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THE DIFFERENCES BETWEEN CONSECUTIVE ALMOST-PRIMES

By

Hiroshi MiIKAwWA

1. Introduction.

In 1940 P. Erdss [1] proposed the problem to estimate the sum
D@ =3 (Pﬂ+1—]bn)2

=

where pn denotes the n-th prime. A. Selberg [10] and D.R. Heath-Brown [4]
proved that

D@ < z(log 2)°
under the Riemann hypothesis, and that, for any ¢>0,
D(x)< xTie+

under the Lindelsf hypothesis, respectively. Furthermore, Heath-Brown [5] showed
unconditionaly that, for any ¢>0,

D(x)< xB1s*e,
and he [6] conjectured that
D(x)~ 2zx(og x) as o

U. Meyer considered in his Dissertation the almost-prime analogy of D(x).
Let P, denote the set of integers with at most two prime factors, multiple factors
being counted multiplicity. We replace the primes in D(x) by the almost-primes
P,, and denote the resulting sum D,(z). In [8] he showed, by the weighted

version of a zero density estimate for the Riemann zeta-function, that
Dy(2)< x5 (log x)™.
It is the purpose of this paper to make an improvement upon this upper bound.
THEOREM. We have
D.(2) < x0%
where the implied constant is effectively computable.

In contrast to the Meyer’s argument, we appeal to sieve methods, which are

the weighted linear sieve of Greaves’ type [3] and the prototype of an additive
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large sieve inequality [9]. J. B. Friedlander [2] considered the related proplem
from a different point of view. Our argument should be compared with [2], in
which also sieve methods were employed.

We use the standard notation in number theory. Especially, for an integer a,
2(a) and v(a) denote the number of prime factors counted multiplicity and the
number of different prime factors of a, respectively. All the implied constants are
effectively computable.

T would like to thank Professor G. Greaves for sending me a copy of the
preprint of his paper [3].

The present paper is a revised version of part of my Master thesis at Okayama
University. 1 would like to thank Professor S. Uchiyama for encouraging me to
publish the paper and careful reading the original manuscript. 1 would also thank

the referee for making the paper easier to read.

2. Reduction of the problem.

In this section we deduce Theorem from Lemma 1 below. We postpone the
proof of Lemma 1 until the final section. To simplify the notation, let p, denote
the zn-th almost-prime P, and write dp=pn,1—pn. Put §=1.023.

We will show that

(1) 2 di< x0

x<pn<2x
for all sufficiently large x. The assertion of Theorem immediately follows from

this by the routine argument.

LEMMA 1. We have unifomly for x<y=2z, (log x)3<4=x/2,
2 1>Cd(log )7+ 0 (log )% +Ei(y, 4) +Ex(y, ),

y—d4<asy
Aa)=2

where the E;(y, 4) (j=1, 2) are some quantities depending ony and 4 to be given
explicitly in § 4 below and satisfying

@ (1B, Dty 457129 log )57, j=1,2.
Here the positive constant C is effectively computable.

Now, let

() ={pa€ P2 x<pn=2x, 24<dn<4d, pn.Z2x).

It is well known that dn,< pY? for sufficiently large p,e P, so we may assume
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® 4L 2,
For any fixed pnelI(d), suppose that

. c_4
IEJ(y, A)Ié? logx’ ] 1) 2
for some ye[pn+dn/2, pns). Then the right-hand side of (1) is positive tor

sufficiently large x. But, since
y—4>%+pn—%=,ﬁn,

the left-hand side of (1) is zero, which is impossible. Thus,
4

e or |Ea(y, DI>§ .

3 logx’

By, DI1>§
for all ye[pa+dn/2, pry1). Namely,
@ oyl I
J=1
where
)= {PnEH(A> ;s |Ej (s A)]>‘§' @ for all yEEPn+"'2"": Prsn) )

Now, we have

2 Drt1
(v, Dlidy=
SI |E] (y: )l Y= pne%j(d)gf’"”d"/z
<Q _A__)’E.lfz
pnEll;(4) 3 logx 2”

|E;(y, D|idy

since the intervals [pa+dn/2, pr,1] are mutually disjoint. Hence, by (2)

® 4 \H=p
s <o z) VL B DIy
L4z’ (log x) ™2
Since there is at most one element pp,& P, such that

x<ppL2z, 24<<dpn=44, pn.a>2x,

we have uniformly for (log x)3<4=x17,

©) N di X dutdd
x<pn<2x paEll(D)
24<dn 544

<é > datdd

T 71 pa €l
L4 x?(log )"+ 4
L4z’ (log )7,
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by (4, (5) and (3).

Finally,
> dEi= X A2+ X 4R
x<pas2x x<ppS2x x<pns2x
dnsx9-1 dn>x%1
Szt ¥ det > > 4
x<pn<2x 20-1LALx1/2 x<pnS2x

24<dn=44

where 4’s run through the powers of 2. By (6) we get

> d%<x0 + EA > dn
x<pns2x 4 x<pps2x)
24<dn<44

Lz’ + Dz’ (log x) !
a
<Lz,
as required.
3. Lemmas.
Firstly we state the results of [3] merely in as simple a way as is sufficient
for our application.
LEMMA 2. If A=(log 2x)(log D)"*<1.95544, then we have
Y 1>CA) 4 (log x) —1+d§z) Aara(y, H)— > 1,

y—4<asy
2a)=2 piln

uniformly for
r<yL2x, 2<4=5x/2
where the positive constant C(A) is effective and depends on A only,
[2a| S p(d)?3@,
ra(y, ‘D:[%]_[_y;—A]_g’
and u and v are the absolute constants such that 0.01<v<u<1.

LEMMA 3. For any real t, and H>2, we have

- 2711'7 0<]}§<H %e(ht) +0<min_<1, H|11tH )>

1
t—[t] 2
where
e(t) =e¥it,

and

|1¢]] =min|z—n|.
neEzZ
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PrROOF. See [7], for example.

LEMMA 4. Let 1<A<L]l. For any different real numbers (bn) and any com-
plex numbers (cn), we have

S:ﬂzcne(bnu) |2du (24571 S cal?

where

d=min|bm—by|.

m¥*Fn
Proor. This is the corollary 2 in [9].
LEMMA 5. Let 1<ALl. For any H>2, we have

S:xmin( TTu ”>du<x(log H).

PrOOF.

x_ligzéAxS:” min(, ‘I”i}TII> < S:'z min(H, L)au

Lx(log H).

4. Proof of Lemma 1.

We begin with considering

> 1= X i1+ X 1=R;+R, say.
y—A2<|n§y y— .4<n<y y~A?<n§y
n

b D2n
Dv=p< D Dv5p<xm x1/35p< Du
By Lemma 3, we have

Ri= 3 P
Dr<p<xl/3 (y—-d)/p2<mSy/p2

+27"p2<y, A)

Dv=p<xl/3 pz

=04 (log )Y +3 03@ mrli-e(—ha)le(Ly)+

+30(min (0 Jroia) + min(L 7= g5
=0(4d(log )~® + Riz+ Ry;, say.

We have then
[ 1Ruldy<log 2) max (71 3 fi-e(~Ld))e(Ly)pay

DosP<xln Iz o<h<p h P
PIpap



262 Hiroshi MIKAWA

1 . (whd
<L (log x) m}z;x (xz+P% g}ﬁh—zsmz< e )

<L (log ) max (x+P4)A
P P
Ldx(log x).

by Lemma 4. Moreover we have, by Lemma 5,

Ry 5§ Fmin(L, )y
=Zﬁpszz/pz miI’I(P’ ﬁ)du

z/ p?

<3p,(log 2)
p P

<Lz (log x).

We next deal with R,.
R,= M > 1

xD-2u<ms2x1/3 (y—A)/m<p?=y/m

= > 1

m (y—d)/m<k2<y/m
keZ

=2 2 1
m Vylm—4/Vmx<k<Vv/m
rEZ

=23 +2 IR gy Wy, 4=

«/m
=0d(og D+ 5 —1.——'{1-—6<——~Ax"1/2>}e(7h77y>+

0< (7l <m 27ih vm

+2(min (1, ) min (L)
=0(4(log £)~%) + Rz+ Ry, say.

We have as before

2,
(. 1Rul?dy
z

G (B v)

<h<
xD-2u<m=2x1/3

2z 2

dy

z

— , 1 _ h —12 L 2
<‘/x8 @k)h{l (- v dE )}e(¢7n”>l du
where 3 indicates that #/ym ’s are different from each other. Since
— e h1 _ hz hl 712 }ll . }lg

(Vs + vz ) T >( It 1/1_7.12_> o

|k _ R

my  Mms

1

= mlfﬂz H
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we see that

hy
Vo «/mz

Hence, by Lemma 4, (5) contributes at most

><x1/3) 5/2

mm

(ST 1/3)5/2 INe1 . o/ whd
VE W+ (@ 0<h§<}m (k<§/3 k> RS <x/553:>
xD-?u(mélela
4

KV (Vx+ (@)% (log )* 3

mzx1s Nmx
<A( )\/z _|_ (xl 13) 5/2) (‘rl 13) 172 <log x) 2
<Ldzx(log x)2.

Moreover we have

2z 2r
SI [ Ra | dy<< xD_zu:ngzmez m1n< ,Wm>

A 21 il
<3, (og )

<z (log x)?,

by Lemma 5.
Now we proceed to the remainder terms with the sieve estimate.

B 0= B e 3, Hi-e(-5)e(lo)s

+ED 2a Omin (L e +min (b 2 257arr)
= R3;+ Rs1, say.

By Lemma 4, we have

Six | Raz| 2dy<S:$

<d(@+D) 3 ?—“—’( 5

m<D ™M

<L4(z+D?» (10g ),

since pu(dm)?=1. Moreover, Lemma 5 yields

S |R31[dy< 2 | 2a] S mln(l, leﬁzlody
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3T (]
<3 3@ oz )

Lz (log ©)*
Put
Ef(.}') A) :R1j+R2j+R3j, j=1, 2.

Then, by the above argument, we see

1B, 0 ldy<a log 2
and

(1B D1Pdy< 4(2+ D7) (og )™
Taking

D= (2x)%%5 (log x)~°,
so that

log 2z 1
A: - o
0.5115(log 2x)—9(log Tog =) ~ 0.5114 <1.95544,

we get Lemma 1.

This completes our proof.
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