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Introduction.

A complex n-dimensional Kaehler manifold of constant holomorphic sectional

curvature c is called a complex space form, which is denoted by Mn(c). A com-

plete and simply connected complex space form is a complex projective space

PnC, a complex Euclidean space Cn or a complex hyperbolic space HnC accord-

ing as c>0, c=0 or e<0.

In his study [12] of real hypersurfaces of PnC, Takagi showed that all

homogeneous hypersurfaces could be divided into six types. Namely, he proved

the following

Theorem A. Let M be a homogeneous real hypersurfaceof PnC. Then M

islocallycongruentto one of the followinghypersurfaces:

(Ai) a geodesichypersurface,

(A2) a tube over a totallygeodesicPkC (l^k^n―2),

(B)

(C)

(D)

(E)

a tube over a complex quadric Qn-i,

a tube over P1CxP(.n-o/2C and n(2^5) is odd,

a tube over a complex Grassmann G2>6 and n=9,

a tube over a Hermitian symmetric space SO(10)/U(5) and ft= 15

Moreover, Takagi [13] proved that if a real hypersurface of PnC has two

or three distinctconstant principal curvatures, then M is locally congruent to

the case of the homogeneous ones of type Ax, A2 or B. In what follows the in-

duced almost contact metric structure of the real hypersurface of Mn{c) is de-

noted by (0, g, |, rj). The structure vector £is said to be principal if A£=a£,

where A is the shape operator in the direction of the unit normal C and a =

v)(Ag). Real hypersurfaces of PnC have been studied by many differentialgeo-

meters ([2], [4], [51, [6] and [7] etc.) and as one of them. Kimura [5] asserts

*°This research was partiallysupported by TGRC-KOSEF.

Received January 17, 1989.



10 U-Hang Ki, Hyang Sook Kim and Hlsao Nakagawa

that M has constant principal curvatures and $ is principal if and only if M is

locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurfaces of HnC have also been investigated

by many authors ([1], [3], [4], [8], [9] and [11] etc.) In particular,Berndt

fll proved recently the following interesting result.

Theorem B. Let M be a real hyper surface of HnC, n^2. Then M has

constant principal curvatures and £is principal if and only if M is locally con-

gruent to one of the following:

(Ao) a horosphere in HnC,

(A,) a geodesic hyper surface or a tube over a complex hyperbolic hyperplane

Hn-＼C,

(A2) a tube over a totallygeodesic submanifold HkC (l^Lk^n―2),

(B) a tube over a totallyreal hypersurface HnR.

According to Takagi's classificationtheorem and Berndt's one, the principal

curvatures and their multiplicities of homogeneous real hypersurfaces of Mn(c)

are given.

Now, in [10] Maeda estimated the norm of the second fundamental form

and proved the following

Theorem C. Let M be a real hypersurface of PnC. Then

|V^|2^(n-l)c2/4,

where the equality holds if and only if M is locally congruent to one of the real

hypersurfaces of type Ax and A2.

For the above minimum of the norm of the covariant derivative of the

second fundamental form, it seems to be interested to investigate whether or

not there is the next estimation of the norm which gives a characterization of

real hypersurfaces of PnC different from type Aj. and A2. The purpose of this

paper is to obtain an estimation under certain condition and to give the follow-

ing characterization of real hypersurfaces of type B.

Theorem. Let M be a real hypersurface of PnC

ture vector £is principal with principal curvature a.

then

17/l|2^(n-l)c(7c+6a2)/4,

n^3, on which the struc-

If a Tr A^a2-(n-l)c,

where the equality holds if and only if M is locally congruent to a real hyper



A characterization of a real hvoersurface of tvoe B

surface of type B.
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1. Preliminaries.

We begin with recalling basic properties of real hypersurfaces of a com-

plex space form. Let M be a real hypersurface of an n(2:2)-dimensional com-

plex space form Mn(c) of constant holomorphic sectional curvature c(=£0)and

let C be a unit normal field on a neighborhood of a point x in M. We de-

note by / the almost complex structure of Mn{c). For a local vector field X

on a neighborhood of x in M, the images of X and C under the transformation

/ can be represented as

JX=<f>X+V(X)$, JC = -$,

where <j>defines a skew-symmetric transformation on the tangent bundle TM of

M, while t] and £ denote a 1-form and a vector fieldon the neighborhood of x

in M, respectively. Moreover, it is seen that g(%, X)―r){X), where g denotes

the induced Riemannian metric on M. By properties of the almost complex

structure /, the set (0, £,v),g) of tensors satisfiesthen

(i.i) p=-i+vRi 0£=o, ^x)=o, ?(£)=i,

where / denotes the identity transformation. Accordingly, the set defines the

almost contact metric structure on M. Furthermore, the covariant derivatives

of the structure tensors are given by

(1.2) !x<}>(Y)=V(Y)AX-g(AX, Y)$, !X$=$AX,

where 7 is the Riemannian connection of g and A denotes the shape operator

with respect to C on M.

Since the ambient space is of constant holomorphic sectional curcature c,

the equations of Gauss and Codazzi are respectively given as follows:

(1.3) R{X, Y)Z = c{g(Y, Z)X-g{X, Z)Y +

+ g($Y, ZtyX-gtyX, ZWY-ZgW*. Y)$Z)/A

+ g{AY, Z)AX-g(AX, Z)AY ,

(1.4) 1 XA{Y)-1 xA{X)=c{r){X)<f>Y~f){Y)(j>X-2g^X,Y)^/A ,

where R denotes the Riemannian curvature tensor of M and VxA denotes the

covariant derivative of the shape operator A with respect to X.

The Ricci tensor S' of M is the tensor of type (0, 2) given by S＼X, Y)=

tr{Z->R(Z, X)Y). But it may be also regarded as the tensor of type (1,1) and
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denoted by 5: TM-+TM; it satisfiesS＼X, Y)=g(SX, Y). By the Gauss equa-

tion,(1.1) and (1.2) the Ricci tensor S is given by

(1.5) S=c {(2n + l)/-3j7R£} /A+h A- A2,

where h is the trace of the shape operator A. Recently, in order to give

another characterization of homogeneous hypersurfaces of type Ai, A2 and B in

PnC, Kimura and Maeda [6] introduced the notion of a ry-parallelsecond funda-

mental form, which was defined by g(P'XA{Y), Z)=0 for any vector fieldsX, Y

and Z orthogonal to £. Now, we prepare the followings:

Theorem D ([6]). Let M be a real hyper surface of PnC. Then the second

fundamental form is rj-paralleland £is principalif and only if M is locally con-

gruent to one of the homogeneous real hypersurfaces of type Au A2 and B.

Theorem E ([11]). Let M be a real hypersurface of HnC. Then the second

fundamental form is fj-paralleland $ is principalif and only if M is locally con-

gruent to one of real hypersurfaces of type A0~B.

Proposition F ([4]). Let M be a real hypersurface of Mn(c), c=£0. // the

structure vector £ is principal, then the corresponding principal curvature a is

locally constant.

In the sequel, assume that the structure vector £is principal and denote by

a the corresponding principal curvature. Namely, A£=at- is assumed. It fol-

lows from (1.4) that we have

(1.7) 2A$A=c$/2+a(A$+$A)

and therefore, if AX―XX for any vector field X orthogonal to £,then we get

(1.8) (2X-a)A(f>X=(al+c/2)<ltX.

Accordingly, it turns out that in the case where ≪2+C9t0, <f>Xis also a principal

vector with principal curvature fx={aX-＼-c/2)/(2X―a),namely, we have

A$X=ft$X,

(1.9)

2X-a^Q, u=(aX+c/2)/(2X-a).

2. Real hypersurfaces of type B.

This section is devoted to the investigation of a characterization of real

hypersurfaces of type B in a complex space form. First of all, we shall con-
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sider a property of hypersurfaces of a real space form. An m-dimensional

Riemannian manifold of constant curvature c is called a real space form, which

is denoted by Nm(c). Let N be a hypersurface of Nm+1(c) and let A' be the

shape operator and g' (resp. 7') be the induced Riemannian metric tensor (resp.

the Riemannian connection) of N.

Lemma 2.1. Let N be a hypersurface of an (m+1)-dimensional real space

form Nm+1(c) of constant curvature c and let D' be a distribution defined by the

kernel of the operator A'iJ＼-aA'+ bI for some constants a and b. If a2^Ab, then

we have

(2.1) g＼TxA＼Y), Z)=0

for any vector fields X, Y and Z in D'.

Proof. Differentiatingthe equation {A'2+aA' + bI)Y=0 covariantly, we get

(2,2) lxA＼A'Y)+A'l'xA'{Y)+alxA＼Y)+{An+aA' + bI)lxY=b

for any vector field X. Taking account of the fact that A' and A'2 are self-

adjoint, we have

(2.3) g＼l'xA'{A'Y)+A'lxA＼Y)+alxA'{Y), Z)=0

for any vector fields Y and Z in D'. Substituting A'X into X in (2.3), we

have

g＼l'A.XA'{A'Y)+A'1'A, XA＼Y)+ al'A,XA'(Y), Z)=0

because Z belongs to D'. Since g'(^'xA＼Y), Z) is symmetric with respect to

X, Y and Z by means of the Codazzi equation for hypersurfaces of a real space

form and since the distribution D' is ,/T-invaiant,the firstterm of the above

equation can be deformed for any vector fields X, Y and Z in D' as follows:

g＼l'zA＼A'X), A'Y)=-g＼A'l'zA＼X)+al'zA＼X), A'Y)

=g＼l'zA＼X), aA'Y + bY)-ag'{l'zA'{X), A'Y)

=bg＼l'zA'{X),Y),

where the definition of the distributionand (2.3)are used. It turns out that we

have 2hg'(l'zA＼X), Y)+ag'WYA＼Z), A'X)=0 for any X, Y and Z in D'. If

a=0, then it is trivial,so unless it is seen that g'^'yA'iZ), A'X) is symmetric

with respect to X, Y and Z, from which together with (2.3) it follows that

2g'(l'xA'(Y), A'Z)+ag'(l'xA'(Y), Z)=0. By the last two equations we have
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(a%-Ab)g'{l'xA＼Y), Z)=0 for any vector fieldsX, Y and Z in D'. q.e. d.

Remark 2.1. In [9], Montiei and Romero proved that in a Lorentz hyper-

surface N of an anti-de Sitter space Hf+1, if the shape operator A' satisfies

a polynomial p(x)=x2―ax + 1 for some constant a such that a2^4, then A' is

parallel. The proof of Lemma 2.1 is essentiallysimilar to that of their result.

When the shape operator A' satisfies(2.1),it is said to be D'-parallel.

Combing back to the subject of real hypersurfaces of a complex space form,

let M be a real hypersurface of Mn(c), c^Q, n^3, on which the structrue vec-

tor £is principal. That is,

(2.4) A$=a$,

where a is constant by Proposition F. The covariant derivative of (2.4) gives

lxA($)=a$AX― AipAX for any vector fieldX, where we have used the second

equation of (1.2),from which together with (1.7) and the above equation it fol-

lows that

(2.5) lxA(£)=-c$X/4:-CL(Aif>-<l>A)X/2.

On the other hand, the Codazzi equation(1.4)coupled with (2.5)implies

(2.6) liA(X)=-a{A<}>-4>A)X/2.

By X1 we denote an ^-component of a vector fieldX. Namely, let X―

X1 +r}(X)t;. Then the vector field1XA(Y) can be decomposed into three terms

as follows:

(2.7) !XA(Y)=VX.A(Y^+V{X)1SA(Y^)+7I{Y)VX,A(%)

because of V|A(£)=0 by means of (2.4) and (2.6). Taking account of (2.5) and

(2.6), we seen that (2.7) is reformed as

(2.8) lxA(Y)=Wx±A(Y*-)y-c{y(.YtyX+gWX, F)£}/4

-aWXXA$-$A)Y + y(yXA$-$A)X

+ g((A$-$A)X,Y)$}/2.

In particular,assume that M is of type B. Then the shape operator A satisfies

(2.9) A(j)+ <j>A= k<f>, k = -c/a.

In this case, by using (2.9), the equation (2.5)is equivalent to

(2.10) lxA($)=-a(A#-36A)X/4,
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which together with (2.6) and (2.7) yields

(2.11) VxA(Y)=-a{2r)(XXA$-$A)Y + j)(yXA$-tyA)X

+g((A<j>-3<j>A)X, F)£}/4

because the shape operator A of M is ^-parallel by Theorems D and E.

Now, let S'in+lbe a (2n + l)-dimensional unit sphere in a (2n+2)-dimensional

Euclidean space R2n+2=Cn+l and let (0, E, w, G) be the Sasakian structure in-

duced from the natural almost complex structure on Cn+1. Then the Hopf

fibration tc; SZn+1->PnC is a principal circle bundle over PnC, in which a)is a

connection and the orbits of E are fibers. Let * be a horizontal liftwith respect

to this connection w. The usual Riemannian structure on PnC is characterized

by the fact that n is a Riemannian submersion. Let M be a real hypersurface

of a complex projective space PnC. Then the principal circle bundle N over

M is a hypersurface of S2n+1 and the natural immersion i' of iV into S2n+1 re-

spects the submersion n. That is, N is the hypersurface of S'in+1tangent to E

and for the Hopf fibration -k: Sn+1-+PnC there is a fibration n: N-+M, where

Mis a real hypersurface of PnC such that the diagram

i'
N >S2n+1

'I
I"

M >PnC
i

is commutative and the immersion i' of N into S2n+l is a diffeomorphism of the

fibers. By g' and g the induced Riemannian metric tensors of N and M are

denoted, respectively. Let 7' and 7 be also the Riemannian connections of N

and M, and the shape operators are denoted by A' and A. Then it is seen

that

(2.12) g＼Tx*A＼Y*), Z*)={g{lxA(Y), Z)+rj{Y)g(<f>X, Z)+y)(Z)g(<?>X, Y)}*

for any vector fields X, Y and Z on M.

Next, for positive numbers r and s and an integer m (2^m^n―l) we de-

note by N0(2n, r) and N(2n, m, s) real hypersurfaces of S2n+1 defined by {z―

(*, ･･･,zn+1)eS!"+1cC+1: S?=il^l2-r|^+i|2} and {z=(zlt - , zn+1)<=S2n+1(Z

Cn+i: S^ikil8 = sS*=m+ik*l8}, respectively. Then A^0(2n, r) and N(2n,m,s)

have two distinct constant principal curvatures cot <9 and ―tan 6 with multi-

plicities 2n ―1, 1 and m ―l, 2n― ra-fl, respectively, and the angle 0 is given by

cos20 = l/(r+l), sin20=(m ―l)/(n ―1) and s―(m―l)/(n―m). Accordingly the
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shape operator A' is parallel by Lemma 2.1. On the other hand, for a number

t (0<t<l) we denote by N(2n, t) a hypersurface of S271+1 defined by {z=

(zlt ･･･, zn+1)eS2re+1czC"+1: ＼^p?zj2＼* = t}. Then N(2n, t) has four distinct con-

stant principal curvatures cot(0 ―tt/4), cot 6, cot (0 + 7r/4)= ―tan (d ―tt/4),

cot(^ + 7r/2)=:― tan # with multiplicities n ―1, 1, n ―1 and 1, respectively and

the angle 8 is given by t―s＼n220 (O<0<7r/4). By D' a distribution over N(2n, t)

of the direct sum of eigenspaces corresponding to principal curvatures cot(# ―;r/4)

and ―tan(0 ―tz/A) is denoted. Then Lemma 2.1 yields that A' is D'-parallel,

but it is not parallel by the property of isoparametric hypersurfaces in a sphere.

Thus, in real hypersurfaces M0(2n ―1, r)―7t(N0(2n, r)) of type Ai, M(2n ―1, m, s)

= 7c(N(2n,m,s)) of type A2 and M(2n ―1, t)~7t{N(2n, t)) of type B, it is seen

that the shape operator A is ^-parallel because of (2.12). Moreover, 1$A(Y)

vanishes identically in the former two hypersurfaces, but it is not so in the last

case. This means that the equation (2.11) gives a characterization by which real

hypersurfaces of type B of PnC are distinguished from ones of type Aj and A2.

For real hypersurfaces of a complex hyperbolic space HnC the same situa-

tion as above is considered.

In the sequel, let M be a real hypersurface of a complex space form Mn(c),

c=£0, n^3. The shape operator A in the direction of C is said to be pseudo-

parallel if A satisfies

(2.13) lxA{Y)=a {27]{X)(A0-0A)Y + 7)(YXA0-3$A)X

+g((A0-30A)X, Y)£}

for any tangent vector fields X, Y and a^R and to be pseudo-f)-parallel if

(2.13) holds for any vector fields X and Y orthogonal to f and a^R. The

hypersurface M is said to be of pseudo-(rj-)parallel if A is pseudo-(i?-)parallel,

respectively. For these hypersurfaces, the following property is first asserted.

Lemma 2.2. Let M be a real hypersurface of Mn{c), c^O, n^3. // M is

of pseudo-parallel, then £is principal.

Proof. Suppose that M is of pseudo-paralleland a~0. Then the shape

operator A is parallel.However, it is well known that there exist no real

hypersurfaceswith parallelshape operator of Mn(c), c^O, n^3. Thus we may

assume that a is nonzero. From (2.13)itis seen that

VxA(y)-1yA(X)=a{y(XXA<f>+$A)Y-r)(YXA$+#A)X

-2g((A6+6A)X,Y)£}.
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On the other hand, it follows from the Codazzi equation (1.4) that

lxA{Y)-lYA{X)=c{rI{X)(j>Y-r]{X)(l>X-2g{<j)X> F)£}/4,

which combined with the last equation turns out to be

(2.14) rj{X)BY-~r1{Y)BX-2g{BX, r)£=0

for any tangent vector fields X and Y, where we have put B=a(A<j>-＼-<f>A)―c<fi/4

which is the skew-symmetric transformation. It is clear from (2.14) that

g(BX, Y)=0 for any tangent vector fields X and Y orthogonal to £. Putting

Y=£ in (2.14),we obtain -BX-2g(BX, £)£=0for any vector field X orthogonal

to £and hence the above two equations means that BX=0 for any vector field

X orthogonal to £.

Moreover, making use of (1.1), we find easily that B$―a^A$. Replacing

Y by B% and putting X=£ in (2.14), we obtain B2£-2g{B%, B$)£.=0, where we

have used the fact that B$=a0A£. Thus B$.=0, which means, coupled with

the fact BX=0 for any vector fieldX orthogonal to£,that the operator B vanishes

identically on M. That is, a(A<fi-＼-$A)=c0/4. Because of a^O, we get

A6+6A=k(f>. where k―c/Aa^R― {0}. Hence £is principal. q. e.d.

From the above lemma, we reach a theorem which gives a characterization

of real hypersurfacesof type B of MJc).

Theorem 2.3. Let M be a real hypersurfaceof Mn{c), c^O, n^3. Then

M is of pseudo-parallelif and only if M is locallycongruent to one of real

hypersurfacesof type Ao, A, and B.

Proof. It is enough to show that the "only if" part is true. Let M be of

pseudo-parallel. Then £ is principal and M is of ^-parallel. So, by using

Theorems D and E, M is locally congruent to one of real hypersurfaces of type

A and B (type A means Ai or A2 when c>0 and Ao, Ai or A2 when c<0).

Therefore, the proof is complete, since the equation (2.13) is not realized for a

a real hypersurface of type A2. q. e.d.

Moreover, taking account of the proof above, we have

Corollary 2.4. Let M be a real hypersurface of Mn{c), c^O, n^3. If $

is principal, then M is of pseudo-rj-parallelif and only if M is locally congruent

to a real hypersurface of type Ao, Ax and B.

Now, in order to prove the main theorem mentioned in the introduction we
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consider a tensor H of type (1,2) defined by

H(X,Y)^lxA(Y)+a{2r){X){A<f>~~<f>A)Y + r){Y){A<j>-Z<j>A)X

+g((A$-3$A)X,Ym/4.

If H vanishes identically on M, then M is of pseudo-parallel and hence M is of

type Ao, Aj or B by means of Theorem 2.3. Calculating the norm of H and

using (1.1), (1.7), (2.5) and (2.6), we have

(2.15) ＼lA＼2^{lQa2hz-2(7a2+2c)ah-＼-Aa4-(7n-ll)a2c}/8f

where h% denotes the trace of the transformation A2 and |7A| is the norm of

7A The equality holds if and only if the tensor H vanishes identically and

therefore M is of type Ao, Ax and B. Now, let M be a real hypersurface of type

B in Mn(c), ci^Q, n^3. Then the restriction of the shape operator A to the

orthogonal complement $L satisfies A2 ―kA―c//4=0, where k ― ―c/a, from which

the equation hz―a2~k(h―a)―(n-~l)c/2―0 is derived. Since the shape operator

A of M has also three distinct principal curvatures a = y/~ccot 26, (Vc72)cot(0 ―tt/4)

and -(Vc72)tan(0-7r/4)if c>0 or a^V^c tanh 20, (V=c/2)coth(0-7r/4) and

―(V―c/2) tanh(0 ―n/A) if c<0, with multiplicities 1, m ―1, n ―1, respectively,

which gives us h=a+(n ―l)k. Combining (2.15) and making use of above prop-

erties, we find

(2.16) |V/ir=(n-lX7c2+6a2c)/4.

Remark 2.2. Let M be a real hypersurface of type A of PnC. Then it

is seen in [7] that the norm of 7^4 satisfies |7^4|2=(n ―l)c2/4. In particular,

note here that in a real hypersurface of type Ao in HnC, (2.16) holds because

of ≪2+c^0.

Next, we calculate the norm of the tensor A<f>+<J>A―k<j>,where k = ―c/a.

Under the assumption that £is principal, we get

(2.17) 2azh2-4a＼a2+c)+(a2+2c){(n-l)c+2ah}^0,

where the equality holds if and only if M is of type Ao, Ax and B, from which

together with (2.15) it follows that

(2.18) |VA|2^-{12(a2+c)≪/i+5(n-l)c2+6(tt-3)ca2-12a4}/4.

Suppose that (a*+c){ah-a2+(n-l)c} £0. Then the inequality |7^|2^

(n-l)(7c2+6a2c)/4 is derived from (2.18). Thus, by Theorem 2.3 we oetain the

following theorem. The main theorem is its direct consequence.

Theorem 2.5. Let M be a real hvpersurface of Mn{c), d=Q, n^3, on which
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£is principal. If {a2+c){ah―a2 f(n ―l)c}5^0, then we have

＼FA＼2^(n-Wc2+6a2c)/4,

where the equality holds if and only if M is locally congruent to one of real

hypersurfaces of type Ao and B, the former case arising only when c<0.

Remark 2.3. Let M be a real hypersurface of type A2 in a complex hyper-

bolic space HnC. Then the principal curvatures are given by a=-y/'―c

coth20, V―c/2coth# and V―c/2 tanh d with multiplicities1, p and q, re-

spectively, and hence we have

ah-a2+(n-l)c=-c(/> coth20+<7 tanh20)/4+(n-l)c/2 .

For any integers p and q such that p^q, the right hand side is monotonously

decreasing and bounded from below by 0 and hence there is some 6 such that

0<#/i~-a2-Kn ―l)c<e for any sufficiently small positive e. While a2-＼-c=

c(l―coth220) is positive, we have (a2+c){ah―a2+(n ―l)c}>0. This means that

the assumption of (a2jrc){ah―a2+(n―l)c}<^0 in the above theorem can not be

omitted in H≪C.

Remark 2.4. Let M be a real hypersurface of type Ax or A2 in PnC.

Then we have |V,4!2=(n―l)c2/4. On the other hand, the principal curvatures

are given by a = Vc~cot20, ^/F/2zotd and ―s/c~/2tan 6 with multiplicities1,

p and q, respectively, and hence we have

ah-a2+(n-l)c-c(p cot2$+q tan20)/4+(n-l)c/2

^(n-l)c/2.

Last, we give another characterization of a real hypersurface of type B in

PnC. The inequality (2.17) holds under the assumption that the structure vector

$ is principal. Let M be a real hypersurface of Mn{c),~c^Q, n^3, on which £

is not assumed to be principal. For a vector fieldU=VSI- there is a 1-form <*>

associated with it, which is given by Q)(X)―g(U, X). The codifferential3d of

the 1-form m is given by &y= ―S}2rlg(£.,-,VejU), where {£,}is an orthonormal

frame such that Etn.x―^. Then, taking account of two equations of (1.2) and

the Codazzi equation (1.4), we have

2h2-2(a2-＼-az+2c)+(l+2c/az){(n-l)c+2ah} ^2d<o,

where a=g(A$, £) and a2=g(A^, A$), in place of (2.17). Accordingly, by the

well known theorem due to Green and by Yano and Kon's theorem [14], one

finds
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Theorem 2.6. Let M be a compact orientable real hypersurface of PnC. If

the shape operator A satisfies

2Tr A2^2(≪2+a2+2c)-(l+2c/a2){(n-l)c+2aTr,4}, a^O,

then M is congruent to one of the real hy hersurfaces of type A, and B.

Remark 2.5. In [10], Okumura proved that in a compact orientable real

hypersurface M of PnC if the shape operator A of M satisfies

TrA2^aTrA+(n-l)c/2,

then M is of type Ax or A2.

3. Real hypersurfaces of type A and B.

Let M be a real hypersurface of Mn(c), c^O, n^3. The shape operator A is

said to be cyclic-pseudo-parallelif <&g{lxA(Y), Z)=3aT(X, Y, Z) for any vector fields

X, Y and Z, where c denotes the cyclic sum with respect to X, Y and Z and

we have put T(X, Y, Z)=7)(X)g((A$-$A)Y, Z) and a^R. We say that M

is of cyclic-pseudo-parallelif A is cyclic-pseudo-parallel. We note here that

a real hypersurface of Mn(c) is said to be of cyclic-parallelif a is zero (cf. [31).

Remark 3.1. It was proved in [3] and [9] that a real hypersurface of

Mn(c), c=£0,is of cyclic-parallelif and only if A&=$A. Therefore it is of

type A.

Remark 3.2. By Theorems D and B and (2.8)or alsoby (2.9)real hyper-

surfacesof type B in Mn(c), c=£Q,are cyclic-pseudo-parallel.

From now on, we suppose that M is of cyclic-pseudo-parallel. Then it

follows from the Codazzi equation (1.4) that

(3.1) VzA(Y)=-c{7}(y)$X+gyX,Y)t}/4+a{r){XXA$-$A)Y

+ V(Y)(A$-0A)X+g((A<f>-0A)X,Y)%}.

It is easily seen that the fact Mis cyclic-pseudo-parallelis equivalent to (3.1),and

in the case where the shape operator A is ^-parallel. Accordingly, by Theorems

D and E the structure of M is determined if the structure vector £is principal.

So, the property that £is principal is investigated. Putting Y"=£ in (3.1) and

using (1.1), we get

(3.2) VxA($)=-c&X/4+a{-7)(X)6A£+(A6-6A)X-g(X, <M$)£},
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(3.3) VsA(£)=-2aU,

where U―l^. For any point x on M we can choose an othonormal basis

{Eu ■■■, E2n-i} for the tangent space TXM such that V^*£,■=()(i,j=l, ･■■,2n ―1).

Then, differentiating (3.1) covariantly along M and making use of (1.2), we

have

(3.4) lwlxA{Y)=-c{g{<j)AW, Y)(f>X+g(<j>X, Y)(f>AW+r]{X)r1{Y)AW

+ r){X)g{AW, Y)^-2r]{Y)g(AW, X)$}/i

+ a[g($AW, XXA$-$A)Y+g($AW, Y){A<j>-(j)A)X

+g{{A<j>-<f>A)X, Y)<f>AW-7)(X){7](AY)AW+g(AW, Y)A$

-2g(A*W, Y)^+<j>lwA{Y)-lwA{<j>Y)} -i)(Y){r)(AX)AW

+g(AW, X)A%-2r){X)A*W+<!)lwA(X)-lwA(<j>X)}

-{7}(AX)g(AW, Y)+fj{AY)g{AW, X)-2r){Y)g{A'W, X)

-g{lwA{X), <}>Y)-g{lwA(<j>X), Y)}?] ,

which combined with the Ricci formula for the shape operator A gives forth

(3.5) R(W, X)AY-A(R(W, X)Y)

= -c{g($AW, Y)(f)X-g{(j)AX, Y)0W+g($X, Y)$AW-g($W, Y)<f>AX

+ r]{X)r]{Y)AW―f]{W)r]iX)AX+rI{X)g{AW, Y)$-V(W)g(AX, F)£}/4

+ algWA+A#)W, XXA$-$A)Y

+g(0AW, YXA$-$A)X-g($AX, YXA$-$A)W

+g((A0-0A)X, Y)$AW-g((A$-$A)W, Y)<j)AX

-V(X){V(AY)AW+g(AW, Y)A^-2g(AiW, Y)$+0VWA(Y)-1WA(0Y)}

+ V(W){V(AY)AX+g(AX, Y)A$-2g(A*X, Y)$+^xA(Y)-VxA(0Y)}

-r](Y){r}{AX)AW -7)(AW)AX-2r){X)A2W+2f](W)A2X+<f>lwA(X)

-<f>lxA{W)-lwA(<i>X)+lxA((l)W)}

-WAX)g(AW, Y)-rj{AW)g{AX, Y)-g{lwA{X), <j>Y)+g{lXA(W), <j>Y)

■~g{lwA(6X), Y+g(lxA(6W), Y)＼fi .
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We substitute (1.3) into (3.5) and then put X=Y=g in this result. Finally, if

we take the inner product of the last equation and £,then we obtain

(3.6) (a+2a)A2g=(P+aa-2a2)A$-a(a*-2p-2aa)%,

where we have defined fi= 7}(A2!~)and used (1.1) and (3.1).

On the other hand, putting W=Ej in (3.5),taking the inner product of this

result and Ej and summing up with respect to j (/=1, ･･･, 2n―1), we find

(3.7) hA2X+{c(n+l)/2-h2-2aa}AX-c(2a + h)X/4:

= -c<f>A0X+(c/2+ah)7)(X)A$+(c/2+ah+4a2)7}(AX)£

- [c/i/4- a {(2n - l)c/2-Aaa-2hz] ]7}(X)$

-a {A<f>A$X-<f>A<l>AX-2(i>Az<f>X+2r)(AX)A%

-V(X)A^+V(A*X)i-},

where we have used (1.1),(1.4),(1.5) and (3.1). If we set X=% in (3.7) and if

we use (1.1), then we attain

(3.8) hAz%+(cn/2-ht)A%-cag/2

= a[$AU+A^-hA$-{c(n-l)+p-2h2+ah}£].

By means of (3.1),(3.2) and the definition of h it is easily seen that we have

dh{Y)――2ag{U, Y)―g{lYA{^), £)and hence we get lwlYh―lYlwh, which im-

plies that iwgWrAig), ^)=T?Yg(^wA($), £). From (3.2) we bring out

VwgWrAtf), %)=2a{~ag{Y, AW)-＼-y(Y)V(A2W)

+gWwAtf), <f>Y)+g{A(j>Y, <f>AW)}

and hence, taking the skew-symmetric part of this and the above two equations

we have

2a{V(Y)V(A2W)-V(W)V(AiY)+g(lwA($), <j>Y)-g(lYA($), 0W)

-Vg(A<j>Y, <j>AW)-g{A^W, $AY)}=Q.

Thus, putting Y=£ in the last equation and making use of (1.1) and (3.3), we

get

(3.9) a<f>AU=-a{Az£+2aA£-{2aa+P)%},

which together with (3.8) leads to

(3.10) hAz$+(cn/2-ht)A$-ca £/2

= -a[(h'{-2a)A$i-{c(n-l)~2hz-2aa+ah}^ .
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And this, combined with (3.6), gives rise to

＼h(p+aa-2a2)+(cc+2a)(cn/2-h2)} A%

-{ah(a.2-2fi~2aa)-yca2/2±caa}%

= -fl(a+2o)[(/i+2flM|+{c(n-l)-2/i!-2fla+a/i}$].

Moreover, the inner product of (3.10) and £ produces

(3.11) hp=(a+2a){h2-c(n-l)/2}-2aah.

Thus, combing with the last two equations, we have

(a2+c/4)(a+2a)(A%-a£)=:0.

In the rest of this section, we will make efforts in order to reach our goal

―proving that £ is principal. Let MQ be a set of points of M at which the

function fi―a2 does not vanish. Suppose that Mo is not empty. Then

(a+2a)(a2-fc/4)=0 because of the fact that L4f-af |2=/3-a2. If a+2a=0 at

some point of Mo, then it follows from (3.6) that jS=4a2=a2 at that point, which

is a contradiction. Therefore we gain a*+c/4―0 on Mo. Now, taking the

covariant derivative of a=y(AI;) and using (3.2), we have

(3.12) AU^-aU-grada/2.

From (3.9) the inner product of (3.12) and <j>Xgives us

-da(0X)/2=7)(A*X)+3a7)(AX)-(P+Zaa)7](X),

on Mo, which connected with (3.6) yields

-(a+2a)da(<pX)/2=(P+4a*+4aa){r)(AX)--ca)(X)}.

Moreover, replacing X by <j)Xinto the last equation and making use of (1.1),it

is clear that

(3.13) -(a-h2a) grad a/2=(P+4a2+4aa)U ,

where we used the fact da(£)=0 which is derived from (3.12). Substituting

(3.13) into (3.12), we have

(3.14) AU=FU,

where F―{^-＼-2a2-＼-2>aa)/{a-＼-2a).Now, differentiating(3.14) covariantly along

M, we obtain VrA(U)+AVYU=dF{Y)U-i-FVrU. If we take the inner product

of this and U and if we use (3.14), then we see that dF(Y)g(U, U)―0 for any

vector field Y because of gWYA{U), U)=0 which is obtained by (3.1). Thus

dF―0 on Mo, that is, F=(B+2az+3aa)/(aJr2a) is constant on Mo. Accordingly
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we have (a+2c)grad /3=(/3―4a2) grad a, which linked with (3.13) gives rise to

(3.15) (a+2a)2 grad
J8
= -2(J8-4a2)(/3+4a2-4a≪)/7 .

On the other hand, since we have put h=tr A and h2=tr A2, we have 1 xhz=

2^pT1g(^xA(EJ), AEj) and 1 xh = ^)l^g{l xAiEj), E}). So, by the straight-

forward calculation it follows from (3.1), (3.6), (3.12) and (3.13) that we get

1xh = ―2ag(U', X) and 1xh2―{c+8a2)U. Consequently, by combining with the

fact that c=―4a2, it gives us that

(3.16) 1 xh = -2ag(U, X) and lxh2=ia*U on MQ.

Finally, if we differentiate (3.11), then from (3.16) we get

/zgrad/3={/i2-c(n-l)/2-2a/i} grad a+2a {p+4a2+4aa}U

on M0) which together with (3.11), (3.13) and (3.15) implies

(≪+2a){/3-≪2+(2a+≪)2}^/=0

and hence {/3-a2+(2a+a)2} ＼U＼2=Q on A/o. Therefore, it follows that

{＼U＼2jr(2a+a)2} |£/|2=0 on A/o. This contradicts the definition of Mo and con-

sequently MQ is empty.

Summing up, we have

Lemma 3.1. Let M be a real hypersurface of Mn(c), c=£0. // M is of cyclic

pseudo-parallel, then $ is principal.

From (3.1) we find that the shape operator A of cyclic-pseudo-parallelreal

hypersurfaces is ^-parallel and hence it is seen by Theorems D and E that M

is locally congruent to one of real hypersurfaces of type A and B. Moreover,

we obtain

XIxA($)=-c0X/4+a(A0--0A)X,

which, combined together with (2.5), yields that a ――2a or A<f>―<j>Abecause a

and a are both constant. Conversely, by Remarks 3.1 and 3.2, a real hyper-

surface of type A or B in Mn(c), c^O, is of cyclic-pseudo-parallel. Thus we

find the following

Theorem 3.2. Let M be a real hypersurface of Mn(c), c=£0. Then M is of

cyclic-pseudo-parallelif and only if M is locally congruent to one of the homo-

geneous hypersurfaces of type At, A2 and B when c>0 and of type Ao, Au A2 and

B when e<0.
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Remark 3.3. We shall again estimate the norm of the covariant derivative

of the second fundamental form of a real hypersurface M of a complex space

form. Let M be a real hypersurface of Mn(c), c^O, n^3, on which the struc-

ture vector £is principal. It is derived from (2.8) that

(3.17) i7 A |2^(n-l)c74+3≪21 7}<g>(Atf>-4>A)|74.

The second term of the right hand side in the above equation is equal to

3a2{h2-ah-(n-l)c/2} /2. Thus we have

＼VA＼2^(n-l)c2/4+3a2{h2-ah-{n-l)c/2}/2,

where the equality holds if and only if the shape operator A satisfies

VzA(Y)=-cWYtyX+gyX, F)£}/4

-aWX)(A$-4>A)Y+r)(Y)(A<l>-$A)X+g((At-$A)X,Ym/2.

Namely, A is ^-parallel and hence M is locally congruent to one of real hyper-

surfaces of type A and B by Theorems D and E.

Remark 3.4. By means of (3.17) it is shown that M is of type A if and

only if the square of the norm of the convariant derivative of A is equal to

|7A|2=(n―l)c2/4. However, this result holds without the assumption that £is

principal (cf. Maeda [7]). In fact, the square of the norm of lxA(Y)-{-

c{7)(Y)<?>X+g(<f>X,y)£}/4 is equal to |7^|2-(n-l)c2/4.

Remark 3.5. By taking account of the square of the norm ＼A<f>―$A＼,

Okumura's theorem stated in Remark 2.5 is proved. This is a simple and

direct proof different from his.
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