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0. Introduction.

In the theory of Kac-Moody Lie algebras, it is important to know the set
of imaginary roots and the set of weights for integrable modules. We will
study these two kinds of sets using the idea of saturated sets (cf. [1]), and
show the following theorems.

THEOREM 1 ([3],[4],[8]). Let A be a generalized Cartan matrix, and g the
Kac-Moody Lie algebra of type A. Then the root system A, with simple roots
II={a,, -, a,}, of ¢ is uniquely characterized by the following properties:

(1) A is a saturated set,

(2) A=—A,

3) ka;eA=k=0, x1 for all a;€Il and k<= Z,

4) B<ul or 0< ;B for each BEA,

(5) if BEA and hi(B)>1, then there exisis some a;,E1Il such that B—a;EA.

A generalized Cartan matrix will be simply called a GCM.

THEOREM 2. Let V be a standard g-module. Then the set A of weights for
V' is uniquely characterized by the following properties:

(1) A is a saturated set,
(2) there exists A€ A such that p<gA for all pe 4,
3) if h(A—uw)>0 for ps A, then there exists some a; Il such that p+a, < A.

Such a subset A is sometimes denoted A(1). Let L=P~,Za;, and L_=
{ac L|a<g0, a#0}. A nonzero element a< L is called connected if Supp(a) is
connected. Let R be the subset of L consisting of all the connected elements.
Put R.=RNL_. and C=R_\U{0}\U(—R_.). Let A*™ be the set of negative imag-
inary roots of g.

Received February 19, 1986.



78 Jun MoORITA and Minoru WAKIMOTO

THEOREM 3.

(1) Ai™ is a unique maximal saturated subset of R..
(2) A™ is a unique maximal W-invariant subset of R-.

COROLLARY.

(1) A is a unique maximal saturated subset S of C with the property SNZay
={0, +a;} for all 1=<i<n.

2) A is a unique maximal W-invariant subset S of C with the property
SNZa;=1{0, +a;} for all 1=i=n.

An element a=Ai™ is called a top element of AY™ if there is no a;€II such
that a+a;=A™. Let T be the set of all the top elements of A'™.

THEOREM 4. A™=\J,erA(a).

THEOREM 5. Let A be a GCM. Suppose that A does not contain (_% ﬁ‘;)
(a=5) as a submatrix. Then the following two conditions are equivalent.

1) Am=AA) for some A.

(2) A contains no affine GCM and contains a unique strictly hyperbolic GCM

as submatrices.

THEOREM 6. Let A be a GCM. Suppose that A contains (_? —;> (a=5) as
a submatrix and choose a subset J=1{i, 7} of {1, -+, n} such that the corresponding

submatrix Ay is (_i _;} Let p=—2a;—a; If B is a unique highest element

of A'™, then A™=A(B).
For general Ac P*, one can see the following.

THEOREM 7. Let Aec P*N\X2,Ca;, and suppose A+0.
(1) If 2€R._, then AQ)C 4™
(2) If A is of strictly hyperbolic type and A(h;)=0 (mod det A) for every 1<
i<n, then AQQCA™,
2 _5 im
@ If A=(_] "), then AQCA,

Theorems 1 and 2 will be discussed in Section 1, and Theorems 3-7 will be
established in Section 2. We will give several examples in Section 3. In Ap-
pendix I, strictly hyperbolic GCMs will be classified, and in Appendix II, GCMs
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satisfying the conditions of Theorem 6 will be classified. Finally we note that
we do not assume the symmetrisability of GCMs.

1. Saturated sets, root systems and weight systems.

An nXn integral matrix A=(a;;) is called a generalized Cartan matrix
(GCM) if a;;=2 (1=i=n), a,;=0 1Zi#5<n), and a;=0© a,;,=0 (17, j<n).
A triplet (), I, I1V) is called a realization of A (cf. [4]) if % is a finite dimen-
sional vector space over C, [I={a,, -, a,} is a set of n linearly independent
elements of Y*=Homc(h, C), IIV={h,, ---, h,} is a set of n linearly independent
elements of Y, and a;(h;)=ay; for all i, j.

Let L=@%,Za;, the root lattice in §*, and let ht(B)=2]%c;, the height of
B, for an element =37 ,c;,a;= L. We define a partial order < on 5* by
saying that p<pv if y—peXr,Z.ia;. An element peh* is called integral if
p(h)eZ for all 1</<n. We denote by P the set of all the integral elements
of h*. A non-empty subset S of P is called saturated (cf. [1]) if for all peS,
1<i<n, and k between 0 and p(h;), the element p—ka; also lies in S.

The Kac-Moody Lie algebra g of type A is defined to be the Lie algebra
over C generated by the so-called Cartan subalgebra §) and the so-called Chevalley
generators ey, -+, @q, f1, -, fn with the following defining relations: [, h’]1=0
(h, b’ &), Les, f1=0:5h: (1<4, j<n), [h, eJ=ay(h)e; 1<i<n), [k, fi]l=—ai(h)f;
(1=i=n), (ade;)"*Ve;=0 (1<i#j=n), (adf)" >V f;=0 (1<i+;<n), where n(, 7)
=—ay+1 (cf. [2], [3], [6]).

A g-module V is called integrable if

(1) V is the direct sum of the weight subspaces Ve={veV]hw=ph for
all hel} with pebh*,

(2) the e; and f; are locally nilpotent on V.

The set of weights for V is denoted by A(V):{yef)*]Vp;tO}. Then A(V)CP.

The adjoint representation is integrable, and A=A(g) is called the root system
of g (cf. [3], [7D)

THEOREM 1 ([3], [4], [8]). Notation is as above. Then A is uniquely charac-
terized by the following properties:

(1) A is a saturated set,

(2) A=—A,

@) ka;eAe k=0, =1 for all 1<i<n and ke Z,

@) B<n0 or 0< B for each BEA,

(5) if BeA and h(B)>1, then there exists some a;=IT such that B—a;sA.
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There exists a subset SC P which satisfies the conditions (1)-(4) but does
not satisfy (5) in Theorem 1. This is due to M. Kaneda.

An integrable g-module V is called a standard module (cf. [5]) if there ex-
ists a nonzero weight vector v*€V; for some A&h* such that U(gv*=V and
evt=0 for all 1<i<n, where U(g) is the universal enveloping algebra of g.
This weight 4 is called the highest weight of V, and always lies in P*=
{pe Pl p(h)=0 for all 1=/<n}. Conversely for each 1€ P* there exists a
standard module whose highest weight is 2. The set of weights for such a g-
module is denoted A(4).

THEOREM 2. Notation is as above. Then A(R) is uniquely characterized by
the following properties:

(1) AQA) is a saturated set,

2) 2€AQ) and p<gA for all pcAQ),

(3) if ht(A—p)>0 for ps A(R), then there exists some a; Il such that p+a;
e AQ).

Notice that there is a saturated subset S of P which satisfies the condition
(2) but does not satisfy (3) in Theorem 2 (see Example (3.

PROOF OF THEOREM 2. It is enough to show the uniqueness. Let S and S’
satisfy the conditions (1)-(3) in Theorem 2. Put S.={psS|htA—p)=n} and
S,={peS'|htA—p)<n} for n=0,1, 2, ---. We will show S,=S; by induction
on n. Of course S,={4}=S; by the condition (2). Suppose Sp-1=S4-1. Take
an element peS,. By the condition (3), there is some a;=II such that y=
p+a;eS. Thus veS,..=S4_.. If v(h)>0, then v—a;=p< S’ by the condition
(1. Suppose v(h;)<0. Then p=v—a;&S (resp. S’) if and only if v (—v(hy)
+Da;=S,-: (resp. S,-y). By our assumption: Sp-1=S4., we see peS.
Anyway pc<S;. Therefore S,CS.. Similarly we can show S7,CS,. Hence
S,=Sp. O

COROLLARY. Let S satisfy the conditions (1)-(3) in Theorem 2. Put S,=
{peS|htA—pm<n} for n=0,1,2, . Let pES, and a1l

1y If ph)>0, then p—ai€Sys
@) If ph)=0, then p—a;E S+, if and only if pH(pth)+ e, €S,

2. Negative imaginary roots.

Let 7; be the involutive linear transformation of §* defined by rix)=x—
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x(h)ea; for all xeh*. Then A is r;-stable for each 7=1, ---, n. Put W=<({r;|¢
=1, ---, n)CGL(H*), called the Weyl group. Let A"={wa;|lweW, i=1, -, n},
the set of real roots, and A"™=A—A", the set of imaginary roots. Set A"=
{asA'™|a+0, a<;0}, the set of negative imaginary roots. Put L.={peL]|
2<n0, p#0}.

For a GCM A=(a:)1<i, jsn and a non-empty subset J of {1, .-, n} with
some ordering, the matrix A,=(a;;):, jer is also a GCM. Such a GCM is called
a submatrix of A, and we say that A contains A; as a submatrix. A GCM
A=(a;)1c1,;sn i called indecomposable if for any distinct z, 7, there exist some
indices #(1)=1, #(2), i(3), -+, i(r)=J such that a;cy, ix+*0 for k=1, -+, r—1.

For a nonzero element a=2%,c;e;< L, put Supp (a)={7|c;#0}, the support
of a. Simply we write A,=Asuppa>» Then a is called connected if Supp(a)
is connected in terms of Dynkin diagrams, equivalently, if A, is indecomposable.
We regard 0 as a non-connected element. Let R be the subset of L consisting
of all the connected elements. Put R_.=RNL_ and C=R_\J{0}\U(—R.).

THEOREM 3. Notation is as above.

1) A™ {s a unique maximal saturated subset of R_.
(2) A™ is a unique maximal W-invariant subset of R_.

COROLLARY.

(1) A is a unique maximal saturated subset S of C with the property SNZa;
={0, +a;} for all 1<i<n.

(2) A is a unique maximal W-invariant subset S of C with the property SN
Za;={0, *a;} fer all 1<i<n.

PrROOF OF COROLLARY. It is enough to show (2). Put S.=SNR_and S.=
SN(—R-). Since —S also has the same property, we see S,=—S. by the
maximality. Let a=S., and set S'={w(a)|lwesW}. If S’CS_, then S’ isa W-
invariant subset of R_, so S’CA™ by Theorem 3(2). Therefore acA™, If
S’¢S_, then there is S5’ such that f=S. and »;(8)e S, for some 1=i<n.
This implies that f=a; and a=A™ by the trichotomy. Hence acA and S_-CA.
Then S. is also a subset of A by Theorem 1(2). Therefore SCA, and S=A by
the maximality of S. O

Proor oF THEOREM 3. Since a saturated set is always W-invariant, we
need only to prove (2). Let S be a W-invariant subset in R.. For any 1<S,
we can choose w,eW such that w,A)=P*. Then w,A)cK=KA=P*NR_,
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and so A€\ Jyeww(K)=A" (cf. [3], [4; Th. 5.4]), which completes the proof. [J

An element a=A™ is called a top element if there is no a;=I7 such that
a+a;€A*™, Let T be the set of all the top elements of Ai™,

THEOREM 4. A™=\J,erA(a).

PROOF OF THEOREM 4. Let aeT, and take e A(a). Suppose that Supp (B)
is not connected. Then there is an element y< A(a) such that y—a;< A(a) and
r(h:)=0 for some 7¢Supp(y), which implies that y4+a,€A(a) and y+a;& L.
This is a contradiction. Hence A(a) is a saturated subset of R_.. Therefore
UserA(@)C AP, Conversely let f=Ai™. We will show that 8 belongs to A(a)
for some a= T by induction on n=|h#(B)|. If there is no a;&IIl such that 8+
a;€A™, then BT and B A(B). Suppose that f'=F+a;, €A™ (a;=1I). Then,
by induction, f’e A(a) for some acT. If B/(h;)>0, then f=f—a;e(e). If
B'(h)=0, then y=B—Bh)a;=F"+(—p (h)+1)a;sA*™ and |ht(y)|<n. Then
reA(a’) for some a’e7T. Hence = A(a’). Therefore AC\J,erd(a). [

Cartan matrices arising from the classification of finite dimensional complex
semisimple Lie algebras are called GCMs of finite type. An indecomposable
GCM A=(as;)1si, jsn is called of affine type if there exist some positive integers
by, -+, b, such that (by, -, ba) (@)=, -~-, 0). An indecomposable GCM A is
called of strictly hyperbolic type if A is not of finite type and not of affine
type, and any proper submatrix of A is of finite type.

THEOREM 5. Let A be a GCM, and A'™ the set of negative imaginary
roots of the associated Kac-Moody Lie algebra. Suppose that A does not contain

2 — .. .
(__ 1 g) (a=5) as a submatrix. Tnen the following two conditions are equivalent.

1) A™=AQA) for some A.
(2) A contains no affine GCM and contains a unique strictly hyperbolic GCM
as submatrices.

We will proceed in several steps.

LEMMA ([4; Prop. 11. 2b)]). Let 2P, and J={i|A(h)=0}. If Jisempty
ov Ay is of finite type, then AQ)=W -{usP*|\p<gl}.

PROOF OF THEOREM 5.
STEP 0. If A is of strictly hyperbolic type, then A= A(2) for some A.
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This follows from Theorem 3, Lemma, and Appendix I

STEP 1. In Theorem 5, (1) implies (2).

If A contains an affine submatrix, then A'™ does not satisfy the condition
(3) in Theorem 2. If A contains two strictly hyperbolic GCMs as submatrices,
then A™ does not satisfy the condition (2) in Theorem 2.

STEP 2. Suppose that A satisfies the condition (2) in Theorem 3. Let B
be a unique, up to permutations of indices, strictly hyperbolic submatrix of A,
and § the highest element of K(B) (cf. Theorem 3, Step 0). If a=K(A), then
Supp (B)CSupp (a).

Let A’ be a minimal indecomposable non-finite submatrix of A,. Then
A’=B (modulo permutations of indices).

STEP 3. Under the same situation as in Step 2, 8 is a unique highest
element of K=K(A).

The result is clear if B is none of the GCMs of type (iii)-tree (b), (¢) in
Appendix I In the remaining cases, the posibility of A is given by the follow-
ing Dynkin diagrams :

O==0==0 ,
O==0&=0,
0=—=0—)0———O0--------- 0 o,
O=—0—=0 O--wmmm o) o,
o&==0—0 O------- o= 0 o.

In any case, it is confirmed by direct computation that B is the highest element
of K.

STEP 4. Under the same situation as in step 2, A= _A(A).

By Step 3, we see KCP*(B)={usP*|p<pgB}. On the other hand, take
p<P*(B). Then peLl and p=<;0. Suppose that g is not connected. Then
there is an indecomposable finite submatrix, say A,, of A satisfying that there
is an index j&J such that p(h;)<0, a contradiction. Therefore y=K. Hence
K=P*(8). Then Lemma leads to AI»=A(). O

Similarly we can show the following.

THEOREM 6. Let A be a GCM. Suppose that A contains (»2 _Z> (a=b) as

1
a submatrix and choose a subset J=1{i, j} of {1, ---, n} such that the correspond-
ing submatrix Ay is (_? _9. Let B=—2a;—a; If Bisa unique highest element

of A", then A™=A(B).
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Such an indecomposable GCM in Theorem 6 will be classified in Appendix IL
To attract a one’s attention, we will write Step 0 again.

COROLLARY. If A is of strictly hyperbolic type, then

(1) A™ has a unique highest element B (listed in Appendix D,
(2) Am=A(B).

As a condition of the relation A(Q)CA!™, we get the following.

THEOREM 7. Let A= P*NX%,Ca; and suppose A+0.

(1) If A=R_, then AQ)CTA™,
(2) If A is of strictly hyperbolic type and A(h;)=0 (mod det A) for every 1<
i<n, then AQCA™.

3 If A:(_? ’g) then AQ)CAI™.

PROOF OF THEOREM 7 (1): One sees, as in the proof of Theorem 4, that
AQ)CR_. Thus, by the maximality of A™ (cf. Theorem 3), ARQcA™, (2): We
notice that det A<(0 and every entry of the cofactor matrix Aof Ais a positive
integer (cf. Appendix I). Write A=21.,k;a; (k;€C), and put my=Ah;) 1Zi<n).
Then (my, -, ma)=(ky, -, ku)-'A, and (ky, -+, kn)=0ni, -, m})-*A, where m;
=m;/(det A). Therefore k;=Z, for all 1<i<n, and A€R.. (3) is obvious from
(2) since det A is —1. O

In each case, it is possible to write down an explicit condition (cf. Example

(6)-(12)).

3. Examples.

g _3) Then

T:{_k(al_*_azﬂk:l) 2: 3) "'}y

(1) Let A=(_

Alay={a} for each acT,

A=\ yer Ala)=T.

2 —3
(2) Let 4=(_3 ") Then
T:{_al—‘az},

A= A(—a,—a,).
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(3)-(i) Let A be an affine GCM and S,=A!",
-(ii) Let A be a non-finite GCM and S,={0}\A™,
Then S, and S, satisfy the conditions (1), (2) in Theorem 2, but does not satisfy
the condition (3) in Theorem 2.

2 -5
(4) Let A=(_{ ~,). Then
T={—2a,—a},

A= A(—2a,—a,).

2-5 0
(5) Let A=|—1 2 —1}. Then
0-5 2
T={—-2a,—a,, —a,—a,—a,;, —a;—2as},
A= A(—2a,—a )\ JA(—a;—ar—a)\J A(—a,—2a;).
InJ(6)-(12), we suppose that A belongs to P*N\>32,Ca; and A+0.
2—-1 0 2-3 0
(6) Let A=—-3 2 —1}or|—1 2 —1| Then
0—-2 2 0—-2 2
A(hy)=0 (mod2) & AQ)CA™,
2—-1 0 2—-3 0
(7) Let A=|—-3 2 —2|or|—1 2 —1| Then
0—-1 2 0—-1 2
Ahi+h)=0 (mod2) & AQ)CA™,

2 -1 -1
(8) Let A=[—2 2 —1) Then
-1 -1 2

Ahi—hy)=0 (mod3) & AQA)CA™,
2-1 0
(9) Let A=|—-3 2 —-l), Then
0-3 2

Alhy+hs)=22(hy) (mod4) & AQD)CTAM™,

2-1 0 2-3 0
(10) Let A={—3 2 —3lor{—1 2 —1; Then

0-1 2 0 -3 2



86 Jun MoriTA and Minoru WAKIMOTO

Ahy—hy)=24(hs) (mod4) & ADCTA™.

2 -1 0-1
-2 2-1 0

(11) Let A= 0—1 2 —1f Then
-1 0-1 2

Ah,—hy)=24(h,) (modd) & ARQCTAZ™.
2-1 0 0-1
-2 2-1 0 0

(12) Let A=| 0 -1 2 —1 0} Then

0 0-—-1 2-1
-1 0 0-1 1

a+2b=0 (mod5)

{ = AQCA™,
2a—b=0 (mod5)

where a=A(hs—h;), b=A(h;—h,).

Appendix 1
(List of strictly hyperbolic GCMs)

(size), GCM A, det 4, ﬁ, a unique highest element of A™

(ii)~(a) (—2

b”;) (a, b=2, ab=5), 4—ab, (* ) —(1)

b 2 1

B2 w290, 9 ()

(iii)-loop

2 —-1-1 3
(—2 2 —1), -3, (5
-1 -1 2 4
3

7

5

|
ST)
T
o
S W w w w w w w w W w
o B
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1 10 6
3 2 4), )
5 8 2

o,

2

2
2 -1-1

2
2 -1
-1 -3 2

(
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2 =2 -1
-1
-1 -1
2 -3 -1
-1 2 -1
-1 -3
2 —2 =2
C—1

|
|

L &N o0

- O O

2 -1
-2 -3

-2
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2 -1 -2
-2 2 —1}],-19,
-1-3 2

T T T
i o = — o P IR I ]
! ! |
o™ 00 e [or IR ol ) L o0

vd i
[« oo\ B Ve 513827
- =
- o0 m - O 1O i
- ~ -
S N &
| ! [
N M AN [Selar BN [N IR BN
I I Pl
™M AN v — O — NN
| _ _ _ | _
AR DA
~——

tree (a)

2-2 0
-1 2 -1

|
|

0
2

2 -3

—1
0 -3

tree (b)
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tree (c)
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L1l
[2]
£3]
[4]
(5]
(6l

[7]
£8]
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Appendix II
(Dynkin diagrams with the properties in Theorem 6)

oo = (278 w29,

1 2
] F ] = @ Dynkin diagram of finite type.
O——O -----=-- o0—0
@ e, 50
ey G p-vertices (b, ¢=0)
2 O ---7-=er am—
g-vertices
@) -—-—;--o—o<:o (p=1)
p-vertices
@ [F de@oc—o—0on---00 (92D)
p-vertices
@ @ ho——g<: (p=2)
p-vertices
Q
®) D o—=0 (122

p-vertices
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