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THE DIFFERENCES BETWEEN CONSECUTIVE ALMQST-PRIMES

By

Hiroshi MlKAWA

1. Introduction.

In 1940 P. Erdos [1] proposed the problem to estimate the sum

D(x)= S (Pn+i-pn)2

where pn denotes the ≪-thprime,

proved that

A. Selberg [10] and D. R. Heath-Brown [41

D(:r)< a:(log x)z

under the Riemann hypothesis, and that, for any e>0,

under the Lindelof hypothesis, respectively. Furthermore, Heath-Brown [5] showed

unconditionaly that, for any e>0,

D(x)< x23/18+%

and he [6] conjectured that

Z)(x)~ 2x(logx) as x_*oo.

U. Meyer considered in his Dissertation the almost-prime analogy of D(x).

Let Pi denote the set of integers with at most two prime factors,multiple factors

being counted multiplicity. We replace the primes in D(x) by the almost-primes

P2, and denote the resulting sum D2(x). In [8] he showed, by the weighted

version of a zero density estimate for the Riemann zeta-function,that

D2(x)< a:1-285(logxy°.

It is the purpose of thispaper to make an improvement upon thisupper bound.

Theorem. We have

D2(^)< x1-023

where the implied constant is effectivelycomputable.

In contrast to the Meyer's argument, we appeal to sieve methods, which are

the weighted linear sieve of Greaves' type [3] and the prototype of an additive
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large sieve inequality [9]. J.B. Friedlander [2] considered the related proplem

from a differentpoint of view. Our argument should be compared with [2], in

which also sieve methods were employed.

We use the standard notation in number theory. Especially,for an integer a,

Q(a) and v(a) denote the number of prime factors counted multiplicity and the

number of differentprime factorsof a, respectively. All the implied constants are

effectivelycomputable.

I would like to thank Professor G. Greaves for sending me a copy of the

preprint of his paper [3],

The present paper is a revised version of part of my Master thesisat Okayama

University. I would like to thank Professor S. Uchiyama for encouraging me to

publish the paper and carefulreading the originalmanuscript. I would alsothank

the referee for making the paper easier to read.

2. Reduction of the problem.

In this section we deduce Theorem from Lemma 1 below. We postpone the

proof of Lemma 1 until the final section. To simplify the notation,let pn denote

the n-th.almost-prime P2 and write dn=pn+i―pn- Put #= 1.023.

We will show that

(1) 2 4< x9

X<pn^2x

for all sufficientlylarge x. The assertion of Theorem immediately follows from

this by the routine argument.

LEMMA 1. We have unifomly for x^Lyt^2x, (log x)z<iA^xl2,

2 l>CA(log x)~1+ O(J(log x)'3) +E1(y, A) +E2(y, J),

Q(a)<,2

where the Ej(y, A) (j―1, 2) are some quantities depending on y and A to be given

explicitlyin §4 below and satisfying

(2) ＼2X＼Ej(y,
A)＼3dy< A^x°(log x)-i'＼ .7=1,2.

Here the positive constant C is effectivelycomputable.

Now, let

n(J) = {pn&P2;x<pn^2x, 2A<dn^AA, pn+i^2x}.

It is well known that dn<C pi!2 for sufficientlylarge pn^Pz> so we may assume
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(3) J< x112.

For any fixed ^wei7(J), suppose that

for some ye.[pn+dnl2, />B+i). Then the right-hand side of (1) is positive for

sufficientlylarge x. But, since

the left-handside of (1) is zero,which is impossible. Thus,

for ally<=ipn + dn/2,pn+i)- Namely,

(4) /7(J)CU IIj(A)

where

nj(J) = {pn<El7(J); I^Cy, J)|>^ -j^ for allyelpn+4*-, pn+1)).

Now, we have

＼2X＼Ej(y, A)＼Jdy^ 2
＼P'+＼
JEj(y, A) ＼3dy

> 2 (C_
A ydn

Pnen,v)＼3 log x I 2 '

since the intervals [pn + dn/2, pn+i~＼are mutually disjoint. Hence, by (2)

(5) 2 dn<{-*)-T＼El(y, A)＼Uy

pneIlj(J) ＼lOg X / Jx

^J-WQogx)-1.

Since there is at most one element pn^.P2 such that

x<pn^2x, 2A<dn^AA, pn+i>2x,

we have uniformly for (log x)z<,A^xX12,

(6) S dn^ S dn + 4J
x<pn^2x pneII(J)

<J-1cc9(logx)-1 + J

^-^(logx)"1,



260

by (4), (5) and (3)

Finally,
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X<pn^2x X<pn^2x X<pnS2x
dnUx'-l dn>X≪-l

tZx'-l S dn+ S S ^

where J's run through the powers of 2. By (6) we get

X<pnSt2x A X<pnS.2x 1
2A<dn^lA

<z' + 2^(log.z)-1

A

as required.

3. Lemmas.

Firstly we state the results of [3] merely in as simple a way as is sufficient

for our application.

LEMMA 2. J/yi = (log 2a;)(log D)~x< 1.95544, then we have

2 l>C(A)A(＼ogx)-*+ 2 hra(y, J) - 2 1,
y―d<aHy d<D y―A<n^y

D≫£,p<Du

uniformly for

x^y<,2x, 2<J£x/2

where the positive constant C(A) is effectiveand depends on A only,

≪<y><>-ffl-[JT-H

and u and v are the absolute constants such that 0.01<t><w<l.

LEMMA 3. For any real t, and H>2, we have

2 2xi o<＼h＼<H h ＼ ＼ tL＼＼t＼＼JJ

where

and

e(t)=e2Ht,

||*||=min|*-≪|
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PROOF. See [7], for example.
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LEMMA 4. Let 1<A<^1. For any differentreal numbers (bn) and any com-

plex numbers (cn), we have

where

＼AX＼'Ecne(br&)＼2du<gi(a:+d-1)'2＼cn＼2

Jx n n

d = mm＼bm ―bn＼-
m4=n

PROOF. This is the corollary 2 in [9].

LEMMA 5. Let 1<A<CI. For any H>2, we have

Proof.

2
AxJ

＼AXmm(H,

jXrr)du^x(log
H)

Jx ＼ IIZ4>＼＼J

ft+1 / I ＼ ("1/2 / I ＼

<z(log/i).

4. Proof of Lemma 1.

We begin with considering

S 1= S n+ S l = Ri + R2, say.
y―A<n^y

DvS-p<Du

By Lemma 3, we have

Ri= S

y―d<n^y

Dvg.p<x^3

2 1

D°^p<x^3 P p

y-A<n£y
p*＼n

=0(i(log*)-3)+S
o<S^
^{l-,(-^)}e(^) +

+?°(min ((1- pm)+mi<h mot))

= 0(J(logx)-3)+R12+Rn, say,

We have then

＼2X＼R12＼2dy<(＼oga:-) max H 2 l{l_e(-|2j)WAj,W
Jx Dv<P<x"3 J* 0<h<p h.{ ＼ p* I) ＼p2^I

P<p£.2P
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<(Iogx) max (x+P4)
p

^
1 . z(ithA＼

<(logx) max (x+P*)^
p F

<Jx(log x).

by Lemma 4. Moreover we have, by Lemma 5,

＼2X＼Rn＼dy<
S
pminfl,

,,|,
2||W

= S/>＼ , min(£, TT77T7HM
/> Jx/P2 ＼ ＼＼u＼＼i

p p

<a:(log x)

We next deal with R2.

i?2= 2

^2 2

2 1

1

m (y-J)/m<k2£y/m
ke=z

^2 __ S_ __1
m Vy/m―A/VmxOfSVy/m

= 0(i(logx)-3)+S S ^7r{l-e(-^L=Jx-"z)}e(-^y) +

+ S (min (l, / ..)+ min (l, X ))

= 0(J(log:r)-3)+i?22 + i?21, say.

We have as before

＼2X＼R22＼2dy

<＼ 2'
Jx 0<k<m

CV2x

JVx

＼k<xmk'h＼- V Vw /j Wot /I

2' (2^U{1-≪(--T=4*'lfl)}≪(-r-≪)
%du

where 5Y indicates that hl-y/m 's are differentfrom each other. Since

mi m.2

^
1
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min

Hence, by Lemma 4, (5) contributes at most

Vx (Vx + Cx113)5'2) 2 ( 2 i)≫£,in≫(4*4.)

o<h<m ^ k<x^3 k ' n* Vymx'

< J ( V^ + 0c1 /3)5/2) C-rJ /3)x/2(log x)2

<Jar(logx)2.

IVTnrfnvpr wp linvp

＼2X＼R21＼dy<^ 2 P*min(l, } )dy

Jx xD-^<m^2X^3Jx ＼ m＼＼Vy m＼＼'

^^ 1 Ix [V2xlm . I 1 ＼7

<S― (log x)
m**

<x(logx)2,

by Lemma 5.

Now we proceed to the remainder terms with the sieve estimate.

rf<£> rf<z> 2?re 0<]^|<rf A >■ V d n ＼d I

+ 2 ^ 0(min(l,-^T＼7n) + min(l
1^/^M))

^<D ＼ ＼ a＼＼y/d＼＼/ ＼ d＼＼(y ― A) d＼＼I)

= jR32 + #3i, say.

By Lemma 4, we have

L i≪-i'*<J, 2

0<k<d<D(.k.d)-!

(*＼)&-<(-$')}>&){*

<(,+D')s(S^)>infir)

d<D d ＼m<D m I

<J(;r + D2)(log;c)15,

since pt(dm)2= l. Moreover, Lemma 5 yields

＼2X＼R3i＼dy<T,
＼Zd＼＼2Xmin(l,-;r-L-m)dy

Jx d<D Jx ＼ d＼＼y/a＼＼J

^ S ＼^d＼＼ rainid, n―n)du
d<D Jxi* V ＼＼u＼＼J

263
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< 2 3≫<≪§(logj;)

<x(＼ogxY.

Put

Ej(y, J)=Rlj+R2j + R3h 7= 1, 2.

Then, by the above argument, we see

and

n^Cy,
A)＼dy<x(＼ogxY

JX

＼2X＼E2(y,
A)＼*dy< J(x + D2) (log x)15.

Taking

Z)=(2x)°-5115(logx)-9,

so that

A-
lpg 2x

<-___!___<ri QR5440.5115(log 2.r)-9(log log x) ^ 0.5114 <^i-y0044'

we get Lemma 1.

This completes our proof.
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