\left\{C_{\lambda(B, i)}\right\}$, and $\mathscr{W}(B, i)=\left\{W_{\gamma}: \gamma \in \Gamma(B, i)\right\}=\left\{W_{\gamma(B, i)}\right\}$. Assume that $C_{\lambda(B, i)}=\varnothing$. Then there is a discrete collection $\mathcal{C}(B, i)=\left\{C_{\lambda}\right.$: $\lambda \in \Lambda(B, i)\}$ of compact subsets of X such that $s\left(c l B_{i}\right)=\cup \mathcal{C}(B, i)$. Since X is a regular metacompact space, there is a collection $\mathscr{W}(B, i)=\left\{W_{r}: \gamma \in \Gamma(B, i)\right\}$ of open subsets in B_{i} (and hence, in X) satisfying
(1) $\mathscr{W}(B, i)$ covers B_{i},
(2) For each $\gamma \in \Gamma(B, i), c l W_{\gamma}$ meets at most one member of $\mathcal{C}(B, i)$,
(3) $\mathscr{W}(B, i)$ is point finite in B_{i} and hence, point finite in X.

In each case, for $\gamma \in \Gamma(B, i), K_{\gamma}=c l W_{r} \cap C_{\lambda}$ if $c l W_{r} \cap C_{\lambda} \neq \varnothing$ for some (unique) C_{i}. If $c l W_{r} \cap(\cup \mathcal{C}(B, i))=\varnothing$, then we take a point $p \in W_{i}$ and let $K_{r}=$ $\left\{p_{\gamma}\right\}$. Thus, if $C_{\lambda(B, i)} \neq \varnothing$, then $K_{\gamma(B, i)}=c l W_{\gamma(B, i)} \cap C_{\lambda(B, i)}=C_{\lambda(B, i)}$. Put $\Delta_{B}=$ $\Gamma(B, 0) \times \cdots \times \Gamma(B, n(B))$. For each $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $K(\delta)=$ $K_{\gamma(\hat{\delta}, 0)} \times \cdots \times K_{\gamma(\delta, n(B))} \times\{a\} \times \cdots \times\{a\} \times \cdots$, and let $\mathcal{K}_{B}=\left\{K(\delta): \delta \in \Delta_{B}\right\}$. Then $\varkappa_{B} \subset \mathcal{K}$. For each $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $r(K(\delta))=\max \{(n(K(\delta))$, $n(B)\}$. Fix a $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$. Take an $O(\delta)=\prod_{i \in \omega} O(\delta)_{i} \in \mathcal{O}^{\prime}$ such that $K(\delta) \subset O(\delta)$ and $n(K(\delta))=n(O(\delta))$. Since X is a regular space, there is an $H(\delta)=\prod_{i \in \omega} H(\delta)_{i} \in \mathcal{B}$ such that:
(4) $\prod_{i=0}^{n(K(\delta))-1} c l H(\delta)_{i} \times X \times \cdots \times X \times \cdots \subset O(\delta)$,
(5-1) For each i with $n(K(\delta)) \leqq i \leqq r(K(\delta))$, let $H(\delta)_{i}=X$,
(5-2) For each $i<n(K(\delta))$ with $i \leqq n(B)$, let $H(\delta)_{i}$ be an open subset of X such that $K_{\gamma(\delta, i)} \subset H(\delta)_{i} \subset c l H(\delta)_{i} \subset O(\delta)_{i}$,
(5-3) For each i with $n(B)<i<n(K(\delta))$, let $H(\delta)_{i}=\{a\}$,
(5-4) In case of that $r(K(\delta))=n(B)$, let $H(\delta)_{i}=X$ for $n(B)<i$. In case of that $r(K(\delta))=n(K(\delta))>n(B)$, let $H(\delta)_{i}=X$ for $n(K(\delta)) \leqq i$.

Then we have $K(\delta)(\subset H \delta)$. Put $W(\delta)=\prod_{i=0}^{n(B)} W_{\gamma(\delta, i)} \times X \times \cdots \times X \times \cdots$. Then $\left\{W(\delta): \delta \in \Delta_{B}\right\}$ is a collection of elements of \mathscr{B} such that for each $\delta \in \Delta_{B}$, $W(\delta) \subset B$ and $\left\{W(\delta): \delta \in \Delta_{B}\right\}$ covers B. By the definition, we have
(6) $\left\{W(\delta): \delta \in \Delta_{B}\right\}$ is point finite in X^{ω}.

Fix a $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$. In case of that $r(K(\delta))=n(B)$. For each $i \leqq n(B)$, let $G(\delta)_{i}=O(\delta)_{i} \cap W_{\gamma(\hat{0}, i)}$. For each $i>n(B)$, let $G(\delta)_{i}=X$. Put $G(\delta)=\prod_{i \in \omega} G(\delta)_{i}$. In case of that $r(K(\delta))=n(K(\delta))>n(B)$. For each $i \leqq n(B)$, let $G(\delta)_{i}=O(\delta)_{i} \cap W_{\gamma(\delta, i)}$. For each i with $n(B)<i<n(K(\boldsymbol{\delta}))$, let $G(\boldsymbol{\delta})_{i}=H(\boldsymbol{\delta})_{i}=\{a\}$. For each $i>n\left(K(\boldsymbol{\delta})\right.$, let $G(\boldsymbol{\delta})_{i}=X$. Put $G(\boldsymbol{\delta})=\prod_{i \in \omega} G(\boldsymbol{\delta})_{i}$. Then we have $G(\boldsymbol{\delta}) \subset$ $W(\boldsymbol{\delta})$. Define $q(B)=\left\{G(\delta): \delta \in \Delta_{B}\right\}$. Then
(7) Every member of $\mathcal{G}(B)$ is contained in some member of \mathcal{O}^{\prime}.
(8) $G(B)$ is point finite in X^{ω}.

This is clear from (6).
Fix $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$. Let $A \in \mathscr{P}(\{0,1, \cdots, r(K(\delta))\})$. In case of that $r(K(\delta))=n(B)$. For each $i \in A$, let $B_{\delta, A, i}=W_{\gamma(\delta, i)}-c l H(\delta)_{i}$. For each $i \notin A$ with $i \leqq n(B)$, let $B_{\delta, A, i}=O(\delta)_{i} \cap W_{\gamma(\delta, i)}$. For each $i>n(B)$, let $B_{\hat{\delta}, A, i}=X$. Put $B_{\delta, A}=\prod_{i \in \omega} B_{\delta, A, i}$. In case of that $r(K(\delta))=n(K(\delta))>n(B)$. For each $i \in A$ with $i \leqq n(B)$, let $B_{\bar{\delta}, A, i}=W_{\gamma(\delta, i)}-c l H(\delta)_{i}$. For each $i \neq A$ with $i \leqq n(B)$, let $B_{\bar{\delta}, A, i}=O(\delta)_{i} \cap W_{\gamma(\delta, i)}$. Let $n(B)<i<n(K(\delta))$. If $i \in A$, let $B_{\delta, A, i}=X-c l H(\delta)_{i}=$ $X-\{a\}$. If $i \neq A$, let $B_{\delta, A, i}=H(\delta)_{i}=\{a\}$. For $i \geqq n(K(\delta))$, let $B_{\delta, A, i}=X$. Put $B_{\delta, A}=\prod_{i \in \omega} B_{\delta, A, i}$. In each case, $B_{\delta, A, i} \subset B_{i}$ for each $i \in \omega$. We have that if $B_{\delta, A}$ $\neq \varnothing$, then $n(B)<n\left(B_{\delta, A}\right)$. Let $\mathcal{B}_{\delta}(B)=\left\{B_{\delta, A}: A \in \mathscr{P}(\{0,1, \cdots, r(K(\delta))\})\right.$ and $\left.B_{\delta_{,} A} \neq \varnothing\right\}$. By the definition, $W(\delta)=G(\delta) \cup\left(\cup \mathscr{B}_{\hat{o}}(B)\right)$. Define $\mathcal{B}(B)=\cup\left\{\mathscr{B}_{\delta}(B)\right.$: $\left.\delta \in \Delta_{B}\right\}$. Then, by (6), we have
(9) $\mathscr{B}(B)$ is point finite in X^{ω}.

Fix a $B_{\delta, A}=\prod_{i \in \omega} B_{\delta, A, i} \in \mathscr{B}_{\delta}(B)$ for $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$ and $A \in$ $\mathscr{P}(\{0,1, \cdots, r(K(\delta))\})$.
(10) For each $i \in A$ with $i \leqq n(B)$ such that $C_{\lambda(B, i)}=\varnothing, s\left(c l B_{i}\right) \cap c l B_{\delta, A, i}=\varnothing$.

Since $B_{\delta, A, i}=W_{\gamma(\delta, i)}-c l H(\delta)_{i}, s\left(c l B_{i}\right) \cap c l B_{\delta, A, i} \subset(\cup \mathcal{C}(B, i)) \cap\left(c l W_{\gamma(\delta, i)}-H(\delta)_{i}\right)$ $=K_{\gamma(\delta, i)}-H(\delta)_{i}=\varnothing$.

For each $i \notin A$ with $i \leqq n(B)$, since $c l B_{\delta, A, i}=c l\left(O(\delta)_{i} \cap W_{\gamma(\delta, i)}\right) \supset O(\delta)_{i} \cap c l W_{\gamma(\delta, i)}$, a compact set $K_{\gamma(\delta, i)}$ is contained in $c l B_{\delta, A, i}$. Let $C_{\lambda\left(B_{\delta, A}, i\right)}=K_{\gamma(\delta, i)}$. For each $i \notin A$ with $n(B)<i<n(K(\delta))$, let $C_{\lambda\left(B_{\delta, A}, i\right)}=\{a\}$. For each $i \in A$, let $C_{\lambda\left(B_{\delta, A}, i\right)}=\varnothing$.

Now we define \mathcal{G}_{j} and \mathscr{B}_{j} for each $j \in \omega$. Let $\mathcal{G}_{0}=\mathcal{G}_{0}\left(X^{\omega}\right)=\mathcal{G}\left(X^{\omega}\right)$ and $\mathscr{B}_{0}=$ $\mathscr{B}_{0}\left(X^{\omega}\right)=\mathscr{B}\left(X^{\omega}\right)$. Assume that for $j \in \omega$, we have already obtained \mathscr{Q}_{j} and \mathscr{B}_{j}. For each $B \in \mathcal{B}_{j}$, we denote $\mathcal{G}(B)$ and $\mathscr{B}(B)$ by $\mathscr{G}_{j+1}(B)$ and $\mathscr{B}_{j+1}(B)$ respectively. Define $\mathcal{G}_{j+1}=\bigcup\left\{\mathcal{G}_{j+1}(B): B \in \mathscr{B}_{j}\right\}$ and $\mathscr{B}_{j+1}=\cup\left\{\mathscr{B}_{j+1}(B): B \in \mathscr{B}_{j}\right\}$.

Our proof is complete if we show
Claim. $\cup\left\{\mathcal{G}_{j}: j \in \omega\right\}$ is a point finite open refinement of \mathcal{O}^{\prime}.
Proof of Claim. Let $j \in \omega$. By the construction, $\mathcal{G}_{j} \subset \mathscr{B}$. By (7), every member of \mathscr{G}_{j} is contained in some member of \mathcal{O}^{\prime}. By (8), (9) and induction, \mathcal{G}_{j} is point finite in X^{ω}. Take a $x=\left(x_{i}\right)_{i \in \omega} \in X^{\omega}$. Let $\Delta(0)=\left\{\delta \in \Delta_{X^{\omega}}: x \in W(\delta)\right\}$. Then, by (6), $1 \leqq|\Delta(0)|<\omega$. Let $\mathcal{K}(0)=\{K(\delta): \delta \in \Delta(0)\}$. Put $\mathscr{H}(0)=\{H(\delta): \delta \in$ $\Delta(0)\}, \mathscr{W}(0)=\{W(\delta): \delta \in \Delta(0)\}$ and $\mathcal{G}(0)=\{G(\delta): \delta \in \Delta(0)\} \subset \mathcal{G}_{0}$. For each $\delta \in \Delta(0)$, let $\mathcal{A}(\delta)=\mathscr{P}(\{0,1, \cdots, r(K(\delta))\})$, and let $\mathcal{A}(0)=\cup\{\mathcal{A}(\delta): \delta \in \Delta(0)\}$. Let $\mathscr{B}(0)=$ $\cup\left\{\mathscr{B}_{\delta}\left(X^{\omega}\right): \delta \in \Delta(0)\right\}$. Then $\mathscr{B}(0) \subset \mathcal{B}_{0}$. By the definition, for each $\delta=\gamma(\delta, 0) \in$
$\Delta(0)$ and $A \in \mathcal{A}(\delta)$ with $0 \in A, B_{\delta, \Lambda, 0}=W_{\gamma(\hat{0}, 0)}-c l H(\delta)_{0}$. Since $W(\delta)=G(\delta) \cup$ $\left(\cup \mathscr{B}_{\tilde{\delta}}\left(X^{\omega}\right)\right)$ for each $\delta \in \Delta(0), 1 \leqq|\mathcal{G}(0) \cup \mathscr{B}(0)|<\omega$. Observe that $\left(\mathcal{G}_{0} \cup \mathscr{B}_{0}\right)_{x} \subset$ $\mathcal{G}(0) \cup \mathscr{B}(0)$. Take a $B \in \mathscr{B}(0)$. Let $\Delta(B)=\left\{\delta^{\prime} \in \Delta_{B}: x \in W\left(\delta^{\prime}\right)\right\}$ and let $\Delta(1)=$ $\cup\{\Delta(B): B \in \mathscr{B}(0)\}$. Let $\mathscr{K}(1)=\{K(\delta): \delta \in \Delta(1)\}$. Put $\mathscr{H}(1)=\{H(\delta): \delta \in \Delta(1)\}$, $\mathscr{W}(1)=\{W(\delta): \delta \in \Delta(1)\}$ and $G(1)=\{G(\delta): \delta \in \Delta(1)\} \subset G_{1}$. Define $\mathcal{A}(\delta)$ for each $\delta \in$ $\Delta(1)$, and $\mathcal{A}(1)$ as before. Let $\mathscr{B}(1)=\cup\left\{\mathcal{B}_{\delta}(B): B \in \mathcal{B}(0)\right.$ and $\left.\delta \in \Delta(B)\right\} \subset \mathscr{B}_{1}$. Let $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta(B)$ and $B \in \mathscr{B}(0)$. For each $A \in \mathcal{A}(\delta)$, if $i \in A$ with $i \leqq n(B)$, then $B_{\hat{o}, A, i}=W_{\gamma(\hat{0}, i)}-c l H(\delta)_{i}$. We have $|\mathcal{G}(1) \cup \mathscr{B}(1)|<\omega$ and $\left(g_{1} \cup \mathcal{B}_{1}\right)_{x} \subset \mathcal{G}(1) \cup \mathcal{B}(1)$. Continuing this matter, we can choose a collection $\{\Delta(j): j \in \omega\}$, a family $\{\mathcal{K}(j) \vdots j \in \omega\}$ of collections of compact subsets of X^{ω}, where for each $K \in \mathcal{K}(j)$ and $j \in \omega, K=\prod_{i \in \omega} K_{i} \in \mathcal{K}$, families $\{\mathscr{H}(j): j \in \omega\}$, $\{\mathscr{N}(j): j \in \omega\},\{\mathcal{G}(j): j \in \omega\}$ of collections of elements of \mathscr{B}, a family $\{\mathcal{A}(j)$: $j \in \omega\}$ of collections of finite subsets of ω and a family $\{\mathcal{B}(j): j \in \omega\}$ of collections of elements of \mathscr{B} such that for $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta(B), B \in$ $\mathscr{B}(j-1)$, where $B_{\delta(-1), A(-1)}=X^{\omega}$, and $\mathcal{B}_{-1}=\mathcal{B}(-1)=\left\{X^{\omega}\right\}$, and $A \in \mathcal{A}(\boldsymbol{\delta})$, if $i \in A$ with $i \leqq n(B)$, then $B_{\bar{\partial}, A, i}=W_{\gamma(\delta, i)}-c l H(\delta)_{i}$, and for each $j \in \omega,|\mathcal{G}(j) \cup \mathcal{B}(j)|<\omega$ and $\left(\mathcal{G}_{j} \cup \mathcal{B}_{j}\right)_{x} \subset \mathcal{G}(j) \cup \mathscr{B}(j)$. Assume that $x \in \cup \mathcal{B}_{j}$ for each $j \in \boldsymbol{\omega}$. Then, by the construction, $x \in \cup \mathscr{B}(j)$ for each $j \in \omega$. Since $\mathscr{B}(j)_{x}$ is non-empty and finite for each $j \in \omega$, it follows from König's lemma (cf. K. Kunen [13]) that there are a sequence $\{\delta(j): j \in \omega\}$, a sequence $\{K(j): j \in \omega\}$ of compact subsets of X^{ω}, sequences $\{H(\delta(j)): j \in \omega\},\{W(\delta(j)): j \in \omega\}$ of elements of \mathscr{B}, a sequence $\{A(j): j \in \omega\}$ of finite subsets of ω, a sequence $\left\{B_{\partial(j), A(j)}: j \in \omega\right\}$ of elements of \mathscr{B} such that: For each $j \in \omega$,
(11) $\delta(j)=\left(\gamma(\delta(j), 0), \cdots, \gamma\left(\delta(j), n\left(B_{\partial(j-1), A(j-1)}\right)\right)\right) \in \Delta(j)$,
(12) $K(j)=K(\delta(j))$,
(13) $A(j) \in \mathcal{A}(\delta(j))$,
(14) For each $i \in A(j)$ with $i \leqq n\left(B_{\left.\partial(j-1), A^{(j-1}\right)}\right), \quad B_{\hat{\partial}(j), A(j), i}=W_{\gamma(\hat{\partial}(j), i)}-$ $c l H(\delta(j))_{i}$,
(15) $x \in B_{\hat{o}(j), A(j)}$ and $B_{\tilde{\delta}(j), A(j)} \in \mathscr{B}\left(B_{\hat{o}(j-1), A(j-1)}\right)$.

Furthermore we have
(16) $n\left(B_{\dot{\partial}(j), A(j)}\right)<n\left(B_{\delta(j+1), A(j+1)}\right)$ for each $j \in \omega$,
(17) For each $i \leqq n\left(B_{\hat{o}(j), A(j)}\right)$ with $i \in A(j+1)$ such that $C_{\lambda\left(B_{\delta(j), A(j)}\right)}=\varnothing$, $s\left(c l B_{\delta(j), A(j)}\right) \cap c l B_{\delta(j+1), A(j+1)}=\varnothing$,
(18) For each $i \leqq n\left(B_{\delta(j), A(j)}\right)$ with $i \notin A(j+1)$ such that $C_{\lambda\left(B_{\delta(j), A(j)}, i\right)} \neq \varnothing$, $K(j+1)=C_{\lambda\left(B_{\dot{O}(j)}, A(j), i\right)}$.

By the similar proof of Claim in Theorem 4.1, we can show that there is an $i \in \omega$ such that $|\{j \in \omega: i \in A(j)\}|=\omega$. Let $\left\{j \in \omega: i \in A(j)\right.$ and $\left.i \leqq n\left(B_{\partial(j), A(j)}\right)\right\}$
$=\left\{j_{k}: k \in \omega\right\}$. Then we can prove that $s\left(c l B_{\hat{\delta}\left(j_{k}\right), A\left(j_{k}\right)}\right) \cap c l B_{\hat{o}\left(j_{k+1}\right), A\left(j_{k+1}\right)}=\varnothing$ for each $k \in \omega$. Since s is a stationary winning strategy for Player I in $G(\mathscr{D C}, X), \bigcap_{k \in \omega} c l B_{\partial\left(j_{k}\right), A\left(j_{k}\right)}=\varnothing$. But $x_{i} \in \bigcap_{k \in \omega} B_{\grave{\partial}\left(j_{k}\right), A\left(j_{k}\right)}$, which is a contradiction. Thus there is a $k \in \omega$ such that $x \notin \cup \mathscr{B}_{k}$. Let $j=\inf \left\{k \in \omega: x \notin \cup \mathscr{B}_{k}\right\}$. Since $x \in \cup \mathscr{B}_{j-1}$, we have $x \in \cup \mathcal{G}_{j}$. For each $k>j$, every element of \mathcal{G}_{k} is contained in some member of \mathscr{B}_{j}. Therefore $\left(\cup\left\{\mathcal{G}_{k}: k \in \omega\right\}\right)_{x} \subset \cup\left\{\mathcal{G}_{k}: k \leqq j\right\}$. Since every \mathcal{G}_{k} is point finite in X^{ω}, it follows that $\cup\left\{\mathcal{G}_{k}: k \in \omega\right\}$ is a point finite open refinement of \mathcal{O}^{\prime}. The proof is completed.

COROLLARY 5.2. If Y_{i} is a regular metacompact space with a σ-closurepreserving cover by compact sets for each $i \in \omega$, then $\prod_{i \in \omega} Y_{i}$ is metacompact.

Proof. This follows from Theorem 5.1 and Lemma 2.3 (a).
For a T_{1}-space X, let $\mathscr{T}[X]$ denote the Pixley-Roy hyperspace of X (cf. E. K. van Douwen [7]). Every Pixley-Roy hyperspace is a hereditarily metacompact Tychonoff space and has a closure-preserving cover by finite sets. In [17], the author proved that if Z is a perfect paracompact Hausdorff space and Y_{i} is a T_{1}-space such that $\mathscr{T}\left[Y_{i}\right]$ is paracompact for each $i \in \omega$, then $Z \times$ $\prod_{i \in \omega} \mathscr{T}\left[Y_{i}\right]$ is paracompact.

Corollary 5.3. If Y_{i} is a T_{1}-space for each $i \in \omega$, then $\prod_{i \in \omega} \mathscr{T}\left[Y_{i}\right]$ is metacompact.

By D. K. Burke [4] and M. M. Čoban [6], every perfect metacompact (metalindelöf) space is hereditarily metacompact (hereditarily metalindelöf). Next, we show the following result.

TheOrem 5.4. Let Z be a hereditarily metacompact space and Y_{i} be a regular metacompact $\mathscr{L C}$-like space for each $i \in \omega$. Then the following are equivalent.
(a) $Z \times \prod_{i \in \omega} Y_{i}$ is metacompact,
(b) $Z \times \prod_{i \in \omega} Y_{i}$ is countably metacompact,
(c) $Z \times \prod_{i \in \omega} Y_{i}$ is orthocompact.

Proof. (a) \rightarrow (c) Obvious.
(c) \rightarrow (b) We shall modify the proof of Theorem 2.1 in N. Kemoto and Y. Yajima [12]. Assume that $Z \times \prod_{i \in \omega} Y_{i}$ is orthocompct. Let $\mathcal{O}=\left\{O_{j}: j \in \omega\right\}$ be a
countable open cover of $Z \times \prod_{i \in \omega} Y_{i}$. By their proof, it suffices to prove that there is a countable open refinement \mathcal{U} of \mathcal{O} such that for every infinite subcollection U^{\prime} of $U, \operatorname{int}\left(\cap U^{\prime}\right)=\varnothing$. Applying their technique to $Z \times \prod_{i \in \omega} Y_{i}$, we have a countable collection $\left\{G_{j, t}: j \in \omega\right.$ and $\left.t=0,1\right\}$, where $G_{j, t}=Z \times H_{j, t}$ for each $j \in \omega t=0$, 1 , of open subsets of $Z \times \prod_{i \in \omega} Y_{i}$ such that
(i) For each $j \in \omega, \prod_{i \in \omega} Y_{i}=H_{j, 0} \cup H_{j, 1}$ and hence, $Z \times \prod_{i \in \omega} Y_{i}=G_{j, 0} \cup G_{j, 1}$,
(ii) For each infinite subset M of ω and each $t=0,1$, int $\left\{\cap\left\{H_{j, t}: j \in M\right\}\right.$) $=\varnothing$ and hence, $\operatorname{int}\left(\cap\left\{G_{j, t}: j \in M\right\}\right)=Z \times \operatorname{int}\left(\cap\left\{H_{j, t}: j \in M\right\}\right)=\varnothing$.

Let $\mathcal{U}=\left\{O_{j} \cap G_{j, t}: j \in \omega\right.$ and $\left.t=0,1\right\}$. Then \mathcal{U} is a countable open refinement of \mathcal{O} such that for every infinite subcollection \mathcal{U}^{\prime} of \mathcal{U}, int $\left(\cap \mathcal{U}^{\prime}\right)=\varnothing$.
(b) \rightarrow (a) Assume that $Z \times \prod_{i \in \omega} Y_{i}$ is countably metacompact. For each $i \in \omega$, take a point a_{i} in Y_{i}. Let \mathcal{O} be an open cover of $Z \times \prod_{i \in \omega} Y_{i}$ and let $\mathcal{O}^{\prime}=\{B \in \mathscr{B}$: $B \subset O$ for som $\left.O \in \mathcal{O}^{F}\right\}$. For each $z \in Z$ and $K \in \mathcal{K}$, define $n\left(K_{(z, K)}\right)$ as the proof of Theorem 4.1.

Let s_{i} be a stationary winning strategy for Player I in $G\left(\mathscr{D C}, Y_{i}\right)$ for $i \in \omega$. As Theorem 5.1, take a $B=U_{B} \times \prod_{i \in \omega} B_{i} \in \mathscr{B}$ satisfying the following condition: For each $i \leqq n(B)$, we have already obtained a compact set $C_{\lambda(B, i)}$ of $c l B_{i}$. $\left(C_{\lambda(B, n(B))}=\varnothing . \quad C_{\lambda(B, i)}=\varnothing\right.$ may be occur for $i<n(B)$.) Fix $i \leqq n(B)$. If $C_{\lambda(B, i)}$ $\neq \varnothing$, take the same $W_{\gamma(B, i)}, \Lambda(B, i), \Gamma(B, i), \mathcal{C}(B, i)$ and $\mathscr{W}(B, i)$ in Theorem 5.1. Assume that $C_{\lambda(B, i)}=\varnothing$. Then we take a discrete collection $\mathcal{C}(B, i)=$ $\left\{C_{\lambda}: \lambda \in \Lambda(B, i)\right\}$ of compact subset of Y_{i} such that $s_{i}\left(c l B_{i}\right)=\cup \mathcal{C}(B, i)$, and a collectiom $\mathscr{W}(B, i)=\left\{W_{\gamma}: \gamma \in \Gamma(B, i)\right\}$ of open subsets in B_{i} (and hence, in Y_{i}) satisfying the condition $\left(1^{\prime}\right)=(1),\left(2^{\prime}\right)=(2)$ in the proof of Theorem 5.1 and
$\left(3^{\prime}\right) \mathscr{W}(B, i)$ is point finite in B_{i} and hence, point finite in Y_{i}.
Define the same K_{γ} for $\gamma \in \Gamma(B, i)$ and Δ_{B} in Theorem 5.1. For $\delta=(\gamma(\delta, 0)$, $\cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $K(\delta)=K_{\gamma(\delta, 0)} \times \cdots \times K_{\gamma(\delta, n(B))} \times\left\{a_{n(B)+1}\right\} \times \cdots \times\left\{a_{k}\right\} \times \cdots$. Define \mathcal{K}_{B} as before. For each $z \in U_{B}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}$, let $r\left(K_{(z, K(\delta))}\right)=\max \left\{n\left(K_{(z, K(\delta))}\right), n(B)\right\}$. Fix $z \in U_{B}$ and $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B)))$ $\in \Delta_{B}$. Take an $O_{z, \delta}=U_{z, \delta} \times \prod_{i \in \omega} O_{z, \delta, i} \in \mathcal{O}^{\prime}$ such that $K_{(z, K(\delta))} \subset O_{z, \delta}$ and $n\left(K_{(z, K(\delta))}\right)$ $=n\left(O_{z, \delta}\right)$. Since Y_{i} is a regular space, there is an $H_{(z, K(\delta))}=H_{z, \delta} \times \prod_{i \in \omega} H_{(z, K(\delta)), i}$ $\in \mathscr{B}$ such that:
(4') $\quad H_{z, \dot{\delta}} \times \prod_{i=0}^{n\left(K_{(z, K(\delta)))}-1\right.} c l H_{(2, K(\hat{\delta}), i} \times Y_{n\left(K_{(2, K(\delta))}\right)} \times \cdots \times Y_{k} \times \cdots \subset O_{z, \delta}$ and $z \in$ $H_{z, \delta} \subset U_{B} \cap U_{z, \delta}$,
$\left(5^{\prime}-1\right)$ For each i with $n\left(K_{(z, K(\delta))}\right) \leqq i \leqq r\left(K_{(z, K(\delta))}\right)$, let $H_{(z, K(\delta)), i}=Y_{i}$,
(5'-2) For each $i<n\left(K_{(z, K(\delta))}\right)$ with $i \leqq n(B)$, let $H_{(z, K(\delta)), i}$ be an open subset
of Y_{i} such that $K_{\gamma(\delta, i)} \subset H_{(z, K(\delta)), i} \subset c l H_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,
(5'3) For each i with $n(B)<i<n\left(K_{(z, K(\delta))}\right)$, let $H_{(z, K(\grave{\partial}), i}$ be an open subset of Y_{i} such that $a_{i} \in H_{(z, K(\delta)), i} \subset c l H_{(z, K(\delta)), i} \subset O_{z, \delta, i}$,
($\left.5^{\prime}-4\right)$ In case of that $r\left(K_{(z, K(\delta))}\right)=n(B)$, let $H_{(z, K(\delta)), i}=Y_{i}$ for $n(B)<i$. In case of that $r\left(K_{(z, K(\delta))}\right)=n\left(K_{(z, K(\hat{\jmath}))}\right)>n(B)$, let $H_{(z, K(\hat{\jmath}), i}=Y_{i}$ for $n\left(K_{(z, K(\hat{\delta}))}\right) \leqq i$.

Then we have $K_{(z, K(\bar{\delta}))} \subset H_{(z, K(\delta))}$. For each $j \in \omega$, let $\mathscr{H}_{\delta, j}=\left\{H_{z, \dot{\delta}}: n\left(K_{(z, K(\hat{\delta}))}\right)\right.$ $\leqq j\}$. Fix $j \in \omega$ and let $V_{j}(K(\delta))=\left\{z \in U_{B}: n\left(K_{(z, K(\delta))}\right) \leqq j\right\}$. Then $V_{j}(K(\delta))=$ $\cup \mathscr{H}_{\delta, j}$. Since Z is a hereditarily metacompact space, there is a family $\mathcal{V}_{\delta, j}=$ $\left\{V_{\xi}: \xi \in \Xi_{\delta, j}\right\}$, of collections of open sets in $V_{j}(K(\delta))$ (and hence, in Z) satisfying
(6') Every member of $\mathcal{V}_{\delta, j}$ is contained in some member of $\mathscr{H}_{\dot{\delta}, j}$,
(7') $\sigma^{\prime} V_{\delta, j}$ covers $V_{j}(K(\delta))$,
(8') $C V_{\delta, j}$ is point finite in $V_{j}(K(\delta))$ and hence, point finite in Z.
For each $\xi \in \Xi_{\delta, j}$, take a $z(\xi) \in V_{j}(K(\delta))$ such that $V_{\xi} \subset H_{z(\xi), \dot{\delta} .}$ Put $W_{\delta}=$ $\prod_{i=0}^{n(B)} W_{r(\delta, i)} \times Y_{n(B)+1} \times \cdots \times Y_{k} \times \cdots$ and $V_{\xi, \delta}=V_{\xi} \times W_{j}$. Then $\left\{V_{\xi, \delta}: \delta \in \Delta_{B}, j \in \omega\right.$ and $\left.\dot{\xi} \in \Xi_{\delta, j}\right\}$ is a collection of elements of \mathscr{B} such that for each $\delta \in \Delta_{B}, j \in \omega$ and $\xi \in \Xi_{\delta, j}, V_{\xi, \delta} \subset B$ and $\left\{V_{\xi, \delta}: \delta \in \Delta_{B}, j \in \omega\right.$ and $\left.\xi \in \Xi_{\delta, j}\right\}$ covers B. Clearly we have
(9^{\prime}) For each $j \in \omega,\left\{V_{\xi, \delta}: \delta \in \Delta_{B}\right.$ and $\left.\xi \in \Xi_{\delta, j}\right\}$ is point finite in $Z \times \prod_{i \in \omega} Y_{i}$.
Fix a $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}, j \in \omega$ and $\xi \in \Xi_{\delta, j}$. In case of that $r\left(K_{(z(\xi), K(\delta))}\right)=n(B)$. For each $i \leqq n(B)$, let $G_{(z(\xi), K(\delta)), i}=O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$. For each $i>n(B)$, let $G_{(z(\xi), K(\delta)), i}=Y_{i}$. Put $\left.G_{(z(\xi), K(\hat{\delta})}\right)=V_{\xi} \times \prod_{i \in \omega} G_{(z(\xi), K(\dot{\delta})), i}$. In case of that $r\left(K_{(z(\xi), K(\hat{\delta}))}\right)=n\left(K_{(z(\xi), K(\delta))}\right)>n(B)$. For each $i \leqq n(B)$, let $G_{(z(\xi), K(\hat{o})), i}$ $=O_{z(\xi), \delta, i} \cap W_{\gamma(\hat{0}, i)}$. For each i with $n(B)<i<n\left(K_{(z(\xi), K(\delta))}\right)$, let $G_{(z(\xi), K(\delta)), i}=$ $O_{z(\xi), \delta, i}$. For each $i \geqq n\left(K_{(z(\xi), K(\delta))}\right)$, let $G_{(z(\xi), K(\delta)), i}=Y_{i}$. Put $G_{(z(\xi), K(\hat{o}))}=V_{\xi} \times$ $\prod_{i \in \omega} G_{(z(\xi), K(\delta)), i}$. Then we have $G_{(z(\xi), K(\hat{\jmath}))} \subset V_{\xi, \delta}$. Define $G_{\delta, j}(B)=\left\{G_{(z(\xi), K(\hat{\jmath}))}\right.$: $\left.\xi \in \Xi_{\delta, j}\right\}$ and $\mathcal{G}_{j}(B)=\cup\left\{\mathcal{G}_{\delta, j}(B): \delta \in \Delta_{B}\right\}$. Then, by (9^{\prime}) and definition,
(10^{\prime}) For each $j \in \omega$, every member of $\mathcal{G}_{j}(B)$ is contained in some member of \mathcal{O}^{\prime}.
(11') For each $j \in \omega, \mathcal{G}_{j}(B)$ is point finite in $Z \times \prod_{i \in \omega} Y_{i}$.
Fix $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}, j \in \omega$ and $\xi \in \Xi_{\delta, j}$. Let $A \in \mathscr{P}(\{0,1, \cdots$, $\left.\left.r\left(K_{(z(\xi), K(\delta))}\right)\right\}\right)$. In case of that $r\left(K_{(z(\xi), K(\delta))}\right)=n(B)$. For each $i \in A$, let $B_{\xi, A, i}=$ $W_{\gamma(\delta, i)}-c l H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leqq n(B)$, let $B_{\xi, A, i}=O_{z, \delta, i} \cap W_{\gamma(\delta, i)}$. For each $i>n(B)$, let $B_{\xi, A, i}=Y_{i}$. Put $B_{\xi, A}=V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. In case of that $r\left(K_{(z(\xi), K(\delta))}\right)=n\left(K_{(z(\xi), K(\delta))}\right)>n(B)$. For each $i \in A$ with $i \leqq n(B)$, let $B_{\xi, A, i}=$ $W_{\gamma(\delta, i)}-c l H_{(z(\xi), K(\delta)), i}$. For each $i \notin A$ with $i \leqq n(B)$, let $B_{\xi, A, i}=O_{z(\xi), \delta, i} \cap W_{\gamma(\delta, i)}$.

Let $n(B)<i<n\left(K_{(2(\xi), K(\hat{j}))}\right)$. If $i \in A$, let $B_{\xi, A, i}=Y_{i}-c l H_{(z(\xi), K(\hat{j})), i}$. If $i \notin A$, let $B_{\xi, A, i}=O_{z(\xi), \delta, i}$. For $i>n\left(K_{(z(\xi), K(\delta))}\right)$, let $B_{\xi, A, i}=Y_{i}$. Put $B_{\xi, A}=V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i}$. We have that $B_{\xi, A, i} \subset B_{i}$ for each $i \in \omega$ and if $B_{\xi, A} \neq \varnothing$, then $n(B)<n\left(B_{\xi, A}\right)$. Since $n\left(K_{(z(\xi), K(\hat{\partial}))} \leqq j\right.$, for a subset $A \in \mathscr{P}(\{0,1, \cdots, \max \{j, n(B)\}\})$, let $\mathscr{B}_{\delta, j, A}(B)$ $=\left\{B_{\xi, A}: \xi \in \Xi_{\delta, j}, B_{\xi, A}\right.$ is defined and $\left.B_{\xi, A} \neq \varnothing\right\}$. For $j \in \omega$, let $\mathscr{B}_{j}(B)=$ $\cup\left\{\mathscr{B}_{\delta, j, A}(B): \delta \in A_{B}\right.$ and $A \in \mathscr{P}(\{0,1, \cdots, \max \{j, n(B)\})\}$. Then we have
(12') Every $\mathscr{B}_{j}(B)$ is point finite in $Z \times \prod_{i \in \omega} Y_{i}$.
Fix a $B_{\xi, A}=V_{\xi} \times \prod_{i \in \omega} B_{\xi, A, i} \in \mathscr{B}_{\delta, j, A}(B)$ for $\delta=(\gamma(\delta, 0), \cdots, \gamma(\delta, n(B))) \in \Delta_{B}, j \in$ $\omega, \xi \in \Xi_{\hat{0}, j}$ and $A \in \mathscr{L}(\{0,1, \cdots, \max \{j, n(B)\}\})$. Then
(13') For each $i \in A$ with $i \leqq n(B)$ such that $C_{\lambda(B, i)}=\varnothing, s_{i}\left(c l B_{i}\right) \cap c l B_{\xi, A, i}=\varnothing$.
For each $i \leqq n\left(B_{\xi, A}\right)$, define a compact set $C_{\lambda\left(B_{\xi}, A, i\right)}$ in $c l B_{\xi, A, i}$ as Theorem 5.1.

Now we define g_{τ} and \mathscr{B}_{7} for each $\tau \in \omega^{<\omega}$ with $\tau \neq \varnothing$. For each $j \in \omega$, let $\mathcal{G}_{j}=\mathcal{G}_{j}\left(Z \times \prod_{i \in \omega} Y_{i}\right)$ and $\mathscr{B}_{j}=\mathscr{B}_{j}\left(Z \times \prod_{i \in \omega} Y_{i}\right)$. Assume that for $\tau \in \omega^{<\omega}$ with $\tau \neq \varnothing$, we have already obtained G_{τ} and \mathscr{B}_{τ}. For each $B \in \mathscr{B}_{\tau}$ and $j \in \omega$, we denote $\mathcal{G}_{j}(B)$ and $\mathscr{B}_{j}(B)$ by $\mathscr{G}_{\tau \oplus j}(B)$ and $\mathscr{A}_{\tau \oplus j}(B)$ respectively. Define $\mathscr{G}_{z \oplus j}=\cup\left\{\mathcal{G}_{\tau \oplus j}(B)\right.$: $\left.B \in \mathscr{B}_{z}\right\}$ and $\mathscr{B}_{\tau \oplus j}=\cup\left\{\mathscr{B}_{\tau \oplus j}(B): B \in \mathscr{B}_{z}\right\}$.

Firstly we show that $\cup\left\{\mathcal{G}_{\tau}: \tau \in \omega^{<\omega}\right.$ and $\left.\tau \neq \varnothing\right\}$ is a σ-point finite open refinement of \mathcal{O}^{\prime}. Let $\tau \in \omega^{\varsigma \omega}$ and $\tau \neq \varnothing$. By (10^{\prime}), every element of G_{τ} is contained in some member of \mathcal{O}^{\prime}. By (11^{\prime}), (12') and induction, for each $\tau \in \boldsymbol{\omega}^{<\omega}$ and $\tau \neq \varnothing, \mathcal{G}_{\tau}$ is point finite. Thus, it suffices to prove that $\cup\left\{\mathcal{G}_{\tau}: \tau \in \omega^{<\omega}\right.$ and $\tau \neq \varnothing\}$ is a cover of $Z \times \prod_{i \in \omega} Y_{i}$. However, the proof is similar to that of Claim in Theorem 4.1. Let $G_{\tau}=\cup \mathcal{G}_{\tau}$ for each $\tau \in \boldsymbol{\omega}^{<\omega}$ with $\tau \neq \varnothing$. Then $\left\{G_{\tau}: \tau \in \omega^{<\omega}\right.$ and $\tau \neq \varnothing\}$ is a countable open cover of $Z \times \prod_{i \in \omega} Y_{i}$. Since $Z \times \prod_{i \in \omega} Y_{i}$ is countably metacompact, there is a point finite open refinement $\left\{G_{\tau}^{\prime}: \tau \in \omega^{<\omega}\right.$ and $\left.\tau \neq \varnothing\right\}$ such that $G_{\tau}^{\prime} \subset G_{\tau}$ for each $\tau \in \omega^{\varsigma \omega}$ with $\tau \neq \varnothing$. Then $\left\{G_{\tau}^{\prime} \cap G: G \in g_{\tau}, \tau \in \omega^{\varsigma \omega}\right.$ and $\tau \neq \varnothing\}$ is a point finite open refinement of \mathcal{O}^{\prime}. It follows that $Z \times \prod_{i \in \omega} Y_{i}$ is metacompact. The proof is completed.

Remark 5.5. B. Scott [16] showed that if Y is orthocompact and Z is compact, metric and infinite, then $Y \times Z$ is orthocompact if and only if Y is countably metacompact. J. Chaber [5] constructed a scattered hereditarily orthocompact space Y which is not countably metacompact. Thus, for J. Chaber's space $Y, Y \times(\omega+1)$ is not orthocompact, even though both factors are hereditarily orthocompact and scattered (cf. Lemma 2.4).

Corollary 5.6. Let Z be a hereditarily metacompact space and Y_{i} be a regular metacompact space with a σ-closurepreserving cover by compact sets for each $i \in \omega$. Then the following are equivalent.
(a) $Z \times \prod_{i \in \omega} Y_{i}$ is metacompact,
(b) $Z \times \prod_{i \in \omega} Y_{i}$ is countably metacompact,
(c) $Z \times \prod_{i \in \omega} Y_{i}$ is orthocompact.

Since every σ-point countable collection of $Z \times \prod_{i \in \omega} Y_{i}$ is point countable, by the proof of the implication (b) \rightarrow (a) in Theorem 5.4, we have

THEOREM 5.7. If Z is a hereditarily metalindelof space and Y_{i} is a regular metalindelöf $\mathscr{D C}$-like space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is metalindelöf.

COPOLLARY 5.8. If Z is a hereditarily metalindelof space and Y_{i} is a regular metalindelöf space with a σ-closure-preserving cover by compact sets for each $i \in \omega$, then $Z \times \mathbb{T I}_{i \in \omega} Y_{i}$ is metalindelöf.

We consider metacompactness, orthocompactness and metalindelöf property of countable products using C-scattered spaces.

THEOREM 5.9. If Y_{i} is a regular C-scattered metacompact space for each $i \in \omega$, then $\prod_{i \in \omega} Y_{i}$ is metacompact.

Proof. We also assume that $Y_{i}=X$ for each $i \in \omega$ and there is an isolated point a in X. We shall modify the proof of Theorem 5.1. Let \mathcal{O} be an open cover of X^{ω}. Define the same \mathcal{O}^{\prime} and $n(K)$ for each $K \in \mathcal{K}$. We take a $B=$ $\prod_{i \in \omega} B_{i} \in \mathscr{B}$ satisfying the condition of the proof of Theorem 5.1. Fix $i \leqq n(B)$. If $C_{\lambda(B, i)} \neq \varnothing$, then we take the same $W_{\gamma(B, i)}, \Lambda(B, i), \Gamma(B, i), \mathcal{C}(B, i)$, and $\mathscr{W}(B, i)$. Assume that $C_{\lambda(B, i)}=\varnothing$. Since $c l B_{i}$ is a regular C-scattered metacompact space, by Lemma 3.3, there is a collection $\mathscr{W}(B, i)=\left\{W_{\gamma}: \gamma \in \Gamma(B, i)\right\}$ of open subsets in B_{i} satisfying the conditions $\left(1^{\prime \prime}\right)=(1)$ and $\left(2^{\prime \prime}\right)=(3)$ in the proof of Theorem 5.1 and
(3") For each $\gamma \in \Gamma(B, i),\left(c l W_{\gamma}\right)^{(\alpha(\gamma))}$ is compact for some $\alpha(\gamma)$.
Let $\Lambda(B, i)=\Gamma(B, i)$ and $\mathcal{C}(B, i)=\left\{\left(c l W_{\lambda}\right)^{(\alpha(\lambda))}: \lambda \in \Lambda(B, i)\right\}$.
Let $K_{\gamma}=\left(c l W_{\gamma}\right)^{(\alpha(\gamma))}$ for $\gamma \in \Gamma(B, i)$ and take $\Delta_{B}, K(\delta)$ for $\delta \in \Delta_{B}, \mathcal{K}_{B}, r(K(\delta))$, $H(\delta), W(\delta)$ and $G(\delta)$ for $\delta \in \Delta_{B}, G(B), B_{\delta, A}, \mathscr{B}_{\delta}(B)$ and $\mathscr{B}(B)$ for $\delta \in \Delta(B), A \in$ $\mathscr{P}(\{0,1, \cdots, r(K(\delta))\})$ as before satisfying the conditions $\left(4^{\prime \prime}\right)=(4),\left(5^{\prime \prime}-i\right)=(5-i)$ for $i=1,2,3$ and $4,\left(6^{\prime \prime}\right)=(6),\left(7^{\prime \prime}\right)=(7),\left(8^{\prime \prime}\right)=(8)$ and $\left(9^{\prime \prime}\right)=(9)$. Furthermore, we
take the same G_{j} and \mathscr{B}_{j} for each $j \in \omega$, and show that $\cup\left\{\mathscr{G}_{j}: j \in \omega\right\}$ is a point finite open refinement of \mathcal{O}^{\prime}. Let $x=\left(x_{i}\right)_{i \in \omega}$. Take the same $\{\Delta(j): j \in \boldsymbol{\omega}\}$, $\{\mathcal{K}(j): j \in \omega\},\{\mathscr{H}(j): j \in \omega\},\{\mathscr{W}(j): j \in \omega\},\{G(j): j \in \omega\},\{\mathcal{A}(j): j \in \omega\}$ and $\{\mathcal{B}(j):$ $j \in \omega\}$. Assuming $x \in \cup \mathscr{B}_{j}$ for each $j \in \omega$, we similarly choose a sequence $\{\delta(j)$: $j \in \omega\}$, a sequence $\{K(j): j \in \omega\}$ of compact subsets of X^{ω}, where for each $j \in \omega$, $K(j)=\prod_{i \in \omega} K(j)_{i} \in \mathcal{K}$, sequences $\{H(\delta(j)): j \in \omega\},\{W(\delta(j)): j \in \omega\}$ of elements of \mathscr{B}, a sequence $\{A(j): j \in \omega\}$ of finite subsets of ω, a sequence $\left\{B_{\partial(j), A(j)}: j \in \omega\right\}$ of elements of \mathscr{B} satisfying the conditions $\left(10^{\prime \prime}\right)=(11),\left(11^{\prime \prime}\right)=(12),\left(12^{\prime \prime}\right)=(13)$, $\left(13^{\prime \prime}\right)=(14),\left(14^{\prime \prime}\right)=(15),\left(15^{\prime \prime}\right)=(16)$ and $\left(16^{\prime \prime}\right)=(18)$. Then there is an $i \in \omega$ such such that $|\{j \in \omega: i \in A(j)\}|=\omega$. Let $\left\{j \in \omega: i \in A(j)\right.$ and $\left.i \leqq n\left(B_{\delta(j), A(j)}\right)\right\}=\left\{j_{k}\right.$: $k \in \omega\}$. We have
(17") For each $k \in \omega, \varepsilon\left(c l W_{\gamma\left(\hat{o}\left(j_{k+1}+1\right), i\right)}\right)<\varepsilon\left(c l W_{\gamma\left(\hat{o}\left(j_{k}+1\right), i\right)}\right)$.
Fix $k \in \omega$ and take a $y \in c l W_{\left.\gamma\left(\hat{o} \hat{c}_{k+1}+1\right), i\right)}$. Since $W_{\gamma\left(\hat{o}\left(j_{k+1}+1\right), i\right)} \subset W_{\gamma\left(\hat{\partial}\left(j_{k}+1\right), i\right)}$, $\alpha c l W_{\gamma\left(\hat{o}\left(j_{k+1}+1\right), i\right)}(y) \leqq \alpha c l W_{\gamma\left(\delta\left(j_{k}+1\right), i\right)}(y)$. Assume that $j_{k+1}=j_{k}+1$. Then $W_{\gamma\left(\hat{\delta}\left(j_{k+1}+1\right), i\right)} \subset B_{\delta\left(j_{k+1}\right), A\left(j_{k+1}\right), i}$ and

$$
K\left(j_{k+1}\right)_{i}=K_{\gamma\left(\hat{\partial}\left(j_{k+1}\right), i\right)}=\left(c l W_{\gamma\left(\bar{\delta}\left(j_{k+1}\right), i\right)}\right)^{\alpha\left(\gamma \gamma\left(\hat{\delta}\left(j_{k+1}\right), i\right)\right)} \subset H\left(\delta\left(j_{k+1}\right)\right)_{i} .
$$

Assume that $j_{k+1}>j_{k}+1$. Then

In each case, we have $\alpha c l W_{\gamma\left(\bar{o}\left(j_{k}+1\right), i\right)}(y)<\alpha\left(\gamma\left(\delta\left(j_{k}+1\right), i\right)\right)$. Hence $\alpha c l W_{\gamma\left(\hat{\delta}\left(j_{k+1}+1\right), i\right)}(y)$ $<\alpha\left(\gamma\left(\delta\left(j_{k}+1\right), i\right)\right)$. Therefore $\varepsilon\left(c l W_{\gamma\left(\delta\left(j_{k+1}+1\right), i\right)}\right) \leqq \alpha\left(\gamma\left(\delta\left(j_{k}+1\right), i\right)\right.$. Since $\varepsilon\left(c l W_{\gamma\left(\bar{\partial}\left(j_{k}+1\right), i\right)}\right)=\alpha\left(\gamma\left(\delta\left(j_{k}+1\right), i\right)+1\right.$, we have $\varepsilon\left(c l W_{\left.\gamma\left(j_{k+1}+1\right), i\right)}\right)<\varepsilon\left(c l W_{\gamma\left(\hat{o}\left(j_{k}+1\right), i\right)}\right)$.

Thus $\left\{\varepsilon\left(c l W_{\gamma\left(\hat{\partial}\left(j_{k}+1\right), i\right)}\right): k \in \omega\right\}$ is an infinite decreasing sequence of ordinals, which is a contradiction. Thus there is a $k \in \omega$ such that $x \notin \cup \mathscr{B}_{k}$. Similarly, it follows that $\cup\left\{G_{j}: j \in \omega\right\}$ is a point finite open refinement of \mathcal{O}^{\prime}. The proof is completed.

Similarly, we have
Theorem 5.10. Let Z be a hereditarily metacompact space and Y_{i} be a regular C-scattered metacompact space for each $i \in \omega$. Then the following are equivalent.
(a) $Z \times \prod_{i \in \omega} Y_{i}$ is metacompact,
(b) $Z \times \prod_{i \in \omega} Y_{i}$ is countably metacompact,
(c) $Z \times \prod_{i \in \omega} Y_{i}$ is orthocompact.

THEOREM 5.11. If Z is a hereditarily metalindelöf space and Y_{i} is a regular C-scattered metalindelöf space for each $i \in \omega$, then $Z \times \prod_{i \in \omega} Y_{i}$ is metalindelöf.

Acknowledgement.

The author would like to thank Mr. Seiji Fujii for his kindness.

References

[1] Alster, K., A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
[2] Alster, K., On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241-246.
[3] Burke, D. K., On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
[4] Burke, D. K., Covering properties, in: Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, 347-422.
[5] Chaber, J., Metacompactness and the class MOBI, Fund. Math. 91 (1976), 211-217.
[6] Čoban, M. M., On the theory of p-spaces, Soviet Math. Dokl. 11 (1970), 1257-1260.
[7] van Dowen, E.K., The Pixley-Roy topology on spaces of subsets, in: Set Theoretic Topology, ed. by G. M. Reed, Academic Press, New York, 1977, 111-134.
[8] Engelking, General Topology, Heldermann, Berlin, 1989.
[9] Frolik, Z., On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. 8 (1960), 747-750.
[10] Galvin, F. and Telgársky, R., Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
[11] Gruenhage, G. and Yajima, Y., A filter property of submetacompactness and its application to products, Topology Appl. 36 (1990), 43-55.
[12] Kemoto, N. and Yajima, Y., Orthocompactness in infinite product spaces, preprint.
[13] Kunen, K., Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[14] Michael, E., Paracompactness and the Lindelöf property in finite and countable Cartesian products, Comp. Math. 23 (1971), 199-214.
[15] Nyikos, P., On the product of metacompact spaces I. Connections with hereditary compactness, Amer. Math. J. 100 (1978), 829-835.
[16] Scott, B., Toward a product theory for orthocompactness, in: Studies in Topology ed. by N. M. Stavrakas and K. R. Allen, Academic Press, New York, 1975, 517-537.
[17] Tanaka, H., A class of spaces whose countable product with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503-512.
[18] Telgársky, R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
[19] Telgársky, R., Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
[20] Telgársky, R., Topological games: On the 50th Anniversary of the BanachMazur game, Rocky Mountain J. Math. 17 (1987), 227-276.
[21] Yajima, Y., Topological games and products III, Fund. Math. 117 (1983), 223-238.
[22] Yajima, Y., Topological games and applications, in: Topics in General Topology, ed. by K. Morita and J. Nagata, North-Holland, Amsterdam, 1989, 523-562.

Department of Mathematics Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582, Japan

