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Some characterizations of absolute neighborhood retracts were established in
separable metric spaces by Hanner [4]. Hanner's characterizations were easily
extended to the metric case. For this, see Hu [5] Chapter IV. In this paper, we
shall extend one of Hanner’s characterizations to more general spaces, especially,
stratifiable spaces, spaces with a g-almost locally finite base and paracomplexes.
For the ANR theory of these spaces, we refer Cauty [2], Miwa [8] and Hyman
[6], respectively.

Throughout this paper, all spaces are assumed to be paracompact normal
spaces and all maps to be continuous. I and S denote the closed unit interval
[0,1] and the class of all stratifiable spaces, respectively. ANR(Q) (resp. ANE(Q))
is the abbreviation for absolute neighborhood retract (resp. extensor) for the class
Q. For these definitions, see [5].

In this paper, all theorems are proved in the class S. But these theorems
can be proved in some other classes. For instance, see Remark 2.3.

1. Preliminaries.

DeriniTION 1.1 ([3]). A space Y is equiconnected if there is a map F: Y XY
X I-+Y such that F(z,y,0)=x, Flx,y, )=y and F(z, xz, )=« for all (z,y)eY XY
and tel. The space Y is said to be locally equiconnected if F is defined only on
UxI, for some neighborhood U of the diagonal of Y'xY.

DeriNiTiON 1.2 ([4]). Let f,9:Y-X be two maps. If X is covered by ¢=
{U,), f and ¢ are called ¢J-near if for each yeY there is a U,eU such that f(y)
elU., g(y)el..

DeriniTION 1.3 ((4]). Let A : Y—X be a homotopy. If X is covered by ¢/=
{U.), A is called a 9J-homotopy if for each yeY there is a U,eU such that A(y)
eU, for all tel.
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The following proposition is easily verified. For instance, see Cauty [2]. But
for completeness, we state the proof.

ProrositioN 1.4, If Y is an ANR(S), then Y is locally equiconnected.

Proor. Let A=Y XY x{0,1}U4dx 1, where 4 is the diagonal of YxY. We
define a function f:A—Y as follows: f(x,y, 0=z, f(z,y,1)=v and f(x, x,t)=x
for all tel. Then f is continuous. Since Y is an ANR(S) by [1] Corollary 6.3,
there is a neighborhood U of 4 in ¥YXY and a map F: UxI—Y such that FlA=
f. Therefore Y is locally equiconnected.

2. Main theorems.

In this section, we extend Hanner’s theorems [4] Theorem 4.1 and 4.2 to
stratifiable case. Each proof is simpler than Hanner’s one.

THeorREM 2.1. If Y is an ANR(S) and U={U,} a given open covering of Y,
then there exists an open covering G/ of Y, which is rvefinement of U, such that,
for any two G -near maps f,q: X—Y defined on a stratifiable space X and any
Gy -homotopy ji: A—Y, (0=t=<1), defined on a closed subspace A of X with j,=f|A
and ji=gq|A, there exists an U-homotopy h,: X—=Y, (0=t=1), such that ho=f, h=g
and h|A=j. for every tel.

Proor. Since Y is locally equiconnected by Proposition 1.4, there exist a
neighborhood U of the diagonal of Y X Y and a map F: Ux I—Y such that F(z, v, 0)
=z, Flx,y,1)=y and F(z, z, )=z for all (x,y)eU and tel. For any yeY, since /
is compact, there exists an open neighborhood V, of v such that V,x V,cU and
FVy,xVy,xI)cU, for some U,eU. Let CV={V,:yeY} and <1’ be a barycentric
refinement of C(/; i.e., the covering {St(y, ") :yeY} refines V. For any yeY,
there exists an open neighborhood W, of y such that F(W,x W,xI)c V" for some
Viecy’. Let 9Y={W,:yeY}. Then it is obvious that 9 refines <’ and W,X
W,c U for each yeVY.

Now, let f,¢g: X—Y be any two 9f/-near maps defined on a stratifiable space
X and let j;: A-Y, (0={=1), be given 9¥/-homotopy defined on a closed subspace
A of X with j,=f|A and j,=¢|A.

By using the map F, we can construct a C)/-homotopy k;: X—Y, (0=<¢=1),
by taking A

k(2)=F(f(x), 9(x), 1) for xeX and tel.

Since f, g are 9§/-near maps, it is clear that k; is a ¢1’-homotopy.
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In the topological product P=Xx1I, consider the closed subspace @=(Xx {0, 1})
UAXI and define a map m:Q—Y by taking

f(x) (if zeX and ¢=0)
m(x, t)={ jix) (if zeA and tel)
g(x) (if zeX and ¢=1).

Since Y is ANR(S), it follows that m has an extension #': N—=Y over neighbor-
hood N of @ in P. Since I is compact, there exists an open neighborhood C of A
in X such that Cx[7 is contained in N and that a homotopy #,:C—Y, (0=t=1),
defined by

mx)=m'(z, t), (weC, tel)

is a 9¢-homotopy. Therefore of course #; is a C’-homotopy.
Since X is stratifiable, there exists an open subset B in X such that Ac Bc
Bcc, By Urysohn’s lemma, there exists a map e: X—I such that

0, (if zeX—B)

e(”):{L (if zeA).

Define a homotopy %4,: X—Y, (0=¢=1), by taking

k() (if zeX—B)

hlz)= { Flly(x), nlx), e(x)) (if zeC).

Then %, is well-defined. Indeed, since k., #, are Cy’-homotopies, for each zeC
there exist some V/eC)” and Ve’ such that k(xz)e V) and n(x)e V; for any
tel. By the fact ko(z)=no(x)=f(x), V/N V/=x0. Therefore there is a V,€CV with
VIuV/cV, since <’ is a barycentric refinement of <. Thus for any tel,
(ke(z), nlx))e Vyx V,c U.

It can be easily verified that 4 is a U-homotopy satisfying the required pro-
perties. This completes the proof.

The following theorem is easy to see by Theorem 2.1 and the same method
of Hanner [4] Theorem 4.2 (or Hu [5] p. 114 Theorem 1.3).

THEOREM 2.2. A mecessary and sufficient condition for a stratifiable space Y
to be an ANR(S) is the existence of an open covering W of Y such that, for any
lwo W-near maps f,9: X—Y defined on a stratifiable space X and any TY-homotopy
Jii A=Y, (0=t=1), defined on a closed subspace A of X with jo=f|A and j,=g¢|A,
there exists a homotopy h,: X—Y, 0=t=1), with he=f, hi=g and h|A=j, for every
tel

ReEMARK 2.3. In this paper, we considered exclusively in the class . But
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if we reconsider the proofs of Proposition 1.4, Theorem 2.1 and 2.2, it is found
that, for each class ( satisfying the following four conditions, Proposition 1.4,
Theorem 2.1 and 2.2 are valid.

(1) Every Xe() is paracompact normal.

(2) If Ais a closed (resp. an open) subspace of Xe(), then AeQ.

(3) For XeQ, X?e(.

(4) A space XeQ is an ANR(Q) if and only if X is an ANE(Q).

Indeed, these conditions are used in the proofs of theorems as follows: The
condition (1) has been used in the proof of Theorem 2.2 (“every local ANRQ)
is an ANR((Q)”) and the proof of Theorem 2.1 (“C1’ is a barycentric refinement
of c”). The condition (2) has been used in the proof of Theorem 2.1 (“a closed
subspace A of Xe( is in O and Q is in Q") and in the proof of Theorem 2.2
(“Q is open hereditary”). The condition (3) has been used in the proof of Pro-
position 1.4 (“Ae(”) and in the proof of Theorem 2.1 (“ Xx7eQ”; by (X+1)Ye)
and the condition (2)). The condition (4) has been used in the proof of Proposi-
tion 1.4 (“f has an extension /") and in the proof of Theorem 2.1 (“m has an
extension m’ ”).

Of course, the class S satisfies these conditions, and for instance, the follow-
ing classes also satisfy these conditions: Paracomplex (Hyman [6]), space with a
s-almost locally finite base (It6 and Tamano [7] and Miwa [8]) and paracompact
o-space (Okuyama [9]).
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