FIBER SHAPE CATEGORIES

By

Hisao Kato

0 . Introduction.

For any metric compactum B, we define categories M_{B}, R_{B} and $F R_{B}$ whose objects are all maps af compacta to B, respectively. The purpose of this paper is to study the categories and shape fibrations. In particular, we show the following.
(1) There is a category isomorphism $S_{B}: M_{B} \rightarrow R_{B}$ such that $S_{B}(p: E \rightarrow B)=$ $p: E \rightarrow B$ for each object $p: E \rightarrow B$ of M_{B}.
(2) Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta. Then the following are equivalent.
(i) p is isomorphic to p^{\prime} in M_{B}.
(ii) p is isomorphic to p^{\prime} in R_{B}.
(iii) p is isomorphic to p^{\prime} in $F R_{B}$.
(3) Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be objects of $F R_{B}$ and let $f: p \rightarrow p^{\prime}$ be a morphism in $F R_{B}$. If B has a finite closed cover $\left\{B_{i}\right\}_{i=1,2, \cdots n}$ such that for each $i=1,2, \cdots n$ the restriction $f\left|p^{-1}\left(B_{i}\right): p\right| p^{-1}\left(B_{i}\right) \rightarrow p^{\prime} \mid p^{\prime-1}\left(B_{i}\right)$ is an isomorphism in $F R_{B_{i}}$, then $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$, where $p \mid p^{-1}\left(B_{i}\right): p^{-1}\left(B_{i}\right) \rightarrow B_{i}$ denotes the restriction of p to $p^{-1}\left(B_{i}\right)$.
(4) Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta. Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if f induces a strong shape equivalence $T(f): E \rightarrow E^{\prime}$.
(5) Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta. Suppose that B is a connected ANR or B is a continuum with a finite closed cover consisting of FAR's. Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if for some $b_{0} \in B$, the restriction $T\left(f \mid p^{-1}\left(b_{0}\right)\right): p^{-1}\left(b_{0}\right) \rightarrow p^{\prime-1}\left(b_{0}\right)$ of $T(f)$ to $p^{-1}\left(b_{0}\right)$ is a strong shape equivalence.

Throughout this paper, all spaces are metrizable and all maps are continuous. By an ANR (resp. AR), we denote an ANR (resp. AR) for the class of metrizable spaces. We mean by N the set of positive integers, by I the unit interval $[0,1]$ and by Q the Hilbert cube. Let f and g be maps from a space X into the compactum (Y, d). The sup-metric d is given by

[^0]$$
d(f, g)=\sup \{d(f(x), g(x)) \mid x \in X\}
$$

Let E, E^{\prime} and B be compacta contained in AR's X, X^{\prime} and Y, respectively. Suppose that $\tilde{p}: X \rightarrow Y$ and $\tilde{p}^{\prime}: X^{\prime} \rightarrow Y$ are extensions of maps $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow$ B, respectively. A fundamental sequence (see [1]) $f=\left\{f_{n}, E, E^{\prime}\right\}_{X, X^{\prime}}$, is a fiber fundamental sequence over $B[7]$ if for any $\varepsilon>0$ and any neighborhood U^{\prime} of E^{\prime} in X^{\prime} there is a neighborhood U of E in X and a positive integer n_{0} such that for each $n \geqq n_{0}$ there is a homotopy $F: U \times I \rightarrow U^{\prime}$ such that $F(x, 0)=f_{n_{0}}(x), F(x, 1)=$ $f_{n}(x)$ for $x \in U$ and $d\left(\tilde{p}^{\prime} F(x, t), \tilde{p}(x)\right)<\varepsilon$ for $x \in U, t \in I$. A fiber fundamental sequence over $B \underset{f}{f}=\left\{f_{n}, E, E^{\prime}\right\}_{x, X}$, is fiber homotopic to a fiber fundamental sequence over B $g=\left\{g_{n}, E, E^{\prime}\right\}_{X, X^{\prime}}(f \widetilde{B} g)$ if for any $\varepsilon>0$ and any neighborhood U^{\prime} of E^{\prime} in X^{\prime} there is a neighborhood U of E in X and a positive integer n_{0} such that for each $n \geqq n_{0}$ there is a homotopy $K: U \times I \rightarrow U^{\prime}$ such that $K(x, 0)=f_{n}(x), K(x, 1)=g_{n}(x)$ for $x \in U$ and $d\left(\tilde{p}^{\prime} K(x, t), \tilde{p}(x)\right)<\varepsilon$ for $x \in U, t \in I$. A map $p: E \rightarrow B$ is fiber shape equivalent to a map $p^{\prime}: E^{\prime} \rightarrow B$ if there are fiber fundamental sequences over $B f=\left\{f_{n}, E, E^{\prime}\right\}_{X, X}$, and $g=\left\{g_{n}, E^{\prime}, E\right\}_{X^{\prime}, x}$ such that $\underline{\underline{f}} \underset{B}{\widetilde{B}} \underline{1}_{E}$ and $\underline{f g} \underset{B}{\widetilde{B}} 1_{E^{\prime}}$, where $\underline{1}_{E}$ denotes a fiber fundamental sequence over B induced by the identity $1_{E}: E \rightarrow E$. Such f is called a fiber shape equivalence. A map $p: E \rightarrow B$ is shape shrinkable [7] if p induces a fiber shape equivalence from p to the identity $1_{B}: B \rightarrow B$. Note that $p: E \rightarrow B$ is shape shrinkable iff p is a hereditary shape equivalence (see [7, Corollary 3.5]). We denote by M_{B} the category whose objects are all maps of compacta to B and whose morphisms are fiber homotopy classes of fiber fundamental sequences over B.

1. $\boldsymbol{F}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$-maps, $\boldsymbol{F}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$-homotopies and $\boldsymbol{W} \boldsymbol{F}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)$-homotopy classes.

For a subset E of a space X, E is unstable in $X[13]$ if there is a homotopy $H: X \times I \rightarrow X$ such that $H(x, 0)=x, H(x, t) \in X-E$ for $x \in X, 0<t \leqq 1$. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta and let E and E^{\prime} be subsets of compacta X and X^{\prime}, respectively. A map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is an $F\left(p, p^{\prime}\right)-m a p$ if for each $b \in B$ and each neighborhood W^{\prime} of $p^{\prime-1}(b)$ in X^{\prime} there is a neighborhood W of $p^{-1}(b)$ in X such that $f(W-E) \subset W^{\prime}-E^{\prime} . \quad F\left(p, p^{\prime}\right)$-maps $f, g: X-E \rightarrow X^{\prime}-E^{\prime}$ are $F\left(p, p^{\prime}\right)$ homotopic $\left(f \widetilde{\widetilde{F\left(p, p^{\prime}\right)}} g\right)$ if there is a homotopy $H:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ such that $H(x, 0)$ $=f(x), H(x, 1)=g(x)$ for $x \in X-E$ and for each $b \in B$ and each neighborhood W^{\prime} of $p^{\prime-1}(b)$ in X^{\prime} there is a neighborhood W of $p^{-1}(b)$ in X such that $H((W-E) \times I) \subset$ $W^{\prime}-E^{\prime}$. Such a homotopy $H:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ is called an $F\left(p, p^{\prime}\right)$-homotopy. Consider $E \times I$ as a closed subset of $X \times I$ and a map $p \pi: E \times I \rightarrow B$, where $\pi: E \times I \rightarrow$ E is the projection. Then a homotopy $H:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ is an $F\left(p, p^{\prime}\right)$-homotopy iff H is an $F\left(p \pi, p^{\prime}\right)$-map. $\quad X-E$ and $X^{\prime}-E^{\prime}$ are said to be of the same $F\left(p, p^{\prime}\right)$ -
homotopy type $\left(X-E \underset{F\left(p, p^{\prime}\right)}{ } X^{\prime}-E^{\prime}\right)$ if there is an $F\left(p, p^{\prime}\right)$-map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ and an $F\left(p^{\prime}, p\right)$-map $g: X^{\prime}-E^{\prime} \rightarrow X-E$ such that $g f \widetilde{\widetilde{F(p, p)}} 1_{(X-E)}$ and $f g \widetilde{\widetilde{\left.\mathcal{P}^{\prime}, p^{\prime}\right)}} \underset{\left(X^{\prime}-E^{\prime}\right)}{ }$, where $1_{(X-E)}$ denotes the identity of $X-E$. Such an $F\left(p, p^{\prime}\right)$-map $f: X \rightarrow E \rightarrow X^{\prime}-E^{\prime}$ is called an $F\left(p, p^{\prime}\right)$-homotopy equivalence. $F\left(p, p^{\prime}\right)$-maps $f, g: X-E \rightarrow X^{\prime}-E^{\prime}$ are $W F\left(p, p^{\prime}\right)$-homotopic $\left(\underset{W F\left(p, p^{\prime}\right)}{ } g\right)$ if for any finite open cover $\left\{W_{i}{ }^{\prime}\right\}_{i=1,2, \ldots n}$ of E^{\prime} in X^{\prime} such that for each $b \in B, p^{\prime-1}(b) \subset W_{i}^{\prime}$ for some i, there is a finite open cover $\left\{W_{j}\right\}_{j=1,2, \cdots m}$ of E in X such that for each $b \in B, p^{-1}(b) \subset W_{j}$ for some j and a homotopy $H:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ such that $H(x, 0)=f(x), H(x, 1)=g(x)$ for $x \in X-E$ and for each $i=1,2, \cdots m, H\left(\left(W_{j}-E\right) \times I\right) \subset W_{i}^{\prime}$ for some $i=1,2, \cdots n . X-E$ and $X^{\prime}-E^{\prime}$ are said to be of the same $W F\left(p, p^{\prime}\right)$-homotopy type $\left(X-F \widetilde{W F\left(p, p^{\prime}\right)} X^{\prime}-E^{\prime}\right)$ if there is an $F\left(p, p^{\prime}\right)$ map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ and an $F\left(p^{\prime}, p\right)$-map $g: X^{\prime}-E^{\prime} \rightarrow X-E$ such that $g f \widetilde{\widetilde{W F(p, p)}}$ $1_{(X-E)}$ and $f g \underset{W \mathcal{F}\left(p^{\prime}, p^{\prime}\right)}{\sim} 1_{\left(X^{\prime}-E^{\prime}\right)}$. Such an $F\left(p, p^{\prime}\right)$-map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is called a $W F\left(p, p^{\prime}\right)$-homotopy equivalence.

2. Categories \boldsymbol{R}_{B} and $\boldsymbol{F} \boldsymbol{R}_{B}$.

In this section, we define categories R_{B} and $F^{\prime} R_{B}$. We show that there is a category isomorphism $S_{B}: M_{B} \rightarrow R_{B}$ and some applications are given.

Lemma 2.1 ([10, Lemma 3]). Let X and X^{\prime} be compact $A R^{\prime}$ s containing E as an unstable closed subset. Then there is a map $\varphi\left(X, X^{\prime}\right): X \rightarrow X^{\prime}$ such that
(*) $\varphi\left(X, X^{\prime}\right) \mid E=1_{E}$ and $\varphi\left(X, X^{\prime}\right)(X-E) \subset X^{\prime}-E$.
If $\varphi_{1}, \varphi_{2}: X \rightarrow X^{\prime}$ satisfy the condition (*), then there is a homotopy $H: X \times I \rightarrow X^{\prime}$ such that $H(x, 0)=\varphi_{1}(x), H(x, 1)=\varphi_{2}(x)$ for $x \in X$ and $H(x, t)=x$ for $x \in E, t \in I$ and $H((X-$ $E) \times I) \subset X^{\prime}-E$. In particular, for any map $p: E \rightarrow B \varphi\left(X, X^{\prime}\right) \mid X-E: X-E \rightarrow X^{\prime}-E$ is an $F(p, p)-m a p$ and $H \mid(X-E) \times I:(X-E) \times I \rightarrow X^{\prime}-E$ is an $F(p, p)$-homotopy.

For any compactum B, we shall define categories R_{B} and $F R_{B}$ as follows. For a compactum E, we denote by $m(E)$ the set of compact AR's containing E as an unstable subset. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta and let $X_{1}, X_{2} \in m(E)$ and $X_{1}{ }^{\prime}, X_{2}{ }^{\prime} \in m\left(E^{\prime}\right)$. An $F\left(p, p^{\prime}\right)$-map $f: X_{1}-E \rightarrow X_{1}^{\prime}-E^{\prime}$ is $W F\left(p, p^{\prime}\right)$-equivalent to an $F\left(p, p^{\prime}\right)$-map $g: X_{2}-E \rightarrow X_{2}{ }^{\prime}-E^{\prime}$ if $\varphi\left(X_{1}{ }^{\prime}, X_{2}{ }^{\prime}\right) \mid X_{1}{ }^{\prime}-E^{\prime}$ 。 $f_{W F\left(p, p^{\prime}\right)} g^{\circ} \varphi\left(X_{1}, X_{2}\right) \mid X_{1}-E$, where $\varphi\left(X_{1}, X_{2}\right)$ and $\varphi\left(X_{1}{ }^{\prime}, X_{2}{ }^{\prime}\right)$ are maps satisfying the condition (*) of Lemma 2.1. An $F\left(p, p^{\prime}\right)$-map $f: X_{1}-E \rightarrow X_{1}^{\prime}-E^{\prime}$ is $F\left(p, p^{\prime}\right)$-equivalent to an $F\left(p, p^{\prime}\right)$-map $g: X_{2}-E \rightarrow X_{2}^{\prime}-E^{\prime}$ if $\varphi\left(X_{1}^{\prime}, X_{2}^{\prime}\right)\left|X_{1}^{\prime}-E^{\prime} \circ f \underset{F\left(p, p^{\prime}\right)}{\sim} g \circ \varphi\left(X_{1}, X_{2}\right)\right| X_{1}-$ E. Objects of R_{B} are maps of compacta to B. For objects $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ of R_{B}, morphisms from p to p^{\prime} in R_{B} are $W F\left(p, p^{\prime}\right)$-equivalence classes of collections of $F\left(p, p^{\prime}\right)$-maps $f: X-E \rightarrow X^{\prime}-E^{\prime}, X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$. Obviously, R_{B} forms a
category. Similarly, Objects of $F R_{B}$ are maps of compacta to B and for objects $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ of $F R_{B}$, morphisms from p to p^{\prime} in $F R_{B}$ are $F\left(p, p^{\prime}\right)$-equivalence classes of collections of $F\left(p, p^{\prime}\right)$-maps $f: X-E \rightarrow X^{\prime}-E^{\prime}, \quad X \in m(E), \quad X^{\prime} \in m\left(E^{\prime}\right)$. Then $F R_{B}$ forms a category.

The proof of the following theorem is analogous to one of [10, Theorem 1], but more informations will be used.

Theorem 2.2. There is a category isomorphism $S_{B}: M_{B} \rightarrow R_{B}$ such that $S_{B}(p: E \rightarrow$ $B)=p: E \rightarrow B$ for each object $p: E \rightarrow B$ of M_{B}.

Proof. Let $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B$ be objects of M_{B} and consider E, E^{\prime} and B as closed subsets of the Hilbert cube Q. Suppose that $\tilde{p}: Q \rightarrow Q$ and $\tilde{p}^{\prime}: Q \rightarrow Q$ are extensions of p and p^{\prime}, respectively. Choose a sequence $\varepsilon_{1}>\varepsilon_{2}>\varepsilon_{3}>, \cdots$, of positive numbers such that $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$ and decreasing sequences $\left\{U_{n}\right\},\left\{V_{n}\right\}$ of compact ANRneighborhoods of E, E^{\prime} in Q, respectively such that $\bigcap_{n=1}^{\infty} U_{n}=E, \bigcap_{n=1}^{\infty} V_{n}=E^{\prime}$. Let $\underline{U}=$ $\left\{U_{k}, i_{k}^{k+1}, k \in N \cup\{0\}\right\}$ be an inverse sequence such that U_{0} is a one point set, $i_{0}^{1}: U_{1} \rightarrow$ U_{0} is the constant map and $i_{k}^{k+1}: U_{k+1} \rightarrow U_{k}(k \geqq 1)$ is the inclusion. Similarly, we obtain an inverse sequence $V=\left\{V_{k}, j_{k}^{k+1}, k \in N \cup\{0\}\right\}$. Consider the infinite telescope (e.g. see [10, p. 74]) $T(\underline{U})=\bigcup_{k=0}^{\infty} M_{k}(\underline{U})$, where $M_{k}(\underline{U})$ denotes the mapping cylinder obtained by $i_{k}^{k+1}: U_{k+1} \rightarrow U_{k}$, i.e., $M_{k}(\underline{U})$ is obtained by identifying points $(x, 1) \in U_{k+1} \times$ $\{1\}$ and $i_{k}^{k+1}(x)=x \in U_{k}$ for $x \in U_{k+1}$ in a topological sum $U_{k+1} \times I \cup U_{k}$, and $T(\underline{U})$ is obtained by identifying each point of $U_{k} \times\{0\}$ in $M_{k-1}(\underline{U})$ and the corresponding point of U_{k} in $M_{k}(\underline{U})$. Let $N(\underline{U})=T(\underline{U}) \cup E$ be an AR having the same topology as in [10, p. 74]. Note that $T(\underline{U}) \cong T^{\prime}(\underline{U})=C\left(U_{1}\right) \cup \bigcup_{j=2}^{\infty} U_{j} \times[1 / j+1,1 / j] \subset Q \times(0,1]$ and $(N(\underline{U}), E) \cong\left(T^{\prime}(\underline{U}) \cup E \times\{0\}, E \times\{0\}\right) \subset Q \times[0,1]$, where $C\left(U_{1}\right)$ is a cone over $U_{1} \times\{1 / 2\}$ with a vertex $(v, 1), v \in Q$ in $Q \times[1 / 2,1]$. Similarly, we obtain $T(\underline{V})$ and $N(\underline{V})$. Suppose that $f=\left\{f_{n}, E, E^{\prime}\right\}_{Q, Q}$ is a fiber fundamental sequence over B. Inductively, we can find a sequence $0=n_{0}<n_{1}<n_{2}<n_{3}<, \cdots$, of integers such that for $n \geqq n_{i}$, there is a homotopy $H_{n_{i}, n}: U_{n_{i}} \times I \rightarrow V_{i}$ such that $H_{n_{i}, n}(x, 0)=f_{n_{i}}(x), H_{n_{i}, n}(x, 1)=$ $f_{n}(x)$ for $x \in U_{n_{i}}$ and $d\left(\tilde{p}^{\prime} H_{n_{i}, n^{\prime}}(x, t), \tilde{p}(x)\right)<\varepsilon_{i}$ for $x \in U_{n_{i}}, t \in I$. Define a map $s(f): T(\underline{U}) \rightarrow$ $T(\underline{V})$ as follows. For each $k=0,1,2, \cdots$, consider the subset ${\underset{i=n_{k}}{n_{k+1}-1}}_{\bigcup_{i}(\underline{U}) \text { and } M_{k}(\underline{V}), ~(V)}$ of $T(\underline{U})$ and $T(\underline{V})$, respectively. Define a map $s(f))_{k}: \bigcup_{i=n_{k}}^{n_{k+1}-1} M_{i}(\underline{U}) \rightarrow M_{k}(\underline{V})$ by

$$
s(\underline{f})_{k}(x, t)=\left\{\begin{array}{l}
f_{n_{k}} j_{n_{k}}^{j+1}(x), \quad \text { for }(x, t) \in M_{j}(\underline{U}), \quad j=n_{k}, n_{k}+1, \cdots, n_{k+1}-2, \\
\left(f_{n_{k+1}}(x), 2 t\right), \quad \text { for } 0 \leqq t \leqq 1 / 2, \quad(x, t) \in M_{n_{k+1^{-1}}(\underline{U})}, \\
H_{n_{k}, n_{k+1}}(x, 2-2 t), \quad \text { for } 1 / 2 \leqq t \leqq 1, \quad(x, t) \in M_{n_{k+1}-1}(\underline{U}),
\end{array}\right.
$$

where $f_{0}: U_{0} \rightarrow V_{0}$ is the constant map. Define $s(\underline{f})$ by $\left.s(\underline{f})\right|_{i=n_{k}} ^{n_{k+1} 1^{-1}} M_{i}(\underline{U})=s(\underline{f})_{k}$ for each $k=0,1,2, \cdots$. By the construction of $s(f)$, it is an $F\left(p, p^{i=n_{k}}\right)$-map. Note that $N(\underline{U}) \in m(E), N(\underline{V}) \in m\left(E^{\prime}\right)$. To complete the proof, we need the following lemma. By the lemma, we can define $S_{B}([f])$ as the $W F\left(p, p^{\prime}\right)$-equivalence class containing $s(f)$, where $[f]$ denotes the fiber homotopy class containing f and we can conclude that S_{B} is a category isomorphism from M_{B} to R_{B}. The proof of the lemma is similar to one of [10, Lemma 5], hence we omit it.

Lemma 2.3. Let $\left[p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B\right]$ be the set of fiber homotopy classes of fiber fundamental sequences from p to p^{\prime} and $[T(\underline{U}), T(\underline{V})]_{W F\left(p, p^{\prime}\right)}$ the set of $W F\left(p, p^{\prime}\right)$ homotopy classes of $F\left(p, p^{\prime}\right)$-maps from $T(\underline{U})$ to $T(\underline{V})$. Then s induces a $1: 1$ correspondence from $\left[p: E \rightarrow B, p^{\prime}: E \rightarrow B\right]$ onto $[T(\underline{U}), T(\underline{V})]_{W F\left(p, p^{\prime}\right)}$.

Theorem 2.4. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta and let $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$. If an $F\left(p, p^{\prime}\right)-m a p f: X-E \rightarrow X^{\prime}-E^{\prime}$ is a $W F\left(p, p^{\prime}\right)$-homotopy equivalence, then there is an $F\left(p, p^{\prime}\right)-m a p g: X-E \rightarrow X^{\prime}-E^{\prime}$ such that $\underset{W F\left(p, p^{\prime}\right)}{\widetilde{(}}$ g and g is an $F\left(p, p^{\prime}\right)$-homotopy equivalence. In particular, the following are equivalent.
(1) p is isomorphic to p^{\prime} in M_{B}.
(2) If $X \in m(E)$ and $X^{\prime} \in m\left(E^{\prime}\right)$, then $X-E \widetilde{W F\left(p, p^{\prime}\right)} X^{\prime}-E^{\prime}$.
(3) There are $X \in m(E)$ and $X^{\prime} \in m\left(E^{\prime}\right)$ such that $X-E \underset{W F\left(p, p^{\prime}\right)}{\sim} X^{\prime}-E^{\prime}$.
(4) p is isomorphic to p^{\prime} in R_{B}.
(5) If $X \in m(E)$ and $X^{\prime} \in m\left(E^{\prime}\right)$, then $X-E \underset{F\left(p, p^{\prime}\right)}{\sim} X^{\prime}-E^{\prime}$.
(6) There are $X \in m(E)$ and $X^{\prime} \in m\left(E^{\prime}\right)$ such that $X-E \underset{F\left(p, p^{\prime}\right)}{\sim} X^{\prime}-E^{\prime}$.
(7) p is isomorphic to p^{\prime} in $F R_{B}$.

Proof. Suppose that an $F\left(p, p^{\prime}\right)$-map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is a $W F\left(p, p^{\prime}\right)$-homotopy equivalence. Embed E and E^{\prime} into the Hilbert cube Q as Z-sets, respectively. By Lemma 2.1, Theorem 2.2 and the proof of [7, Theorem 3.1], there is a homeomorphism $h: Q-E \rightarrow Q-E^{\prime}$ which is an $F\left(p, p^{\prime}\right)$-map and $\varphi\left(Q, X^{\prime}\right)\left|Q-E_{\circ} h_{\circ} \varphi(X, Q)\right| X$ $-E \widetilde{\left.\widetilde{W F\left(p, p^{\prime}\right.}\right)} f$, where $\varphi\left(Q, X^{\prime}\right)$ and $\varphi(X, Q)$ are maps satisfying the condition (*) of Lemma 2.1. Set $g=\varphi\left(Q, X^{\prime}\right)\left|Q-E^{\prime} \circ h \circ \varphi(X, Q)\right| X-E$. Clearly g satisfies the condition of Theorem 2.4. The rest of the proof follows from this result, Lemma 2.1 and Theorem 2.2.

Corollary 2.5. A map $p: E \rightarrow B$ between compacta is shape shrinkable if and only if for any $X \in m(E), Y \in m(B)$ and for any extension $\tilde{p}: X \rightarrow Y$ of p such that $p(X-E) \subset Y-B, \tilde{p} \mid X-E: X-E \rightarrow Y-B$ is an $F\left(p, 1_{B}\right)$-homotopy equivalence, where 1_{B} denotes the identity of B.

Remark 2.6. Note that if B is a one point set, the categories M_{B} and $F R_{B}$ are the same as shape category (see [1]) and strong (or fine) shape category (see [5], [6] and [10]), respectively.

3. The Category $\boldsymbol{F R} \boldsymbol{R}_{B}$.

Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be objects of R_{B} (resp. $F R_{B}$) and let $f: p \rightarrow p^{\prime}$ be a morphism in R_{B} (resp. $F R_{B}$). For any closed subset C of B, we shall define a morphism $f\left|p^{-1}(C): p\right| p^{-1}(C) \rightarrow p^{\prime} \mid p^{\prime-1}(C)$ in R_{C} (resp. $F R_{C}$), where $p \mid p^{-1}(C)$ is the restriction map of p, i.e., $p \mid p^{-1}(C): p^{-1}(C) \rightarrow C$. We need the following lemma. We omit the proof.

Lemma 3.1. Let A be a compactum and B be a closed subset of A. Suppose $X \in m(A)$ and $Y \in m(B)$. Then there are maps $r(X, Y): X \rightarrow Y$ and $i(Y, X): Y \rightarrow X$ such that

$$
\begin{array}{ll}
\text { (**) } & r(X, Y) \mid B=1_{B} \quad \text { and } \quad r(X, Y) \mid(X-A) \subset Y-B, \\
\text { (***) } & i(Y, X) \mid B=1_{B} \text { and } i(Y, X) \mid(Y-B) \subset X-A .
\end{array}
$$

If $r, r^{\prime}: X \rightarrow Y$ satisfy the condition (**), then there is a homotopy $H: X \times I \rightarrow Y$ such that

$$
\begin{aligned}
& H(x, 0)=r(x) \quad \text { and } \quad H(x, I)=r^{\prime}(x) \quad \text { for } x \in X \\
& H(x, t)=x \quad \text { for } x \in B \quad \text { and } t \in I, \quad H((X-A) \times I) \subset Y-B
\end{aligned}
$$

Similarly, if $i, i^{\prime}: Y \rightarrow X$ satisfy the condition (***), then there is a homotopy $K: Y \times$ $I \rightarrow X$ such that

$$
\begin{aligned}
& K(y, 0)=i(y), \quad K(y, 1)=i^{\prime}(y) \text { for } y \in Y, \\
& K(y, t)=y \quad \text { for } y \in B \quad \text { and } t \in I, \quad K((Y-B) \times I) \subset X-A .
\end{aligned}
$$

Suppose that $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right), Y \in m\left(p^{-1}(C)\right)$ and $Y^{\prime} \in m\left(p^{\prime-1}(C)\right)$ and an $F\left(p, p^{\prime}\right)$ map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ determines the morphism $f: p \rightarrow p^{\prime}$. Then the composition $r\left(X^{\prime}, Y^{\prime}\right)\left|X^{\prime}-E^{\prime} \circ f \circ i(Y, X)\right| Y-p^{-1}(C): Y-p^{-1}(C) \rightarrow Y^{\prime}-p^{\prime-1}(C)$ is an $F^{\prime}\left(p\left|p^{-1}(C), p^{\prime}\right|\right.$ $\left.p^{\prime-1}(C)\right)$-map, where $r\left(X^{\prime}, Y^{\prime}\right)$ and $i(Y, X)$ are maps satisfying the condition (**) and $(* * *)$ of Lemma 3.1, respectively. We define the restriction $f\left|p^{-1}(C): p\right| p^{-1}(C) \rightarrow$ $p^{\prime} \mid p^{\prime-1}(C)$ by the $W F\left(p\left|p^{-1}(C), p^{\prime}\right| p^{-1}(C)\right)$-equivalence class (resp. the $F\left(p\left|p^{-1}(C), p^{\prime}\right|\right.$ $\left.p^{\prime-1}(C)\right)$-equivalence class) containing $r\left(X^{\prime}, Y^{\prime}\right)\left|X^{\prime}-E^{\prime} \circ f \circ i(Y, X)\right| Y-p^{-1}(C)$.

Proposition 3.2. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be objects of R_{B} (resp. $F R_{B}$). If a morphism $f: p \rightarrow p^{\prime}$ in R_{B} (resp. $F R_{B}$) is an isomorphism, then for any closed subset C of $B, f \mid p^{-1}(C)$ is an isomorphism in R_{C} (resp. $F R_{C}$).

Theorem 3.3. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be objects of $F R_{B}$ and let $f: p \rightarrow p^{\prime}$ be a morphism in $F R_{B}$. If B has a finite closed cover $\left\{B_{i}\right\}_{i=1,2, \ldots n}$ such that for each $i=1,2, \cdots n$ the restriction $f\left|p^{-1}\left(B_{i}\right): p\right| p^{-1}\left(B_{i}\right) \rightarrow p^{\prime} \mid p^{\prime-1}\left(B_{i}\right)$ is an isomorphism in $F R_{B_{i}}$, then $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$.

To prove Theorem 3.3, we need the following lemma.
Lemma 3.4. Let E and E^{\prime} be closed subsets of compacta X and X^{\prime}, respectively and let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta. Suppose that A is a closed subset of $X, X^{\prime} \in m\left(E^{\prime}\right)$ and $G:(A-E) \times I \rightarrow X^{\prime}-E^{\prime}$ is an $F\left(p \mid A \cap E, p^{\prime}\right)$-homotopy, where $p \mid A \cap E: A \cap E \rightarrow B$. If there is an extension $\tilde{g}:(X-E) \times\{0\} \rightarrow X^{\prime}-E^{\prime}$ of $G \mid(A-$ $E) \times\{0\}$ which is an $F\left(p, p^{\prime}\right)-m a p$, then there is an extension $\tilde{G}:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ of G and \tilde{g} such that \tilde{G} is an $F\left(p, p^{\prime}\right)$-homotopy.

Proof. Since $X^{\prime}-E^{\prime}$ is an ANR, there is a neighborhood U of $A-E$ in $X-$ E and an extension $G^{\prime}:(X-E) \times\{0\} \cup U \times I \rightarrow X^{\prime}-E^{\prime}$ of G such that $G^{\prime} \mid(X-E) \times\{0\}$ $=\tilde{g}$. For each $x \in A-E$, choose a neighborhood U_{x} of x in U such that
(1) $U_{x} \subset\{y \in U \mid d(y, x)<d(x, E) / 2\} \quad$ and

$$
U_{x} \subset\left\{y \in U \mid d\left(G(x, t), G^{\prime}(y, t)\right)<d(x, E) \text { for each } t \in I\right\} .
$$

Set $V=\cup_{x \in A-E} U_{x}$. Then V is a neighborhood of $A-E$ in $X-E$. Choose a map $r: X-E \rightarrow I$ such that $r(x)=0$ for $x \in(X-E)-V$ and $r(x)=1$ for $x \in A-E$. Define a homotopy $\tilde{G}:(X-E) \times I \rightarrow X^{\prime}-E^{\prime}$ by $\tilde{G}(x, t)=G^{\prime}(x, r(x) t)$ for $x \in X-E$ and $t \in I$. To complete the proof, we must show that \tilde{G} is an $F\left(p, p^{\prime}\right)$-homotopy. Suppose that $b \in B$ and W^{\prime} is a neighborhood of $p^{\prime-1}(b)$ in X^{\prime}. Choose a neighborhood $W^{\prime \prime}$ of $p^{\prime-1}(b)$ in X^{\prime} such that $\mathrm{Cl}_{X}, W^{\prime \prime} \subset W^{\prime}$. Let $\varepsilon_{1}=d\left(\mathrm{Cl}_{x}, W^{\prime \prime}, X^{\prime}-W^{\prime}\right)>0$. Since \tilde{g} is an $F\left(p, p^{\prime}\right)$-map and G is an $F\left(p \mid A \cap E, p^{\prime}\right)$-homotopy, there is a neighborhood W_{1} of $p^{-1}(b)$ in X such that
(2) $\tilde{g}\left(W_{1}-E\right) \subset W^{\prime \prime}-E^{\prime} \quad$ and $\quad G\left(\left(\left(A \cap W_{1}\right)-E\right) \times I\right) \subset W^{\prime \prime}-E^{\prime}$.

Let $\varepsilon_{2}=\operatorname{Min}\left\{d\left(X-W_{1}, p^{-1}(b)\right), \varepsilon_{1}\right\}>0$. Choose a neighborhood $W_{2} \subset W_{1}$ of $p^{-1}(b)$ in X such that $d\left(y, p^{-1}(b)\right)<\varepsilon_{2} / 2$ for all $y \in W_{2}$. Then we show that $\tilde{G}\left(\left(W_{2}-E\right) \times I\right) \subset W^{\prime}$ $-E^{\prime}$. If $y \in W_{2}-E-V$, by the construction of \tilde{G} and by (2), $\tilde{G}(y, t)=\tilde{g}(y) \subset W^{\prime \prime}-E^{\prime} \subset$ $W^{\prime}-E^{\prime}$. Suppose $y \in\left(W_{2}-E\right) \cap V$. Then there is U_{x} for some $x \in A-E$ such that $U_{x} \ni y$. By (1) we have
(3) $d(x, y) \leqq d(x, E) / 2 \leqq d(y, E) \leqq d\left(y, p^{-1}(b)\right)<\varepsilon_{2} / 2$.

By (3) we have
(4) $d\left(x, p^{-1}(b)\right) \leqq d(x, y)+d\left(y, p^{-1}(b)\right)<\varepsilon_{2} / 2+\varepsilon_{2} / 2=\varepsilon_{2}$.

Therefore $x \in W_{1}$. By (2), $G(x, t) \in W^{\prime \prime}-E^{\prime}$ for $t \in I$. By (1) and (4),
(5) $d\left(G(x, t), G^{\prime}(y, t)\right)<d(x, E) \leqq d\left(x, p^{-1}(b)\right)<\varepsilon_{2} \leqq \varepsilon_{1}$.

Hence $G^{\prime}(y, t) \in W^{\prime}-E^{\prime}$. By the construction of \tilde{G}, we conclude that $\tilde{G}(y, t) \in W^{\prime}-E^{\prime}$ for each $t \in I$. Thus \tilde{G} is an $F\left(p, p^{\prime}\right)$-homotopy. This completes the proof.

Proof of Theorem 3.3. It is enough to give the proof of the case $n=2$. The case $n \geqq 3$ is proved by induction. We may assume $B_{1} \cap B_{2}=B_{0} \neq \phi$. If $B_{0}=\phi$, the proof is trivial.

Embed E and E^{\prime} into the Hilbert cube Q. For each $i=1,2$, choose a decreasing sequence $\underline{U}^{i}=\left\{U_{j}\right\}_{j=1,2, \ldots}$ of compact ANR-neighborhoods of $p^{-1}\left(B_{i}\right)$ in Q such that
(1) $p^{-1}\left(B_{i}\right)=\bigcap_{j \rho_{1}}^{\infty} U_{j}{ }^{i}$ and $U_{j}{ }^{0}=U_{j}{ }^{1} \cap U_{j}{ }^{2}$ is a compact ANR for each $i=1,2$ and $j=1,2, \cdots$.

Set $U_{j}=U_{j}{ }^{1} \cup U_{j}{ }^{2}, U=\left\{U_{j}\right\}_{j=1,2, \ldots}$ and $\underline{U}^{0}=\left\{U_{j}{ }^{0}\right\}_{j=1,2, \ldots}$. Then \underline{U} is a decreasing sequence of compact ANR-neighborhoods of E in Q such that
(2) $N(\underline{U}) \supset N\left(\underline{U}^{i}\right)$ for each $i=1,2$ and
(2) $N(\underline{U}) \in m(E), \quad N\left(\underline{U}^{i}\right) \in m\left(p^{-1}\left(B_{i}\right)\right)$ for each $i=1,2$ and $N\left(\underline{U}^{0}\right)=N\left(\underline{U}^{1}\right) \cap N\left(\underline{U}^{2}\right) \in m\left(p^{-1}\left(B_{0}\right)\right) \quad$ (see the proof of Theorem 2.2).
Similarly we obtain $N(\underline{V}), N\left(\underline{V}^{i}\right)$ for each $i=1,2$ and $N\left(\underline{V}^{0}\right)$ such that
(4) $N(\underline{V}) \supset N\left(\underline{V}^{i}\right)$ for each $i=1,2$ and
(5) $N(\underline{V}) \in m\left(E^{\prime}\right), \quad N\left(\underline{V}^{i}\right) \in m\left(p^{\prime-1}\left(B_{i}\right)\right)$ for each $i=1,2$ and $N\left(\underline{V}^{0}\right)=N\left(V^{1}\right) \cap N\left(\underline{V}^{2}\right) \in m\left(p^{\prime-1}\left(B_{0}\right)\right)$.

By Lemma 2.1, there is an $F\left(p, p^{\prime}\right)-\operatorname{map} f: T(\underline{U})=N(\underline{U})-E \rightarrow T(\underline{V})=N(\underline{V})-E^{\prime}$ which is contained in the $F\left(p, p^{\prime}\right)$-equivalence class $f: p \rightarrow p^{\prime}$. Now by the following lemma (Lemma 3.5), we may assume that
(6) $f\left(T\left(\underline{U}^{i}\right)\right) \subset T\left(\underline{V}^{i}\right)$ for each $i=1,2$.

By Proposition 3.2, $f \mid T\left(\underline{U}^{0}\right): T\left(\underline{U}_{0}\right) \rightarrow T\left(\underline{V}^{0}\right)$ is an $F\left(p\left|p^{-1}\left(B_{0}\right), p^{\prime}\right| p^{\prime-1}\left(B_{0}\right)\right)$-homotopy equivalence. Hence there is an $F\left(p^{\prime}\left|p^{\prime-1}\left(B_{0}\right), p\right| p^{-1}\left(B_{0}\right)\right)$-map $g_{0}: T\left(\underline{V}^{0}\right) \rightarrow T\left(U^{0}\right)$ and an $F\left(p^{\prime}\left|p^{\prime-1}\left(B_{0}\right), p^{\prime}\right| p^{\prime-1}\left(B_{0}\right)\right)$-homotopy $H_{0}: T\left(V^{0}\right) \times I \rightarrow T\left(V^{0}\right)$ such that
(7) $g_{0} f \mid T\left(U^{0}\right)_{F\left(p\left|p^{-1}\left(\mathcal{B}_{0}\right), p\right| p^{-1}\left(R_{0}\right)\right)} 1_{T}\left(U^{0}\right)$ and
(8) $H_{0}(x, 0)=f g_{0}(x)$ for $x \in T\left(V^{0}\right)$ and $H_{0}(x, t)=x$ for $x \in T\left(\underline{V}^{0}\right)$ and $1 / 2 \leqq t \leqq 1$.

By Lemma 3.4 and the same way as in Brown [2,7.4.1], for each $i=1,2$ there is
an $F\left(p^{\prime}\left|p^{\prime-1}\left(B_{i}\right), p\right| p^{-1}\left(B_{i}\right)\right)$-maps $g_{i}: T\left(\underline{V}^{i}\right) \rightarrow T\left(\underline{U}^{i}\right)$ and an $F\left(p^{\prime}\left|p^{\prime-1}\left(B_{i}\right), p^{\prime}\right| p^{\prime-1}\left(B_{i}\right)\right)$ homotopy $H_{i}: T\left(\underline{V}^{i}\right) \times I \rightarrow T\left(\underline{V}^{i}\right)$ such that
(9) $g_{i} \mid T\left(V^{0}\right)=g_{0}$,
(10) $H_{i}(x, 0)=f g_{i}(x)$ for $x \in T\left(\underline{V}^{i}\right), H_{i}(x, t)=x$ for $x \in T\left(\underline{V}^{i}\right)$ and $1 / 2 \leqq t \leqq 1$ and
(11) $H_{i} \mid T\left(\underline{V}^{0}\right) \times I=H_{0}$.

By (9) we can define a map $g: T(\underline{V}) \rightarrow T(\underline{U})$ by
(12) $g(x)= \begin{cases}g_{1}(x) & \text { for } x \in T\left(V^{1}\right) \\ g_{2}(x) & \text { for } x \in T\left(V^{2}\right) .\end{cases}$

Then g is an $F\left(p^{\prime}, p\right)$-map and by (10) and (11) we have
(13) $\mathrm{fg} \underset{\mathcal{F (p ^ { \prime } , p ^ { \prime })}}{\sim} 1_{T(\underline{Y})}$.

Note that $g \mid T\left(\underline{V}^{i}\right): T\left(\underline{V}^{i}\right) \rightarrow T\left(\underline{U}^{i}\right)$ is an $F\left(p^{\prime}\left|p^{\prime-1}\left(B_{i}\right), p\right| p^{-1}\left(B_{i}\right)\right)$-homotopy equivalence. By the same argument as above, there is an $F\left(p, p^{\prime}\right)$-map $f^{\prime}: T(\underline{U}) \rightarrow T(\underline{V})$ such that
(14) $g f^{\prime} \underset{F(p, p)}{\sim} 1_{T^{(\underline{U})}}$.

By (13) and (14),
(15) $f \underset{F\left(c, p, p^{\prime}\right)}{\sim} f g f^{\prime} \underset{F\left(p, p^{\prime}\right)}{\sim} f^{\prime}$.

Hence $f g \widetilde{\widetilde{F\left(p^{\prime}, p^{\prime}\right)}} \underset{T(\underline{V})}{ }$ and $g f \underset{F(p, p)}{\sim} 1_{T(\underline{U})}$, which implies that f is an $F\left(p, p^{\prime}\right)$-homotopy equivalence. Thus the morphism $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$. This completes the proof.

Lemma 3.5. Let $f: T(\underline{U}) \rightarrow T(\underline{V})$ be an $F\left(p, p^{\prime}\right)-m a p$. Then there is an $F\left(p, p^{\prime}\right)$ map $g: T(\underline{U}) \rightarrow T(\underline{V})$ such that $g\left(T\left(\underline{U}^{i}\right)\right) \subset T\left(\underline{V}^{i}\right)$ for each $i=1,2$ and $g \widetilde{\widetilde{F\left(p, p^{\prime}\right)}} f$.

Proof. Since $N\left(\underline{V}^{i}\right)$ is an $A R$ for each $i=0,1,2$, there is a retraction $r_{i}^{\prime}: N(\underline{V})$ $\rightarrow N\left(\underline{V}^{i}\right)$. Choose a map $\alpha_{i}: N(\underline{V}) \rightarrow I$ such that $\alpha_{i}^{-1}(0)=N\left(\underline{V}^{i}\right)$ for each $i=0,1,2$. Since $N\left(\underline{V}^{i}\right) \in m\left(p^{\prime-1}\left(B_{i}\right)\right)$ for each $i=0,1,2$, there is a homotopy $H_{i}: N\left(V^{i}\right) \times I \rightarrow N\left(V^{i}\right)$ such that $H_{i}(x, 0)=x$ for $x \in N\left(\underline{V}^{i}\right)$ and $H_{i}(x, t) \in T\left(\underline{V}^{i}\right)$ for $x \in N\left(\underline{V}^{i}\right)$ and $0<t \leqq 1$. Define a map $r_{i}: N(\underline{V}) \rightarrow N\left(\underline{V}^{i}\right)$ for each $i=0,1,2$ by $r_{i}(x)=H_{i}\left(r_{i}{ }^{\prime}(x), \alpha_{i}(x)\right)$ for $x \in N(\underline{V})$. Then $r_{i} \mid N\left(\underline{V}^{i}\right)=1_{N(\underline{\underline{V}})}$ and $r_{i}(T(\underline{V})) \subset T\left(\underline{V}^{i}\right)$ for each $i=0,1,2$. Similarly, for each $i=0,1,2$ there is a homotopy $K_{i}: N(\underline{V}) \times I \rightarrow N(\underline{V})$ such that $K_{i}(x, 0)=x, K_{i}(x, 1)=$ $r_{i}(x)$ for $x \in N(\underline{V}), K_{i}(x, t)=x$ for $x \in N\left(\underline{V}^{i}\right)$ and $t \in I$ and $K_{i}(T(\underline{V}) \times I) \subset T(\underline{V})$. Define
a homotopy $\varphi_{0}: T\left(\underline{U}^{0}\right) \times I \rightarrow T(\underline{V})$ by $\varphi_{0}(x, t)=K_{0}(f(x), t)$ for $x \in T\left(\underline{U}^{0}\right)$ and $t \in I$. Then $\varphi_{0}(x, 0)=f(x), \varphi_{0}(x, 1)=r_{0} f(x) \in T\left(\underline{V}^{0}\right)$ for $x \in T\left(\underline{U}^{0}\right)$ and φ_{0} is an $F\left(p p \mid \dot{p}^{-1}\left(B_{0}\right), p^{\prime}\right)$-homotopy. By Lemma 3.4, there is an $F\left(p, p^{\prime}\right)$-map $g^{\prime}: T(\underline{U}) \rightarrow T(\underline{V})$ such that $g^{\prime} \mid T\left(\underline{U}_{0}\right)=$ $r_{0} f \mid T\left(\underline{U}^{0}\right)$ and $g^{\prime} \widetilde{F\left(p, p^{\prime}\right)} f$. Note $g^{\prime}\left(T\left(U^{0}\right)\right) \subset T\left(V^{0}\right)$. Define a homotopy $\varphi_{i}: T\left(\underline{U}^{i}\right) \times I \rightarrow$ $T(\underline{V})$ for each $i=1,2$ by $\varphi_{i}(x, t)=K_{i}\left(g^{\prime}(x), t\right)$ for $x \in T^{\prime}\left(\underline{U}^{i}\right)$ and $t \in I$. Then $\varphi_{i}(x, 0)=$ $g^{\prime}(x), \varphi_{i}(x, 1)=r_{i} g^{\prime}(x) \in T\left(\underline{V}^{i}\right)$ for $x \in T\left(\underline{U}^{i}\right)$ and $\varphi_{i}(x, t)=g^{\prime}(x)$ for $x \in T\left(\underline{U}^{0}\right)$ and $t \in I$. Also φ_{i} is an $F\left(p \mid p^{-1}\left(B_{i}\right), p^{\prime}\right)$-homotopy. Define a homotopy $\varphi: T(\underline{U}) \times I \rightarrow T(\underline{V})$ by

$$
\varphi(x, t)=\left\{\begin{array}{ll}
\varphi_{1}(x, t) & \text { for } x \in T\left(\underline{U}^{\prime}\right) \\
\varphi_{2}(x, t) & \text { and } t \in I \\
\varphi_{2}, & x \in T\left(\underline{U}^{2}\right)
\end{array} \text { and } t \in I .\right.
$$

Then $\varphi(x, 0)=g^{\prime}(x)$ for $x \in T(\underline{U})$ and $\varphi\left(T\left(\underline{U}^{i}\right)\right) \subset T\left(\underline{V}^{i}\right)$ for each $i=1,2$ and φ is an $F\left(p, p^{\prime}\right)$-homotopy. Define a map $g: T(\underline{U}) \rightarrow T(\underline{V})$ by $g(x)=\varphi(x, 1)$ for $x \in T(\underline{U})$. Then g satisfies the condition of Lemma 3.5.

By Corollary 2.5 and Theorem 3.3, we have the following.
Corollary 3.6. Let $p: E \rightarrow B$ be a map between compacta. If there is a finite closed cover $\left\{B_{i}\right\}_{i=1,2, \ldots n}$ of B such that $p \mid p^{-1}\left(B_{i}\right): p^{-1}\left(B_{i}\right) \rightarrow B_{i}$ is shape shrinkable for each $i=1,2, \cdots n$, then $p: E \rightarrow B$ is shape shrinkable.

Corollary 3.7. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta and let $f: E \rightarrow E^{\prime}$ be a fiber map over $B\left(\right.$ i.e., $p^{\prime} f=p$). If there is a finite closed cover $\left\{B_{i}\right\}_{i=1,2, \cdots n}$ of B such that for each $i=1,2, \cdots n, f \mid p^{-1}\left(B_{i}\right): p^{-1}\left(B_{i}\right) \rightarrow p^{-1}\left(B_{i}\right)$ is a fiber homotopy equivalence over B_{i}, then f induces an isomorphism $f: p \rightarrow p^{\prime}$ in $F R_{B}$. In particular, f is a fiber shape equivalence over B.

Remark 3.8. In the statement of Corollary 3.7, we cannot conclude that f is a fiber homotopy equivalence over B. Define a map $p:[0,3] \rightarrow[0,2]$ by $p \mid[0,1]=$ $1_{[0,1]}, p([1,2])=1$ and $p(t)=t-1$ for $t \in[2,3]$. Let $B_{1}=[0,1]$ and $B_{2}=[1,2]$. It is clear that p is a fiber map from p to the identity $1_{[0,2]}$ and for each $i=1,2, p \mid p^{-1}\left(B_{i}\right)$: $p^{-1}\left(B_{i}\right) \rightarrow B_{i}$ is a fiber homotopy equivalence over B_{i}. But there is no fiber map $g:[0,2] \rightarrow[0,3]$ over $[0,2]$.

4. Shape fibrations and Strong shape equivalences.

We denote by s-Sh the strong (or fine) shape category (see [5], [6] and [10]). Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be objects of $F R_{B}$ and $f: p \rightarrow p^{\prime}$ be a morphism in $F R_{B}$. Choose $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$ and an $F\left(p, p^{\prime}\right)$-maps $f: X \rightarrow E \rightarrow X^{\prime} \cdots E^{\prime}$ contained in the $F\left(p, p^{\prime}\right)$-equivalence class $f: p \rightarrow p^{\prime}$. Since every $F\left(p, p^{\prime}\right)$-map is a proper map, the morphism $T(f): E \rightarrow E^{\prime}$ of s-Sh induced by the proper map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is
independent of the choices of $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$ and $f: X-E \rightarrow X^{\prime}-E^{\prime}$. Clearly there is a functor $T: F R_{B} \rightarrow s$-Sh such that $T(p: E \rightarrow B)=E$ for each object $p: E \rightarrow B$ of $F R_{B}$.

In this section, we show the following theorem which is a more general result than [7, Theorem 2.3].

Theorem 4.1. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta (see [11]). Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if $T(f): E \rightarrow E^{\prime}$ is an isomorphism in s-Sh.

First, we need the following.
Lemma 4.2. Let $p: E \rightarrow B$ be a shape fibration between compacta and let $\tilde{p}: X \rightarrow$ Y be an extension of p, where X and Y are $A R$'s containing E and B, respectively. Suppose that $\varepsilon>0$ and $U($ resp. $V)$ is a neighborhood of $E($ resp. $B)$ in $X($ resp, $Y)$. Then there is $\delta>0$ and a neighborhood $U_{1}\left(r e s p . V_{1}\right)$ of $E(r e s p . B)$ in $X(r e s p . Y)$ satisfying the following property; for any space Z and a closed subset A of Z, any maps $h:(Z \times\{0\}) \cup(A \times I) \rightarrow U_{1}$ and $H: Z \times I \rightarrow V_{1}$ such that $d(\tilde{p} h, H \mid(Z \times\{0\}) \cup(A \times I))<$ δ, then there is an extension $\tilde{H}: Z \times I \rightarrow U$ of h such that $d(\tilde{p} \tilde{H}, H)<\varepsilon$. Such a pair $\left(U_{1}, V_{1} ; \delta\right)$ is called a lifting pair for $(U, V ; \varepsilon)$.

Sketch of the proof of Lemma 4.2. Observe [11, Theorem 2] and [12, Proposition 1]. The lemma is proved by the same way as in Allaud and Fadell [A fiber homotopy extension theorem, Trans. A.M.S. Soc. 104 (1962), 239-251, Theorem (2.1) and Theorem (2.4)] and shape theoretic consideration.

Lemma 4.3. Let X be a compact ANR. Then for any $\varepsilon>0$ there is $\alpha(\varepsilon)>0$ such that for any space Z and a closed subset A of Z, any $\alpha(\varepsilon)$-near maps $f, g: Z \rightarrow$ X and a homotopy $H: A \times I \rightarrow X$ such that $H(z, 0)=f(z), H(z, 1)=g(z)$ for $z \in A$ and diam $H(\{z\} \times I)<\alpha(\varepsilon)$ for $z \in A$, then there is an extension $F: Z \times I \rightarrow X$ of H such that $F(z, 0)=f(z), F(z, 1)=g(z)$ for $z \in Z$ and $\operatorname{diam} F(\{z\} \times I)<\varepsilon$ for $z \in Z$.

Proof of Theorem 4.1. It is enough to give the proof of sufficiency. Choose $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$ and $Y \in m(B)$ which are convenient AR's (i.e., An AR X is convenient if for each compactum A in X and each neighborhood U of A in X there is a compact ANR $M \subset U$ with $A \subset \operatorname{Int} M)$. Let $\tilde{p}: X \rightarrow Y$ and $\tilde{p}^{\prime}: X^{\prime} \rightarrow Y$ be extensions of p and p^{\prime}, respectively. Since $Y \in m(B)$, we may assume $\tilde{p}(X-E) \subset Y-B$ and $\tilde{p}^{\prime}\left(X^{\prime}-E^{\prime}\right) \subset Y-B$. Suppose that $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is an $F\left(p, p^{\prime}\right)$-map which is contained in the $F\left(p, p^{\prime}\right)$-equivalence class $f: p \rightarrow p^{\prime}$. Since f is a proper homotopy equivalence, there is a proper map $g: X^{\prime}-E^{\prime} \rightarrow X-E$ and a proper homotopy $H:\left(X^{\prime}-\right.$
$\left.E^{\prime}\right) \times I \rightarrow X^{\prime}-E^{\prime}$ such that $g f$ is properly homotopic to 1_{X-E} and $I\left(x^{\prime}, 0\right)=x^{\prime}, I\left(x^{\prime}, 1\right)$ $=f g\left(x^{\prime}\right)$ for $x^{\prime} \in X^{\prime}-E^{\prime}$.

We will construct decreasing sequences $\left\{C_{n}\right\}_{n=1,2, \ldots}$ and $\left\{D_{n}\right\}_{n=1,2, \ldots}$ of compact ANR's, a decreasing sequence $\left\{\varepsilon_{n}\right\}_{n=1,2, \ldots}$ of positive numbers and sequences $\left\{g_{n}\right\}_{n=1,2, \ldots}$, $\left\{G_{n}\right\}_{n=1,2, \ldots}$ and $\left\{R_{n}\right\}_{n=1,2}, \ldots$ of maps satisfying the following properties (1)~(9).
(1) $X \supset C_{1} \supset \operatorname{Int} C_{1} \supset C_{2} \supset \cdots \supset E, \quad X^{\prime} \supset D_{1} \supset$ Int $D_{1} \supset D_{2} \supset \cdots \supset E^{\prime}$ and $E=\bigcap_{n=1}^{\infty} C_{n}, \quad E^{V}=\bigcap_{n=1}^{\infty} D_{n}$.
(2) $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$.
(3) $g_{2 n-1}: D_{2 n}-$ Int $D_{2 n+1} \rightarrow C_{2 n-1}-E$ for $n=1,2, \cdots$, $g_{2 n}: D_{2 n+1}-\operatorname{Int} D_{2 n+2} \rightarrow C_{2 n-3}-E$ for $n=2,3, \cdots$.
(4) $G_{2 n-1}:\left(D_{2 n}-\right.$ Int $\left.D_{2 n+1}\right) \times I \rightarrow C_{2 n-1}-E$ for $n=1,2, \cdots$, $G_{2 n}:\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times I \rightarrow C_{2 n-3}-E$ for $n=2,3, \cdots$.
(5) $\quad R_{2 n-1}:\left(D_{2 n}-\right.$ Int $\left.D_{2 n+1}\right) \times[0,2] \rightarrow D_{2 n-1}-E^{\prime}$ for $n=1,2, \cdots$, $R_{2 n}:\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times[0,2] \rightarrow D_{2 n-3}-E^{\prime}$ for $n=2,3, \cdots$.
(6) $\quad G_{2 n-1}\left(x^{\prime}, 0\right)=g_{2 n-1}\left(x^{\prime}\right), \quad G_{2 n-1}\left(x^{\prime}, 1\right)=g\left(x^{\prime}\right)$ for $x^{\prime} \in D_{2 n}-\operatorname{Int} D_{2 n+1}$
and $G_{2 n}\left(x^{\prime}, 0\right)=g_{2 n}\left(x^{\prime}\right), \quad G_{2 n}\left(x^{\prime}, 1\right)=g\left(x^{\prime}\right)$ for $x^{\prime} \in D_{2 n+1}-\operatorname{Int} D_{2 n+2}$
and $\quad G_{2 n-1}\left|\left(\operatorname{Bd} D_{2 n+1}\right) \times I=G_{2 n}\right|\left(\operatorname{Bd} D_{2 n+1}\right) \times I$, $G_{2 n}\left|\left(\operatorname{Bd} D_{2 n+2}\right) \times I=G_{2 n+1}\right|\left(\operatorname{Bd} D_{2 n+2}\right) \times I$.
(7) $R_{2 n-1}\left(x^{\prime}, 0\right)=x^{\prime}, \quad R_{2 n-1}\left(x^{\prime}, 2\right)=f g_{2 n-1}\left(x^{\prime}\right) \quad$ for $x^{\prime} \in D_{2 n}-\operatorname{Int} D_{2 n+1}$, $R_{2 n}\left(x^{\prime}, 0\right)=x^{\prime}, \quad R_{2 n}\left(x^{\prime}, 2\right)=f g_{2 n}\left(x^{\prime}\right)$ for $x^{\prime} \in D_{2 n+1}-\operatorname{Int} D_{2 n+2}$ and $\quad R_{2 n-1}\left|\left(\operatorname{Bd} D_{2 n+1}\right) \times[0,2]=R_{2 n}\right|\left(\operatorname{Bd} D_{2 n+1}\right) \times[0,2], \quad R_{2 n} \mid\left(\operatorname{Bd} D_{2 n+2}\right) \times[0,2]=$ $R_{2 n+1} \mid\left(\mathrm{Bd} D_{2 n+2}\right) \times[0,2]$.
(8) $d\left(\tilde{p} g_{2 n-1}\left(x^{\prime}\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)<\varepsilon_{2 n-1} \quad$ for $x^{\prime} \in D_{2 n}-\operatorname{lnt} D_{2 n+1}$
and $d\left(\tilde{p} g_{2 n}\left(x^{\prime}\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)<\varepsilon_{2 n-3} \quad$ for $x^{\prime} \in D_{2 n+1}-\operatorname{Int} D_{2 n+2}$.
(9) $d\left(\tilde{p}^{\prime} R_{2 n-1}\left(x^{\prime}, t\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)<\varepsilon_{2 n-1} \quad$ for $x^{\prime} \in D_{2 n}-\operatorname{Int} D_{2 n+1}, \quad t \in[0,2]$ and $d\left(\tilde{p}^{\prime} R_{2 n}\left(x^{\prime}, t\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)<\varepsilon_{2 n-3}$ for $x^{\prime} \in D_{2 n+1}-$ Int $D_{2 n+2}, \quad t \in[0,2]$.

Let D_{1} (resp. B_{1}) be compact ANR-neighborhood of E^{\prime} (resp. B) in X^{\prime} (resp. Y) such that $\tilde{p}^{\prime}\left(D_{1}\right) \subset B_{1}$ and $\varepsilon_{1}>0$. Since $p^{\prime}: E^{\prime} \rightarrow B$ is a shape fibration, by Lemma 4.2, there is a compact ANR-neighborhood $D_{1}{ }^{\prime}$ (resp. $B_{1}{ }^{\prime}$) of E^{\prime} (resp. B) in X^{\prime} (resp. Y) and $\delta_{1}>0$ such that
(10) $D_{1} \supset D_{1}{ }^{\prime}, \quad B_{1} \supset B_{1}{ }^{\prime}, \quad \tilde{p}^{\prime}\left(D_{1}{ }^{\prime}\right) \subset B_{1}{ }^{\prime}$ and $\left(D_{1}{ }^{\prime}, B_{1}{ }^{\prime} ; \delta_{1}\right)$ is a lifting pair for $\left(D_{1}, B_{1} ; \varepsilon_{1} / 2\right), \quad \delta_{1}<\varepsilon_{1} / 2$.

Since $B_{1}{ }^{\prime}$ is a compact ANR, there is a positive number $\alpha\left(\delta_{1}\right)$ satisfying the condition of Lemma 4.3 and $\delta_{1}>\alpha\left(\delta_{1}\right)>0$. Since $f: X-E \rightarrow X^{\prime}-E^{\prime}$ is an $F\left(p, p^{\prime}\right)$-map, we can easily see that there is a compact ANR-neighborhood C_{1} of E in X such that
(11) $\tilde{p}\left(C_{1}\right) \subset B_{1}{ }^{\prime}, \quad f\left(C_{1}-E\right) \subset D_{1}{ }^{\prime}-E^{\prime}$ and $d\left(\tilde{p}^{\prime} f(x), \tilde{p}(x)\right)<\alpha\left(\delta_{1}\right) / 2$ for $x \in C_{1}-E$.

Since $p: E \rightarrow B$ is a shape fibration, by Lemma 4.2 there is a compact ANR-neighborhood $C_{2}\left(\right.$ resp. $\left.B_{2}\right)$ of $E($ resp. $B)$ in $X($ resp. $Y)$ and a positive number $\varepsilon_{2}<\alpha\left(\delta_{1}\right)$ such that
(12) $\tilde{p}\left(C_{2}\right) \subset B_{2}, \quad C_{1} \supset C_{2}, \quad B_{1}^{\prime} \supset B_{2}, \quad\left(C_{2}, B_{2} ; \varepsilon_{2}\right)$ is a lifting pair for ($C_{1}, B_{1}{ }^{\prime}$; $\left.\alpha\left(\delta_{1}\right) / 2\right)$ and $d\left(\tilde{p}^{\prime} f(x), \tilde{p}(x)\right)<\varepsilon_{2}$ for $x \in C_{2}-E$.
Since g and H are proper maps respectively, we can choose a compact ANRneighborhood D_{2} of E^{\prime} in X^{\prime} such that
(13) $D_{1} \supset \operatorname{lnt} D_{1} \supset D_{2}$,
(14) $g\left(D_{2}-E^{\prime}\right) \subset C_{2}-E$ and $\tilde{p} g\left(D_{2}-E^{\prime}\right) \subset B_{2}-B$,
(15) $H\left(\left(D_{2}-E^{\prime}\right) \times I\right) \subset D_{1}^{\prime}-E^{\prime}$ and $\tilde{p}^{\prime} H\left(\left(D_{2}-E^{\prime}\right) \times I\right) \subset B_{2}-B$.

By (12) and (14), we have
(16) $d\left(\tilde{p}^{\prime} H\left(x^{\prime}, 1\right), \tilde{p} g\left(x^{\prime}\right)\right)=d\left(\tilde{p}^{\prime} f g\left(x^{\prime}\right), \tilde{p} g\left(x^{\prime}\right)\right)<\varepsilon_{2}$ for $x^{\prime} \in D_{2}-E^{\prime}$.

Choose a compact ANR-neighborhood D_{3} of E^{\prime} in X^{\prime} with $D_{3} \subset \operatorname{Int} D_{2}$. By (12), (16) and $X \in m(E)$, there is a homotopy $G_{1}:\left(D_{2}-\operatorname{Int} D_{3}\right) \times I \rightarrow C_{1}-E$ such that
(17) $G_{1}\left(x^{\prime}, 1\right)=g\left(x^{\prime}\right)$ for $x^{\prime} \in D_{2}-\operatorname{Int} D_{3}$

$$
\text { and } \quad d\left(\tilde{p} G_{1}, \tilde{p}^{\prime} H \mid\left(D_{2}-\operatorname{Int} D_{3}\right) \times I\right)<\alpha\left(\delta_{1}\right) / 2<\varepsilon_{1} .
$$

Define a map $g_{1}: D_{2}-\operatorname{Int} D_{3} \rightarrow C_{1}-E$ by $g_{1}\left(x^{\prime}\right)=G_{1}\left(x^{\prime}, 0\right)$ for $x^{\prime} \in D_{2}-\operatorname{Int} D_{3}$. Then we have
(18) $d\left(\tilde{p} g_{1}\left(x^{\prime}\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)=d\left(\tilde{p} G_{1}\left(x^{\prime}, 0\right), \tilde{p}^{\prime} H\left(x^{\prime}, 0\right)\right)<\alpha\left(\delta_{1}\right) / 2<\varepsilon_{1}$.

Define a homotopy $L_{1}:\left(D_{2}-\operatorname{Int} D_{3}\right) \times[0,2] \rightarrow D_{1}^{\prime}-E^{\prime}$ by
(19) $L_{1}\left(x^{\prime}, s\right)= \begin{cases}H\left(x^{\prime}, s\right) & \text { for } x^{\prime} \in D_{2}-\operatorname{Int} D_{3}, 0 \leqq s \leqq 1, \\ f G_{1}\left(x^{\prime}, 2-s\right) & \text { for } x^{\prime} \in D_{2}-\operatorname{Int} D_{3}, 1 \leqq s \leqq 2 .\end{cases}$

By (11), (17) and (19),
(20) $d\left(\tilde{p}^{\prime} L_{1}\left(x^{\prime}, s\right), \tilde{p}^{\prime} L_{1}\left(x^{\prime}, 2-s\right)\right)=d\left(\tilde{p}^{\prime} H\left(x^{\prime}, s\right), \tilde{p}^{\prime} f G_{1}\left(x^{\prime}, s\right)\right)$ $\leqq d\left(\tilde{p}^{\prime} H\left(x^{\prime}, s\right), \tilde{p} G_{1}\left(x^{\prime}, s\right)\right)+d\left(\tilde{p} G_{1}\left(x^{\prime}, s\right), \tilde{p}^{\prime} f G_{1}\left(x^{\prime}, s\right)\right)$ $<\alpha\left(\grave{\delta}_{1}\right) / 2+\alpha\left(\dot{\delta}_{1}\right) / 2=\alpha\left(\check{\delta}_{1}\right), \quad$ where $0 \leqq s \leqq 1$.

By the choice of $\alpha\left(\delta_{1}\right)$, there is a homotopy $K_{1}:\left(D_{2}-\right.$ Int $\left.D_{3}\right) \times[0,2] \times I \rightarrow B_{1}{ }^{\prime}$ such that
(21) $K_{1}\left(x^{\prime}, s, t\right)=\tilde{p}^{\prime} L_{1}\left(x^{\prime}, s\right)$ for $t \leqq 1-s$ or $t \leqq s-1$ and

$$
d\left(\tilde{p}^{\prime}\left(x^{\prime}\right), K_{1}\left(x^{\prime}, s, 1\right)\right)<\delta_{1}<\varepsilon_{1} / 2 \quad \text { for } x^{\prime} \in D_{2}-\text { Int } D_{3}, 0 \leqq s \leqq 2 .
$$

Define a map $L_{1}^{\prime}:\left(D_{2}-\operatorname{Int} D_{3}\right) \times(\{0\} \times I \cup[0,2] \times\{0\} \cup\{2\} \times I) \rightarrow D_{1}^{\prime}-E^{\prime}$ by
(22) $L_{1}^{\prime}\left(x^{\prime}, s, t\right)= \begin{cases}L_{1}\left(x^{\prime}, 0\right) & \text { for } s=0,0 \leqq t \leqq 1, \\ L_{1}\left(x^{\prime}, s\right) & \text { for } 0 \leqq s \leqq 2, t=0 \\ L_{1}\left(x^{\prime}, 2\right) & \text { for } s=2,0 \leqq t \leqq 1 .\end{cases}$

By (21) and (22), $\tilde{p}^{\prime} L_{1}^{\prime}=K_{1} \mid\left(D_{2}-\operatorname{Int} D_{3}\right) \times(\{0\} \times I \cup[0,2] \times\{0\} \cup\{2\} \times I)$. By (10), there is a homotopy $M_{1}:\left(D_{2}-\operatorname{Int} D_{3}\right) \times[0,2] \times I \rightarrow D_{1}-E$ such that
(23) $\quad M_{1} \mid\left(D_{2}-\operatorname{Int} D_{3}\right) \times(\{0\} \times I \cup[0,2] \times\{0\} \cup\{2\} \times I)=L_{1}{ }^{\prime} \quad$ and $\quad d\left(\tilde{p}^{\prime} M_{1}, K_{1}\right)<\varepsilon_{1} / 2$.

Define a homotopy $R_{1}:\left(D_{2}-\operatorname{Int} D_{3}\right) \times[0,2] \rightarrow D_{1}-E^{\prime}$ by
(24) $\quad R_{1}\left(x^{\prime}, s\right)=M_{1}\left(x^{\prime}, s, 1\right)$ for $x^{\prime} \in D_{2}-\operatorname{Int} D_{3}, 0 \leqq s \leqq 2$.

Then $R_{1}\left(x^{\prime}, 0\right)=x^{\prime}, R_{1}\left(x^{\prime}, 2\right)=f g_{1}\left(x^{\prime}\right)$ for $x^{\prime} \in D_{2}-\operatorname{Int} D_{3}$. By (21), (23) and (24), we have
(25) $d\left(\tilde{p}^{\prime} R_{1}\left(x^{\prime}, s\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right)$

$$
\begin{aligned}
& \leqq d\left(\tilde{p}^{\prime} M_{1}\left(x^{\prime}, s, 1\right), K_{1}\left(x^{\prime}, s, 1\right)\right)+d\left(K_{1}\left(x^{\prime}, s, 1\right), \tilde{p}^{\prime}\left(x^{\prime}\right)\right) \\
& <\varepsilon_{1} / 2+\varepsilon_{1} / 2=\varepsilon_{1} \text { for } x^{\prime} \in D_{2}-\operatorname{Int} D_{3}, 0 \leqq s \leqq 2 .
\end{aligned}
$$

If we continue the process as above, then we can construct decreasing sequences $\left\{C_{n}\right\},\left\{D_{n}\right\}$ of compact ANR's, a decreasing sequence $\left\{\varepsilon_{n}\right\}$ of positive numbers and sequences $\left\{g_{2 n-1}\right\}_{n=1,2, \ldots},\left\{G_{2 n-1}\right\}_{n=1,2} \ldots$ and $\left\{R_{2 n-1}\right\}_{n=1,2} \ldots$ of maps satisfying the conditions (1) $\sim(9)$.

Next, for each $n=2,3, \cdots$, we will construct maps $g_{2 n}, G_{2 n}$ and $R_{2 n}$ satisfying the conditions $(3) \sim(9)$. Define a map $G_{2 n}^{\prime}:\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times\{1\} \cup\left(\operatorname{Bd} D_{2 n+1} \cup\right.$ Bd $\left.D_{2 n+2}\right) \times I \rightarrow C_{2 n-1}-E$ by
(26) $G_{2 n}^{\prime}\left(x^{\prime}, t\right)= \begin{cases}g\left(x^{\prime}\right) & \text { for } x^{\prime} \in D_{2 n+1}-\text { Int } D_{2 n+2}, t=1, \\ G_{2 n-1}\left(x^{\prime}, t\right) & \text { for } x^{\prime} \in \operatorname{Bd} D_{2 n+1}, t \in I, \\ G_{2 n+1}\left(x^{\prime}, t\right) & \text { for } x^{\prime} \in \operatorname{Bd} D_{2 n+2}, t \in I .\end{cases}$

By (16) and (17), we have
(27) $d\left(\tilde{p}^{\prime} H \mid\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times\{1\} \cup\left(\operatorname{Bd} D_{2 n+1} \cup B d D_{2 n+2}\right) \times I, \tilde{p} G_{2 n}^{\prime}\right)$

$$
<\alpha\left(\delta_{2 n-1}\right) / 2<\varepsilon_{2 n-1}<\varepsilon_{2 n-2} .
$$

By (12), (27) and $X \epsilon m(E)$, there is a homotopy $G_{2 n}:\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times I \rightarrow C_{2 n-3}-E$
such that
(28) $\quad G_{2 n} \mid\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times\{1\} \cup\left(\operatorname{Bd} D_{2 n+1} \cup \operatorname{Bd} D_{2 n+2}\right) \times I=G_{2 n}^{\prime} \quad$ and

$$
d\left(\tilde{p} G_{2 n}, \tilde{p}^{\prime} H \mid\left(D_{2 n+1}-\operatorname{lnt} D_{2 n+2}\right) \times I\right)<\alpha\left(\delta_{2 n-3}\right) / 2
$$

Define a map $g_{2 n}: D_{2 n+1}-\operatorname{Int} D_{2 n+2} \rightarrow C_{2 n-3}-E$ by $g_{2 n}\left(x^{\prime}\right)=G_{2 n}\left(x^{\prime}, 0\right)$ for $x^{\prime} \in D_{2 n+1}-$ Int $D_{2 n+2}$. Clearly, $g_{2 n}$ and $G_{2 n}$ satisfy the conditions as we wanted. Similarly, we obtain $R_{2 n}:\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times[0,2] \rightarrow D_{2 n-3}-E^{\prime}$ which fulfills our requirement.

Clearly we obtain maps $g^{\prime}: X^{\prime}-E^{\prime} \rightarrow X-E, G:\left(X^{\prime}-E^{\prime}\right) \times I \rightarrow X-E$ and $R:\left(X^{\prime}-\right.$ $\left.E^{\prime}\right) \times[0,2] \rightarrow X^{\prime}-E^{\prime}$ such that

$$
\begin{aligned}
& g^{\prime} \mid D_{2 n}-\text { Int } D_{2 n+1}=g_{2 n-1} \text { for } n=1,2, \cdots \\
& g^{\prime} \mid D_{2 n+1}-\text { Int } D_{2 n+2}=g_{2 n} \text { for } n=2,3, \cdots, \\
& G \mid\left(D_{2 n}-\operatorname{Int} D_{2 n+1}\right) \times I=G_{2 n-1} \text { for } n=1,2, \cdots \\
& G \mid\left(D_{2 n+1}-\operatorname{Int} D_{2 n+2}\right) \times I=G_{2 n} \text { for } n=2,3, \cdots \\
& R \mid\left(D_{2 n}-\operatorname{Int} D_{2 n+1}\right) \times[0,2]=R_{2 n-1} \quad \text { for } n=1,2, \cdots, \\
& R \mid\left(D_{2 n+1}-\text { Int } D_{2 n+2}\right) \times[0,2]=R_{2 n} \text { for } n=2,3, \cdots
\end{aligned}
$$

and $G\left(x^{\prime}, 0\right)=g^{\prime}\left(x^{\prime}\right), G\left(x^{\prime}, 1\right)=g\left(x^{\prime}\right)$ for $x^{\prime} \in X^{\prime}-E^{\prime \prime}, R\left(x^{\prime}, 0\right)=x^{\prime}, R\left(x^{\prime}, 2\right)=f g^{\prime}\left(x^{\prime}\right)$ for $x^{\prime} \in X^{\prime}-E^{\prime}$ (because $X \in m(E), X^{\prime} \in m\left(E^{\prime}\right)$). By (1)~(9), we can conclude that g^{\prime} is an $F\left(p^{\prime}, p\right)$-map such that g^{\prime} is properly homotopic to g and $f g^{\prime} \widetilde{F\left(p^{\prime}, p^{\prime}\right)} 1_{X^{\prime}-E^{\prime}}$. Note that g^{\prime} is a proper homotopy equivalence. To complete the proof, we apply the same process to $g^{\prime}: X^{\prime}-E^{\prime} \rightarrow X-E$ instead of $f: X-E \rightarrow X^{\prime}-E^{\prime}$. Thus there is an $F\left(p, p^{\prime}\right)$ map $f^{\prime}: X-E \rightarrow X^{\prime}-E^{\prime}$ such that $g^{\prime} f^{\prime} \overparen{F(p, p)} 1_{X-E}$. Then $f \underset{F\left(p, p^{\prime}\right)}{\sim} f g^{\prime} f^{\prime} \widetilde{F\left(p, p^{\prime}\right)} f^{\prime}$, which implies $f g^{\prime} \widetilde{F^{\prime}\left(p^{\prime}, p^{\prime}\right)} 1_{X^{\prime}-E}$, and $g^{\prime} f \widetilde{\sim} \overbrace{\mathcal{F}(p, p)} 1_{X-E}$. Hence the morphism $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$. This completes the proof.

As a special case of Theorem 4.1, we have the next corollary.

Corollary 4.4. Let $p: E \rightarrow B$ be a map between compacta. Then the following are equivalent.
(1) p is a shape fibration and a strong shape equivalence.
(1) p is shape shrinkable.

Proof. (1) \rightarrow (2) follows from Theorem 4.1. (2) \rightarrow (1) follows from [7, Corollary 3.6] and Corollary 2.5.

For a map $p: E \rightarrow B, S^{*}(p)$ denotes the morphism of $s-S h$ induced by p. By the similar way as the proof of Theorem 4.1, we have the following proposition.

Proposition 4.5. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be maps between compacta and let $f: E \rightarrow E^{\prime}$ be a morphism in s-Sh such that $S^{*}(p)=S^{*}\left(p^{\prime}\right) f$. If $p^{\prime}: E^{\prime} \rightarrow B$ is a shape fibration, then there is a morphism $g: p \rightarrow p^{\prime}$ in $F R_{B}$ such that $T(g)=f$.

By Theorem 4.1 and Proposition 4.5, we have

Corollary 4.6. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta. If a morphism $f: E \rightarrow E^{\prime}$ in s-Sh is an isomorphism such that $S^{*}(p)=S^{*}\left(p^{\prime}\right) f$, then there is an isomorphism $g: p \rightarrow p^{\prime}$ in $F R_{B}$ such that $T(g)=f$.

5. Applications.

In this section, some applications are given. First, we obtain the following theorem by Theorem 3.3 and Theorem 4.1.

Theorem 5.1. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta and let $f: p \rightarrow p^{\prime}$ be a morphism in $F R_{B}$. If there is a finite closed cover $\left\{B_{i}\right\}_{i=1,2, \ldots n}$ of B such that $T\left(f \mid p^{-1}\left(B_{i}\right)\right): p^{-1}\left(B_{i}\right) \rightarrow p^{\prime-1}\left(B_{i}\right)$ is an isomorphism in s-Sh for each $i=1,2, \cdots, n$, then $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$.

It is well-known that if $p: E \rightarrow B$ is a Hurewicz fibration and B is contractible, the inclusion $i: p^{-1}(b) \rightarrow E$ is a homotopy equivalence for each $b \in B$. Note that if B is an FAR and a Z-set in Q, there is a decreasing sequence $Q \supset B_{1} \supset B_{2} \supset \cdots$, of compact neighborhoods of B in Q such that $\bigcap_{i=1}^{\infty} B_{i}=B$, each B_{i} is homeomorphic to Q. The proof of the following proposition is similar to one of Theorem 4.1. We omit it.

Proposition 5.2. (cf. [12, Theorem 1]). Let $p: E \rightarrow B$ be a shape fibration between compacta. If B is an $F A R$, the inclusion $i: p^{-1}(b) \rightarrow E$ induces an isomorphism in s-Sh for each $b \in B$.

Proposition 5.3. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta and let B be an FAR. Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if for some $b_{0} \in B$, the restriction $T\left(f \mid p^{-1}\left(b_{0}\right)\right): p^{-1}\left(b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$ of $T(f)$ to $p^{-1}\left(b_{0}\right)$ is an isomorphism in s-Sh.

Proof. It is enough to give the proof of sufficiency. There is a commutative diagram

in s-Sh, where i and i^{\prime} are the inclusion maps. By Proposition 5.2, i and i^{\prime} induce isomorphisms in s-Sh. Hence $T(f): E \rightarrow E^{\prime}$ is an isomorphism in $s-S h$. By Theorem 4.1, $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$.

Theorem 5.4. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta. Suppose that B is a continuum with a finite closed cover consisting of FAR's. Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if for some $b_{0} \in B$, the restriction $T\left(f \mid p^{-1}\left(b_{0}\right)\right): p^{-1}\left(b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$ of $T(f)$ to $p^{-1}\left(b_{0}\right)$ is an isomorphism in s-Sh.

Proof. It is enough to give the proof of sufficiency. Let $\left\{B_{i}\right\}$ be a finite closed cover consisting of FAR's. Since B is connected, by Proposition 5.3, we conclude that the restriction $f\left|p^{-1}\left(B_{i}\right): p\right| p^{-1}\left(B_{i}\right) \rightarrow p^{\prime} \mid p^{\prime-1}\left(B_{i}\right)$ of f to $p^{-1}\left(B_{i}\right)$ is an isomorphism in $F R_{B_{i}}$ for each i. By Theorem $3.3 f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$.

Corollary 5.5. Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta and let B be a connected ANR. Then a morphism $f: p \rightarrow p^{\prime}$ of $F R_{B}$ is an isomorphism in $F R_{B}$ if and only if the restriction $T\left(f \mid p^{-1}\left(b_{0}\right)\right): p^{-1}\left(b_{0}\right) \rightarrow p^{\prime-1}\left(b_{0}\right)$ is an isomorphism in s-Sh for some $b_{0} \in B$.

Proof. Define maps $p \times 1_{Q}: E \times Q \rightarrow B \times Q, p^{\prime} \times 1_{Q}: E^{\prime} \times Q \rightarrow B \times Q$ by $\left(p \times 1_{Q}\right)(e, q)=$ $(p(e), q),\left(p^{\prime} \times 1_{Q}\right)\left(e^{\prime}, q\right)=\left(p^{\prime}\left(e^{\prime}\right), q\right)$ for $e \in E, e^{\prime} \in E^{\prime}$ and $q \in Q$. Note that $p \times 1_{Q}$ and $p^{\prime} \times$ 1_{Q} are shape fibrations. Choose an $F\left(p, p^{\prime}\right)$-map $f: X-E \rightarrow X^{\prime}-E^{\prime}$ which is contained in the $F\left(p, p^{\prime}\right)$-equivalence class $f: p \rightarrow p^{\prime}$. Define a map $f \times 1_{Q}:(X \times Q-E \times$ $Q) \rightarrow\left(X^{\prime} \times Q-E^{\prime} \times Q\right)$ by $\left(f \times 1_{Q}\right)(x, q)=(f(x), q)$ for $x \in X \times Q-E \times Q, q \in Q$. Clearly, the map $f \times 1_{Q}:(X \times Q-E \times Q) \rightarrow\left(X^{\prime} \times Q-E^{\prime} \times Q\right)$ determines a morphism $f \times 1_{Q}: p \times$ $1_{Q} \rightarrow p^{\prime} \times 1_{Q}$ of $F R_{B \times Q}$. Since B is a compact ANR, $B \times Q$ is a compact Q-manifold. Clearly, $B \times Q$ has a finite closed cover consisting of FAR's. By Theorem 5.4, $f \times$ $1_{Q}: p \times 1_{Q} \rightarrow p^{\prime} \times 1_{Q}$ is an isomorphism in $F R_{B \times Q}$. By Proposition 3.2, $f: p \rightarrow p^{\prime}$ is an isomorphism in $F R_{B}$.

By Theorem 5.4, Corollary 5.5 and [7, Corollary 3.6], we have the following.
Corollary 5.6. Let $p: E \rightarrow B$ be a map between compacta. Suppose that B is
an $A N R$ or B has a finite closed cover consisting of FAR's. Then the following are equivalent.
(1) p is a cell-like shape fibration.
(2) p is shape shrinkable.

Remark 5.7. In the statement of Corollary 5.6, the assumption about B cannot be omitted. Edwards and Hastings [6, pp. 196-200] give an example of a celllike shape fibration which fails to be a shape equivalence. Also, we cannot omit the condition "shape fibration" of (1). It is well-known that there is a map $p: E \rightarrow$ Q of continuum E to the Hilbert cube Q which is cell-like and not a shape equivalence (see [15]).

Corollary 5.8 (cf., [8, Theorem 2.1]). Let $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ be shape fibrations between compacta and let B be a connected $A N R$ or a continuum with a finite closed cover consisting of $F A R$'s. Suppose that $\underline{f}=\left\{f_{n}, E, E^{\prime}\right\}_{X, X}$, is a fiber fundamental sequence over B and one of the following properties (1) or (2) is satisfied;
(1) for some $b_{0} \in B, \mathrm{Fd}\left(p^{-1}\left(b_{0}\right)\right) \leqq 1$.
(2) for some $b_{0} \in B, \operatorname{Fd}\left(p^{-1}\left(b_{0}\right)\right)<\infty, p^{-1}\left(b_{0}\right)$ has finite components and each component is pointed 1-movable.

Then f is a fiber shape equivalence over B it and only if the restriction $f \mid p^{-1}\left(b_{0}\right)=$ $\left\{f_{n}, p^{-1}\left(b_{0}\right), p^{\prime-1}\left(b_{0}\right)\right\}_{X, X}$, of f to $p^{-1}\left(b_{0}\right)$ is a shape equivalence.

Proof. It is enough to give the proof of sufficiency. Let $f: p \rightarrow p^{\prime}$ be a morphism in $F R_{B}$ induced by f, i.e., $f: p \rightarrow p^{\prime}$ is an $F\left(p, p^{\prime}\right)$-equivalence class containing $s(f)$ (see the proof of Theorem 2.2 for the notation $s(f)$). Then the property (1) or (2) implies that $T\left(f \mid p^{-1}\left(b_{0}\right)\right): p^{-1}\left(b_{0}\right) \rightarrow p^{\prime-1}\left(b_{0}\right)$ is an isomorphism in s-Sh (see [5, Theorem 8.3, Theorem 6.4 and Theorem 7.3] and [4, Theorem 3.6]). Hence f is an isomorphism in $F R_{B}$ by Theorem 5.4 and Corollary 5.5. Thus f is a fiber shape equivalence over B.

Remark 5.9. Chapman and Siebenmann (Finding a boundary for a Hilbert cube manifold, Acta Math., 137 (1976), 171-208) have asked the following question: Is each weak proper homotopy equivalence a proper homotopy equivalence? The positive answer would give a stronger result than Corollary 5.8 ; in fact we could omit the assumptions (1), (2) in Corollary 5.8.

References

[1] Borsuk, K., Concerning homotopy properties of compacta, Fund. Math., 62 (1968), 223254.
[2] Brown, B., Elements of modern topology, McGraw-Hill, London, 1968.
[3] Coram D. and Duvall, P., Approximate fibrations, Rocky Mountain J. Math., 7 (1977), 275-288.
[4] Dydak, J., Pointed and unpointed shape and pro-homotopy, Fund. Math., 107 (1980), 57-69.
[5] Dydak J. and Segal, J., Strong Shape Theory, (to appear).
[6] Edwards, D.A. and Hastings, H. M., Čech and Steenrod homotopy theories with applications to geometric topology, Springer Lecture Note, Vol. 542, Berlin, 1976.
[7] Kato, H., Shape fibrations and fiber shape equivalences, I, Tsukuba J. Math., to appear.
[8] ——, Shape fibrations and fiber shape equivalences, II, Tsukuba J. Math., to appear.
[9] Kodama, Y., On tom Dieck's Theorem in Shape Theory, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27 (1979), 359-363.
[10] Kodama, Y., Ono J. and Watanabe, T., AR associated with ANR-sequence and shape, General. Top. and Its Appl., 9 (1978), 71-87.
[11] Mardešić, S. and Rushing T. B., Shape fibrations, I, General Top. and Its Appl., 9 (1978), 193-215.
[12] _ _ , Shape fibrations, II, Rocky Mountain J. Math., 9 (1979), 283-298.
[13] Sher, R. B., Property SUV ${ }^{\infty}$ and proper shape theory, Trans. Amer. Math. Soc., 190 (1974), 345-356.
[14] Siebenmann, L., Chapman's classification of shape, A proof using collapsing, Manuscript Math., 16 (1975), 373-384.
[15] Taylor, J.L., A counter-example in shape theory, Bull. Amer. Math. Soc., 81 (1975), 629-632.

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 JAPAN

[^0]: Received February 25, 1981.

