DTr-INVARINT MODULES

By
Mitsuo Hoshino

Throughout this paper, we shall work over a fixed basic artin algebra Λ and deal only with finitely generated right modules. Let X be an indecomposable module. We say that X is $D T r$-invariant if $D T r X \cong X$. In [7], with some other conditions, the author has shown that A is a local Nakayama algebra if there is a $D T r$-invariant module. The aim of this paper is to generalize this result.

Recall that an indecomposable module X is said to be $D T r$-periodic if, more generally, $D \operatorname{Tr}^{n} X \cong X$ for some positive integer n. In Riedtmann [8], Todorov [10] and Happel-Preiser-Ringel [6], they have completely determined the Cartan class of a component of the stable Auslander-Reiten quiver contaning a $D T r$ periodic module (see [6] for detales). In [6], they have also shown that a component of the Auslander-Reiten quiver containing a $D T r$-periodic module is a quasi-serial component (in the sence of [9]) if it contains neither projective nor injective modules. It seems, however, that there has not been given any characterization of a component of the (not stable) Auslander-Reiten quiver contaning a $D T r$-periodic module. In this paper, we shall investigate the case in which there is a $D T r$-invariant module and prove

Theorem 1. Suppose there is a DTr-invariant module A. Then either Λ is a local Nakayama algebra or the component of the Auslander-Reiten quiver containing A is a quasi-serial component (in the sence of [9]) consisting of only DTr-invariant modules.

Let X be a $D T r$-invariant module and Y an indecomposable summand of the middle term of the Auslander-Reiten sequence ending in X. Then there are irreducible maps both from X to Y and from Y to X. The converse holds.

Theorem 2. Let X, Y be indecomposable modules. Suppose there are irreducible maps both from X to Y and from Y to X. Then either X or Y is DTrinvariant. Thus either Λ is a local Nakayama algebra or the component of the Auslander-Reiten quiver containing X, Y is a quasi-serial component (in the sence

[^0]of [9]) consisting of only DTr-invariant modules.
Recently, the author learned that the similar result of Theorem 2 was obtained by K. Bautista and S.O. Smalø [4].

It is well known that there is a quasi-serial component consisting of only $D T r$-invariant modules if Λ is an hereditary algebra of tame representation type (see [5]).

The proof of Theorems 1,2 will be performed by calculating composition lengths, and in that of Theorem 1 the work of Auslander [1, Theorem 6.5] will play an impotant roll (see also [10, Proposition 2.3]).

For an indecomposable module X, let $F(X)=\operatorname{End}(X) / \operatorname{Rad}(X, X)$, this is a division ring, and for two indecomposable modules X, Y, let $N(X, Y)=\operatorname{Rad}(X, Y) /$ $\operatorname{Rad}^{2}(X, Y)$, this is an $F(Y)-F(X)$-bimodule called the bimodule of irreducible maps (see [8], [10] for details). The Auslander-Reiten quiver has as vertices the isomorphism classes of the indecomposable modules, and there is an arrow $[X] \rightarrow[Y]$ if $N(X, Y) \neq 0$, which is endowed with the valuation ($d_{X Y}, d_{X Y}^{\prime}$) such that $d_{X Y}=\operatorname{dim}_{F(Y)} N(X, Y)$ and $d_{X Y}^{\prime}=\operatorname{dim} N(X, Y)_{F(X)}$. Two indecomposable modules X, Y belong, by definition, to the same component if there is a sequence $X=X_{0}, X_{1}, \cdots, X_{r}=Y$ of indecomposable modules such that either $N\left(X_{i-1}, X_{i}\right) \neq 0$ or $N\left(X_{i}, X_{i-1}\right) \neq 0$ for all i.

We refer to [2], [3] for $D \operatorname{Tr}$, Auslander-Reiten sequences and so on, and shall freely use results of [2], [3].

In what follows, we denote by τ (resp. τ^{-1}) $D \operatorname{Tr}$ (resp. $\operatorname{Tr} D$) and by $|X|$ the composition length of a module X.

1. Proof of Theorem 1.

Let A be a τ-invariant module and $0 \rightarrow A \rightarrow \bigoplus_{i=1}^{r} B_{i}^{a_{i} \rightarrow A \rightarrow 0}$ be the AuslanderReiten sequence, where B_{i} 's are non-isomorphic indecomposable modules and $a_{i}=\operatorname{dim}_{F\left(B_{i}\right)} N\left(A, B_{i}\right)$ for all i. By induction, it is sufficient to show that the possible cases are the following:
(1) Some B_{i} is projective-injective. We get $\operatorname{rad} B_{i} \cong A \cong B_{i} / \operatorname{soc} B_{i}$, thus $\operatorname{top}\left(\operatorname{rad} B_{i}\right) \cong \operatorname{top} B_{i}$, this means that Λ is a local Nakayama algebra.
(2) We have $r=1, a_{1}=1$, and B_{1} is τ-invariant.
(3) We have $r=2, a_{1}=a_{2}=1$, and each B_{i} is τ-invariant.

We have to exclude the other cases. Note that $\tau B_{i} \cong B_{j}, a_{i}=a_{j}$ for some j if B_{i} is not projective, and that $\tau^{-1} B_{i} \cong B_{k}, a_{i}=a_{k}$ for some k if B_{i} is not injective.
(a) Consider, first, the case in which some B_{i} is not τ-periodic. Then $\tau^{n} B_{i}$ is projective for some non-negative integer n, and $\tau^{m} B_{i}$ is injective for some non-positive integer m. Since $2|A|=\sum_{j=1}^{r} a_{j}\left|B_{j}\right|$, we conclude that $n=m=0$ and B_{i} is projective-injective.
(b) Next, assume that all B_{i} 's are τ-periodic. Let $0 \rightarrow \tau B_{i} \rightarrow A^{a_{i}^{\prime}} \oplus C_{i} \rightarrow B_{i} \rightarrow 0$ be the Auslander-Reiten sequence for each i, where $a_{i}^{\prime}=\operatorname{dim} N\left(A, B_{i}\right)_{F(A)}$. We get

$$
a_{i}^{\prime}|A|+\left|C_{i}\right|=\left|\tau B_{i}\right|+\left|B_{i}\right|
$$

hence

$$
\begin{aligned}
\left(\sum_{i=1}^{r} a_{i} a_{i}^{\prime}\right)|A|+\sum_{i=1}^{r} a_{i}\left|C_{i}\right| & =\sum_{i=1}^{r} a_{i}\left|\tau B_{i}\right|+\sum_{i=1}^{r} a_{i}\left|B_{i}\right| \\
& =2|A|+2|A| \\
& =4|A| .
\end{aligned}
$$

Therefore we conclude that $\sum_{i=1}^{r} a_{i} a_{i}^{\prime} \leqq 4$.
(c) Suppose $\sum_{i=1}^{r} a_{i} a_{i}^{\prime}=4$. Then $C_{i}=0$ for all i. Hence we get a finite component $\left\{A, B_{1}, \cdots, B_{r}\right\}$ consisting of only τ-periodic modules, a contradiction (cf. [1, Theorem 6.5]).
(d) Suppose $r=1, a_{1} a_{1}^{\prime}=3$. By (b) we get $a_{1}\left|C_{1}\right|=|A|$, and clearly B_{1} is τ-invariant. We get

$$
\begin{aligned}
2\left|B_{1}\right| & =a_{1}^{\prime}|A|+\left|C_{1}\right| \\
& =a_{1} a_{1}^{\prime}\left|C_{1}\right|+\left|C_{1}\right| \\
& =4\left|C_{1}\right| .
\end{aligned}
$$

Hence C_{1} does not have a projective-injective summand, therefore by (b), (c) we get a contradiction.
(e) Suppose $r=2, a_{1} a_{1}^{\prime}+a_{2} a_{2}^{\prime}=3$. We may assume $a_{1} a_{1}^{\prime}=2, a_{2} a_{2}^{\prime}=1$. Clearly, each B_{i} is τ-invariant.

We prepare a lemma.
Lemma 1. Let X be an indecomposable module such that $\tau^{2} X \cong X$. Let $0 \rightarrow \tau X \rightarrow Y \oplus Z \rightarrow X \rightarrow 0$ be the Auslander-Reiten sequence with Y indecomposable. Suppose $\tau^{2} Y \cong Y, \quad|X|<|Y|,|\tau X|<|Y|,|X|<|\tau Y|$ and $|\tau X|<|\tau Y|$. Then either $Z=0$ or Z is indecomposable with $\tau^{2} Z \cong Z$.

Proof. We may assume $Z \neq 0$. Let $Z=\bigoplus_{i=1}^{s} Z_{i}^{d_{i}}$, where Z_{i} 's are non-isomorphic
indecomposable modules and $d_{i}=\operatorname{dim}_{F\left(Z_{i}\right)} N\left(\tau X, Z_{i}\right)$ for all i. Let $0 \rightarrow X \rightarrow \tau Y \oplus W$ $\rightarrow \tau X \rightarrow 0$ be the Auslander-Reiten sequence. Since $|Z|<|X|,|Z|<|\tau X|,|W|$ $<|X|$ and $|W|<|\tau X|$, both Z and W have neither projective nor injective summands. Hence $\tau Z \cong W$ and $\tau^{-1} Z \cong W$. Let $d_{i}^{\prime}=\operatorname{dim} N\left(\tau X, Z_{i)_{F(\tau X)}}\right.$ for each i. Using the Auslander-Reiten sequences ending in and starting from Z_{i}, we get

$$
\begin{gathered}
d_{i}^{\prime}|\tau X| \leqq\left|Z_{i}\right|+\left|\tau Z_{i}\right|, \\
d_{i}^{\prime}|X| \leqq\left|Z_{i}\right|+\left|\tau^{-1} Z_{i}\right|,
\end{gathered}
$$

hence

$$
\begin{aligned}
\left(\sum_{i=1}^{s} d_{i} d_{i}^{\prime}\right)(|\tau X|+|X|) & \leqq 2 \sum_{i=1}^{s} d_{i}\left|Z_{i}\right|+\sum_{i=1}^{s} d_{i}\left|\tau Z_{i}\right|+\sum_{i=1}^{s} d^{2}\left|\tau^{-1} Z_{i}\right| \\
& =2|Z|+|W|+|W| \\
& <2(|\tau X|+|X|) .
\end{aligned}
$$

Therefore we conclude that $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=1$. This finishes the proof.
(e') Suppose $a_{1}=2$. Since $2\left|C_{1}\right|+\left|C_{2}\right|=|A|,\left|C_{i}\right|<|A|$ for all i. Suppose $|A|<\left|B_{i}\right|$ for some i, then we get $|A|<\left|B_{i}\right|<\left|C_{i}\right|$, a contradiction. Hence $\left|B_{i}\right|<|A|$, thus $\left|C_{i}\right|<\left|B_{i}\right|<|A|$ for all i. Suppose $C_{i} \neq 0$. By Lemma $1, C_{i}$ is indecomposable, and clearly τ-invariant. Let $0 \rightarrow C_{i} \rightarrow B_{i} \oplus D_{i} \rightarrow C_{i} \rightarrow 0$ be the Auslander-Reiten sequence. If $D_{i} \neq 0$, then again by Lemma $1, D_{i}$ is indecomposable and τ-invariant with $\left|D_{i}\right|<\left|C_{i}\right|$. Continuing these procedures, we get a finite component $\left\{A, B_{1}, B_{2}, C_{1}, C_{2}, D_{1}, D_{2}, \cdots\right\}$ consisting of only τ-invariant modules, a contradiction (cf. [1, Theorem 6.5]).
($\mathrm{e}^{\prime \prime}$) Suppose $a_{1}^{\prime}=2$. We get $\left|C_{1}\right|<\left|B_{1}\right|$, hence C_{1} does not have a pro-jective-injective summand. Therefore by (b), (c) and (e^{\prime}) we get a contradiction.
(f) Suppose $r=1, a_{1} a_{1}^{\prime}=2$. Clearly, B_{1} is τ-invariant.
(f^{\prime}) If $a_{1}=2$, then we get $|A|=\left|B_{1}\right|$, a contradiction.
($\mathrm{f}^{\prime \prime}$) If $a_{1}^{\prime}=2$, then we get $\left|A^{a_{1}^{0}}\right|=\left|B_{1}\right|$, a contradiction.
(g) Suppose $r=3, a_{i} a_{i}^{\prime}=1$ for all i. Put $\sigma i=j$ if $\tau B_{i} \cong B_{j}$. Then σ is a permutation of the set $\{1,2,3\}$. Note that $\sum_{i=1}^{3}\left|B_{i}\right|=2|A|$ and $\sum_{i=1}^{3}\left|C_{i}\right|=|A|$.
(g^{\prime}) Suppose σ is cyclic. Suppose $|A|<\left|B_{i}\right|$ for some i. We get $\left|B_{\sigma i}\right|$ $+\left|B_{\sigma 2 i}\right|<|A|$. On the other hand, using the Auslander-Reiten sequence ending in $B_{\sigma i}$, we get $|A| \leqq\left|B_{\sigma 2_{i}}\right|+\left|B_{\sigma i}\right|$, a contradiction. Hence $\left|B_{i}\right|<|A|$, thus $\left|C_{i}\right|<\left|B_{\sigma i}\right|$ for all i. Suppose $C_{i}=0$ for some i. We get $|A|=\left|B_{i} \oplus B_{\sigma i}\right|$, a contradiction. Hence $C_{i} \neq 0$ for all i. Clearly, each C_{i} does not have a projective summand. Let X be an indecomposable summand of C_{1}. Using the Auslander-

Reiten sequences ending in $X, \tau X$ and $\tau^{2} X$, we get

$$
\begin{aligned}
2|A| & =\left|B_{\sigma_{1}}\right|+\left|B_{\sigma 2_{1}}\right|+\left|B_{1}\right| \\
& \leqq(|X|+|\tau X|)+\left(|\tau X|+\left|\tau^{2} X\right|\right)+\left(\left|\tau^{2} X\right|+\left|\tau^{3} X\right|\right) \\
& \leqq 2\left(\left|C_{1}\right|+\left|C_{\sigma_{1}}\right|+\left|C_{\sigma_{1}}\right|\right) \\
& =2|A| .
\end{aligned}
$$

Therefore each C_{i} is indecomposable and the Auslander-Reiten sequence ending in C_{i} is of the form $0 \rightarrow C_{\sigma i} \rightarrow B_{\sigma i} \rightarrow C_{i} \rightarrow 0$. Hence we get a finite component $\left\{A, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}\right\}$ consisting of only τ-periodic modules, a contradiction.
($g^{\prime \prime}$) Suppose σ is not cyclic. Suppose $|A|<\left|B_{i}\right|$ for some i. We get $\left|B_{\sigma i}\right|<\left|C_{i}\right| \leqq|A|<\left|B_{i}\right|$, thus $C_{i} \neq 0$ and C_{i} does not have an injective summand. Let X be an indecomposable summand of C_{i}. Using the Auslander-Reiten sequence starting from X, we get

$$
\begin{aligned}
|A| & <\left|B_{i}\right| \\
& \leqq|X|+\left|\tau^{-1} X\right| \\
& \leqq\left|C_{i}\right|+\left|C_{\sigma^{-1 i}}\right| \\
& \leqq|A|,
\end{aligned}
$$

a contradiction. Hence $\left|B_{i}\right|<|A|$ for all i. By Lemma 1 , each C_{i} is either zero or indecomposable with $\left|C_{i}\right|<\left|B_{i}\right|$. Therefore, as in (e'), we get a finite component $\left\{A, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}, \cdots\right\}$ consisting of only τ-periodic modules, a contradiction.
(h) Suppose $r=2, a_{1} a_{1}^{\prime}=a_{2} a_{2}^{\prime}=1$ and $\tau B_{1} \cong B_{2}$. Note that $\tau^{2} B_{i} \cong B_{i}$ and $\left|C_{i}\right|=|A|$ for all i. We claim that each C_{i} is indecomposable.

Lemma 2. Let X be an indecomposable module such that $\tau^{2} X \cong X$. Let $0 \rightarrow \tau X \rightarrow Y \oplus Z \rightarrow X \rightarrow 0$ be the Auslander-Reiten sequence with Y indecomposable. Suppose $\tau^{2} Y \cong Y,|\tau Y|=|Y|$ and $|X|+|\tau X|=2|Y|$. Then Z is indecomposable with $\tau^{2} Z \cong Z$.

Proof. We may assume $Z \not \nexists Y$. First, assume $|\tau X|<|Y|<|X|$. Let $0 \rightarrow X \rightarrow \tau Y \oplus W \rightarrow \tau X \rightarrow 0$ be the Auslander-Reiten sequence. Since $|Z|=|W|<|X|$, Z does not have an injective summand and W does not have a projective summand. Hence $W \cong \tau^{-1} Z$. Let $Z=\oplus_{i=1}^{s} Z_{i}^{d i}$, where Z_{i} 's are non-isomorphic indecomposable modules and $d_{i}=\operatorname{dim}_{F\left(Z_{i}\right)} N\left(\tau X, Z_{i}\right)$ for all i. Let $d_{1}^{\prime}=\operatorname{dim} N\left(\tau X, Z_{i}\right)_{P(\tau X)}$ for each i. Using the Auslander-Reiten sequence starting from Z_{i}, we get

$$
d_{i}^{\prime}|X| \leqq\left|Z_{i}\right|+\left|\tau^{-1} Z_{i}\right|,
$$

hence

$$
\begin{aligned}
\left(\sum_{i=1}^{s} d_{i} d_{i}^{\prime}\right)|X| & \leqq \sum_{i=1}^{s} d_{i}\left|Z_{i}\right|+\sum_{i=1}^{s} d_{i}\left|\tau^{-1} Z_{i}\right| \\
& =|Z|+|W| \\
& <2|X| .
\end{aligned}
$$

Therefore $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=1$, thus Z is indecomposable. Suppose Z is projective. Let $0 \rightarrow Z \rightarrow X \oplus E \rightarrow W \rightarrow 0$ be the Auslander-Reiten sequence. Since $|E|=|\tau X|<|Z|$, E does not have a projective summand. Let F be an indecomposable summand of E. Using the Auslander-Reiten sequence ending in F, we get

$$
\begin{aligned}
|Z| & \leqq|F|+|\tau F| \\
& \leqq|E|+|\tau F| \\
& =|\tau X|+|\tau F| .
\end{aligned}
$$

On the other hand, since $\tau X \oplus \tau F$ is a summand of $\operatorname{rad} Z$, we get $|\tau X|+|\tau F|$ $<|Z|$, a contradiction. Therefore $\tau Z \cong W$, thus $\tau^{2} Z \cong Z$. Exchainging W for Z, the above arguments imply the case in which $|X|<|Y|<|\tau X|$. This finishes the proof.

By Lemma 2, each C_{i} is indecomposable. Clearly, $\tau C_{1} \cong C_{2}$ and $\tau C_{2} \cong C_{1}$. Let $0 \rightarrow \tau C_{i} \rightarrow \tau B_{i} \oplus D_{i} \rightarrow C_{i} \rightarrow 0$ be the Auslander-Reiten sequence for each i. Clearly, $\left|D_{i}\right|=\left|B_{i}\right|$ for all i. We claim that each D_{i} is indecomposable with $\tau^{2} D_{i} \cong D_{i}$.

Lemma 3. Let X be an indecomposable module such that $\tau^{2} X \cong X$ and $|\tau X|=$ $|X|$. Let $0 \rightarrow \tau X \rightarrow Y \oplus Z \rightarrow X \rightarrow 0$ be the Auslander-Reiten sequence with Y indecomposable. Suppose $\tau^{2} Y \cong Y,|Y|+|\tau Y|=2|X|$. Let $Z=\oplus_{i=1}^{s} Z_{i}^{d_{i}}$, where Z_{i} 's are non-isomorphic indecomposable modules and $d_{i}=\operatorname{dim}_{F\left(Z_{i}\right)} N\left(\tau X, Z_{i}\right)$ for all i. Let $d_{i}^{\prime}=\operatorname{dim} N\left(\tau X, Z_{i}\right)_{F(\tau X)}$ for each i. Then $\sum_{i=1}^{s} d_{i} d_{i}^{\prime} \leqq 2$:
(1) If $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=1$, then Z is indecomposable with $\tau^{2} Z \cong Z$.
(2) If $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=2$, then each Z_{i} is neither projective nor injective and the Auslander-Reiten sequences ending in and starting from Z_{i} are of the form

$$
\begin{aligned}
& 0 \longrightarrow \tau Z_{i} \longrightarrow \tau X^{a_{i}^{\prime}} \longrightarrow Z_{i} \longrightarrow 0 \\
& 0 \longrightarrow Z_{i} \longrightarrow X^{a_{i}^{\prime}} \longrightarrow \tau^{-1} Z_{i} \longrightarrow 0
\end{aligned}
$$

respectively.
Proof. First, assume $|\tau Y|<|X|<|Y|$. Let $0 \rightarrow X \rightarrow \tau Y \oplus W \rightarrow \tau X \rightarrow 0$ be the Auslander-Reiten sequence. Since $|Z|<|X|=|\tau X|$, each Z_{i} is neither projective
nor injective. Using the Auslander-Reiten sequence starting from Z_{i}, we get

$$
d_{i}^{\prime}|X| \leqq\left|Z_{i}\right|+\left|\tau^{-1} Z_{i}\right|,
$$

hence

$$
\begin{aligned}
\left(\sum_{i=1}^{s} d_{i} d_{i}^{\prime}\right)|X| & \leqq \sum_{i=1}^{s} d_{i}\left|Z_{i}\right|+\sum_{i=1}^{s} d_{i}\left|\tau^{-1} Z_{i}\right| \\
& \leqq|Z|+|W| \\
& =2|X|
\end{aligned}
$$

Therefore $\sum_{i=1}^{s} d_{i} d_{i}^{\prime} \leqq 2$. Suppose $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=2$. Then $\tau^{-1} Z \cong W$, thus W does not have a projective summand and the Auslander-Reiten sequence starting from Z_{i} is of the form

$$
0 \longrightarrow Z_{i} \longrightarrow X^{d_{i}^{\prime}} \longrightarrow \tau^{-1} Z_{i} \longrightarrow 0
$$

for all i. Using the Auslander-Reiten sequences ending in Z_{i} 's, we conclude also that if $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=2$, then $\tau Z \cong W$, thus W does not have an injective summand and the Auslander-Reiten sequence ending in Z_{i} is of the form

$$
0 \longrightarrow \tau Z_{i} \longrightarrow \tau X^{d_{i}^{\prime}} \longrightarrow Z_{i} \longrightarrow 0
$$

for all i. Assume $\sum_{i=1}^{s} d_{i} d_{i}^{\prime}=1$. Clearly, Z is indecomposable. Suppose $\tau^{2} Z \neq Z$. Then τZ is projective and $\tau^{-1} Z$ is injective, thus we get

$$
\begin{aligned}
2|X| & =|X|+|\tau X| \\
& <|\tau Z|+\left|\tau^{-1} Z\right| \\
& \leqq|W| \\
& <2|X|,
\end{aligned}
$$

a contradiction. Hence $\tau^{2} Z \cong Z$. Suppose $\tau Z \neq W$ and let $W \cong \tau Z \oplus W^{\prime}$. Then W^{\prime} is projective-injective, thus we get

$$
\begin{aligned}
|Z|+|\tau Z| & =|\tau Y|+|\tau Z| \\
& <|\tau X| .
\end{aligned}
$$

On the other hand, using the Auslander-Reiten sequence ending in Z, we get $|\tau X| \leqq|Z|+|\tau Z|$, a contradiction. Hence $\tau Z \cong W$. Exchainging W for Z, the above arguments imply the case in which $|Y|<|X|<|\tau Y|$. This finishes the proof.

Let $D_{1}=\bigoplus_{j=1}^{s} E_{j}^{d j}$, where E_{j} 's are non-isomorphic indecomposable modules and $d_{j}=\operatorname{dim}_{F\left(E_{j}\right)} N\left(C_{2}, E_{j}\right)$ for all j. Let $d_{j}^{\prime}=\operatorname{dim} N\left(C_{2}, E_{j}\right)_{F\left(C_{2}\right)}$ for each j. Suppose $\sum_{j=1}^{s} d_{j} d_{j}^{\prime} \neq 1$. Then by Lemma $3(2)$, we get a finite component $\left\{A, B_{1}, B_{2}, C_{1}\right.$,
$\left.C_{2}, E_{1}, \cdots, E_{s}, \tau E_{1}, \cdots, \tau E_{s}\right\}$ consisting of only τ-periodic modules, a contradiction. Therefore, by Lemma $3(1), D_{1}$ is indecomposable with $\tau^{2} D_{1} \cong D_{1}$. Note that $D_{2} \cong \tau D_{1}$, since, by Lemma $3, D_{2}$ does not have an injective summand. Thus D_{2} is also indecomposable with $\tau^{2} D_{2} \cong D_{2}$. Therefore, by induction, we get a bounded length component $\left\{A, B_{1}, B_{2}, C_{1}, C_{2}, D_{1}, D_{2}, \cdots\right\}$ consisting of only τ periodic modules, a contradiction.

This finishes the proof of Theorem 1.

2. Proof of Theorem 2.

Let X, Y be inecomposable modules such that $N(X, Y) \neq 0$ and $N(Y, X) \neq 0$. We claim that either X or Y is τ-invariant. Note that $N(\tau X, \tau Y) \neq 0$ and $N(\tau Y, \tau X) \neq 0$ if neither X nor Y is projective, and that $N\left(\tau^{-1} X, \tau^{-1} Y\right) \neq 0$ and $N\left(\tau^{-1} Y, \tau^{-1} X\right) \neq 0$ if neither X nor Y is injective. Therefore, it is sufficient to consider the following three cases:
(1) Either X or Y is projective.
(2) Either X or Y is injective.
(3) Both X and Y are stable. (Recall that an indecomposable module X is said to be stable if for any integer $n, \tau^{n} X$ is neither projective nor injective).

Case 1. We may assume X is projective. Then Y is a summand of $\operatorname{rad} X$, thus $|Y|<|X|$. Hence Y is not projective. Using the Auslander-Reiten sequence ending in Y, we get $|X| \leqq|\tau Y|+|Y|$. Suppose Y is not τ-invariant. Then $\tau Y \oplus Y$ is a summand of $\operatorname{rad} X$, thus $|\tau Y|+|Y|<|X|$, a contradiction. Therefore Y is τ-invariant.

CASE 2. By the dual arguments, we conclude that either X or Y is τ invariant.

CASE 3. Suppose neither X nor Y is τ-invariant. For any integer n, using the Auslander-Reiten sequence ending in $\tau^{n} X$, we get $\left|\tau^{n+1} Y\right|+\left|\tau^{n} Y\right| \leqq\left|\tau^{n+1} X\right|$ $+\left|\tau^{n} X\right|$, hence, by symmetry, $\left|\tau^{n+1} Y\right|+\left|\tau^{n} Y\right|=\left|\tau^{n+1} X\right|+\left|\tau^{n} X\right|$. Therefore, for any integer n the Auslander-Reiten sequences ending in $\tau^{n} X, \tau^{n} Y$ are of the form

$$
\begin{aligned}
& 0 \longrightarrow \tau^{n+1} X \longrightarrow \tau^{n+1} Y \oplus \tau^{n} Y \longrightarrow \tau^{n} X \longrightarrow 0 \\
& 0 \longrightarrow \tau^{n+1} Y \longrightarrow \tau^{n+1} X \oplus \tau^{n} X \longrightarrow \tau^{n} Y \longrightarrow 0
\end{aligned}
$$

respectively. We may assume X is of minimal length in the component $\left\{\tau^{n} X, \tau^{m} Y \mid n, m \in Z\right\}$. Let $f: \tau Y \rightarrow X$ be an irreducible map. Extending f to the minimal right almost split map ending in X, we get the commutative diagram

where $\alpha^{\prime}, \beta^{\prime}$ and f^{\prime} are irreducible maps. Next, extending f^{\prime} to the minimal right almost split map ending in Y, we get the commutative diagram

where $\alpha^{\prime \prime}, \beta^{\prime \prime}$ and g are irreducible maps. Hence, putting $\alpha=\alpha^{\prime} \alpha^{\prime \prime}$ and $\beta=\beta^{\prime} \beta^{\prime \prime}$, we get the commutative diagram

where $\alpha \in \operatorname{rad} \operatorname{End}(X), \beta \in \operatorname{rad} \operatorname{End}(\tau Y)$ and g is an irreducible map. Clearly, the above arguments hold for any irreducible maps from τY to X. Therefore, by induction, we conclude that for any positive integer n, there is an irreducible map $f_{n}: \tau Y \rightarrow X$ such that the following diagram commutes

where $\alpha_{n} \in(\operatorname{rad} \operatorname{End}(X))^{n}$ and $\beta_{n} \in(\operatorname{rad} \operatorname{End}(\tau Y))^{n}$, this contradicts the fact that $\operatorname{rad} \operatorname{End}(X)$ and $\operatorname{rad} \operatorname{End}(\tau Y)$ are nilpotent.

This finishes the proof of Theorem 2.

References

[1] Auslander, M., Applications of morphisms determined by objects. Proc. Conf. on Representation Theory, Philadelphia (1976), Mercel Dekker (1978), 245-327.
[2] Auslander, M., Reiten, I., Representation theory of artin algebras III, Almost split
sequences. Comm. Algebra 3 (1975), 239-294.
[3] Auslander, M., Reiten, I., Representation theory of artin algebras IV. Invariants given by almost split sequences. Comm. Algebra 5 (1977), 443-518.
[4] Bautista, K., Smalø, S.O., Nonexistent cycles. preprint.
[5] Dlab, V., Ringel, C.M., Indecomposable representations of graphs and algebras. Memoirs Amer. Soc. 173 (1976).
[6] Happel, D., Preiser, U., Ringel, C. M., Vinberg's characterization of Dynkin diagrams using subadditive functions with application to $D T r$-periodic modules. Springer L. N. 832 (1980), 579-599.
[7] Hoshino, M., Happel-Ringel's theorem on tilted algebras. To appear in Tsukuba J. Math..
[8] Riedtmann, Ch., Algebren, Darstellungen. Überlagerungen und zurück. Comment. Math. Helv. 55 (1980), 199-224.
[9] Ringel, C. M., Finite dimensional hereditary algebras of wild representation type. Math. Z. 161 (1978), 235-255.
[10] Ringel, C.M., Report on the Brauer-Thrall conjectures; Rojter's theorem and the Theorem of Nazarova and Rojter. (On algorithms for solving vectorspace problems I). Springer L. N. 831 (1980), 104-136.
[11] Todorov, G., Almost split sequences for $\operatorname{Tr} D$-periodic modules. Springer L. N. 832 (1980), 600-631.

[^0]: Received June 14, 1982

