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DTr-INVARINT MODULES

By

Mitsuo HOSHINO

Throughout this paper, we shall work over a fixed basic artin algebra /A
and deal only with finitely generated right modules. Let X be an indecomposable
module. We say that X is DTr-invariant if DT+»X=X. In [7], with some
other conditions, the author has shown that A is a local Nakayama algebra if
there is a DTr-invariant module. The aim of this paper is to generalize this
result.

Recall that an indecomposable module X is said to be DTr-periodic if, more
generally, DT»*"X= X for some positive integer #n. In Riedtmann [8], Todorov
[107 and Happel-Preiser-Ringel [6], they have completely determined the Cartan
class of a component of the stable Auslander-Reiten quiver contaning a DTr-
periodic module (see [6] for detales). In [6], they have also shown that a
component of the Auslander-Reiten quiver containing a DTr-pericdic module is
a quasi-serial component (in the sence of [9]) if it contains neither projective
nor injective modules. It seems, however, that there has not been given any
characterization of a component of the (not stable) Auslander-Reiten quiver
contaning a DTr-periodic module. In this paper, we shall investigate the case
in which there is a DTr-invariant module and prove

THEOREM 1. Suppose there is a DTr-invariant module A. Then either A
is a local Nakayama algebra or the component of the Auslander-Reiten quiver
containing A is a quasi-serial component (in the sence of [9]) consisting of only
DTr-invariant modules.

Let X be a DTr-invariant module and Y an indecomposable summand of the
middle term of the Auslander-Reiten sequence ending in X. Then there are
irreducible maps both from X to ¥ and from Y to X. The converse holds.

THEOREM 2. Let X, Y be indecomposable modules. Suppose there are irre-
ducible maps both from X to Y and from Y to X. Then either X or Y is DTr-
invariant. Thus either A is a local Nakayama algebra or the component of the
Auslander-Reiten quiver containing X, Y is a quasi-serial component (in the sence
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of [9]) consisting of only DTr-invariant modules.

Recently, the author learned that the similar result of Theorem 2 was obtained
by K. Bautista and S.0O. Smalg [4].

It is well known that there is a quasi-serial component consisting of only
DTr-invariant modules if 4 is an hereditary algebra of tame representation type
(see [5]).

The proof of Theorems 1, 2 {will be performed by calculating composition
lengths, and in that of Theorem 1 the work of Auslander [1, Theorem 6.5]
will play an impotant roll (see also [10, Proposition 2.3]).

For an indecomposable module X, let F(X)=End (X)/Rad (X, X), this is a
division ring, and for two indecomposable modules X, V, let N(X, Y)=Rad (X, Y)/
Rad*(X, Y), this is an F(Y)—F(X)-bimodule called the bimodule of irreducible
maps (see [8], [10] for details). The Auslander-Reiten quiver has as vertices
the isomorphism classes of the indecomposable modules, and there is an arrow
[X]-[Y] if NX, Y)#0, which is endowed with the valuation (dxy, dxy) such
that dyy=dimpN(X, V) and d%y=dim N(X, Y)rx,. Two indecomposable
modules X, Y belong, by definition, to the same component if there is a sequence
X=X, X, -+, X,=Y of indecomposable modules such that either N(X,_,, X;)#0
or N(X;, X;-)+#0 for all 7.

We refer to [2], [3] for DTr, Auslander-Reiten sequences and so on, and
shall freely use results of [2], [3].

In what follows, we denote by z (resp. z7!) DTr (resp. TrD) and by |X|
the composition length of a module X.

1. Proof of Theorem 1.

Let A be a z-invariant module and 0— A—@7_,B¢i—A—0 be the Auslander-
Reiten sequence, where B;’s are non-isomorphic indecomposable modules and
a;=dimp,N(A, B;) for all . By induction, it is sufficient to show that the
possible cases are the following :

(1) Some B; is projective-injective. We get rad B;= A= B;/soc B;, thus
top (rad B;)=top B;, this means that A is a local Nakayama algebra.

(2) We have r=1, a,=1, and B, is z-invariant.

(3) We have r=2, a,=a,=1, and each B; is z-invariant.

We have to exclude the other cases. Note that vB;=B,, a;,=a; for some j
if B; is not projective, and that z°'B;=B;, a;=a, for some k if B, is not
injective.
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(a) Consider, first, the case in which some B, is not z-periodic. Then z*B;
is projective for some non-negative integer n, and z™B, is injective for some
non-positive integer m. Since 2|A|=27_,a¢;|B,|, we conclude that n=m=0
and B; is projective-injective.

(b) Next, assume that all B;'s are r-periodic. Let O—>rB,~~>A“'i ¢pC;— B;—0
be the Auslander-Reiten sequence for each i, where a}=dim N(4, B)rw. We
get

ail Al+1Ci|=|zB;|+|B;l,
hence

(Z aat)lAl+ 3 ailCil= 2 aleBil + 2 .l Bl
=2|A|+2| A|
=4]A].
Therefore we conclude that 37 _,aq;a/<4.

(¢) Suppose >17_,a;ai=4. Then C,=0 for all ;. Hence we get a finite
component {4, B, ---, B,} consisting of only z-periodic modules, a contradiction
(cf. [1, Theorem 6.57).

(d) Suppose r=1, a;ai=3. By (b) we get a,|C,|=]|A|, and clearly B, is
z-invariant. We get
2| Bi|=ai| A +1C,|
=a,a]|Ci|+1C, |
=4|C,].

Hence C, does not have a projective-injective summand, therefore by (b), (c) we
get a contradiction.

(e) Suppose r=2, a,ai-+a,a;=3. We may assume a,a;=2, a,a;=1. Clearly,
each B; is r-invariant.
We prepare a lemma.

LEMMA 1. Let X be an indecomposable module such that °X=X. Let
0-tX>YDZ—-X-0 be the Auslander-Reiten sequence with Y indecomposable.
Suppose =Y =Y, |X|<|Y], |X|<|Y|, |X|<|zY| and |tX|<|cY|. Then
either Z=0 or Z is indecomposable with 1*Z =7,

PrOOF. We may assume Z #0. Let Z=i_,Z¢:, where Z,’s are non-isomorphic
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indecomposable modules and d;=dimgz, Nz X, Z;) for all 7. Let 0— XV PW
-7 X0 be the Auslander-Reiten sequence. Since |Z|<|X|, [Z]|<|cX]|, W]
<|X| and |W|<|cX|, both Z and W have neither projective nor injective
summands. Hence zZ=W and r'Z=W. Let dj=dim N(zX, Z)pwx, for each
i. Using the Auslander-Reiten sequences ending in and starting from Z,, we get

dileX|=1Zd+12Z:],

A X2 Z; |+ 24,
hence

(gdid;)<|r){[+1xngzg dil Zil+ 2 dileZi]+ S &'zl
=2|Z |+ W |+|W]
2 X +1XD).
Therefore we conclude that 3%_,d;d}=1. This finishes the proof.

(e’y Suppose a,=2. Since 2|C,|+|C.|=1A4l, |C:| <| Al for all i. Suppose
[Al<|B;| for some 7, then we get |A|<|B;|<|C;|, a contradiction. Hence
[B,|<|Al, thus |C;|<|B;|<|A] for all . Suppose C;#0. By Lemma 1, C;
is indecomposable, and clearly z-invariant. Let 0—C,—DB,DD,~C;—0 be the
Auslander-Reiten sequence. If D,#0, then again by Lemma 1, D; is indecompo-
sable and z-invariant with |D;|<|C;|. Continuing these procedures, we get a
finite component {A, B;, By, Cy, Co, Dy, D,, ---} consisting of only z-invariant
modules, a contradiction (cf. [1, Theorem 6.5]).

(e”) Suppose a;=2. We get [C,|<|B;|, hence C, does not have a pro-
jective-injective summand. Therefore by (b), (¢) and (¢') we geta contradiction.

(f) Suppose r=1, a,a;=2. Clearly, B, is r-invariant.

(£ If a,=2, then we get |A|=]By|, a contradiction.

7y If a,=2, then we get |A%1|=|B,], a contradiction.

(g) Suppose r=3, a;a}=1 for all i. Put ¢i=; if ¢B;=B; Then o is a
permutation of the set {l, 2, 3}. Note that e [B,|=2| A| and 23.,]Cil=1Al.

(g") Suppose ¢ is cyclic. Suppose |A|<|B;| for some 7. We get | Byl
+1By2:] < ]Al. On the other hand, using the Auslander-Reiten sequence ending
in B,;, we get |A|=|Bse|+|Bs:l, a contradiction. IHence | Bl <|Al, thus
[C;| < |Bg;| for all i. Suppose C;=0 for some 7. We get |A|=|B.BB.!, a
contradiction. Hence C,#0 for all 7. Clearly, each C;does not have a projective
summand. Let X be an indecomposable summand of C,. Using the Auslander-
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Reiten sequences ending in X, X and 72X, we get
2| Al=]|Bo|+|Boul+|Bil
X[+ XD+ X+ 2 XD+ (22X -+ |22 X))
=2(]Cil+[Cor| +1Cox )
=2|A].

Therefore each C; is indecomposable and the Auslander-Reiten sequence ending
in C; is of the form 0-C,;—B,;—C;—~0. Hence we get a finite component
{A, By, By, B, C,, G, Cs} consisting of only r-periodic modules, a contradiction.

(8”) Suppose ¢ is not cyclic. Suppose |A|<|B;| for some i. We get
| Bo:l <ICi| =] Al < |B;], thus C,#0 and C; does not have an injective summand.
Let X be an indecomposable summand of C;. Using the Auslander-Reiten sequence
starting from X, we get

A <] Bil
=1 X+ X
=1GI+1Co-1]
=|4],

a contradiction. Hence |B;|<|A| for all 7. By Lemma 1, each C, is either
zero or indecomposable with |C;|<|B;|. Therefore, as in (¢’), we get a finite
component {4, By, B,, B;, C,, C;, Cs, -} consisting of only r-periodic modules, a
contradiction.

(b) Suppose r=2, a,aj=a;a;=1 and rzB;=B, Note that ¢?B,=B, and
|C:l=|A]| for ail . We claim that each C; is indecomposable.

LEMMA 2. Let X be an indecomposable module such that ©*X=X. Let
0t X->YBZ—-X—-0 be the Auslander-Reiten sequence with Y indecomposable.
Suppose 7?Y =Y, |t¥ |=|Y| and | X|+|cX|=2|Y|. Then Z is indecomposable
with t*Z=Z7.

PrROOF. We may assume Z=Y. First, assume |zX|<|Y]|<|X]|. Let
0—X—7Y W —rX—0 be the Auslander-Reiten sequence. Since |Z|=|W|<|X],
Z does not have an injective summand and W does not have a projective summand.
Hence W=c™'Z. Let Z=@j_,Z¢, where Z,’s are non-isomorphic indecomposable
modules and d;==dim p;,N(zX, Z;) for all i. Let di=dim NX, Z)rex, for
each /. Using the Auslander-Reiten sequence starting from Z, we get



210 Mitsuo HOSHINO

SAXISIZd+1e7 2
hence
(£ dua?)IXIS 3 il Zil+ 3 dile 7' Z4l
i=1 =1 =1
=1Z|+W|
<2|X|.

Therefore _,d,d}=1, thus Z is indecomposable. Suppose Z is projective. Let
0—>Z— XPE—-W—0 be the Auslander-Reiten sequence. Since |E|=[cX|<]Z],
E does not have a projective summand. Let F be an indecomposable summand
of E. Using the Auslander-Reiten sequence ending in F, we get

|Z|=|F|+|zF]
=|E|+|F]
=|zX|+|7F|.

On the other hand, since zX@®¢F is a summand of rad Z, we get [7X|+|cF|
<|Z|, a contradiction. Therefore tZ=W, thus r*Z=Z. Exchainging W for
Z, the above arguments imply the case in which [X|<|Y|<|zX]. T his finishes
the proof.

By Lemma 2, each C; is indecomposable. Clearly, zC;=C, and zC,=C.
Let 0—7C;—7B;PD;—C;—0 be the Auslander-Reiten sequence for each 7. Clearly,
|D;|=|B;| for all .. We claim that each D; is indecomposable with z2D;=D,.

LEMMA 3. Let X be an indecomposable module such that T*X=X and |tX|=
|X|. Let 0»cX—Y®Z->X—0 be the Auslander-Reiten sequence with Y inde-
composable. Suppose ?Y' =Y, |Y|+|cY|[=2]|X|. Let Z =@, Z%, where Z;'s
are non-isomorphic indecomposable modules and d;=dim pzyN(zX, Z;) for all 1.
Let d}=dim N(zX, Z)pex) for each i. Then 33.d.di=2:

) If 23.d.di=1, then Z is indecomposable with 2 7=Z.

(2) If %_.d.d}=2, then each Z,; is neither projective nor injective and the
Auslander-Reiten sequences ending in and starting from Z; are of the form

0 —>1Z;—> X% —>Z;—>0,

0—>Z;—> X% —>771Z,—>0

respectively.

ProOF. First, assume |tV |<|X|<|Y]. Let 0—»X—tY@W—-rX—0 be the
Auslander-Reiten sequence. Since |Z|<|X|=]|cX], each Z; is neither projective
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nor injective. Using the Auslander-Reiten sequence starting from Z,, we get

Al X|=Zi+ 24,
hence

(T dudd)IXI= 2 ddZi+ 2 dileZ|
i=1 i=1 i=1
SIZI+IW]
=2|X|.

Therefore 335_,d,d;=<2. Suppose 3%_,d;d};=2. Then c'Z=W, thus W does not
have a projective summand and the Auslander-Reiten sequence starting from Z;
is of the form

0> Z;—> X717, —> 0

for all . Using the Auslander-Reiten sequences ending in Z;’s, we conclude also
that if >3.,d:di{=2, then ©Z=W, thus W does not have an injective summand
and the Auslander-Reiten sequence ending in Z; is of the form

' 0—¢Z, —> X% > Z,—>0

for alls. Assume 3}3.,d;d;=1. Clearly, Z is indecomposable. Suppose t2Z +# 7.
Then zZ is projective and ¢~'Z is injective, thus we get

2|1 X[=]X]+[cX|
<tZ|+|'Z|
=|Wi
<2|1X[,

a contradiction. Hence 7°Z=Z. Suppose tZ=W and let W=cZ&EW’. Then
W'’ is projective-injective, thus we get

[ZI+|cZ| =Y |+[2Z]
<|rX] .
On the other hand, using the Auslander-Reiten sequence ending in Z, we get
leX|=|Z|+|cZ]|, a contradiction. Hence zZ=W. Exchainging W for Z, the

above arguments imply the case in which |Y|<|[X|<|zY]|. This finishes the
proof.

Let D,=@j-,E¥, where E)’s are non-isomorphic indecomposable modules and
dj:dimF(Ej)N(Cz, E;) for all j. Let dj=dim N(C,, E,)p(, for each j. Suppose
2j-1d;dj+1.  Then by Lemma 3(2), we get a finite component {4, B,, B,, C,,
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C,, E,, -+, Es, TE,, -+, tE,} consisting of only r-periodic modules, a contradiction.
Therefore, by Lemma 3(1), D, is indecomposable with z?D,=D, Note that
D,=7D,, since, by Lemma 3, D, does not have an injective summand. Thus D,
is also indecomposable with ¢2D,=D,  Therefore, by induction, we get a
bounded length component {A, By, By, Cy, Cs, Dy, D,, -} consisting of only z-
periodic modules, a contradiction.

This finishes the proof of Theorem 1.

2. Proof of Theorem 2.

Let X, Y be inecomposable modules such that N(X, V)#0 and N, X)#0.
‘We claim that either X or Y is z-invariant. Note that N(zX, z¥)#0 and
NY, tX)#0 if neither X nor Y is projective, and that N(z7'X, z7Y)#0 and
N, r71X)#0 if neither X nor V is injective. Therefore, it is sufficient to
consider the following three cases:

(1) Either X or Y is projective.

(2) Either X or Y is injective.

(3) Both X and YV are stable. (Recall that an indecomposable module X is
said to be stable if for any integer n, "X is neither projective nor injective).

CASE 1. We may assume X is projective. Then Y is a summand of rad X,
thus |Y|<|X|. HenceY is not projective. Using the Auslander-Reiten sequence
ending in Y, we get |X|=!|zY|-+|Y|. Suppose Y is not r-invariant. Then
7Y PY is a summand of rad X, thus |7V |-+|Y|<|X|, a contradiction. There-
fore Y is r-invariant.

CASE 2. By the dual arguments, we conclude that either X or Y is z-

invariant.

CaSE 3. Suppose neither X nor Y is c-invariant. For any integer n, using
the Auslander-Reiten sequence ending in "X, we get [""V|+4|z"V|= |z X]|
4|z X|, hence, by symmetry, |z**V |4 |27V |=]|z"*X|+|z"X|. Therefore, for
any integer n the Auslander-Reiten sequences ending in "X, z"Y are of the

form
0 —> "X —s Y PrrY s " X —> 0,

0 —> " Y —> X Pt X —> 7Y —> 0

respectively.  We may assume X is of minimal length in the component
{* X, z™Y |n, meZ}. Let f:zV—X be an irreducible map. Extending f to
the minimal right almost split map ending in X, we get the commutative diagram
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0 Ker f 14 f X—0

Iz I‘B/ Ia/
> Kerf/—> X —— YV —0,
where o', 8" and f’ are irreducible maps. Next, extending f’ to the minimal

right almost split map ending in Y, we get the commutative diagram

Fag
0—>Kerf/l — X ——1Y —>0

b e
g

0 Ker g ¥ —— X 0,

where a”, 8”7 and g are irreducible maps. Hence, putting a=a’a” and f=5'p",

we get the commutative diagram

OM%Kerf—%rY——ieXﬁO

O~——>Kerg->1)’—~—g——>)(% 0,
where aerad End (X), Serad End (zY) and g is an irreducible map. Clearly,
the above arguments hold for any irreducible maps from Y to X. Therefore,
by induction, we conclude that for any positive integer =, there is an irreducible
map f,:7¥—X such that the following diagram commutes

0 Ker f > 7Y s X—0

L .Bn ]\an
i

0—>Kerj',,~aer——"—>X——>0,

where a,€(rad End (X))" and f,<(rad End (zY))", this contradicts the fact that
rad End (X) and rad End (zY) are nilpotent.
This finishes the proof of Theorem 2.
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