INJECTIVE DIMENSION OF GENERALIZED TRIANGULAR MATRIX RINGS

By

Kazunori SAKAno

Throughout this paper, let R and S denote rings with identity, M an (S, R) bimodule, and Λ a generalized triangular matrix ring defined by ${ }_{S} M_{R}$, i. e.,

$$
\Lambda=\left[\begin{array}{ll}
R & 0 \\
M & S
\end{array}\right]
$$

with the addition by element-wise and the multiplication by

$$
\left[\begin{array}{ll}
r & 0 \\
m & s
\end{array}\right] \cdot\left[\begin{array}{ll}
r^{\prime} & 0 \\
m^{\prime} & s^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
r r^{\prime} & 0 \\
m r^{\prime}+s m^{\prime} & s s^{\prime}
\end{array}\right]
$$

The main purpose of the present paper is to estimate id- Λ_{A}, the injective dimension of Λ_{Λ}, in terms of those of R_{R}, M_{R}, and S_{S}. In fact, if we assume that $\mathrm{fd}_{-S} M$, the flat dimension of ${ }_{s} M$, is finite, then there hold the inequalities

$$
\begin{aligned}
& \max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}-\mathrm{fd}-s M\right) \leqq \mathrm{id}-\Lambda_{\Lambda} \leqq \\
& \max \left(\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)+\mathrm{fd}-{ }_{S} M, \mathrm{id}-S_{S}-1\right)+1
\end{aligned}
$$

In this connection, we investigate the case when the left-hand or the righthand side equality holds under the condition that ${ }_{S} M$ is flat.

In [7], Zaks shows that the injective dimension of an $n \times n$ lower triangular matrix ring over a semiprimary ring R is just equal to id- $R_{R}+1$. An example is constructed to show that the condition on R benig semiprimary is redundant in his theorem.

The author wishes to express his hearty thanks to Professors H. Tachikawa and T. Kato for their useful suggestions and remarks.

Let $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \Lambda$ and $e^{\prime}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \Lambda$. Then $R \cong e \Lambda e, M \cong e^{\prime} \Lambda e$, and $S \cong e^{\prime} \Lambda e^{\prime}$.
Lemma 1. Let X be a right Λ-module with $X=X e$.
(1) If X_{R} is projective, then X_{A} is projective.
(2) $\operatorname{Ext}_{\Lambda}^{i}\left(X_{\Lambda}, \Lambda_{\Lambda}\right) \cong \operatorname{Ext}_{A}^{i}\left(X_{R}, \Lambda e_{R}\right)$.

[^0]Proof. (1) This is found in [2, Theorem 2.2].
(2) By [4, Exercise 22, p. 114], we have the natural isomorphism

It follows that

$$
\begin{aligned}
& \operatorname{Hom}_{\Lambda}\left(X_{\Lambda}, \Lambda_{\Lambda}\right) \cong \operatorname{Hom}_{R}\left(X_{R}, \Lambda e_{R}\right) \\
& \operatorname{Ext}_{\Lambda}^{i}\left(X_{\Lambda}, \Lambda_{\Lambda}\right) \cong \operatorname{Ext}_{R}^{i}\left(X_{R}, \Lambda e_{R}\right)
\end{aligned}
$$

for a projective resolution of X_{R} may be viewed as one of X_{A} by (1).
Lemma 2. Let Y be a right A-module.
(1) If Y_{A} is projective, then $Y e_{S}^{\prime}$ is projective.
(2) $\operatorname{Ext}_{A}^{i}\left(Y_{A}, e^{\prime} A / e^{\prime} \Lambda e_{A}\right) \cong \operatorname{Ext}_{S}^{i}\left(Y e_{S}^{\prime}, S_{S}\right)$.

Proof. (1) This is found in [4, Exercise 19, p. 114].
(2) By [4, Exercise 22, p. 114], we have the natural isomorphism

$$
\operatorname{Hom}_{\Lambda}\left(Y_{A}, e^{\prime} \Lambda / e^{\prime} \Lambda e_{A}\right) \cong \operatorname{Hom}_{S}\left(Y e_{S}^{\prime}, S_{S}\right)
$$

Note that, if $P_{A}^{\prime} \rightarrow P_{A} \rightarrow P_{A}^{\prime \prime}$ is an exact sequence of projective Λ-modules, then so is $P^{\prime} e_{S}^{\prime} \rightarrow P e_{S}^{\prime} \rightarrow P^{\prime \prime} e_{S}^{\prime}$ of projective S-modules in view of (1). Thus

$$
\operatorname{Ext}_{A}^{i}\left(Y_{A}, e^{\prime} \Lambda / e^{\prime} \Lambda e_{A}\right) \cong \operatorname{Ext}_{S}^{i}\left(Y e_{S}^{\prime}, S_{S}\right)
$$

Lemma 3 [4, Proposition 4.1]. Every right ideal of 1 has the from of $\left[\begin{array}{cc}X & 0 \\ \hline & K\end{array}\right]$, where K is a right ideal of S and $\left[\begin{array}{c}0 \\ K M\end{array}\right]_{R} \subseteq X_{R} \subseteq\left[\begin{array}{l}R \\ M\end{array}\right]_{R}$.

Theorem 4. Assume that fd -s M is finite. Then we have

$$
\begin{aligned}
& \max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}-\mathrm{fd}-s M\right) \leqq \mathrm{id}-\Lambda_{\Lambda} \leqq \\
& \max \left(\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)+\mathrm{fd}-{ }_{S} M, \mathrm{id}-S_{S}-1\right)+1
\end{aligned}
$$

Proof. Suppose $\max \left(\max \left(\operatorname{id}-R_{R}\right.\right.$, id $\left.-M_{R}\right)+\mathrm{fd}-s M$, id- $\left.S_{s}-1\right)+1=t$. Let $\left[\begin{array}{cc}X & 0 \\ K\end{array}\right]$ be a right ideal of Λ. Since R can be considered as a left Λ-module via ρ : $\Lambda \rightarrow R\left(\left[\begin{array}{cc}r & 0 \\ m & s\end{array}\right] \mapsto r\right)$, the exact sequence

$$
0 \longrightarrow\left[\begin{array}{lr}
0 & 0 \\
M & S
\end{array}\right] \longrightarrow{ }_{A} \Lambda \longrightarrow{ }_{A} R \longrightarrow 0
$$

induces

$$
\operatorname{Tor}_{i+1}^{A}(C, R) \cong \operatorname{Tor}_{i}^{4}\left(C,\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right]\right) \quad(i \geqq 1)
$$

for every right Λ-module C. It follows that $\mathrm{fd}-\left[\begin{array}{ll}0 & 0 \\ M & S\end{array}\right]+1=\mathrm{fd}-\Lambda R$. Moreover, since ${ }_{A} S$ is flat, $\mathrm{fd}-{ }_{S} M=\mathrm{fd}-{ }_{A}\left[\begin{array}{cc}0 & 0 \\ M & 0\end{array}\right]=\mathrm{fd}-{ }_{A}\left[\begin{array}{cc}0 & 0 \\ M & S\end{array}\right]$ by [1, Proposition 4.1.1, p. 117].

Therefore $\operatorname{fd}{ }_{A} R=\mathrm{fd}-{ }_{A}\left[\begin{array}{ll}0 & 0 \\ M & S\end{array}\right]+1=\mathrm{fd}-S_{S} M+1$. The exact sequence of right A modules

$$
0 \longrightarrow\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right] \longrightarrow \Lambda \longrightarrow \Lambda /\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right] \longrightarrow 0
$$

yields the following exact sequence
$\operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}0 & 0 \\ K M & K\end{array}\right],\left[\begin{array}{ll}R & 0 \\ M & 0\end{array}\right]\right) \rightarrow \operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}0 & 0 \\ K M & K\end{array}\right], \Lambda\right) \rightarrow \operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}0 & 0 \\ K M & K\end{array}\right], \Lambda /\left[\begin{array}{ll}R & 0 \\ M & 0\end{array}\right]\right)$.
Since

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right],\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right) & \cong \operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], \operatorname{Hom}_{R}\left(R,\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right)\right) \\
& \cong \operatorname{Hom}_{R}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right] \otimes_{A} R,\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right),
\end{aligned}
$$

the resulting spectral sequence is

$$
E_{2}^{p, q}=\operatorname{Ext}_{R}^{q}\left(\operatorname{Tor}_{p}^{A}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], R\right),\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right) \Rightarrow \operatorname{Ext}_{A}^{n}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right],\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right)
$$

Since $E_{8}^{p, q}=0$ for either $q>\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)$ or $p>\mathrm{fd}-s M$, we have $\operatorname{Ext}_{A}^{n}\left(\left[\begin{array}{cc}0 & 0 \\ K M & K\end{array}\right],\left[\begin{array}{cc}R & 0 \\ M & 0\end{array}\right]\right)=0$ for $n>\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)+\mathrm{fd}-s M$. Since

$$
\begin{aligned}
\operatorname{Ext}_{A}^{t}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], \Lambda /\left[\begin{array}{ll}
R & 0 \\
M & 0
\end{array}\right]\right) & \cong \operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
M & 0
\end{array}\right]\right) \\
& \cong \operatorname{Ext}_{S}^{t}(K, S)=0
\end{aligned}
$$

by Lemma 2, we have $\operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}0 & 0 \\ K M & K\end{array}\right], \Lambda\right)=0$. It follows that id- $\Lambda_{\Lambda} \leqq t$ from the exactness of the sequence

$$
\operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}
X & 0 \\
& K
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], \Lambda\right) \rightarrow \operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}
X & 0 \\
& K
\end{array}\right], \Lambda\right) \rightarrow \operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], \Lambda\right)
$$

and from the fact that

$$
\operatorname{Ext}_{A}^{t}\left(\left[\begin{array}{ll}
X & 0 \\
& K
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
K M & K
\end{array}\right], \Lambda\right) \cong \operatorname{Ext}_{R}^{t}(X / K M, R \oplus M)=0
$$

by Lemma 1.
Conversely, suppose id $-\Lambda_{\Lambda}=m$. Then Lemma 1 forces that id $-R_{R} \leqq m$ and
id $-M_{R} \leqq m$. Now, let K be a right ideal of S. Since

$$
\begin{aligned}
\operatorname{Hom}_{\Lambda}\left(S / K \otimes_{S}\left[\begin{array}{lr}
0 & 0 \\
M & S
\end{array}\right], \Lambda\right) & \cong \operatorname{Hom}_{S}\left(S / K, \operatorname{Hom}_{\Lambda}\left(\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right], \Lambda\right)\right) \\
& \cong \operatorname{Hom}_{S}(S / K, S)
\end{aligned}
$$

and $\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{ll}0 & 0 \\ M & S\end{array}\right], \Lambda\right)=0$ for $i>0$, the resulting spectral sequence is

$$
E_{2}^{p, q}=\operatorname{Ext}_{A}^{q}\left(\operatorname{Tor}_{p}^{s}\left(S / K,\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right]\right), \Lambda\right) \underset{q}{\Rightarrow} \operatorname{Ext}_{s}^{n}(S / K, S)
$$

Since $E_{2}^{p, q}=0$ for either $q>\mathrm{id}-\Lambda_{A}$ or $p>\operatorname{fd}_{-s} M$, we have $\operatorname{Ext}_{s}^{n}(S / K, S)=0$ for $n>\mathrm{id}-\Lambda_{\Lambda}+\mathrm{fd}-{ }_{s} M$. Thus id $-S_{s}-\mathrm{fd}-{ }_{s} M \leqq \mathrm{id}-\Lambda_{\Lambda}$.

The following is essentially in [1, p. 346].
Lemma 5. Let $A_{S},{ }_{s} B_{A}$, and C_{A} be modules such that $\operatorname{Ext}_{A}^{i}(B, C)=0(i>0)$ and $\operatorname{Tor}_{i}^{S}(A, B)=0(i>0)$. Then there holds

$$
\operatorname{Ext}_{S}^{n}\left(A, \operatorname{Hom}_{A}(B, C)\right) \cong \operatorname{Ext}_{A}^{n}\left(A \otimes_{S} B, C\right)
$$

Lemma 6. Assume that ${ }_{s} M$ is flat. Let

$$
f_{i}^{\#}=\operatorname{Ext}_{\Lambda}^{i}\left(f, 1_{A}\right): \operatorname{Ext}_{\Lambda}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) \rightarrow \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)
$$

oe the induced map by

$$
f:\left[\begin{array}{ll}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right] \hookrightarrow \Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right]
$$

where K is a right ideal of S. Then $\operatorname{Im} f_{i}^{\#}$ is contained in

$$
\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], e^{\prime} \Lambda\right)
$$

a direct summand of

$$
\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)
$$

Proof. Let

$$
\longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow S / K \longrightarrow 0
$$

be a free resolution of S / K, and

$$
\longrightarrow Q_{n} \longrightarrow Q_{n-1} \longrightarrow \cdots \longrightarrow Q_{0} \longrightarrow\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right] \longrightarrow 0
$$

a projective resolution of $\left[\begin{array}{cc}R & 0 \\ M & K\end{array}\right] /\left[\begin{array}{cc}R & 0 \\ K M & K\end{array}\right]$. Then

$$
\longrightarrow P_{n} \otimes_{s} e^{\prime} \Lambda \longrightarrow P_{n-1} \otimes_{s} e^{\prime} \Lambda \longrightarrow \cdots \longrightarrow P_{0} \otimes_{s} e^{\prime} \Lambda \longrightarrow S / K \otimes_{s} e^{\prime} \Lambda \longrightarrow 0
$$

is a projective resolution of $S / K \otimes s_{s} e^{\prime} \Lambda$, since ${ }_{s} M$ is flat. Consider the following exact commutative diagram

where $\left(f_{i}\right)$ is a map over $g \circ f$. Now, every element of $\operatorname{Hom}_{A}\left(e^{\prime} \Lambda, \Lambda\right)$ is given by the left multiplication of Λe^{\prime}, so

$$
\operatorname{Hom}_{\Lambda}\left(e^{\prime} \Lambda, \Lambda\right)=\operatorname{Hom}_{\Lambda}\left(e^{\prime} \Lambda, \Lambda e^{\prime} \Lambda\right)=\operatorname{Hom}_{\Lambda}\left(e^{\prime} \Lambda, e^{\prime} \Lambda\right)
$$

It follows that

$$
\begin{aligned}
\operatorname{Hom}_{\Lambda}\left(P_{n} \otimes_{s} e^{\prime} \Lambda, \Lambda\right) & =\operatorname{Hom}_{\Lambda}\left(S^{\left(I_{n}\right)} \otimes_{s} e^{\prime} \Lambda, \Lambda\right) \\
& \cong \operatorname{Hom}_{A}\left(e^{\prime} \Lambda^{\left(I_{n}\right)}, \Lambda\right) \\
& \cong \operatorname{Hom}_{A}\left(e^{\prime} \Lambda^{\left(I_{n}\right)}, e^{\prime} \Lambda\right) \\
& \cong \operatorname{Hom}_{\Lambda}\left(P_{n} \otimes_{s} e^{\prime} \Lambda, e^{\prime} \Lambda\right),
\end{aligned}
$$

hence that

$$
\operatorname{Im}_{\operatorname{Hom}_{\Lambda}\left(f_{n}, 1_{A}\right) \subset \operatorname{Hom}_{A}\left(Q_{n}, e^{\prime} \Lambda\right) .}
$$

Thus

$$
\operatorname{Im} \operatorname{Ext}_{A}^{i}\left(f, 1_{A}\right) \subset \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{ll}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], e^{\prime} \Lambda\right)
$$

Proposition 7. Assume that ${ }_{S} M$ is flat and put $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)=i$.
(1) If id $-S_{S}>i$, then id $-\Lambda_{\Lambda}=\mathrm{id}-S_{s}$.
(2) If id- $S_{S}<i \neq 0$, then id $-\Lambda_{A}=i$ if and only if $\operatorname{Ext}_{R}^{i}(M / K M, R \oplus M)=0$ for every right ideal K of S.
(3) If id- $S_{S}=i \neq 0$ and if $\operatorname{Ext}_{R}^{i}(M / K M, R \oplus M)=0$ for every right ideal K of S, then id- $\Lambda_{A}=i$.
(4) If id $-S_{S}=i \neq 0$ and if $\operatorname{Ext}_{R}^{i}(M / R M, R) \neq 0$ for some right ideal K of S, then $\mathrm{id}-\Lambda_{\Lambda}=i+1$.

Proof. (1) This directly follows from Theorem 4.
(2) Let $\left[\begin{array}{lr}X & 0 \\ \hline\end{array}\right]$ be a right ideal of Λ. Since
and

$$
\operatorname{Ext}_{A}^{i+1}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
& 0 \\
& K
\end{array}\right], \Lambda\right) \cong \operatorname{Ext}_{R}^{i+1}((R \oplus M) / X, R \oplus M)=0
$$

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) & \cong \operatorname{Ext}_{A}^{2}\left(S / K \otimes_{S} e^{\prime} \Lambda, \Lambda\right) \\
& \stackrel{\oplus}{\cong} \operatorname{Ext}_{S}^{i}\left(S / K, \operatorname{Hom}_{\Lambda}\left(e^{\prime} \Lambda, \Lambda\right)\right) \\
& \cong \operatorname{Ext}_{S}^{i}(S / K, S)=0
\end{aligned}
$$

where Φ is an isomorphism by Lemma 5 , we obtain the following exact sequences

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right) & \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
X & 0 \\
& K
\end{array}\right], \Lambda\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
X & 0 \\
& K
\end{array}\right], \Lambda\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
0= & \operatorname{Ext}_{A}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)=0
\end{aligned}
$$

from which it follows that, for every right ideal K of S,

$$
\begin{aligned}
\mathrm{id}-\Lambda_{A}=i & \Leftrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right)=0 \\
& \Leftrightarrow \operatorname{Ext}_{R}^{i}(M / K M, R \oplus M) \cong \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)=0
\end{aligned}
$$

(3) Let $\left[\begin{array}{ll}X & 0 \\ \hline\end{array}\right]$ be a right ideal of Λ. Considering the following exact sequences in the similar manneras in (2)

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right) & \longrightarrow \operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
X & 0 \\
& K
\end{array}\right], \Lambda\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
X & K \\
\hline
\end{array}\right], \Lambda\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) & \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)=0,
\end{aligned}
$$

we conclude that id $-\Lambda_{\Lambda}=i$ if $\operatorname{Ext}_{R}^{i}(M / K M, R \oplus M) \cong \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}R & 0 \\ M & K\end{array}\right] /\left[\begin{array}{cc}R & 0 \\ K M & K\end{array}\right], \Lambda\right)$ $=0$ for every right ideal K of S.
(4) Let K be a right ideal of S such that $\operatorname{Ext}_{R}^{i}(M / K M, R) \neq 0$. Let

$$
f:\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] \subset \Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right]
$$

Then f induces a non-epimorphism

$$
\begin{aligned}
f_{i}^{\vec{i}}: \operatorname{Ext}_{A}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) \longrightarrow & \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right)= \\
& \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], e^{\prime} \Lambda\right) \oplus \\
& \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], e \Lambda\right)
\end{aligned}
$$

by the preceding Lemma 6, It follows that $\operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda,\left[\begin{array}{cc}R & 0 \\ M & K\end{array}\right], \Lambda\right) \neq 0$ from the exactness of the following sequence

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) & \xrightarrow{f_{i}^{\#}} \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right] /\left[\begin{array}{cc}
R & 0 \\
K M & K
\end{array}\right], \Lambda\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & 0 \\
M & K
\end{array}\right], \Lambda\right)
\end{aligned}
$$

hence that id- $\Lambda_{A}=i+1$ together with Theorem 4.
It is remaining the case when R_{R}, M_{R}, and S_{S} are all injective. Since ${ }_{S} M_{R}$ can be considered as an $(R \oplus S, R \oplus S)$-bimodule in the natural way, i. e., ($r, s) m$ $=s m$ and $m(r, s)=m r, \Lambda$ can be regarded as the trivial extension of the ring $R \oplus S$ by the ($R \oplus S, R \oplus S$)-bimodule M. Thus [6, Theorem 1.4.1] can be applied to the above, namely,

Proposition 8. Let $\mu: S \rightarrow \operatorname{End}\left(M_{R}\right)$ be the canonical map. Then Λ_{A} is injective iff
(1) R_{R}, M_{R}, and $\boldsymbol{l}_{S}(M)_{S}=\{s \in S ; s m=0$ for every $m \in M\}$ are all injective.
(2) μ is an epimorphism.
(3) $\operatorname{Hom}_{R}\left(M_{R}, R_{R}\right)=0$.

Remark 9. Let $A \ltimes N$ denote the trivial extension of the ring A by the (A, A)-bimodule N. It appeared in [3] concerning the injective dimension of $A \ltimes N_{A \ltimes N}$ that, if $\operatorname{Ext}_{A}^{i}\left(N_{A}, N_{A}\right) \cong\left\{\begin{array}{l}A(i=0) \\ 0(i>0)\end{array}\right.$, then id- $N_{A}=\mathrm{id}-A \ltimes N_{A \ltimes N}$. This yields, however, only a trivial result for our situations, because $\operatorname{End}\left(M_{R \oplus S}\right) \cong R \oplus S$ iff $R=M=S=0$.

Remark 10. In view of Theorem 4, we may consider the following five cases concerning the relationships between id- R_{R}, id- M_{R}, and id- S_{S} under the condition that ${ }_{s} M$ is flat.

Case 1. id- $R_{R}=\mathrm{id}-M_{R}=\mathrm{id}-S_{S}=\mathrm{id}-\Lambda_{\Lambda}$.
Case 2. id $-R_{R}=\mathrm{id}-M_{R}=\mathrm{id}-S_{S}=\mathrm{id}-\Lambda_{1}-1$.
Case 3. Each of (id- R_{R}, id $-M_{R}$, id- S_{S}) does not equal to the other and $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right.$, id- $\left.S_{S}\right)=\mathrm{id}-\Lambda_{A}$.

Case 4. Each of (id- R_{R}, id $-M_{R}$, id $-S_{S}$) does not equal to the other and $\max \left(\mathrm{id}-R_{R}\right.$, id $-M_{R}$, id $\left.-S_{S}\right)=\mathrm{id}-\Lambda_{\Lambda}-1$.

Case 5. The other cases.
The following Examples are given to show the existence of each of the above cases.

Example of Case 1. Let R be an infinite direct product of fields, I a maximal ideal containing their direct sum, and $M=R / I$. Let

$$
\Lambda=\left[\begin{array}{cc}
R & 0 \\
M & \operatorname{End}\left(M_{R}\right)
\end{array}\right]
$$

Since R is a V-ring, M_{R} is injective. Moreover, $\operatorname{Hom}_{R}\left(M_{R}, R_{R}\right)=0$. Thus Λ_{A} is injective by Proposition 8.

Example of Case 2. Let Λ_{2} be a 2×2 lower triangular matrix ring over a ring $R \neq 0$ with id- $R_{R}=i<+\infty$. Since $\operatorname{Ext}_{R}^{i}(R / I, R) \neq 0(i>0)$ for some right ideal I of R and $\operatorname{Hom}_{R}\left(R_{R}, R_{R}\right) \neq 0$, id- $\left(\Lambda_{2}\right)_{\Lambda_{2}}=\mathrm{id}-R_{R}+1$ by Theorem 4, Propositions 7, and 8.

Example of Case 3. Let

$$
A=\left(\begin{array}{cc:c}
\boldsymbol{Z} & 0 & 0 \\
\boldsymbol{Q} & \boldsymbol{Q} & 0 \\
\hdashline \boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Z}
\end{array}\right), \quad R=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right]
$$

Then id- $R_{R}=2$, id- $(\boldsymbol{Q} \boldsymbol{Q})_{R}=0$, and id- $Z_{\boldsymbol{Z}}=1$. Since $\operatorname{Ext}_{\boldsymbol{R}}^{2}((\boldsymbol{Q} \boldsymbol{Q}) / K(\boldsymbol{Q} \boldsymbol{Q}), R \oplus(\boldsymbol{Q} \boldsymbol{Q}))$ $=0$ for every right ideal K of Z, we have id $-\Lambda_{A}=2$ by Proposition 7 (2).

Example of Case 4. Let

$$
\Lambda=\left(\begin{array}{cc:c}
\boldsymbol{Z} & 0 & 0 \\
\boldsymbol{Z} & \boldsymbol{Z} & 0 \\
\hdashline \cdots & \boldsymbol{Q} & \boldsymbol{Z}
\end{array}\right), \quad R=\left[\begin{array}{cc}
\boldsymbol{Z} & 0 \\
\boldsymbol{Z} & \boldsymbol{Z}
\end{array}\right]
$$

Then id- $R_{R}=2$ and id $-Z_{Z}=1$. Since $(0 \boldsymbol{Q})_{Z}$ (resp. $\left.{ }_{z} \boldsymbol{Z}\right)$ can be considered as a right (resp. left) R-module via $\sigma: R \rightarrow \boldsymbol{Z}\left(\left[\begin{array}{cc}z & 0 \\ z^{\prime} & z^{\prime \prime}\end{array}\right] \rightarrow z^{\prime \prime}\right)$, we have

$$
(0 \boldsymbol{Q})_{R} \cong \operatorname{Hom}_{\boldsymbol{Z}}\left({ }_{R} \boldsymbol{Z}_{\boldsymbol{Z}},(0 \boldsymbol{Q})_{\boldsymbol{Z}}\right)_{R}
$$

Since ${ }_{R} \boldsymbol{Z} \cong_{R} R e^{\prime}$ is flat and $(0 \boldsymbol{Q})_{Z}$ is injective, $(0 \boldsymbol{Q})_{R}$ is injective. It follows that

$$
\begin{aligned}
& \operatorname{Ext}_{R}^{2}((0 \boldsymbol{Q}), R) \cong \operatorname{Ext}_{R}^{2}((\boldsymbol{Q} \boldsymbol{Q}) /(\boldsymbol{Q} 0), R) \\
& \cong \operatorname{Ext}_{R}^{2}\left(\left(\boldsymbol{Q} \otimes_{\boldsymbol{Z}}(\boldsymbol{Z} \boldsymbol{Z})\right) /\left(\boldsymbol{Q} \otimes_{\boldsymbol{Z}}(\boldsymbol{Z} 0)\right), R\right) \neq 0
\end{aligned}
$$

from the proof of [7, Lemma B] together with $\operatorname{Ext}_{\boldsymbol{Z}}^{1}(\boldsymbol{Q}, \boldsymbol{Z}) \neq 0$. Hence id- $\Lambda_{\Lambda}=3$ by Theorem 4 and Proposition 7 (2).

Example of Case 5. Let $\Lambda_{n}(n>2)$ be an $n \times n$ lower triangular matrix ring over a ring $R \neq 0$ with id $-R_{R}=i<+\infty$. Since Λ_{n} can be considered as

$$
\left[\begin{array}{c:c}
R & 0 \cdots \cdots 0 \\
\cdots & \cdots \cdots \cdots \cdots \\
R & \cdots \\
\vdots & \\
\vdots & \Lambda_{n-1} \\
R &
\end{array}\right]
$$

id- $\left(\Lambda_{n}\right)_{\Lambda_{n}}=\mathrm{id}-\left(\Lambda_{n-1}\right)_{\Lambda_{n-1}}$ by induction on n together with Proposition 7 (1). Hence $\mathrm{id}-\left(\Lambda_{n}\right)_{A_{n}}=\mathrm{id}-R_{R}+1$.

Remark 11. (1) Example of Case 1 is due to T. Kato.
(2) T. Sumioka has also independently observed that the injective dimension of an $n \times n$ lower triangular matrix ring over a ring R has the injective dimension $\leqq \mathrm{id}-R_{R}+1$.

Referencse

[1] Cartan, H. and Eilenberg, S., Homological Algebra. Princeton Univ. Press, Princeton, 1956.
[2] Chase, S., A generalization of the ring of triangular matrices. Nagoya Math. J., 18 (1961), 13-25.
[3] Fossum, R., Griffith, P. and Reiten, I., Trivial extensions of abelian categories. Lecture Notes in Math., vol. 456, Springer, Berlin-Heidelberg-New York, 1975.
[4] Goodearl, K. R., Ring Theory. Dekker, New York, 1976.
[5] Palmér, I. and Roos, J.-E., Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra, 27 (1973), 380-413.
[6] Reiten, I., Trivial extensions and Gorenstein rings. Thesis, University of Illinois, Urbana, 1971.
[7] Zaks, A., Injective dimension of semi-primary rings. J. Algebra, 13 (1969), 73-86.
Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan

[^0]: Received November 29, 1979. Revised May 15, 1980.

