INJECTIVE DIMENSION OF GENERALIZED TRIANGULAR MATRIX RINGS

By

Kazunori SAKANO

Throughout this paper, let R and S denote rings with identity, M an (S, R)bimodule, and Λ a generalized triangular matrix ring defined by ${}_{S}M_{R}$, i.e.,

$$\Lambda = \begin{bmatrix} R & 0 \\ M & S \end{bmatrix}$$

with the addition by element-wise and the multiplication by

$$\begin{bmatrix} r & 0 \\ m & s \end{bmatrix} \cdot \begin{bmatrix} r' & 0 \\ m' & s' \end{bmatrix} = \begin{bmatrix} rr' & 0 \\ mr' + sm' & ss' \end{bmatrix}.$$

The main purpose of the present paper is to estimate id- Λ_A , the injective dimension of Λ_A , in terms of those of R_R , M_R , and S_S . In fact, if we assume that fd- $_SM$, the flat dimension of $_SM$, is finite, then there hold the inequalities

 $\max (\mathrm{id} - R_R, \mathrm{id} - M_R, \mathrm{id} - S_S - \mathrm{fd} - S_M) \leq \mathrm{id} - A_A \leq \max (\max (\mathrm{id} - R_R, \mathrm{id} - M_R) + \mathrm{fd} - S_M, \mathrm{id} - S_S - 1) + 1.$

In this connection, we investigate the case when the left-hand or the righthand side equality holds under the condition that ${}_{s}M$ is flat.

In [7], Zaks shows that the injective dimension of an $n \times n$ lower triangular matrix ring over a semiprimary ring R is just equal to $id R_R + 1$. An example is constructed to show that the condition on R being semiprimary is redundant in his theorem.

The author wishes to express his hearty thanks to Professors H. Tachikawa and T. Kato for their useful suggestions and remarks.

Let
$$e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in \Lambda$$
 and $e' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \Lambda$. Then $R \cong e \Lambda e$, $M \cong e' \Lambda e$, and $S \cong e' \Lambda e'$.

LEMMA 1. Let X be a right Λ -module with X=Xe.

- (1) If X_R is projective, then X_A is projective.
- (2) $\operatorname{Ext}_{\Lambda}^{i}(X_{\Lambda}, \Lambda_{\Lambda}) \cong \operatorname{Ext}_{\Lambda}^{i}(X_{R}, \Lambda e_{R}).$

Received November 29, 1979. Revised May 15, 1980.

PROOF. (1) This is found in [2, Theorem 2.2].

(2) By [4, Exercise 22, p. 114], we have the natural isomorphism

 $\operatorname{Hom}_{A}(X_{A}, \Lambda_{A}) \cong \operatorname{Hom}_{R}(X_{R}, \Lambda e_{R}).$

It follows that

 $\operatorname{Ext}_{A}^{i}(X_{A}, \Lambda_{A}) \cong \operatorname{Ext}_{R}^{i}(X_{R}, \Lambda e_{R}),$

for a projective resolution of X_R may be viewed as one of X_A by (1).

LEMMA 2. Let Y be a right A-module.

(1) If Y_A is projective, then Ye'_s is projective.

(2) $\operatorname{Ext}_{\Lambda}^{i}(Y_{\Lambda}, e'\Lambda/e'\Lambda e_{\Lambda}) \cong \operatorname{Ext}_{S}^{i}(Ye'_{S}, S_{S}).$

PROOF. (1) This is found in [4, Exercise 19, p. 114].

(2) By [4, Exercise 22, p. 114], we have the natural isomorphism

 $\operatorname{Hom}_{A}(Y_{A}, e' A/e' A e_{A}) \cong \operatorname{Hom}_{S}(Y e'_{S}, S_{S}).$

Note that, if $P'_{A} \rightarrow P_{A} \rightarrow P''_{A}$ is an exact sequence of projective A-modules, then so is $P'e'_{S} \rightarrow Pe'_{S} \rightarrow P''e'_{S}$ of projective S-modules in view of (1). Thus

$$\operatorname{Ext}_{\Lambda}^{i}(Y_{\Lambda}, e'\Lambda/e'\Lambda e_{\Lambda}) \cong \operatorname{Ext}_{S}^{i}(Ye'_{S}, S_{S}).$$

LEMMA 3 [4, Proposition 4.1]. Every right ideal of Λ has the from of $\begin{bmatrix} X & 0 \\ K \end{bmatrix}$, where K is a right ideal of S and $\begin{bmatrix} 0 \\ KM \end{bmatrix}_{\mathbb{R}} \subseteq X_{\mathbb{R}} \subseteq \begin{bmatrix} R \\ M \end{bmatrix}_{\mathbb{R}}$.

THEOREM 4. Assume that $\operatorname{fd}_{-S}M$ is finite. Then we have $\max(\operatorname{id}_{-R_R}, \operatorname{id}_{-M_R}, \operatorname{id}_{-S_S}-\operatorname{fd}_{-S}M) \leq \operatorname{id}_{-A_A} \leq \max(\max(\operatorname{id}_{-R_R}, \operatorname{id}_{-M_R})+\operatorname{fd}_{-S}M, \operatorname{id}_{-S_S}-1)+1.$

PROOF. Suppose max (max (id- R_R , id- M_R)+fd- $_SM$, id- S_S-1)+1=t. Let $\begin{bmatrix} X & 0 \\ K \end{bmatrix}$ be a right ideal of Λ . Since R can be considered as a left Λ -module via ρ : $\Lambda \rightarrow R\left(\begin{bmatrix} r & 0 \\ m & s \end{bmatrix} \rightarrow r\right)$, the exact sequence

$$0 \longrightarrow \begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix} \longrightarrow {}_{A}\Lambda \longrightarrow {}_{A}R \longrightarrow 0$$

induces

$$\operatorname{Tor}_{i+1}^{A}(C, R) \cong \operatorname{Tor}_{i}^{A}\left(C, \begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix}\right) \quad (i \ge 1)$$

for every right Λ -module C. It follows that $\operatorname{fd}_{-\Lambda}\begin{bmatrix}0 & 0\\M & S\end{bmatrix} + 1 = \operatorname{fd}_{-\Lambda}R$. Moreover, since ${}_{\Lambda}S$ is flat, $\operatorname{fd}_{-S}M = \operatorname{fd}_{-\Lambda}\begin{bmatrix}0 & 0\\M & 0\end{bmatrix} = \operatorname{fd}_{-\Lambda}\begin{bmatrix}0 & 0\\M & S\end{bmatrix}$ by [1, Proposition 4.1.1, p. 117].

282

Therefore $\operatorname{fd}_{A}R = \operatorname{fd}_{A}\begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix} + 1 = \operatorname{fd}_{S}M + 1$. The exact sequence of right A-modules

$$0 \longrightarrow \begin{bmatrix} R & 0 \\ M & 0 \end{bmatrix} \longrightarrow \Lambda \longrightarrow \Lambda / \begin{bmatrix} R & 0 \\ M & 0 \end{bmatrix} \longrightarrow 0$$

yields the following exact sequence

$$\operatorname{Ext}_{\mathcal{A}}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\begin{bmatrix}R&0\\M&0\end{bmatrix}\right)\to\operatorname{Ext}_{\mathcal{A}}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\mathcal{A}\right)\to\operatorname{Ext}_{\mathcal{A}}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\mathcal{A}/\begin{bmatrix}R&0\\M&0\end{bmatrix}\right).$$

Since

$$\operatorname{Hom}_{A}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\begin{bmatrix}R&0\\M&0\end{bmatrix}\right)\cong\operatorname{Hom}_{A}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\operatorname{Hom}_{R}\left(R,\begin{bmatrix}R&0\\M&0\end{bmatrix}\right)\right)\cong\operatorname{Hom}_{R}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix}\otimes_{A}R,\begin{bmatrix}R&0\\M&0\end{bmatrix}\right),$$

the resulting spectral sequence is

$$E_{2}^{p,q} = \operatorname{Ext}_{R}^{q} \left(\operatorname{Tor}_{p}^{A} \begin{pmatrix} 0 & 0 \\ KM & K \end{pmatrix}, R \end{pmatrix}, \begin{pmatrix} R & 0 \\ M & 0 \end{pmatrix} \right) \stackrel{>}{\Rightarrow} \operatorname{Ext}_{A}^{n} \left(\begin{pmatrix} 0 & 0 \\ KM & K \end{pmatrix}, \begin{pmatrix} R & 0 \\ M & 0 \end{pmatrix} \right)$$

Since $E_{2}^{p,q} = 0$ for either $q > \max(\operatorname{id} - R_R, \operatorname{id} - M_R)$ or $p > \operatorname{fd}_{-S}M$, we have $\operatorname{Ext}_A^n\left(\begin{bmatrix} 0 & 0\\ KM & K \end{bmatrix}, \begin{bmatrix} R & 0\\ M & 0 \end{bmatrix}\right) = 0$ for $n > \max(\operatorname{id} - R_R, \operatorname{id} - M_R) + \operatorname{fd}_{-S}M$. Since

$$\operatorname{Ext}_{A}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix}, A/\begin{bmatrix}R&0\\M&0\end{bmatrix}\right) \cong \operatorname{Ext}_{A}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix}, \begin{bmatrix}0&0\\M&S\end{bmatrix}/\begin{bmatrix}0&0\\M&0\end{bmatrix}\right)$$
$$\cong \operatorname{Ext}_{S}^{t}(K, S) = 0$$

by Lemma 2, we have $\operatorname{Ext}_{A}^{t}\left(\begin{bmatrix}0&0\\KM&K\end{bmatrix},\Lambda\right)=0$. It follows that $\operatorname{id} A_{A} \leq t$ from the exactness of the sequence

$$\operatorname{Ext}_{\Lambda}^{t}\left(\begin{bmatrix} X & 0 \\ K \end{bmatrix} \middle/ \begin{bmatrix} 0 & 0 \\ KM & K \end{bmatrix}, \Lambda\right) \to \operatorname{Ext}_{\Lambda}^{t}\left(\begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda\right) \to \operatorname{Ext}_{\Lambda}^{t}\left(\begin{bmatrix} 0 & 0 \\ KM & K \end{bmatrix}, \Lambda\right),$$

and from the fact that

$$\operatorname{Ext}_{\Lambda}^{t}\left(\left[\begin{array}{cc} X & 0 \\ K & K \end{array}\right] / \left[\begin{array}{cc} 0 & 0 \\ KM & K \end{array}\right], \Lambda\right) \cong \operatorname{Ext}_{R}^{t}(X/KM, R \oplus M) = 0$$

by Lemma 1.

Conversely, suppose $\operatorname{id} A_A = m$. Then Lemma 1 forces that $\operatorname{id} R_R \leq m$ and

id- $M_R \leq m$. Now, let K be a right ideal of S. Since

$$\operatorname{Hom}_{A}\left(S/K \otimes_{S} \begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix}, A\right) \cong \operatorname{Hom}_{S}\left(S/K, \operatorname{Hom}_{A}\left(\begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix}, A\right)\right)$$
$$\cong \operatorname{Hom}_{S}\left(S/K, S\right)$$

and $\operatorname{Ext}_{\Lambda}^{i} \begin{pmatrix} 0 & 0 \\ M & S \end{bmatrix}$, $\Lambda = 0$ for i > 0, the resulting spectral sequence is

$$E_{2}^{p,q} = \operatorname{Ext}_{\mathcal{A}}^{q} \left(\operatorname{Tor}_{p}^{S} \left(S/K, \begin{bmatrix} 0 & 0 \\ M & S \end{bmatrix} \right), \Lambda \right) \stackrel{\sim}{\Rightarrow} \operatorname{Ext}_{S}^{n} \left(S/K, S \right).$$

Since $E_2^{p,q}=0$ for either $q>\operatorname{id} A_A$ or $p>\operatorname{fd} S_M$, we have $\operatorname{Ext}^n(S/K, S)=0$ for $n>\operatorname{id} A_A+\operatorname{fd} S_M$. Thus $\operatorname{id} S_S-\operatorname{fd} S_M\leq \operatorname{id} A_A$.

The following is essentially in [1, p. 346].

LEMMA 5. Let A_s , ${}_sB_A$, and C_A be modules such that $\operatorname{Ext}_A^i(B, C)=0$ (i>0) and $\operatorname{Tor}_i^s(A, B)=0$ (i>0). Then there holds

$$\operatorname{Ext}^{n}_{S}(A, \operatorname{Hom}_{A}(B, C)) \cong \operatorname{Ext}^{n}_{A}(A \otimes_{S} B, C).$$

LEMMA 6. Assume that $_{s}M$ is flat. Let

$$f_i^* = \operatorname{Ext}_{\mathcal{A}}^i(f, 1_{\mathcal{A}}) : \operatorname{Ext}_{\mathcal{A}}^i\left(\mathcal{A}/\begin{bmatrix} R & 0\\ KM & K \end{bmatrix}, \mathcal{A}\right) \to \operatorname{Ext}_{\mathcal{A}}^i\left(\begin{bmatrix} R & 0\\ M & K \end{bmatrix}/\begin{bmatrix} R & 0\\ KM & K \end{bmatrix}, \mathcal{A}\right)$$

be the induced map by

$$f: \begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix} \subset A / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix},$$

where K is a right ideal of S. Then $\text{Im } f_i^*$ is contained in

$$\operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} \middle/ \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, e'\Lambda\right),$$

a direct summand of

$$\operatorname{Ext}_{\Lambda}^{i}\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda\right).$$

PROOF. Let

$$\longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow S/K \longrightarrow 0$$

be a free resolution of S/K, and

$$\longrightarrow Q_n \longrightarrow Q_{n-1} \longrightarrow \cdots \longrightarrow Q_0 \longrightarrow \begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix} \longrightarrow 0$$

284

a projective resolution of $\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}$. Then

 $\longrightarrow P_n \otimes_S e' \Lambda \longrightarrow P_{n-1} \otimes_S e' \Lambda \longrightarrow \cdots \longrightarrow P_0 \otimes_S e' \Lambda \longrightarrow S/K \otimes_S e' \Lambda \longrightarrow 0$

is a projective resolution of $S/K \otimes_S e' \Lambda$, since ${}_{s}M$ is flat. Consider the following exact commutative diagram

where (f_i) is a map over $g \circ f$. Now, every element of $\operatorname{Hom}_{\Lambda}(e'\Lambda, \Lambda)$ is given by the left multiplication of $\Lambda e'$, so

 $\operatorname{Hom}_{\Lambda}(e'\Lambda, \Lambda) = \operatorname{Hom}_{\Lambda}(e'\Lambda, \Lambda e'\Lambda) = \operatorname{Hom}_{\Lambda}(e'\Lambda, e'\Lambda).$

It follows that

$$\operatorname{Hom}_{A}(P_{n} \otimes_{S} e'\Lambda, \Lambda) = \operatorname{Hom}_{A}(S^{(I_{n})} \otimes_{S} e'\Lambda, \Lambda)$$
$$\cong \operatorname{Hom}_{A}(e'\Lambda^{(I_{n})}, \Lambda)$$
$$\cong \operatorname{Hom}_{A}(e'\Lambda^{(I_{n})}, e'\Lambda)$$
$$\cong \operatorname{Hom}_{A}(P_{n} \otimes_{S} e'\Lambda, e'\Lambda),$$

hence that

Im Hom_{Λ}(f_n , 1_{Λ}) \subset Hom_{Λ}(Q_n , $e'\Lambda$).

Thus

Im Extⁱ_A(f, 1_A)
$$\subset$$
 Extⁱ_A $\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, e'A \right).$

PROPOSITION 7. Assume that ${}_{s}M$ is flat and put max $(id-R_{R}, id-M_{R})=i$.

(1) If $id-S_s > i$, then $id-\Lambda_A = id-S_s$.

(2) If $id_S < i \neq 0$, then $id_A = i$ if and only if $Ext_R^i(M/KM, R \oplus M) = 0$ for every right ideal K of S.

(3) If $\operatorname{id} S_s = i \neq 0$ and if $\operatorname{Ext}_R^i(M/KM, R \oplus M) = 0$ for every right ideal K of S, then $\operatorname{id} A_A = i$.

(4) If $id_S = i \neq 0$ and if $Ext_R^i(M/RM, R) \neq 0$ for some right ideal K of S, then $id_A = i + 1$.

PROOF. (1) This directly follows from Theorem 4.

(2) Let $\begin{bmatrix} X & 0 \\ K \end{bmatrix}$ be a right ideal of Λ . Since $\operatorname{Ext}_{\Lambda}^{i+1}\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda\right) \cong \operatorname{Ext}_{R}^{i+1}((R \oplus M)/X, R \oplus M) = 0$ $\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda\right) \cong \operatorname{Ext}_{\Lambda}^{i}(S/K \otimes_{S} e'\Lambda, \Lambda)$ $\stackrel{\phi}{\cong} \operatorname{Ext}_{S}^{i}(S/K, \operatorname{Hom}_{\Lambda}(e'\Lambda, \Lambda))$ $\cong \operatorname{Ext}_{S}^{i}(S/K, S) = 0,$

where \varPhi is an isomorphism by Lemma 5, we obtain the following exact sequences

$$\operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1} \left(\Lambda / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, \Lambda \right) \longrightarrow \operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1} \left(\Lambda / \begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda \right) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda \right) = 0$$

and

$$0 = \operatorname{Ext}_{\mathcal{A}}^{i} \left(\Lambda / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda \right) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{i} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda \right) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}_{\mathcal{A}}^{i+1} \left(\Lambda / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, \Lambda \right) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{i+1} \left(\Lambda / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda \right) = 0,$$

from which it follows that, for every right ideal K of S,

$$\operatorname{id} A_{A} = i \Leftrightarrow \operatorname{Ext}_{A}^{i+1} \left(A / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, A \right) = 0$$
$$\Leftrightarrow \operatorname{Ext}_{R}^{i} (M/KM, R \oplus M) \cong \operatorname{Ext}_{A}^{i} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, A \right) = 0 .$$

(3) Let $\begin{bmatrix} X & 0 \\ K \end{bmatrix}$ be a right ideal of Λ . Considering the following exact sequences in the similar manneras in (2)

$$\operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1}\left(\Lambda / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, \Lambda\right) \longrightarrow \operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1}\left(\Lambda / \begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda\right) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}_{\mathcal{A}^{i+1}}^{i+1}\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} X & 0 \\ K \end{bmatrix}, \Lambda\right) = 0$$

and

286

and

Injective dimension of generalized triangular matrix rings

$$\operatorname{Ext}_{A}^{i}\left(\begin{bmatrix} R & 0\\ M & K \end{bmatrix} \middle/ \begin{bmatrix} R & 0\\ KM & K \end{bmatrix}, A\right) \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(A / \begin{bmatrix} R & 0\\ M & K \end{bmatrix}, A\right) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}_{A}^{i+1}\left(A / \begin{bmatrix} R & 0\\ KM & K \end{bmatrix}, A\right) = 0$$

we conclude that $\operatorname{id} A_A = i$ if $\operatorname{Ext}_R^i(M/KM, R \oplus M) \cong \operatorname{Ext}_A^i \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, \Lambda \right)$ =0 for every right ideal K of S.

(4) Let K be a right ideal of S such that $\operatorname{Ext}^{i}_{R}(M/KM, R) \neq 0$. Let

$$f: \begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix} \longrightarrow A / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}$$

Then f induces a non-epimorphism

$$f_{i}^{\sharp} : \operatorname{Ext}_{A}^{i} \left(A / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, A \right) \longrightarrow \operatorname{Ext}_{A}^{i} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, A \right) = \operatorname{Ext}_{A}^{i} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, e'A \right) \oplus \operatorname{Ext}_{A}^{i} \left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, eA \right)$$

by the preceding Lemma 6, It follows that $\operatorname{Ext}_{\Lambda}^{i+1}\left(\Lambda / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, \Lambda\right) \neq 0$ from the exactness of the following sequence

$$\operatorname{Ext}_{A}^{i}\left(A / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, A\right) \xrightarrow{f_{i}^{*}} \operatorname{Ext}_{A}^{i}\left(\begin{bmatrix} R & 0 \\ M & K \end{bmatrix} / \begin{bmatrix} R & 0 \\ KM & K \end{bmatrix}, A \right) \longrightarrow$$
$$\longrightarrow \operatorname{Ext}_{A}^{i+1}\left(A / \begin{bmatrix} R & 0 \\ M & K \end{bmatrix}, A\right),$$

hence that $id A_{A} = i+1$ together with Theorem 4.

It is remaining the case when R_R , M_R , and S_S are all injective. Since ${}_{S}M_R$ can be considered as an $(R \oplus S, R \oplus S)$ -bimodule in the natural way, i. e., (r, s)m = sm and m(r, s) = mr, Λ can be regarded as the trivial extension of the ring $R \oplus S$ by the $(R \oplus S, R \oplus S)$ -bimodule M. Thus [6, Theorem 1.4.1] can be applied to the above, namely,

287

PROPOSITION 8. Let $\mu: S \rightarrow End(M_R)$ be the canonical map. Then Λ_A is injective iff

- (1) R_R , M_R , and $l_s(M)_s = \{s \in S; sm = 0 \text{ for every } m \in M\}$ are all injective.
- (2) μ is an epimorphism.
- (3) $\operatorname{Hom}_{R}(M_{R}, R_{R}) = 0.$

REMARK 9. Let $A \ltimes N$ denote the trivial extension of the ring A by the (A, A)-bimodule N. It appeared in [3] concerning the injective dimension of $A \ltimes N_{A \ltimes N}$ that, if $\operatorname{Ext}_{A}^{i}(N_{A}, N_{A}) \cong \begin{cases} A(i=0) \\ 0(i>0) \end{cases}$, then $\operatorname{id} N_{A} = \operatorname{id} A \ltimes N_{A \ltimes N}$. This yields, however, only a trivial result for our situations, because $\operatorname{End}(M_{R \oplus S}) \cong R \oplus S$ iff R = M = S = 0.

REMARK 10. In view of Theorem 4, we may consider the following five cases concerning the relationships between $id-R_R$, $id-M_R$, and $id-S_S$ under the condition that $_SM$ is flat.

Case 1. id- R_R =id- M_R =id- S_S =id- Λ_A .

Case 2. id- R_R =id- M_R =id- S_s =id- Λ_A -1.

Case 3. Each of $(id-R_R, id-M_R, id-S_S)$ does not equal to the other and $\max(id-R_R, id-M_R, id-S_S) = id-\Lambda_A$.

Case 4. Each of $(id-R_R, id-M_R, id-S_S)$ does not equal to the other and max $(id-R_R, id-M_R, id-S_S)=id-\Lambda_A-1$.

Case 5. The other cases.

The following Examples are given to show the existence of each of the above cases.

Example of Case 1. Let R be an infinite direct product of fields, I a maximal ideal containing their direct sum, and M=R/I. Let

$$\Lambda = \begin{bmatrix} R & 0 \\ M & \operatorname{End}(M_R) \end{bmatrix}.$$

Since R is a V-ring, M_R is injective. Moreover, $\operatorname{Hom}_R(M_R, R_R)=0$. Thus Λ_A is injective by Proposition 8.

Example of Case 2. Let Λ_2 be a 2×2 lower triangular matrix ring over a ring $R \neq 0$ with $\operatorname{id} R_R = i < +\infty$. Since $\operatorname{Ext}_R^i(R/I, R) \neq 0$ (i > 0) for some right ideal I of R and $\operatorname{Hom}_R(R_R, R_R) \neq 0$, $\operatorname{id}_{(\Lambda_2)_{\Lambda_2}} = \operatorname{id}_R + 1$ by Theorem 4, Propositions 7, and 8.

Example of Case 3. Let

$$\Lambda = \begin{bmatrix} \mathbf{Z} & 0 & 0 \\ \mathbf{Q} & \mathbf{Q} & 0 \\ \cdots & \cdots & \cdots \\ \mathbf{Q} & \mathbf{Q} & \mathbf{Z} \end{bmatrix}, \quad R = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Q} & \mathbf{Q} \end{bmatrix}.$$

Then id- $R_R=2$, id- $(Q \ Q)_R=0$, and id- $Z_Z=1$. Since $\operatorname{Ext}^{\circ}_R((Q \ Q)/K(Q \ Q), R \oplus (Q \ Q))$ =0 for every right ideal K of Z, we have id- $\Lambda_A=2$ by Proposition 7 (2).

Example of Case 4. Let

$$A = \begin{bmatrix} \mathbf{Z} & 0 & 0 \\ \mathbf{Z} & \mathbf{Z} & 0 \\ \cdots & \cdots & \cdots \\ 0 & \mathbf{Q} & \mathbf{Z} \end{bmatrix}, \quad R = \begin{bmatrix} \mathbf{Z} & 0 \\ \mathbf{Z} & \mathbf{Z} \end{bmatrix}.$$

Then id- $R_R = 2$ and id- $Z_Z = 1$. Since $(0 \ Q)_Z$ (resp. $_ZZ$) can be considered as a right (resp. left) *R*-module via $\sigma: R \rightarrow Z \left(\begin{bmatrix} z & 0 \\ z' & z'' \end{bmatrix} \rightarrow z'' \right)$, we have

$$(0 \ \mathbf{Q})_R \cong \operatorname{Hom}_{\mathbf{Z}}(_R \mathbf{Z}_{\mathbf{Z}}, (0 \ \mathbf{Q})_{\mathbf{Z}})_R$$
.

Since $_{R}Z \cong_{R}Re'$ is flat and $(0 \ Q)_{Z}$ is injective, $(0 \ Q)_{R}$ is injective. It follows that

$$\operatorname{Ext}_{R}^{\circ}((0 \ \boldsymbol{Q}), R) \cong \operatorname{Ext}_{R}^{\circ}((\boldsymbol{Q} \ \boldsymbol{Q})/(\boldsymbol{Q} \ 0), R)$$
$$\cong \operatorname{Ext}_{R}^{\circ}((\boldsymbol{Q} \otimes_{\boldsymbol{Z}} (\boldsymbol{Z} \ \boldsymbol{Z}))/(\boldsymbol{Q} \otimes_{\boldsymbol{Z}} (\boldsymbol{Z} \ 0)), R) \neq 0$$

from the proof of [7, Lemma B] together with $\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Q}, \mathbf{Z}) \neq 0$. Hence id- $\Lambda_{A}=3$ by Theorem 4 and Proposition 7 (2).

Example of Case 5. Let $\Lambda_n (n>2)$ be an $n \times n$ lower triangular matrix ring over a ring $R \neq 0$ with id- $R_R = i < +\infty$. Since Λ_n can be considered as

$\int R$	0 0	
R	Λ_{n-1}	,
$\lfloor R \rfloor$	j	

id- $(\Lambda_n)_{\Lambda_n} = \text{id} - (\Lambda_{n-1})_{\Lambda_{n-1}}$ by induction on *n* together with Proposition 7 (1). Hence id- $(\Lambda_n)_{\Lambda_n} = \text{id} - R_R + 1$.

REMARK 11. (1) Example of Case 1 is due to T. Kato.

(2) T. Sumioka has also independently observed that the injective dimension of an $n \times n$ lower triangular matrix ring over a ring R has the injective dimension $\leq \operatorname{id} R_R + 1$.

Kazunori SAKANO

Referencse

- Cartan, H. and Eilenberg, S., Homological Algebra. Princeton Univ. Press, Princeton, 1956.
- [2] Chase, S., A generalization of the ring of triangular matrices. Nagoya Math. J., 18 (1961), 13-25.
- [3] Fossum, R., Griffith, P. and Reiten, I., Trivial extensions of abelian categories. Lecture Notes in Math., vol. 456, Springer, Berlin-Heidelberg-New York, 1975.
- [4] Goodearl, K.R., Ring Theory. Dekker, New York, 1976.
- [5] Palmér, I. and Roos, J.-E., Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra, 27 (1973), 380-413.
- [6] Reiten, I., Trivial extensions and Gorenstein rings. Thesis, University of Illinois, Urbana, 1971.
- [7] Zaks, A., Injective dimension of semi-primary rings. J. Algebra, 13 (1969), 73-86.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan