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0. Introduction.

In the theory of Kac-Moody Lie algebras, it is important to know the set

of imaginary roots and the set of weights for integrable modules. We will

study these two kinds of sets using the idea of saturated sets (cf. [1]), and

show the following theorems.

Theorem 1 ([3],[4],[8]). Let A be a generalized Car tan matrix, and g the

Kac-Moody Lie algebra of type A. Then the root system A, with simple roots

n―{ax, ･■■,an), of g is uniquely characterized by the following properties:

(1) A is a saturated set,

(2) A=-A,

(3) kateA&k=O, ±1 for all a,e/7 and k^Z,

(4) /S<770 or 0</7jQ for each /3eA,

(5) if 5eA and ht(B)>l, then there exists some a^II such that B―a^A.

A generalized Cartan matrix will be simply called a GCM.

Theorem 2. Let V be a standard ^-module. Then the set A of weights for

V is uniquely characterized by the following properties:

(1) A is a saturated set,

(2) there existsl^A such that fi<n^ for all fJt^A,

(3) if ht(l―fi)>0 for [i^A, then there existssome a^TI such that n+a^A.

Such a subset A is sometimes denoted A{1). Let L=Q)i=1Zai and L- =

{a^L＼a<nO, a^O}. A nonzero element ≪eL is called connected if Supp(a) is

connected. Let R be the subset of L consisting of all the connected elements.

Put R- ―Rr＼L^ and C=Z?-W{0}U(―R-). Let Aim be the set of negative imag-

inary roots of a.
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Theorem 3.

(1) Aim is a unique maximal saturated subset of R-.

(2) Aim is a unique maximal W-invariant subset of R-.

Corollary.

(1) A is a unique maximal saturated subset S of C with the property Sr＼Zat

= {0, ±at} for all l£i£n.

(2) A is a unique maximal W-invariant subset S of C with the property

Sr＼Zai={0, ±at} for all l^z^n.

An element ≪eAim is called a top element of Aim if there is no a^JJ such

that a+avGAl"1. Let T be the set of all the top elements of Aim.

Theorem 4. Aim=＼JaGTA(a)

Theorem 5. Let A he a GCM. Suppose that A does not contain ( 1 9)

(a5^5) as a submatrix. Then the following two conditions are equivalent.

(1) A^=A{X) for some 1.

(2) A contains no affineGCM and contains a unique strictlyhyperbolic GCM

as submatrices.

Theorem 6. Let A be a GCM. Suppose that A contains(_1
^j

(a2^5) as

a submatrix and choose a subset I={i, i＼of {1, ･･■,n＼such that the correstondins

submatrix Aj is ( ^＼ Let ^=―2ai―aj. If )8is a unique highest element

of Aim, then ALm=A(p).

For general ie?+, one can see the following.

Theorem 7. Let ^eP+nSJUCtoi, and suppose X^O.

(1) If X^R-, then A(X)dJim.

(2) // A is of strictlyhyperbolic type and X(hi)=O (moddet^l) for every 1^

i£n, then A(X)(ZAim.

(3) // A=(_* g)' then A^CLALm-

Theorems 1 and 2 will be discussed in Section 1, and Theorems 3-7 willbe

established in Section 2. We will give several examples in Section 3. In Ap-

pendix I, strictlyhyperbolic GCMs will be classified,and in Appendix II, GCMs
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satisfying the conditions of Theorem 6 will be classified. Finally we note that

we do not assume the svmmetrisabilitv of GCMs.

1. Saturated sets, root systems and weight systems.

An nXn integral matrix A―{aij) is called a generalized Cartan matrix

(GCM) if au=2 (l£i^n), a^O (l^i^j^n), and aij=0&aJt=0 (l£t, j^n).

A triplet (I),77, 77V) is called a realization of A (cf. [4]) if ^ is a finite dimen-

sional vector space over C, n={au ■■･,ctn} is a set of n linearly independent

elements of fj*=HomcOJ, C), IIv={hu ･■･,hn} is a set of n linearly independent

elements of I), and ai(hj)=^aji for all i, j.

Let £=c?=1Z≪i7 the root lattice in !)*, and let fa(j8)=2i=iCi, the height of

jS, for an element /3=2?=iCt≪iS£- We define a partial order </z on fj* by

saying that ^<izy if v―fi^'Ei=iZ>oai. An element
juelj*

is called integral if

fi(hi)^Z for all l^f^n. We denote by P the set of all the integral elements

of I)*. A non-empty subset 5 of P is called saturated (cf. [1]) if for all
jueS,

l^i<n, and & between 0 and fi(hi), the element [i―kcci also lies in 5.

The Kac-Moody Lie algebra g of type A is defined to be the Lie algebra

over C generated by the so-called Cartan subalgebra t)and the so-called Chevalley

generators eu ･･･, en, fi, ･･･, fn with the following defining relations : ＼_h,hr~]=0

(h, /i'ef)),let, fj^dijhi il^i, j£n), [A, ei]=ai(/i)0i (l^f^n), [/j, /i] = -ai(/i)/1

(l^z^n), (adei)B<i'J)^=0 (l^/^;^n), (ad/i)n(i-'>/>=0 (l^/^/^n), where n(/, j)

= -fl,,+l fcf. T21. T31. T61).

A g-module V is called integrable if

(1) V is the direct sum of the weight subspaces V(t={v^V＼hv=[i(h)v for

all /ielj} with /ie^,

(2) the 2i and ft are locally nilpotent on V.

The set of weights for V is denoted by A(V)={ft^*＼Vfl^0}. Then A(V)(ZR

The adjoint representation is integrable, and A=A(q) is called the root system

of a fcf. r3i. rr＼＼

Theorem 1 ([3], [4], [8]). Notation is as above. Then A is uniquely charac-

terized by the following properties:

(1) A is a saturated set,

(2) A=-A,

(3) kai<=A<=$ k=0, ±1 for all l^i£n and k^Z,

(4) J8</70 or 0<77iS for each /3eA,

(5) if /3eA and ht{fi)>l, then there existssome a^U such that fi―cti^A.
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There exists a subset ScP which satisfiesthe conditions (l)-(4) but does

not satisfy (5) in Theorem 1. This is due to M. Kaneda.

An integrable g-module V is called a standard module (cf. [5]) if there ex-

ists a nonzero weight vector v+^Vx for some X&fi* such that U(q)v+=V and

eiV+=0 for all l^Sz^n, where £/(g)is the universal enveloping algebra of g.

This weight X is called the highest weight of V, and always lies in P+=

{fieP＼fi(hi)^Q for all l^Li^n}. Conversely for each i£?+ there exists a

standard module whose highest weight is X. The set of weights for such a g-

module is denoted A(X).

Theorem 2. Notation is as above. Then A(X) is uniquely characterized by

the following properties:

(1) A{X) is a saturated set,

(2) XeA(X) and (i<nX for all pt^A(X),

(3) if ht(X―fi)>0 for pt^A{X), then there existssome ai&II such that /J+a*

<=A{X).

Notice that there is a saturated subset S of P which satisfiesthe condition

(2) but does not satisfy (3) in Theorem 2 (see Example (3)).

Proof of Theorem 2. It is enough to show the uniqueness. Let S and S'

satisfy the conditions (l)-(3)in Theorem 2. Put Sn={{te.S＼ht(X―[t)^n} and

S'n={f£e=S'＼ht(X―fi)^n}for n=0, 1, 2,■■■.We will show Sn=S'n by induction

on n. Of course SQ={X}=S'O by the condition (2). Suppose Sn-1=S/n-1. Take

an element //gSb. By the condition (3), there is some a^TI such that v―

pi+ai^S. Thus v^Sn-i=S'n-i. If v(/if)>0, then v-a<=//eS' by the condition

(1). Suppose v(/ij)^0. Then pt=v―ai^S (resp. SO if and only if v+(―v(hi)

+ l)aieSn_1 (resp. S^-j). By our assumption: Sn-i=S'n-i, we see jueS'.

Anyway /a^S'n. Therefore SncS'n. Similarly we can show S'nclSn. Hence

s ―sr n

Corollary. Let S satisfy the conditions(l)-(3) in Theorem 2. Put Sn=

{ptGS＼ht(X-pt)^n} for n=0, 1, 2, ■■■.Let ^eS≫ and a^II.

(1) // fi(hi)>0, then fi-at^Sn+1.

(2) // u(hi)^0, then u―ai<^Sn+1 if and only if u+(ft(hi)+l)ai<^Sn.

2. Negative imaginary roots.

Let r< be the involutive linear transformation of ft* defined bv rAx)=x ―
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x(hi)ai for all xe^*. Then A is ^-stable for each /=1, ･･･, n. Put W=(ri＼i

=1, ■■■,n>CGL(f)*), called the Weyl group. Let Are={wai＼w^W, *=1, ･･･, n),

the set of real roots, and Aim=A―Are, the set of imaginary roots. Set Aim=

{aeAim|a=£0, a<nR}, the set of negative imaginary roots. Put L-={fi^L＼

[t<nO, p*0}.

For a GCM A=(aij)1£i,j<in and a non-empty subset / of {1, ･･･, n} with

some ordering, the matrix Aj={ai})i,jGj is also a GCM. Such a GCM is called

a submatrix of A, and we say that A contains Aj as a submatrix. A GCM

A=(aij)1£ijin is called indecomposable if for any distinct i, j, there exist some

indices /(l)=z＼i(2),i(S), ■■･,i(r)=j such that flicjo.icfe+n^O for k = l, ･･･, r―1.

For a nonzero element a=Yli=iCiai^L, put Supp(a)={z'|cf =£()},the support

of a. Simply we write Aa=ASuPp(.a> Then a is called connected if Supp(a)

is connected in terms of Dynkin diagrams, equivalently, if Aa is indecomposable.

We regard 0 as a non-connected element. Let R be the subset of L consisting

of all the connected elements. Put R-―Rr＼L- and C=i?_W{0}U(―/?_).

Theorem 3. Notation is as above.

(1)

(2)

Aim is a unique maximal saturated subset of R-.

Alm is a unique maximal W-invariant subset of R―

Corollary.

(1) A is a unique maximal saturated subset S of C with the property Sr＼Z(Xi

= {0, ±at} for all l^i^n.

(2) A is a unique maximal W-invariant subset S of C with the property Sf~＼

Zat={0, ±ca} fer all l<Li^n.

Proof of Corollary. It is enough to show (2). Put S-=Sr＼R- and S+=

Sr＼(―R~). Since ―S also has the same property, we see S+=―S_ by the

maximality. Let aeS., and set S'={w(a)＼w&W＼. If S'ClS., then S' is a W-

invariant subset of R-, so S'cAl by Theorem 3(2). Therefore aeAim. If

S'£S-, then there is /3eS' such that j3eS_ and ri(j8)eS+ for some l£i^n.

This implies that ^=at and aeAre by the trichotomy. Hence aeA and S_cA.

Then S+ is also a subset of A by Theorem 1(2). Therefore ScA, and S=A by

the maximality of S. □

Proof of Theorem 3. Since a saturated set is always PF-invariant, we

need only to prove (2). Let S be a W-'mvariant subset in i?_. For any ^eS,

we can choose woeW such that u)0(l)eF+. Then wo(X)^K=K(A) = P+r＼R-.
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and so 2.<e＼Jw(=ww(K)= Aim (cf.[3],[4; Th. 5.4]), which completes the proof. □

An element aeAim is called a top element if there is no a^II such that

a+at^AH71. Let T be the set of all the top elements of Aim.

Theorem 4. A£m=＼J≪er^(≪).

Proof of Theorem 4. Let ≪eT, and take fi<=A(a). Suppose that Supp (/3)

is not connected. Then there is an element yeA(a) such that y―a.i^.A(a) and

y(hi)=O for some z'^Supp^), which implies that y+at^A(a) and j^+aj^L-.

This is a contradiction. Hence J(a) is a saturated subset of R-. Therefore

[JaGT A(a)d Aim. Conversely let /3eAim. We will show that /3 belongs to A (a)

for some aeTby induction on n=＼ht(fl)＼.If there is no afe/7 such that /3+

at^AL , then j3eT and j8e=J((j8). Suppose that ^=^+at^A^ {a^TI). Then,

by induction, j3'ej(ff) for some ≪gT. If /3/(/ii)>0,then ]8=i8/-aiG^(a). If

P'ihd^O, then r=iS-i8(/zi)ai=:J8/+(-^/(/ii)+l)≪iGA£ro and |fa(jO|<n. Then

re^(aO for some ol'elT. Hence fle^Ca')- Therefore Aim(Z{JaGTA(a). D

Cartan matrices arising from the classification of finite dimensional complex

semisimple Lie algebras are called GCMs of finite type. An indecomposable

GCM A=(a,ij)lsi,jsin is called of affine type if there exist some positive integers

b1} ■■■,bn such that (bx, ･･･, 6n)-(c^)―(0, ･･･, 0). An indecomposable GCM A is

called of strictly hyperbolic type if A is not of finite type and not of affine

type, and any proper submatrix of A is of finite type.

Theorem 5. Let A be a GCM, and Alm the set of negative imaginary

roots of the associated Kac-Moody Lie algebra. Suppose that A does not contain

( -. ,) (a}±5) as a submatrix. Tnen the following two conditions are equivalent.

(1) Aim=A(X) for some X.

(2) A contains no affineGCM and contains a unique strictlyhyperbolic GCM

as submatrices.

We will proceed in several steps.

Lemma ([4; Prop. 11. 2b)]). Let ieP+, and J={i＼X(hi)~O}. If Jis empty

or Aj is of finite type, then A(X)=W-{u^P+＼u<nX}.

Proof of Theorem 5.

Step 0. If A is of strictlyhyperbolic type, then Aim=A(X) for some X.
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This follows from Theorem 3, Lemma, and Appendix I.

Step 1. In Theorem 5, (1) implies (2).

If A contains an affine submatrix, then Aim does not satisfy the condition

(3) in Theorem 2. If A contains two strictlyhyperbolic GCMs as submatrices,

then Aim does not satisfy the condition (2) in Theorem 2.

Step 2. Suppose that A satisfiesthe condition (2) in Theorem 3. Let B

be a unique, up to permutations of indices, strictly hyperbolic submatrix of A,

and j8 the highest element of K{B) (cf. Theorem 3, Step 0). If a^K(A), then

Supp (i8)cSupp (a).

Let A' be a minimal indecomposable non-finite submatrix of Aa. Then

A'=B (modulo permutations of indices).

Step 3. Under the same situation as in Step 2, /5 is a unique highest

element of K―K{A).

The result is clear if B is none of the GCMs of type (iii)-tree(b), (c) in

Appendix I. In the remaining cases, the posibilityof A is given by the follow-

ing Dvnkin diagrams:

n ＼r>- ＼n o -O O ,

o ScV n O -O O ,

In any case, it is confirmed by direct computation that /3is the highest element

of K.

Step 4. Under the same situation as in step 2, Aim=J(/J).

By Step 3, we see KdP+(fi)={p><EP+＼n<np}. On the other hand, take

H<E.P+{fi). Then /igL and pt<n^- Suppose that [x is not connected. Then

there is an indecomposable finitesubmatrix, say AJf of A satisfying that there

is an index /e/ such that fi{h:)<CQ,a contradiction. Therefore fi^K. Hence

K=P+(fi). Then Lemma leads to Aim=A(X). □

Similarly we can show the following.

Theorem 6. Let A be a GCM. Suppose thatA contains( V＼(a2>5) as

a submatrix and choose a subset J―{i, j) of {1, ･･･,n] such that the correspond-

ing submatrix Aj is (

of Aim, then Mm=A{B).

Let jS=―2(Xi―a,. If /3is a unique highest element
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Such an indecomposable GCM in Theorem 6 will be classifiedin Appendix II.

To attract a one's attention, we will write Steo 0 aerain.

Corollary. // A is of strictlyhyperbolic type, then

(1) Ai has a unique highest element ft(listedin Appendix I),

(2) Aim=A(ft).

As a condition of the relation AifodAil"-. we eretthe following

Theorem 7. Let /ieP+n2"=iC≪i and suppose X^.

(1) // l^R., then A(X)dAim.

(2) // A is of strictlyhyperbolic type and 2.(hi)=0 (mod det/I) for every lsS

i£n, then Att)ClAim.

(3) // A=(_l
5)

2/
, then A(X)dAim.

Proof of Theorem 7 (1): One sees, as in the proof of Theorem 4, that

A(X)<ZR-. Thus, by the maximality of Aim (cf.Theorem 3), A(X)(ZAtm. (2): We

notice that det^4<0 and every entry of the cofactor matrix A of A is a positive

integer (cf. Appendix I). Write X=J^i=1ktai (^eC), and put mi=l(hi) (l^z^n).

Then (mb ･･･,mn)=(klt ･･■,kn)-lA, and (ku ･･･,kn)=(m[, ･･･, m'n)'tA, where m'i

=m,i/(detA). Therefore kt^Z<a for alll^f^n, and ^ei?_. (3) is obvious from

(2) since detA is ―L D

In each case, it is possible to write down an explicitcondition (cf.Example

(6)-(12)).

3. Examples

(1) Let ^=(_2
2)

2/
Then

T={-k(a1+at)＼k = l,2,3, ■■･}

A(a)={a} for each ≪eT,

(2) Let .4=( 2~3)

T={-a1-ai＼,

Then
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(3 )-(i) Let A be an affine GCM and S1=Aim.

-(ii) Let A be a non-finite GCM and S2={0}UAim.

Then St and S2 satisfy the conditions (1),(2) in Theorem 2, but does not satisfy

the condition (3) in Theorem 2.

(4) Let A=(^_2X ~5＼ Then

ALn=A(-2a1-a

/ 2 -5

t A= -1 2 -

＼ 0 -5

2)

/ 2 -5 0＼

(5) Let A= -1 2 -1 . Then

＼ 0 -5 2/

T={― 2ax―≪2,―≪i―≪2―≪3,―≪2―2a3},

Aim=J(-2a1-a2)U^(-ai-a2-a3)W^(-a2―2a8).

In2(6)-(12),we suppose that X belongs to P+r＼'£?=1Cat and teO.

(6) Let A=l

2 -1

-3 2

0 -2

( 2

(7) Let A- -3

＼ 0

H
2

1

0

-3

2

-2

(mod 2)^ A(X)(ZAim

-1 0＼ /

2 -2 or

-1 2/ ＼

Khi+ht^O

(8) Let A=i

X(h

2 -3

-1 2

0 -1

1

-

2/

2/

(mod 2)^ A(X)dAim.

2 -1 -

-2 2

-1 -1

-hz)=0

(9) Let A=l

■

}

Then

(mod3)<=* A(X)(ZAim

2 -1 0＼

-3 2 -1.

0 -3 2/

Then

X(h1+hB)=2X(ht) (mod4)^ JU)CA£TO.

(10) Let A=l

2 -1

-3 2-

0 -1
H

2 -3

-1 2

0
-3 2/

Then

Then

Then
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Xih.-h^lKhi)

(11) Let A

X{h

(12) Let A

2

2

0

-1

(mod4)^U)CALro.

-1 0 -1

2-1 0

-1 2 -1"

0-1 2

-ha)=2X(ht)

Then

(mod4) & A(X)<z£Ln

(a+2b=0 (mod5)

[2a-6=0 (mod5)

where a=X(ho―h3), b=M,hi-hd

Appendix I

(List of strictlyhyperbolic GCMs)

(size),GCM A, det A, A, a unique highest element of Aim

(iiHa)M-p (..*≫**,.4.*.g a.-d)

(/3)

(J 1) OSS),4-.,
g

(iii)-loop

(

:5

-1

2

1

-IX /3

―11, ―3, 5

2/ ＼4

/ 2 -1 -1＼ /3

-3 2 -1 , -6, 7
＼-l

-i 2/ ＼5

/ 2 -1 -1＼

-2 2 -2 ,

＼-l -1 2/

-6

3

3

3

3

3

3

II 3

6 3

＼4 3

/ 2 -2 -1＼ /2

-1 2-1,-6, 3

＼-l -2 2/ ＼4

■

2/

I

2/

a)
-(2)

2/' ＼ 1 /

-

(

i)

-(!)

3 3,-1
j

6 2/ ＼1/
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-(!)
2/

4

3

(!)

2/

5

3

3

/ 2 -1 -n /2

-2 2-1,-7, 5

＼-l -2 2/ ＼6

HI)

3

7

3

8

/ 2 -1 -n /i

-2 2-3,-9, 7

＼-l -1 2/ ＼4

/ 2 -2 -IV /l

-1 2-1,-9, 3

＼-l -3 2/ ＼5

(i)

2/

4

2

-(!)
2/

3

5

2＼ 12

2 , -10, 6

2/ ＼4

-1 -

2 _

-1

t:

3

7

12 ~" ~x＼ I1

-2 2-1,-11,5

＼-l -3 2/ ＼8

-(!)■

2/

5

3

4

/ 2 -2 -n /I

-1 2-3,-11,5

＼-l -1 2/ ＼3

I Hi)H
-12

-3 2 -3

-1 -1 2

: h:)H
-3

2

-1 2 -1

-1 -3 2

(

(

(i)

■

2/

6

2

-0)
1

2/

5

4

2

/ 2 -1 -2＼ 12

-2 2-1,-13,5

＼-l -2 2/ ＼6

3

/ 2 -1 -2＼ /I

-2 2 ―3 L ―13, 7
＼-l

-1 2/ ＼4

(i)

2/

0

2

8

2 -2 -2＼ /I 1

j-1 2-1,-14,3

＼-l -3 2/ ＼5

-(:)
2/

5

2

8

14, 6

＼10

-2 2-1,

＼-2 -3 2/
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Hi)
5

3

7

2 -1 -1＼ / 1

3 2 -1,-16, 7

1 -3 2/ ＼11

4 7V m

2 12,- 1

3 1/ ＼1/

2 -l -2＼ a

3 2 -3,-17, 9

1 -1 2/ ＼5

(
:

(
:

(i)/ 2 -3 -2＼ /I 12 7＼

-1 2 -1,-17, 3 2 4

＼-l -3 2/ ＼5 9 1/

Mi)
8

2

'･)-(!)

-(i)
■

7

8

2

5

5

1

3

19, 5

＼82/

-19, 5

＼3

2

-3

2/

-3 -

2 -

-1

2 -1 -3＼ /I

-3 2 -31-22, 9

-1 -1 2/ ＼5

-(!)

a8

2

7

1 -2＼ /I

2 -1 , -27, 7

3 2/ ＼11

2

3

-1

(

(

(i)11 7＼

1 HI

7 1/

/ 2-1-3N
,1

-3 2-1 , -38, 7

＼-l -3 2/ ＼11

■

G

2/

4

4

6

°＼ I1

1,-2, 2

2/ ＼3

tree(a)

/ 2 -2

-i 2-

＼ 0 -3

-C)

6

4

6

-

A

-4, 2

2/ ＼3

2 -3

1 2

0 -3

(i)

2/

2

4

2

-3), -2, 4

2/ ＼2

tree (b)

/ 2-1

-2 2

＼ 0 -1
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■

(

:

)

■

2/

°＼ I14

-3,-2, 2 4

2/ ＼1 2

2 -2

1 2

-1
0

-(i)
:i

,1
2

4, 6 4

＼9 62/

2 -1

-3 2

0 -3

-(i)

2

4

2

4, 6

＼32/

2 -1

3 2

0 -1

(

(

(

(c)tree

-(i)
2/

2

4

62/

2 -1

2 2

-30

(

1

1

1

1

4 4 4 4＼

7 4 5 6

6 4 2 4'

5 4 3 2/

0 -

][

2 -

/I

_ 1
1

＼l

5＼

8

6 '

2/

3 4

2 5

5 2

4 3

1
o

J. Li

°
-7

6

-2 ' '8

2 5

1

0

2 -1

-2 2

0 -1

-1 0

(iv)

-1

2

-1

0

2

-2

0

-1

-

V

2 4 6

5 2 7

6 4 2

7 6 5

-8,

1
1/

5

8

6 ,

4

2

5 5 5 5

9 5 6 7

5, 8 5 2 4

7 5 3 1

6 5 4 3

1

0

0 ,

1

2

0

0

-1

2

2

2

0

2 -1

-1 2

0 -1

0 0

-1 0

(v)

-1

0

I

2

-1

2

-1

0

-1

2

2

0

2

2

/ 2~l

-2 2

0-1

＼-l
0
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(1)

(2)

(3)

(4)

(5)

Jim Morita and Minoru Wakimoto

Appendix II

(Dynkin diagrams with the propertiesin Theorem 6)

(fl) o U 1) <≫*5>-

a Dynkin diagram of finitetype.

^-vertices (/>, 9^0)

^-vertices

^-vertices

―~~t(a) __ Cf)>2N)

^-vertices

p-vertices

(/>>2)

■o ---o q (£>2)

^-vertices
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