THE DIFFERENCES BETWEEN CONSECUTIVE ALMOST-PRIMES

By
Hiroshi Mikawa

1. Introduction.

In 1940 P. Erdös [1] proposed the problem to estimate the sum

$$
D(x)=\sum_{p_{n} \leqq x}\left(p_{n+1}-p_{n}\right)^{2}
$$

where p_{n} denotes the n-th prime. A. Selberg [10] and D. R. Heath-Brown [4] proved that

$$
D(x) \ll x(\log x)^{3}
$$

under the Riemann hypothesis, and that, for any $\varepsilon>0$,

$$
D(x) \ll x^{7 / 6+e}
$$

under the Lindelöf hypothesis, respectively. Furthermore, Heath-Brown [5] showed unconditionaly that, for any $\varepsilon>0$,

$$
D(x) \ll x^{23 / 18+e}
$$

and he [6] conjectured that

$$
D(x) \sim 2 x(\log x) \quad \text { as } x \rightarrow \infty
$$

U. Meyer considered in his Dissertation the almost-prime analogy of $D(x)$. Let P_{2} denote the set of integers with at most two prime factors, multiple factors being counted multiplicity. We replace the primes in $D(x)$ by the almost-primes P_{2}, and denote the resulting sum $D_{2}(x)$. In [8] he showed, by the weighted version of a zero density estimate for the Riemann zeta-function, that

$$
D_{2}(x) \ll x^{1.285}(\log x)^{10}
$$

It is the purpose of this paper to make an improvement upon this upper bound.
Theorem. We have

$$
D_{2}(x) \ll x^{1.023}
$$

where the implied constant is effectively computable.
In contrast to the Meyer's argument, we appeal to sieve methods, which are the weighted linear sieve of Greaves' type [3] and the prototype of an additive
large sieve inequality [9]. J. B. Friedlander [2] considered the related proplem from a different point of view. Our argument should be compared with [2], in which also sieve methods were employed.

We use the standard notation in number theory. Especially, for an integer a, $\Omega(a)$ and $\nu(a)$ denote the number of prime factors counted multiplicity and the number of different prime factors of a, respectively. All the implied constants are effectively computable.

I would like to thank Professor G. Greaves for sending me a copy of the preprint of his paper [3].

The present paper is a revised version of part of my Master thesis at Okayama University. I would like to thank Professor S. Uchiyama for encouraging me to publish the paper and careful reading the original manuscript. I would also thank the referee for making the paper easier to read.

2. Reduction of the problem.

In this section we deduce Theorem from Lemma 1 below. We postpone the proof of Lemma 1 until the final section. To simplify the notation, let p_{n} denote the n-th almost-prime P_{2} and write $d_{n}=p_{n_{+1}}-p_{n}$. Put $\theta=1.023$.

We will show that

$$
\begin{equation*}
\sum_{x<p_{n} \leq 2 x} d_{n}^{2} \ll x^{\theta} \tag{1}
\end{equation*}
$$

for all sufficiently large x. The assertion of Theorem immediately follows from this by the routine argument.

Lemma 1. We have unifomly for $x \leqq y \leqq 2 x,(\log x)^{3}<\Delta \leqq x / 2$,

$$
\sum_{\substack{y-(a<a \leq y}} 1>C \Delta(\log x)^{-1}+O\left(\Delta(\log x)^{-3}\right)+E_{1}(y, \Delta)+E_{2}(y, \Delta),
$$

where the $E_{j}(y, \Delta)(j=1,2)$ are some quantities depending on y and Δ to be given explicitly in § 4 below and satisfying

$$
\begin{equation*}
\int_{x}^{2 x}\left|E_{j}(y, \Delta)\right|^{j} d y \leqslant \Delta^{j-1} x^{\theta}(\log x)^{-j-1}, j=1,2 \tag{2}
\end{equation*}
$$

Here the positive constant C is effectively computable.
Now, let

$$
\Pi(\Delta)=\left\{p_{n} \in P_{2} ; x<p_{n} \leqq 2 x, 2 \Delta<d_{n} \leqq 4 \Delta, \quad p_{n_{+1}} \leqq 2 x\right\} .
$$

It is well known that $d_{n} \ll p_{n}^{1 / 2}$ for sufficiently large $p_{n} \in P_{2}$, so we may assume

$$
\begin{equation*}
\Delta \leqslant x^{1 / 2} \tag{3}
\end{equation*}
$$

For any fixed $p_{n} \in \Pi(\Delta)$, suppose that

$$
\left|E_{j}(y, \Delta)\right| \leqq \frac{C}{3} \frac{\Delta}{\log x}, j=1,2
$$

for some $y \in\left[p_{n}+d_{n} / 2, p_{n+1}\right)$. Then the right-hand side of (1) is positive for sufficiently large x. But, since

$$
y-\Delta>\frac{d_{n}}{2}+p_{n}-\frac{d_{n}}{2}=p_{n}
$$

the left-hand side of (1) is zero, which is impossible. Thus,

$$
\left|E_{1}(y, \Delta)\right|>\frac{C}{3} \frac{\Delta}{\log x} \text { or }\left|E_{2}(y, \Delta)\right|>\frac{C}{3} \frac{\Delta}{\log x}
$$

for all $y \in\left[p_{n}+d_{n} / 2, p_{n+1}\right)$. Namely,
(4)

$$
\Pi(\Delta) \subset \bigcup_{j=1}^{2} \Pi_{j}(\Delta)
$$

where

$$
\Pi_{j}(\Delta)=\left\{p_{n} \in \Pi(\Delta) ;\left|E_{j}(y, \Delta)\right|>\frac{C}{3} \frac{\Delta}{\log x} \text { for all } y \in\left[p_{n}+\frac{d_{n}}{2}, p_{n+1}\right)\right\}
$$

Now, we have

$$
\begin{aligned}
\int_{x}^{2 x}\left|E_{j}(y, \Delta)\right|^{j} d y & \geqq \sum_{p_{n} \in \Pi_{j}(\Delta)} \int_{p_{n+1} / d_{n} / 2}^{p_{n+1}}\left|E_{j}(y, \Delta)\right|^{j} d y \\
& >\sum_{p_{n} \in \Pi_{j}(\Delta)}\left(\frac{C}{3} \frac{\Delta}{\log x}\right)^{j} \frac{d_{n}}{2},
\end{aligned}
$$

since the intervals $\left[p_{n}+d_{n} / 2, p_{n_{+1}}\right]$ are mutually disjoint. Hence, by (2)

$$
\begin{align*}
\sum_{p_{n} \in \Pi_{j}(\Delta)} d_{n} & \ll\left(\frac{\Delta}{\log x}\right)^{-j} \int_{x}^{2 x}\left|E_{j}(y, \Delta)\right|^{j} d y \tag{5}\\
& \ll \Delta^{-1} x^{\theta}(\log x)^{-1} .
\end{align*}
$$

Since there is at most one element $p_{n} \in P_{2}$ such that

$$
x<p_{n} \leqq 2 x, 2 \Delta<d_{n} \leqq 4 \Delta, \quad p_{n_{+1}}>2 x,
$$

we have uniformly for $(\log x)^{3}<\Delta \leqq x^{1 / 2}$,
(6)

$$
\begin{aligned}
& \sum_{\substack{x<n \leq 2 x \\
2 \Delta<n_{n} \leqq 44}} d_{n} \leqq \sum_{p_{n} \in \Pi(\Delta)} d_{n}+4 \Delta \\
& \leqq \sum_{j=1}^{2} \sum_{p_{n} \in \Pi_{j}(\Delta)} d_{n}+4 \Delta \\
&<J^{-1} x^{\theta}(\log x)^{-1}+\Delta \\
&<\Delta^{-1} x^{\theta}(\log x)^{-1},
\end{aligned}
$$

by (4), (5) and (3).
Finally,

$$
\begin{aligned}
\sum_{x<p_{n} \leqq 2 x} d_{n}^{2} & =\sum_{\substack{x<p_{n} \leq 2 x \\
d_{n} \leqq x^{\theta-1}}} d_{n}^{2}+\sum_{\substack{x<p_{n} \leq 2 x \\
d_{n}>x^{\theta-1}}} d_{n}^{2} \\
& \leqq x^{\theta-1} \sum_{x<p_{n} \leqq 2 x} d_{n}+\sum_{x^{\theta-1} \ll \Delta \ll x^{1 / 2}} \sum_{\substack{x<p_{n} \leq 2 x \\
2 A<d_{n} \leqq 4 A}} d_{n}^{2}
\end{aligned}
$$

where Δ^{\prime} 's run through the powers of 2. By (6) we get

$$
\begin{aligned}
\sum_{x<p_{n} \leqq 2 x} d_{n}^{2} & \ll x^{\theta}+\sum_{\Delta} \Delta \sum_{\substack{x<p_{n} \leq 2 x_{1} \\
2 \Delta<d_{n} \leqq 4 \Lambda}} d_{n} \\
& \ll x^{\theta}+\sum_{\Delta} x^{\theta}(\log x)^{-1} \\
& \ll x^{\theta},
\end{aligned}
$$

as required.

3. Lemmas.

Firstly we state the results of [3] merely in as simple a way as is sufficient for our application.

Lemma 2. If $\Lambda=(\log 2 x)(\log D)^{-1}<1.95544$, then we have

$$
\sum_{\substack{y-\Delta<a \leq y \\ \Omega(a) \leqq 2}} 1>C(\Lambda) \Delta(\log x)^{-1}+\sum_{d<D} \lambda_{d} r_{d}(y, \Delta)-\sum_{\substack{y-\Delta<n \leqq y \\ p^{2} \mid n \\ D^{0} \leqq p<D^{u}}} 1,
$$

uniformly for

$$
x \leqq y \leqq 2 x, 2<\Delta \leqq x / 2
$$

where the positive constant $C(\Lambda)$ is effective and depends on Λ only,

$$
\begin{aligned}
& \left|\lambda_{d}\right| \leqq \mu(d)^{2} 3^{\nu(d)} \\
& r_{d}(y, \Delta)=\left[\frac{y}{d}\right]-\left[\frac{y-\Delta}{d}\right]-\frac{\Delta}{d}
\end{aligned}
$$

and u and v are the absolute constants such that $0.01<v<u<1$.
Lemma 3. For any real t, and $H>2$, we have

$$
t-[t]-\frac{1}{2}=-\frac{1}{2 \pi i} \sum_{0<|h|<H} \frac{1}{h} e(h t)+0\left(\min \left(1, \frac{1}{H\|t\|}\right)\right)
$$

where

$$
e(t)=e^{2 \pi i t}
$$

and

$$
||t||=\min _{n \in Z}|t-n| .
$$

Proof. See [7], for example.

Lemma 4. Let $1<A \leqslant 1$. For any different real numbers (b_{n}) and any complex numbers $\left(c_{n}\right)$, we have

$$
\int_{x}^{A x}\left|\sum_{n} c_{n} e\left(b_{n} u\right)\right|^{2} d u \ll\left(x+\delta^{-1}\right) \sum_{n}\left|c_{n}\right|^{2}
$$

where

$$
\delta=\min _{m \neq n}\left|b_{m}-b_{n}\right| .
$$

Proof. This is the corollary 2 in [9].
Lemma 5. Let $1<A \ll 1$. For any $H>2$, we have

$$
\int_{x}^{4 x} \min \left(H, \frac{1}{\|u\|}\right) d u \ll x(\log H)
$$

Proof.

$$
\begin{aligned}
\sum_{\substack{x-1<n \leq A x \\
n \in Z}} \int_{n}^{n+1} \min \left(H, \frac{1}{\|u\|}\right) d u & \ll \sum_{n}^{1 / 2} \int_{0}^{1 / 2} \min \left(H, \frac{1}{u}\right) d u \\
& <x(\log H)
\end{aligned}
$$

4. Proof of Lemma 1.

We begin with considering

By Lemma 3, we have

$$
\begin{aligned}
R_{1}= & \sum_{D^{v} \leq p<x^{1 / 3}}=\sum_{(y-\Delta) / p^{2}<m \leq y / p^{2}} 1 \\
= & \sum_{D^{v} \leq p<x^{1 / 3}} \frac{\Delta}{p^{2}}+\sum_{p} r_{p 2}(y, \Delta) \\
= & 0\left(\Delta(\log x)^{-3}\right)+\sum_{p} \sum_{0<|h|<p} \frac{1}{2 \pi i h}\left\{1-e\left(-\frac{h}{p^{2}} \Delta\right)\right\} e\left(\frac{h}{p^{2}} y\right)+ \\
& \quad+\sum_{p} 0\left(\min \left(\left(1, \frac{1}{p\left\|y / p^{2}\right\|}\right)+\min \left(1, \frac{1}{p| |(y-\Delta) \mid p^{2} \|}\right)\right)\right. \\
= & 0\left(\Delta(\log x)^{-3}\right)+R_{12}+R_{11}, \text { say } .
\end{aligned}
$$

We have then

$$
\int_{x}^{2 x}\left|R_{12}\right|^{2} d y \ll(\log x) \max _{D \bullet \leqq P<x^{1 / 3}} \int_{x}^{2 x}\left|\sum_{\substack{0, h<p \\ P<p \leqq 2 P}} \frac{1}{h}\left\{1-e\left(-\frac{h}{p^{2}} t\right)\right\} e\left(\frac{h}{p^{2}} y\right)\right|^{2} d y
$$

$$
\begin{aligned}
& \leqslant(\log x) \max _{P}\left(x+P^{4}\right) \sum_{h, p} \frac{1}{h^{2}} \sin ^{2}\left(\frac{\pi h \Delta}{p^{2}}\right) \\
& \leqslant(\log x) \max _{P}\left(x+P^{4}\right) \frac{\Delta}{P} \\
& <\Delta x(\log x) .
\end{aligned}
$$

by Lemma 4. Moreover we have, by Lemma 5,

$$
\begin{aligned}
\int_{x}^{2 x}\left|R_{11}\right| d y & \ll \sum_{D^{0} \leqq p<x^{1 / 3}} \int_{x}^{2 x} \min \left(1, \frac{1}{p\left\|\mid y / p^{2}\right\|}\right) d y \\
& =\sum_{p} p \int_{x / p^{2}}^{2 x / p^{2}} \min \left(p, \frac{1}{\|u\|}\right) d u \\
& \ll \sum_{p} p \frac{x}{\bar{p}^{2}}(\log x) \\
& \ll x(\log x) .
\end{aligned}
$$

We next deal with R_{2}.

$$
\begin{aligned}
R_{2} & =\sum_{x D^{-2 u}<m \leqq 2 x^{1 / 3}} \sum_{\substack{(y-\Delta) / m<p^{2} \leqq y / m}} 1 \\
& \leqq \sum_{m} \sum_{(y-\Delta) / m<k \leq y, m}^{k \leq Z / m} \\
& \leqq \sum_{m} \sum_{\sqrt{y / m}-\Delta / \sqrt{m x}<k \leq \sqrt{v / m}}^{k \in \mathbb{Z}} 1 \\
& =\sum_{m} \frac{\Delta}{\sqrt{m x}}+\sum_{m} r_{\sqrt{m}}\left(\sqrt{y}, \Delta x^{-1 / 2}\right) \\
& =0\left(\Delta(\log x)^{-3}\right)+\sum_{m} \sum_{0<|h|<m} \frac{1}{2 \pi i h}\left\{1-e\left(-\frac{h}{\sqrt{m}} \Delta x^{-1 / 2}\right)\right\} e\left(\frac{h}{\sqrt{m}} y\right)+ \\
& \quad+\sum_{m}\left(\min \left(1, \frac{1}{m \| \sqrt{y / m} \mid}\right)+\min \left(1, \frac{1}{m \| \sqrt{y / m}-\Delta / \sqrt{m x}| |}\right)\right) \\
& =0\left(\Delta(\log x)^{-3}\right)+R_{22}+R_{21}, \text { say. }
\end{aligned}
$$

We have as before

$$
\begin{aligned}
& \int_{x}^{2 x}\left|R_{22}\right|^{2} d y \\
& \left.\left.\ll \int_{x}^{2 x}\right|_{\substack{x-2 u<m \leq 2 x^{1 / 3}}} ^{\sum_{n<n}^{\prime}}\left(\sum_{k<x^{1 / 3}} \frac{1}{k}\right) \frac{1}{h}\left\{1-e\left(-\frac{h}{\sqrt{m}} \Delta x^{-1 / 2}\right)\right\} e\left(\frac{h}{\sqrt{m}} \sqrt{y}\right)\right|^{2} d y \\
& \ll \sqrt{x} \int_{\sqrt{x}}^{\sqrt{2 x}}\left|\sum_{h, m}^{\prime}\left(\sum_{k} \frac{1}{k}\right) \frac{1}{h}\left\{1-e\left(-\frac{h}{\sqrt{m}} \Delta x^{-1 / 2}\right)\right\} e\left(\frac{h}{\sqrt{m}} u\right)\right|^{2} d u
\end{aligned}
$$

where Σ^{\prime} indicates that h / \sqrt{m} 's are different from each other. Since

$$
\begin{aligned}
\left(\sqrt{m_{1}}+\sqrt{m_{2}}\right)\left|\frac{h_{1}}{\sqrt{m_{1}}}-\frac{h_{2}}{\sqrt{m_{2}}}\right| & >\left(\frac{h_{1}}{\sqrt{m_{1}}}+\frac{h_{2}}{\sqrt{m_{2}}}\right)\left|\frac{h_{1}}{\sqrt{m_{2}}}-\frac{h_{2}}{\sqrt{m_{2}}}\right| \\
& =\left|\frac{h_{1}^{2}}{m_{1}}-\frac{h_{2}^{2}}{m_{2}}\right| \\
& \geqq \frac{1}{m_{1} m_{2}},
\end{aligned}
$$

we see that

$$
\min _{\neq}\left|\frac{h_{1}}{\sqrt{m_{1}}}-\frac{h_{2}}{\sqrt{m_{2}}}\right| \gg\left(x^{1 / 3}\right)^{-5 / 2} .
$$

Hence, by Lemma 4, (5) contributes at most

$$
\begin{aligned}
& \sqrt{x}\left(\sqrt{x}+\left(x^{1 / 3}\right)^{5 / 2}\right) \sum_{x D-2<n<m \leqq 2 x^{1 / 3}}\left(\sum_{k<x^{1 / 3}} \frac{1}{k}\right)^{2} \frac{1}{h^{2}} \sin ^{2}\left(\frac{\pi h \Delta}{\sqrt{m x}}\right) \\
& \leqslant \sqrt{x}\left(\sqrt{x}+\left(x^{1 / 3}\right)^{5 / 2}\right)(\log x)^{2} \sum_{m \leq 2 x^{1 / 3}} \frac{\Delta}{\sqrt{m x}} \\
& \leqslant \Delta\left(\sqrt{x}+\left(x^{1 / 3}\right)^{5 / 2}\right)\left(x^{1 / 3}\right)^{1 / 2}(\log x)^{2} \\
& <\Delta x(\log x)^{2} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
\int_{x}^{2 x}\left|R_{21}\right| d y & \ll \sum_{x D^{-2 u<m \leqq 2 x^{1 / 3}}} \int_{x}^{2 x} \min \left(1, \frac{1}{m \| \sqrt{y / m \|}}\right) d y \\
& \ll \sum_{m} \frac{1}{m} m \sqrt{\frac{x}{m}} \int_{V x / m}^{\sqrt{2 x / m}} \min \left(m, \frac{1}{\|u\|}\right) d u \\
& \ll \sum_{m} \frac{x}{m}(\log x) \\
& \ll x(\log x)^{2},
\end{aligned}
$$

by Lemma 5.
Now we proceed to the remainder terms with the sieve estimate.

$$
\begin{aligned}
\sum_{d<D} \lambda_{d} r_{d}(y, \Delta)= & \sum_{d<D} \lambda_{d} \frac{1}{2 \pi i} \sum_{0<|h|<d} \frac{1}{h}\left\{1-e\left(-\frac{h}{d} \Delta\right)\right\} e\left(\frac{h}{d} y\right)+ \\
& +\sum_{d<D} \lambda_{d} 0\left(\min \left(1, \frac{1}{d\|\mid y / d\|}\right)+\min \left(1, \frac{1}{d\|(y-\Delta) / d\|}\right)\right) \\
= & R_{32}+R_{31}, \text { say. }
\end{aligned}
$$

By Lemma 4, we have

$$
\begin{aligned}
& \int_{x}^{2 x}\left|R_{32}\right|^{2} d y \leqslant\left.\left.\int_{x}^{2 x}\right|_{\substack{0<h<d<d \\
(h, d)=1}}\left(\sum_{m} \frac{\lambda_{d m}}{m}\right) \frac{1}{h}\left\{1-e\left(-\frac{h}{d} \Delta\right)\right\} e\left(\frac{h}{d} y\right)\right|^{2} d y \\
& \ll\left(x+D^{2}\right) \sum_{h, d}\left(\Sigma \frac{\lambda_{d m}}{m}\right)^{2} \frac{1}{h^{2}} \sin ^{2}\left(\frac{\pi h \Delta}{d}\right) \\
& \ll \Delta\left(x+D^{2}\right) \sum_{d<D} \frac{9^{\wedge}(d)}{d}\left(\sum_{m<D} \frac{3^{v(m)}}{m}\right)^{2} \\
& \leqslant \Delta\left(x+D^{2}\right)(\log x)^{15},
\end{aligned}
$$

since $\mu(d m)^{2}=1$. Moreover, Lemma 5 yields

$$
\begin{aligned}
\int_{x}^{2 x}\left|R_{31}\right| d y & \leqslant \sum_{d<D}\left|\lambda_{d}\right| \int_{x}^{2 x} \min \left(1, \frac{1}{d\|y \mid d\|}\right) d y \\
& \ll \sum_{d<D}\left|\lambda_{d}\right| \int_{x / d}^{2 x / d} \min \left(d, \frac{1}{\|u\|}\right) d u
\end{aligned}
$$

$$
\begin{aligned}
& \ll \sum_{d<D} 3^{\nu(d)} \frac{x}{d}(\log x) \\
& <x(\log x)^{4}
\end{aligned}
$$

Put

$$
E_{j}(y, \Delta)=R_{1 j}+R_{2 j}+R_{3 j}, j=1,2
$$

Then, by the above argument, we see

$$
\int_{x}^{2 x}\left|E_{1}(y, \Delta)\right| d y \ll x(\log x)^{4}
$$

and

$$
\int_{x}^{2 x}\left|E_{2}(y, \Delta)\right|^{2} d y \ll \Delta\left(x+D^{2}\right)(\log x)^{15}
$$

Taking

$$
D=(2 x)^{0.5115}(\log x)^{-9}
$$

so that

$$
\Lambda=\frac{\log 2 x}{0.5115(\log 2 x)-9(\log \log x)}<\frac{1}{0.5114}<1.95544
$$

we get Lemma 1 .
This completes our proof.

References

[1] Erdös, P., The difference of consecutive primes., Duke Math. J. 6 (1940), 438-441.
[2] Friedlander, J. B., Moments of sifted sequences., Math. Ann. 267 (1984), 101-106.
[3] Greaves, G., The weighted linear sieve and Selberg's λ^{2}-method., Acta Arith. 47 (1986), 71-96.
[4] Heath-Brown, D. R., The differences between consecutive primes II., J. London Math. Soc. (2) 19 (1979), 207-220.
[5] Heath-Brown, D. R., The differences between consecutive primes III., ibid (2) 20 (1979), 177-178.
[6] Heath-Brown, D. R., Gaps between primes, and the pair correlation of zeros of the zeta-function., Acta Arith. 41 (1983), 85-99.
[7] Huxley, M. N., The distribution of prime numbers., Oxford, 1972.
[8] Meyer, U., Eine Summe über Differenzen aufeinanderfolgender Fastprimzahlen P_{2}, Arch. Math. 42 (1984), 448-454.
[9] Montgomery, M. H., and Vaughan, R. C., Hilbert's inequality., J. London Math. Soc. (2) 8 (1974), 73-82.
[10] Selberg, A., On the normal density of primes in short intervals and the difference between consecutive primes., Arch. Math. Naturvid. 47 (1943), 83-105.

> Institute of Mathematics University of Tsukuba Ibaraki Pref. 305 Japan

