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MOORE SPACES IN PROPER HOMOTOPY

By

R. Ayala. E. DomInguez, A. Marquez and A. Quintero

Abstract. Moore spaces are defined in proper homotopy theory.

Some resultson the existenceand uniqueness of those spaces are

proven. An example of two non properlyequivalentMoore spaces

is given.

Introduction.

The purpose of this paper is to provide the correct statements and details

of the results announced in [4]. Namely, we prove the existence of proper

Moore spaces of types of type (S; n) for certain objects S in the abelian category

of towers of groups (tow-Jib, Jib) and n^2 (Theorem 2.9). Nevertheless objects

can be of projective dimension 2 in (tow-Jib, Jib), and this fact determines an

obstruction to the uniqueness of proper Moore spaces (Theorem 3.2). In fact,

an example of two non properly equivalent Moore spaces is given in Appendix

A. As a consequence of Theorem 3.2 two sufficient conditions for the uni-

queness of proper Moore spaces are stated (Corollary 3.7 and Proposition 3.9).

The existence of Moore spaces in proper homotopy was already announced

in [4], but in that paper the obstruction from Theorem 3.2 was not considered

and the uniqueness of such spaces was wrongly asserted.

For towers of projective dimension 1, proper Moore spaces behave in a very

similar way to ordinary Moore spaces. In particular, for projective dimension

1, proper Moore spaces define proper homotopy groups, and a coefficientexact

sequence which generalize the various proper homotopy groups known in the

literature and their corresponding Milnor exact sequences (Examples 2.15).

1. Preliminaries and Notations

Categories of towers. Given a category C, the category of towers of

C, tow-C, is the category of inverse sequences S={Ai*-A2< } in C where a

(tow-C)-morphism f: S ―>S' is represented by a sequence of C-morphisms
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fk ･ Ank-^A'k, Hi<n2< ■■■,such that given r>s there exists j>nT, ns making

commutative the diagram

An r

t

A,

I

A

>

A'r

A',

where the maps without name are bonding maps.

We are interested in the full subcategory of JMoi(£ow-C) whose objects are

arrows /: 3£~^A where 3C is a (tow-C)-object and A is a C-object regarded as

a constant tower whose bonding maps are the identity. This category is

denoted (tow-C, C). A (tow-C, C)-morphism from /: 2C-+A to g: <y-*Z? can be

regarded as a C-morphism between A and B and a (tow-C)-morphism from DC

to <y such that both morphisms are compatible via the bonding maps.

It is convenient to represent (tow-C, C) as follows. Objects are towers X―

{X(i^~Xl^-■■■}; a morphism consists of a map /: X―>Y in tow-6', together with

a compatible map /<,:Xo―>Y0 in C.

We shall specially use the above constructions for C―^op, Si, J.h＼the cate-

gories of topological spaces, groups and abelian groups respectively.

Since tow-ci£and (tow-<J/>,Jib) are abelian categories (see [1]) we can de-

fine kernels and images and state exact sequences in a natural way. In parti-

cular, we can use projective objects and define the functor Ext. See [10] for

details.

Proper category. A proper map (p-map) is a continuous map /: X―>Y

such that f~l(K) is compact for each compact subset KQY. Proper homotopy

(/>-homotopy), proper homotopy equivalence, etc---can be defined in the natural

way.

We shall deal with the category £Pof T2-locally compact ff-compact spaces

and ^-maps. One can check that £Bis a cofibration category in the sense of

H. Baues (see [5] and [3]) whose cofibrations are the p-maps with the Proper

Homotopy Extension Property. We callthese />-maps proper cofibrations(p-cofibra-

tions). It can be shown that any /)-cofibrationis a closed embedding. We

denote jb-cofibrationsby arrows ">-*".
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Given a space X in £?,a system of co-neighbourhoods of X is the object of

tow-£Top,s(X)= {Ui^-Ui* } where X―Uj―Kj is compact, Kj^Kj+l and X=

We recall that a CW-complex X is said to be strongly locally finiteif X

can be covered in a locally finiteway by finitesubcomplexes. In that case, it

is known that X admits a countable locally finite cover by finite subcomplexes

and so the oo-neighbourhoods of X can be chosen to be subcomplexes. Finite

dimensional locally finite Cl^F-complexes and locally finitesimplicial complexes

are strongly locally finite(see [11]).

If /: X―>Y is a p-map and {£/,-}and {Wj} are systems of oo-neighbourhoods

of X and Y respectively, for each / there exists k(j)such that f(JJkU))<Z.Wj and

therefore we get a morphism s(/): s(X)-*s(Y) (see [10] for more details).

Given a space X in 5≫ a Freudenthal end of X is an element of the set

£F(X)=Iim tzo(Uj)where tto(―)denotes the set of connected components.

Now let S"7 be the category £P under /=[0, oo) such that for every 3?J-

object J-^X, i is a ^-cofibration. The category £PJis a category of cofibra-

tions where the notion of proper wedge (V p)is defined in a natural way. The

set of ^-homotopy classes in S"1 will be denoted by [―, ―]£.

(1.0.1) The category over /, 3>j, is again a cofibration category, and it

allows the definition of proper quotients. More explicitly,if r: X―>J is a £Bj-

object, and Ay->X the proper quotient X/pA(r) is defined by the push-out m £B

A> >X

r

I V'

/ > ―>X/pA(r)

Notice that i is a />-cofibrationwhose image is q(A). In particular, ^(^4) is

homeomorphic to /. Furthermore, this shows that the proper quotient has the

same ordinary homotopy type as the usual topological quotient.

(1.0.2) It can be shown that any space in £Padmits an onto ^-may h : X~^J

([10; 6.5.3]). Actually, h can be chosen to be a retraction of a given ^-cofibra-

tion i:jQX. Indeed, since all jfr-maps on / are ^-homotopic one can find

a />-homotopy H: Jxl^j connecting h＼J to idj. Then by using the proper

H.E. P. one gets a />-homotopy W: XxI-^J extending H, and H't is a ^-retrac-

tion of i.

(1.0.3) The proper homotopy type of X/pA(r) does not depend on the map
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r: X-*J. Moreover, given another p-map r': X―>J, there exists a jfr-homotopy

equivalence f: X/vA{r)-^X/vA(r') such that q°^―q'. This is due to the homo-

topy invariance of push-outs in cofibration categories ([5:11. 1.2b)]),since all

proper maps on / are properly homotopic.

When it is clear which map r is involved in the quotient, we shall drop the

map r from the notation.

(1.0.4) Finally, let £B* denote the category under and over /. It can be

shown that S3* is a cofibration category where we can define proper wedges

and proper quotients as well as proper cones (cp), and proper suspensions (2"p).

For a space jy->X-^J in £P*,these constructions do not depend on the p-

retraction r (up to />-homotopy equivalence in £BJ). Moreover, the set ＼_2VX,YYV

is endowed of a natural group structure for any space Y in S"7. See [3] for

details.

A strongly locallyfiniteCW-complex X will be considered as a space in £P*

by choosing a cellularembedding i: JQX1, and a />-retractionof i. See (1.0.2)

above.

If (X, a) is a space in £PJthe (tow-5*, 5t)-object

nn{X, a)={7in(X, *0)<― 7tn(U1,*t)<― 73:ra(f/2,*g)･･･} (n^l)

is called the n-th homotopy tower of the pair (X, a), where a(tj)=*j with

a([tj,cc))QUj and the bonding maps are induced by the inclusions and the base-

point change isomorphisms.

(1.0.5) A space X is said to be properly k-connected if 3(X)= {*} and

IIr{X, a)=0 in (tow-5t, 50 (O^r^^). Similarly for proper pairs (X, A) with

2r(X)=2r(^4)={*}. It is worth pointing out that although a and a' represent

the same Freudenthal end, the towers TIn{X, a) and ITn(X, a') need not to be

isomorphic (see [23; p. 13]). Nevertheless, if X is properly 1-connected there

is no dependence on the ray a. In fact, any jfr-homotopy H: a^a' induces a

pro-isomorphism H#: lTn(X, a')-*nn(X, a). In addition, if H: f^g is a p-

homotopy there is a commutative diagram

n(Y, /･≪)

where G=H°(aXid).

The towers IIJX. A, a) (ft̂ 2) are also defined for pairs (X, A) in &J'. In
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addition,if A―J we have the identificationITn(X, J; a)=IIn(X, a) (n^l).

We recall that E. Brown in [7] gives a functor P: tow-Ss-^St which carries

the tower Hn(X, a) to the Brown-Grossman group 7tn(X,a). In a similar way

we can define a functor Po: (tow-5t, Gi)-≫Qiwhich maps IIn{X, a) to the global

Brown-Grossman group TtJX, a) (see [17]).

The n-th homology tower of X can be defined as the tower (n2>0)

Hn(X)= {Hn(X) ≪― HniUO <― Hn(U2) < }

where the bonding maps are induced by the inclusions.

The chain complex of towers of X, C*(X) Is {d: Cn(Z)-≫C7l_1(A')}where

Cn(X)={Cn(X) <― Cn{U,) *― Cn{U2) < }.

Now a proper cohomology theory, Hn, with coefficientsin a (tow-<J£,JLb)-

object S is defined as the homology of the complex

■■■<―C＼X) <― Cn~＼X)<

where Cn(X)=(tow-Jll>, M)(Cn{X), S) (see [14] for details).

Also relative versions of these functors for pairs {X, A) in £Pare defined.

Notice that the above functors (including IIn) are well defined up to (tow-

Qt, ^-isomorphisms.

Fundamental resultson homotopy groups likethe Blakers-Massey Theorem,

the Freudenthal Theorem or the Hurewicz Theorem can be translatedto proper

homotopy by using the following proposition

1.1. Proposition.―([2; 1.1]) Let (X, A) be a connected strongly locally

finite CW-pair with only one Freudenthal end and assume that (X, A) is properly

k-connected. Then there exists a strongly locally finite CW-pair {X', A') such

that

i) X {respectively A) is a strong deformation p-retract subcomplex of X'

{respectively A').

ii) (X')kQA'.

In particular if A=J, X has the same homotopy type as a CW-complex X'

with (X')h=J.

We recall that for any pair in i? and any proper map p: X―>J, there is a

natural homeomorphism J=q{A), where q: X-*X/pA(p) is the quotient (see

(1.0.1)). Therefore, for any ray a: J―*X the map q induces morphisms of

towers
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q*: nr(X, A, a) ―> 17r(X/pA(p),q°a)

1.2.Theorem.―Let (X, A) be a stronglylocallyfiniteCW-pair such that

(X, A) is properly n-connectedand A is properly m-connected(n, mSsl). Then

the morphism q* definedaboveis an isomorphism if 2^r^m + n, and an epimor-

phism if r=m+n+l.

Proof. Firstly, we shall prove the theorem when XnQA and Am―J.

Let i: J^A be the inclusion. According to (1.0.2), we can find a proper

retraction r: X-*J of i. Let {Uj} be a system of oo-neighbourhoods of X con-

sisting of subcomplexes. Without loss of generality we can assume that r{Uj)

<=[}}>°°X Let Uj=U'j＼J＼tj,oo). It is clear that {Uj} is a new system of <x>-

neighbourhoods with U)―[tj, oo),(Uj, U}C＼A) is n-connected and A}=U}r＼A is

m-connected for any j"2^0. Then, if X/PA is the proper quotient constructed

with the retraction r, it is easily checked that {Uj/pAj} is a system of oo-

neighbourhoods of X/VA, where Uj/pAj is constructed by using the restriction

r Uj'.Uj―*[tj,oo). Since proper quotients has the same ordinary homotopy type

as ordinary quotients, we can levelwise apply the ordinary Blakers-Massey

Theorem [24; 6.22] to get isomorphisms

ft*: icr(Uj,Aj) ―> 7rr(Uj/pAj)

if r^n+m and epimorphisms if r=m+n-＼-＼. Now the result follows when a―i

and p=r. Moreover, we can use the naturality of the base ray change isomor-

phisms and the homotopical invariance of proper quotients (see (1.0.3),and

(1.0.5))to prove the result for (X, A) as above and arbitrary a and p.

The general case can be reduced to the previous case by using Theorem 1.1.

Using Theorem 1.2 and a proof similar to the ordinary case ([24; 6.23]) we

obtain

1.3. Theorem.―Let X be a properly n-connected strongly locally finiteCW

complex. Then there is a natural suspension (tow-Si, Qi)-morphism

z*:nk(X)―^nk+1(zPx)

which is an isomorphism if k^2n and an epimorphism if k=2n-＼-l.

1.4.Remark.―The results stating that 21 and q induce isomorphisms be-

tween the corresponding homology towers can be proved in a straightforward

way without using Proposition1.1.
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Proposition1.1 and the above remark give an easy proof of the following

theorem.

1.5. Theorem.―(£21; H.4.2.7]) Let X be a properly n-connected strongly

locallyfiniteCW-complex. Then the natural Hurewicz morphism h : TIk{X)―>Hk(X)

is an isomorphism if k ―n-＼-land an epimorphism if k ―n-＼-2.

Furthermore Theorem 1.2 and Remark 1.4 provide a relative version of

Theorem 1.5 for a proper pair {X, A) of strongly locally finite CW-complexes

with A properly 1-connected and X properly n-connected.

Finally Theorem 1.5, the Brown-Grossman functor Po in (1.0.5),and [7; p,

437 lead to

1.6. Theorem.― Given a p-map f: X-+Y where X and Y are properly 1-

connected finitedimensional,locallyfiniteCW-complexes such that /* :IIT(X)-*Hr(Y)

is an isomorphism for each r, then the map f is a p-homotopy equivalence.

2. Proper Moore Spaces.

We start with some notions in (tow-JlL Jib).

2.1. Definition.―A free tower in (tow-Jib, Jib) is a tower

F{X)= ＼F(L0)<― FiLJ < }

where the following four conditions hold; i) X is a filtrationX = L0^Li^ ･･･

with Lo a countable set. ii) f＼L j―0. iii) The differences Lk＼Lk+1 are finite.

iv) F(Li) is the free group generated by Lt and the bonding morphism are in-

duced by the inclusions.

Given the towers F(£) and F(X'), it can easily be checked that any bijec-

tion Lo = L'o induces an isomorphism F(£)=F{£') in (tow-Jib, Jib). So the iso-

morphism class of F(£) is determined by the cardinality of Lo.

2.2. Remarks.―a) Free towers are projective objects in (tow-Jib, Jib)(see

[14]).

b) Given a strongly locally finiteCW-cornplex X, and a system of Go-neigh-

bourhoods {Uj＼ consisting of subcomplexes, the tower of cellular n-chains of X,

Cn(X)^{Cn(X)^Cn(U1)<― Cn(Uz)* }

is obviously a free tower. Also the tower of cellular n-cycles
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Zn(X)= {Zn(X) <― ZniU,) <― Zn(Uz) < }

is a free tower. More generally, the kernel of any morphism between two

free towers is always a free tower (see [14; 5.11).

2.3. Definition.―A tower S is said to be geometrically admissible if there

exists an exact sequence in (tow-Jib, Jib)

h h h

0 ―-> F(X3) ―> F(X2) ―> FUi) -^S-^0

When F(X3) is trivialwe say that S has geometrical projectivedimension (g.p.d.)

1. Otherwise, we write s. p.d. S=2.

2.4. Remark.―For any strongly locally finite CW-complex X the n-th

homology tower of X is geometrically admissible since the exact sequence of

towers

0 ―h* Zn+1(X) ―> Cn+1(X) ―> Zn{X) ―> fl-re(X)―^ 0

is a free resolution. However, the short exact sequence

0 ―^ Im 8n+1 ―> ZB(X) ―■*fliffl ―> 0

is not always a free resolution. Indeed, let X be the CW-complex obtained

from the cylinder SnX[0, <*>)by attaching an (≪+l)-cell at SnX{j} by a map

/: Sn―>Sn of degree 2j (/^l). Then one can check that Im3n+1 is not free

since dn+1 has no right inverse.

2.5. Remark.―In [9] Dymov introduced the notion of copresentation of a

tower S. More explicitly,following [9] we say that S={G0+-Gi<― ･･･}admits

a copresentation if there exist a levelwise epimorphism 0: F(£)―>S with F(£)

a free tower and subsets RjQF(Lj) with Rj―Rj+1 finiteand r＼Rj―0! such

that Ker ^ is the subgroup <Rj} generated by Rj. In general, the tower <5£>

=<i?0>*-<i?i>< needs not to be projective.

It is easy to check that a tower S is geometrically admissible if and only

if admits a copresentation (up to isomorphism). In fact, if <.&>-> F(£)―>S-^Q

is a Dymov copresentation, and F(2l) denotes the free tower consisting of the

k
free groups F(Rt), there is a levelwise epimorphism F(<R) -≫<5O and an exact

fk
sequence F(&)―> <.&>―>F(-£). By Remark 2.2(b),Ker(f°k) is a free tower, and

so S is geometrically admissible. Conversely, for any free resolution

h h h

0 ―> F(J73) ―■*FUi) ―> FUi) ―> <5―> 0
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let {<pt:F(L^≪))―>F(LJ)}be a levelwise representativeof j2. Then S'=

{Coker <pt}is isomorphic to S by exactness and admits the following copre-

sentation. Let 0: F(£i)-^S'be the naturallevelwise quotient morphism. We

take i?i=9i(LJi<t))£F(LJ).Now, it is clear that Rt―Ri+1Q(pi(L*H)-L*{i+1)

is finite.

If Sn (Bn respectively),is the space obtained by attaching finitely many

copies (possibly no copy) of Sn (Bn respectively)(n^2) at each meiV£i[0, co),

one checks that ITn(Sn) (IJn(Bn, 5""1) respectively)can be identifiedin a natural

way with some F(X), with LQQN. Moreover the following result holds:

2.6. Lemma.―Given a space X in SJ, thereis a natural bijectionp: [_Sn,X~＼JP

= {tow-M,M){F{£) ―IIn{X)) (n^2), given by p([/])=/*. Moreover, if Z is

the mapping cone X＼JfBn+1 in the cofibrationcategory S"1',then /* can be also

regarded as the boundary operator dn+i: JIn+1(Z, X)-^JJn{X).

Proof.―Take tp:F{£)-+IIn(X). After identifying IIn(Sn) with F(X), let

*n(Sn) < 7Zn(S2W) <- 7TB($?(≫<

y v v

7tn(X)< TCn{U1)< 7tn(U2)<

be a levelwise representative of <p, where S%it)is obtained by deleting from Sn

the copies, S% of Sn placed at the points l^j<k(t), k(l)<k(2)< ■･･.

We define /|S" as a representative of <pkwUj] where Iji S^QSkw, k{t)^

j<k(t-＼-l). One easily checks that f*=<p. This proves that p is onto. The

injectivityfollows in a similar way.

Finally, we have the diagram

nn+1(z, x) <
* nn+1(Bn+＼

sn)

I ＼-

nn{X) >nn(sn)=FU)

where p: Bn+1^Z is the canonical p-map and p* is an isomorphism by Theorem

1.2 since Bn+1/PSn=Sn+1^Z/pX.

For the sake of simplicity,we shall use the single notation Sn (Bn) for all

the "strings" of spheres (balls) described above. The particular objects Sn (Bn)

we are using in the future will be clear from the context. Similarly for F(X).
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2.7. Remark.―Let I be a strongly locally finiteone-ended CW'-complex.

Given a cellular embedding JQX1, the (n + l)-skeleton Xn+1 turns out to be

properly equivalent to the mapping cone Xn＼Jf Bn+1 in 3?J of a £-map /: Sn―>Xn.

Indeed, up to a ^-homotopy equivalence (see [18; 6.7] or [5; II.1.2]), we can

assume that the attaching map fa: S^X71 of the (w+l)-cell e^+1 verifies/,(*)

=maeiVS/, where *eS is the base point.

Then we define Sn by attaching at k^N all the spheres S£ with ma ―k.

In this way we can gather together all the attaching maps fa to get a proper

map f:Sn->Xn extending the embedding JQX71. It is clear that Xn+1=p

Xn＼j Bn+1 in £>J.

2.8. Definition.―Given a tower S and n^2, a proper Moore space R(S, n)

is a properly 1-connected finitedimensional, locally finite CPF-complex such that

its q-th (reduced) homology tower is isomorphic to S when g=n and trivial

otherwise.

In R(S, n) is a proper Moore space, the tower S is geometrically admissible

by Remark 2.4. Conversely, we have

2.9. Theorem.― Given a tower S with free resolution

0 ―> F(XS) -^ F(X2)
^>
F( J70 -^* S ―h> 0

^/zereex^sfs a proper Moore space R(S, n), for any n^2.

Proof. By Lemma 2.6 we may regard j2 as the induced morphism

/2*:nn(Sn)^IJn(Sn) of a p-map f%:Sn^Sn. Let Xn=Sn and Xn+1=Cfr Now,

by Lemma 2.6 we may identify Cra+1(C/2)=i7re+1(^ra+1,^re) with F(XZ), and

9: Cn+i(Cf2)-*Cn(Cf2)=IIn(Xn) with the boundary operator.

Since Ker/2=Im/3, from the diagram of unbroken arrows

nn+1(xn+1)

I1'*

TT (Xn+1

nn(x≪)

< F(£≫)

i"

I*

FUi)

we get Iirw*£lm/3, and the projectiveness of F{£3) yields a (tow-J.b, Jlb)-

morphism <p3:F(X3)->IIn+1(Xn+1). Again by Lemma 2.6,F(X3) may be regarded

as nn+1(Sn+1), and we pick up a representative f3: Sn+1^Xn+1 of w8([id]). If
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we define Xn+2=Cfs, the boundary morphism

nnuxn+＼ xn^)―n-^-+ nn+1(xn+l, xn)

is now identified with j3. So Hm(Xn+2) is S if m―n and trivialotherwise.

Applying Theorem 1.6 we get the following results as corollariesof Theo-

rem 2.9.

2.10. Corollary.― Given two towers S and S' as in Theorem 2.9 and proper

Moore spaces R(S, n) and R{S', n), the wedge R(S, n)＼/R(S',n) is a proper

Moore space of type (S@S', n), where S($S' represents the coproduct of S and

S' in (tow-Jib,Jib).

2.11. Corollary.― Given a tower S as in Theorem 2.9,if K is a proper

Moore space of type (S, n) then 1,VK is a proper Moore space of type (S, n + 1).

For n^3, Corollary 2.11 has the following converse

2.12. Proposition.―Any proper Moore space of type (S, n) with n^3 is the

proper suspension of a a proper Moore space of type (S, n ―l). If g.p.d. S―l

then the result also holds for n^2.

Proof.―Let X be of type (S, n) as in the proof of Theorem 2.9. Then

Xn+1 is the proper mapping cone of some /2: Sn-+Sn=Xn, and there exists g

such that Xn+1 = pZpYn, with Y ―Cg, and 2pg^pf2. Since n^3, we can apply

Theorem 1.3 and Lemma 2.6 to

21*:IIn(Y≫) -^ nn,x{IpYn)

and we can find a proper map /i:S"+1―>Z"+1 = p2'pFre,with i/p/zproperly homo-

topic to the attaching map f3 of the (n+2)-cells of X. Therefore X=Cfs

= pIpCh, and obviously Ch is a proper Moore space or type (S, n ―1).

2.13. Definition.―Given a geometrically admissible tower s and n^3(n^2

if g. p.d. S=l), we know from Proposition 2.12 and (1.0.4) that for any proper

Moore space R(S, n), the set ＼_X{S,n), X^p can be endowed of a group struc-

ture for any X in S"r. When the space R(S, n) is unique (up to />-homotopy),

the above group is called the n-th proper homotopy group of X with coefficients

in S and it will be denoted bv nn(X; S).

When g. p. d. S=l we get the uniqueness of proper Moore spaces of type

(S, n) (n^2) just by imitating the proof in ordinary homotopy and using Theo-
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rem 1.6. See also Corollary 3.5 below. Moreover, as in ordinary homotopy

one gets

2.14. Proposition.― Given a space X in £BJand a tower S with g.p.d. S=l,

there exists an exact sequence

0 ― Ext (S, nn+1(X, A)) ― 7rn(X,A;S)~^ (tow-jU, M){S, Un(X, A)) -* 0

We omit the proof which can be done by mimicing the ordinary case in

[18; Ch. 51. However we shall give the following applications of this result

2.15. Examples.―Throughout these statements X is a S^-space with only-

one Freudenthal end.

a) If S={0^Z^~ Z* } then R(S, n)=Rn+1 and nn(X; S) agrees with the

n-th proper homotopy group defined in [16] and [6]. Using basic properties of

the functor Ext, Proposition 2.14 yields the diagram of exact sequences

0

I

Coker l^m{7cn+1(Uj)}-+ ^+.W]

1

0^Ext(S;IIn+1(X))-^7tn(X;S)-^Kev[ljm{7:n(Uj)}^Kn(X)-]―^0

I

1

0

The exact row appears in [3j.

b) If S={Z^-Z^Z< } then R(S, n)=SnXj and IIn(X;S) is the n-th

group defined in [8]. Proposition 2.14 yields the known sequence (see [22])

o ―^ ijmHTtnUUj)} ―> %n{X; s) ―> ijmi^iUj)} ―> o

c) Finally, if S= {Q <^ Q
^-
Q
^
･･･} with bk(l)=l/k + l one can readily

check that g.p. d. S―l, and R(S, n) is the rational sphere described in [13; p.

/l fz
21]. That is, the infinite telescope constructed from the diagram {Sn≪―S" <―

S" <―･･･} where /*.is a map of degree k-＼-l. Moreover, Proposition 2.14 yields

an exact sequence

0 ―> UmMff≫+1(^)}Q ―> ?rn(^; S) ―> Hm {^n(l7,-)}0―> 0
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Here JLQ denotes the tower constructed from JL by replacing the &-th bonding

morphism jk of JL by (k+l)yk (k^l).

Notice that S is isomorphic to the constant tower Q in tow-JLL

3. Uniqueness of proper Moore spaces.

The uniqueness of Moore spaces in ordinary homotopy is a consequence of

the fact that the category Jib has projective dimension 1. As was pointed out

in §1, (tow-Jib, Jib) has projective dimension 2. That is, the second derived

functor Ext2 does not always vanish. In this section we shall define an obstruc-

tion in certain Ext2-term to the uniqueness of proper Moore spaces.

In order to define that obstruction, we shall use a natural action of (tow-

Jlb,Jlb){Cn^(X);IIn+l{Yn+l)) on lXn+＼ Yn+1YP for two strongly locally finite

properly (n ―l)-connected CW-complexes X and Y (n^2). Here Cn+i(X)=

I7n+1(Xn+＼ Xn). The action is described as follows.

Let DnQBn be a copy of Bn such that Dnr＼Sn-1=dDnnS7l-1= {*}. When

we shrink dDn to {*} we get the wedge BnVSn.

According to Remark 2.7, we can assume Xn+l=Xn＼Jf Bn+1 for certain

proper map f:Sn^Xn. The quotient space obtained from Xn+l by identifying

a copy of dDn to point inside each (≪+ l)-cellof Xn+1 is clearly homeomorphic

to Xn+1VpSn+1, where Sn+1 is now the string of spheres Xn+1/pXn. Let p: Xn+l

-^Xn+1VPSn+1 denote the quotient map.

Given /: Xn+1^Yn+l and a: Cn+1(Zn+1)-^/7n+1(Fn+1), the operation is defined

just as in ordinary homotopy. That is, the action of a on [/], [/]+≪, is

represented by the composition

,≪
~
fVg

Vii+l > Vti+lwCn41 > yn +l

where g is a representative of a by the identification(tow-Jib, JLb){Cn+l(Xn+l),

(1) ~
TIn+l(Yn+1)) = [Sn+1, Yn+iyp provided by Lemma 2.6.

Let rn+1(Y) be the Whitehead tower

Im [** :IIn+1(Yn) ―* nn+l(Yn+1)~].

Since Fn+1(Y) is a subtower of ITn+1(Yn+1) we may consider the restriction of

the above action to (tow-Jib, JlI,)(Cn+l(X),rn+1(Y)).

3.1. Lemma―a) (/ + ≪)*: 77ra+1(Zra+1)-> /7n+1(F"+1) zs /*+ ≪<･./*, ^ere

j*:Iln+l(Xn+1)^nn+l{Xn+＼ Xn)=Cn+1(X).
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b) (/+a)*:Cn+1(^Kn+1(n≫s/*+M, where k*: i7n+1(F"+1)->C7re+1(F)

In particular,/*=(/+≪)* i/ a : CB+1(A')-≫rB+1(y).

Proof, a) We have the commutative diagram

!In =
1(Xn
+l)RIInASn + 1)

nn+1(xn+i)

nn+l(xn+1vsn+l)

(fvg)*

+＼ Xn)

a

3(1)

where "0" denotes the coproduct or sum in the abelian category (tow-Jib, Jib)

and (1) is a levelwise isomorphism with inverse the morphism (px*,p2*)induced

by the proper projections

p1: Xn +1WSn+1 ―> Xn+1Vj=Xn+1

p2: Xn+1VSn+1 ―> jVSn+1=Sn+1

(we recall that Xn+1 is properly 1-connected). Thus

(/+a)* = /*°pi*°[i*-＼-g*°pz*°pi*

And one can check that p1°fi=qi= pid＼Xn+l, where q±shrinks the balls Dn in

the (n+D-cells of Xn+l to point, and pt°ti=pq* where q2: Xn+l-->Xn+l/pXnLpSn+l

with tc the canonical projection and k the natural proper homotopy equivalence

which carries the complement of each Dn to point.

Finally, the identification(1) given in the above definition of f+a is in-

duced by q* in the following commutative diagram

/*

un+i(sn+i) > nn+1(Xn

Then, it follows that a°j*=g*°q2*.

Part b) is essentially proven in the same way.

Now we can prove

3.2. Theorem.― Let Y be a properly (n ―1)-connected,strongly locally finite
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CW-complex (we may assume that Yn 1―J, by Proposition 1.1). Given a com-

mutative diagram
d
ra + 2

0 > F(X3) >

＼<pn
+2

＼

<Pn + l

d
n + 1

FUi) >S―>

(fn

0

19
(*)

―* Cn+2(Y) -^-> Cn+1(Y) ~^U Cn(Y) > Hn(Y) ―> 0

where the upper row is a free resolution of S, if X is a proper Moore space of

type (S; n) there is a well defined obstruction c((p)^Hn+2(X; Fn+1(Y)) such that

c(<p)=O if and only if there is a p-map f: X-^Y realizing the diagram (*).

Remark.―As F(Xt) is projective,when Hn+1(Y)=0 the morphism <palways

yieldsmorphisms <pt(i=n, n + 1, n+2) such that the diagram (*) commutes.

Proof. From Lemma 2.6 we may realize <pn by a p-map fn : Xn = Sn ―*

Yn=Sn. We also have the commutative diagram of unbroken arrows

njsn) <― nn+1

c*

IJn(Sn)

(B ≫+i 5≫} ≫ nn+1(Xn+l, X") > Un(Z")

(1)

<― nn+1(B≪+＼ sn)

F(St) > F(X1)

C≫+1(K) > Cn(Y)

> nn+1(Yn+1, Yn) > I7JYn)

g*

where we assume that Yn+1=Bn+1＼JgYn and Xn+1 = Bn+1＼jXn by Remark 2.7.

Then by Lemma 2.6 we may find a p-map £:S"^S" making (1) commutative.

Therefore fn°h^pg°Z, and by using the Proper Homotopy Extension Property

we may find a £-map j: (Bn+1, Sn)->(F"+1, Yn) extending fn°h and /)-homotopic

to #°C> where Z,'is the cone extension of £and g: 5"+1^Fra+1 is the natural

/)-map defined by the characteristic maps of the (n + l)-cellsof Y.

We define fn+1: Xn+1^Yn+1 by fn+l＼Xn=fn and fn+i(kx))=r(x) where h
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is the p-map defined by the characteristicmaps of the (n+l)-cells of X. We

easily check that fn+i*=<pn+i-

When one tries to go further an obstruction appears as follows. In the

diagram

nn+jxn+＼ xn+i) ―n-^-> nn+1(xn+') ―> nn+1(x^＼ xn)

(Pn + t＼
(1)

On + Z

I fn +1* I fn +l*―(pn+1

nnUYn+z, F"+1) >I7n+1(Yn+1) ―> nn+1(Yn+＼ Yn)

the square (1) needs not be commutative. One defines an element in (tow-jU, Jib)

(F(J73);i7n+1(Fn+1)) by the difference

Since the other square is commutative we have, by definitionof Ker /# in (tow-

J.L,Jll>)that
jS
can be regarded as a morphism /3(/n+i):F(J73)-*Ker j*=rn+1Y.

Obviously /3 is a cocycle and defines a class c((p)<=Hn+%X, Fn+1Y). The next

lemma shows that c(w) is a well defined obstruction.

3.3. Lemma.―1) c(<p)does not depend on the morphisms (pt(i―n, n+1, n+2).

2) c(<p)is an obstruction to realizing <p.

Proof. 1) Let {(pi} be another morphism such that the diagram (*) com-

mutes and let f'n+i:Xn+1->Yn+1 be a p-map realizing <p'n+i.It is a well-known

fact from Homological Algebra in abelian categories that {(pt}and {$} are

homotopic chain morphisms. Thus, there exist morphisms {at: Ct{X)―>Ci+1(Y)＼

(i=n, n + l, n+2) such that the following equalities hold

a) <p'n―(pn= d'n+1°an; b) ^+i-yn+i=ffno4+i + ^+2°an+i; and

C) (fn+2―<Pn+2―dn +3°<Xn+2~T~(Xn+i°dn+2.

By c) and the definition of /3(/re+i)we have

(I) j8(/≫+i)―j8(/B+i)=(/n+i≪―/≫+!･―3≫+2≫aB+1oy*)oSn+2

where 7*: IIn+1(Yn+1)^ Cn+1(Y). Now, a) provides a ^-homotopy H:XnxI

-+Yn+1 between fn nnd f'n―f'n+1＼xn.As in ordinary homotopy theory, //yields

a "difference" morphism

A=d(f'n+1, H, fn+1): Cn+l{X)―+nn+l{Yn+l)

(see [15]). Moreover, H can be chosen in such a way that j*°A=fn+i*―fn+i*

―an°dn+1. Take /3=A―9^+2≪an+1. By b), ;*(/3)=0. And the projectiveness of

Cn+1(I) allows us to regard /3 as an element in (tow-Jib, JU>)(Cn+1(X); rn+1(Y))

since Ker j*=rn+1(Y).
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Finally, one can readily check from the definitions that f'n+i=
Pfn+i-＼-

(/3+<%+2°an+1) and then, by Lemma 3.1 the right side in the equality (I) is

P°j*°dn+t=p°dn+*=dp. This proves [j8(/≫+i)]= [i8(/;+1)]e#≫+8(*; rn+1(Y)).

2) If c(<p)=Q,let w^(tow-M, J.h)(Cn+i{X), rn+l(Y)) be such that f}(fn+1)=

dw=wodn+2=woj*odn+2. Take fn+i=fn+i+w. By Lemma 3.1, JQ(/B+1)=

(fn+i*―woj*)dn+z―dn+2o<pn+2=0, and fn+1 extends to a p-map fn+i'-X->Y with

fn+2*=<p:Hn(X)-≫Hn(Y).

3.4. Remarks.―a) The obstruction c(<p)was already considered by J.H.C.

Whithead in ordinary homotopy (see [25; §6]) and it can be defined within the

general setting of cofibration categories (see [5; VII.1.13]).

b) For any n^3 there are two non properly equivalent Moore spaces of

type (S; n). The examples are given in Appendix A.

As an immediate consequence of Theorem 3.2 we have

3.5. Corollary.―// S is a tower with g.p.d. S=l then there exists (up to

p-homotopy) a unique proper Moore space of type (S, n) (n>2).

More generally, we can state

3.6. Corollary.―// S is a geometrically admissible tower with Ext＼S ; Fn(S))

=0, then there existsa unique proper Moore space of type (S, n) (n^2).

Here Fn(S) denotes the tower obtained from S by applyinglevelwisethe

algebraicWhitehead /Vfunctor (see £26;Ch. II] or [5; IX. 4]). It is known

that rn = -(g)Z2 when n^3. So,(3.6)yields

3.7. Corollary.―// S is a geometrically admissible tower with Ext2(<S; S^Zt)

=0 then there exists a unique proper Moore space of type (S, n) for all n^3.

Proof of (3.6). Let Y be a proper Moore space of type (S, n) constructed

as in the proof of Theorem 2.9. Let Y^U^ ･･･^Un ■■･be a system of oo-

neighbourhoods such that each Uj is a subcomplex. Moreover, each £/,-is

(n-l)-connected by construction. Thus by [19; VIII.2.4] for n^3 and [26;

III.14] for n=2 we have rB+1£/^rB(i/≫(£/,))and therefore rn+1Y = rn(S).

If X is another proper Moore space of type (<S; n) we can realize id: S-+S

by a />-map f: X-+Y by Theorem 3.2 since Hn+＼X; Fn+1Y)=Ext2(S ; Fn+1Y)=0.

By Theorem 1.6 / is actually a />-homotopy equivalence.



322 R. Ayala, E. DoMfNGUEZ, A. Marquez and A. Quintero

3.8. Remark.―The tower S={ZZ ^ Z4 ^ Zs< } where /><(1)=1, has geo-

metrical projective dimension 2 since S is the n-th homology tower of the CW-

complex given in Remark 2.4. Nevertheless FnS is the constant tower Z% when

n^3, and F2S is isomorphic to S since r2Z2n = Zin according to [26; II.(B)].

Then, one can check as in Appendix A that Ext2(<5;rnS)=0. So, there is a

unique proper Moore space of type (S; n) (n^3) by Corollary 3.7. The same

result holds for n―2.

Another sufficient algebraic condition on S for the uniqueness of proper

Moore spaces of type (S; n) n^3) is the following.

3.9. Proposition.―Let S be a geometrically admissible tower such that

Tor＼S＼ Z2)=0. Then there is a unique Moore space of type (S; n) (≪^3), uni-

que up to p-homotopy.

Before starting the proof of Proposition 3.9 we shall fix notation and prove

a lemma whose proof is similar to the proof of [14; Lemma 2].

Let (tow-Z2, Z2) denote the abelian category defined in the

(tow-Jib, Jib) by using Z2-vector spaces instead of abelian groups,

tower F(X), let Zt(Lt) denote F(L,)(g)Z2. Then

same way as

Given a free

3.10. Lemma.―Any tower {V^V^―Vz ■■■}with ViQZ<t(Li) and with bond-

ing morphisms the corresponding restrictionsis protectivein (tow-Z2, Zz).

Proof. We may find a basis Tt of Vi/Vi+l such that any element of Tt

is represented by a linear combination of elements in Li ―Li+1. Let Bt be the

union yj{T,; j^j}. It is easy to check that Bt is a basis for Vt. Since

Bo^Bi--- and r＼Bt=0 it is straightforwardly shown that {F0^Fi<-V2 ･■･}is

projective.

Proof of Proposition 3.9. Let

d<i di do
0 ―> C2 ―> d ―> Co ―> S ―> 0

be a free resolution of S. Since SRZZ is a tower of groups of order 2 we

have an isomorphism

(Xovr-Jiy,M){Ci; SRZz)^(tow-Z2> Z2)(CtRZ2; SRZZ)

Therefore,

Ext2(<S; .S(g)Z2)^Ext1(Im dx; <S(g)Z2)=Coker ((d801)*)
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where "*" stands for the dual morphism.

Now from the exact sequence

0 ―> C2 ―> d ―> Im di ―> 0

we get the exact sequence

ds<g)l di(8)l
0 ―> C20Z, > Ci0Z2 >Im d^Z* ―> 0

since the tower Ker(d2<g>l) is isomorphic to the tower {Tor(lmdi; Z2)} which

is trivialbecause each component Im [_d＼:C＼a)-^Cf] of the tower Im dx is a

free abelian group. Thus,

Coker ((dg01)*)sExtia(Im d^Zs; ≪S0Z8)

where the right side is the Ext1 functor in the category (tow-Z2, Zt).

On the other hand we have the commutative diagram

0 ―> CJStiZ, > C&Z* > Im d,(g)Z£■―>0
I

I

d2Rl diRl
0 ―> C2(g)Z2 > C1RZi >Im (dx01) ―> 0

where the upper row is exact as it was proven above. And the lower row is

also exact since Tor1^; Z2)=Ker(d1(g)l)/Im(d2(8>l)=:0 by hypothesis. Thus

Imrf1(g)Z2^Im(rf1(g)l)and hence Exti^Imd^^; ^(g)Z2)sExti2(Im(d1(g)l);^0Z2).

Now the former term vanishes because Im (<ii01) is projective by Lemma 3.10.

This yields Ext2(£;J(g)Z2)=Q and the uniqueness follows from Corollary 3.7.

Final Remark. The category of trees of abelian groups (see [12]) seems

to be the right algebraic framework for a generalization of the results of this

paper to spaces with many Freudenthal ends.

Appendix A.

Two non properly equivalentproper More spaces of type (S; n), n2>3

Let S be the tower

■＼ki)&2＼x)£2 > kvZzAz * ･■･}■
{ 1 2 J

in (tow-Jib, Jib), with k, standing for the natural inclusion morphism. A free

resolution for S is
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0 ―> F(X3) ―^> FUt) -^ FUi) ―*■<S―> 0

where X3 is L|2L|3 ･･･ with L8j= {at; i^j}. X2 is L?2L|g ■･･with L?=

{pt, p-u Oi',i^j) and
≪Ti
is L}3L|^ ■■･with £}={£*,̂ ;/^;}. And the mor-

phisms are given by dz(ai)=fii+1―2ai―fii;dl(pi)―2ei,dl{fii)=2yiand 5i(<r<)=

Clearly, S=<S1(BS2, where ≪SXis the tower

kl oo k2 ＼

―->ez8-―>･･･[
2 J

and S2 is the constant tower {Z2=Z2=

A.l. Lemma.―Ext2(cS; S)^0, Ext2^; ≪Si)=Ext'(*Sg;̂2)=0

Proof. By the naturality of "Ext" and "c" we have Ext2(<S;*S)=@

{Ext2(c5i;<Sj);i,J^2}.

On the other hand, it is easy to check that g. p. d. ^=1, and so Ext2(<Si;Sj)

―0. With the above notations, S2 admits the free resolution

0 ―> F( W) -i Fd^, a,}) -^≫ F({Ti}) ―* cS2―^ 0

and by the standard Hom-Ext exact sequence we get

Ext2(<S2;̂ 2)=Ext1(Im dx; <S2)=0 .

Indeed, for any <pe(tow-jZ£,JU>)(F{{ai＼),S2) we may define ^e(tow-JZ/>, c^U)

(F(fyf<,af}, ≪S)by £Oi)=0, ^(jUi)=O and £(/*,･)=S{?>(≪*);*^/-l}. Then ^≫32

Finally Ext2(^2, ^1)=Ext1(Im31; J^^O since ^: F({a1})->≪S1given by £(a<)=

£i(8)ldefines a non-trivial element. Otherwise, |=r°32 for some s: F({fiit <?≫})

-><Si and t yields the equalities £j01=r(^i+i)―r(fti)(2^1). As r is a pro-

morphism one can inductively prove that r(≪<)e c Z2 and the sequence {efRl}

would represent the trivialelement in lim1^! and it is a well-known fact that

it does not.

Lemma A.I and Corollary 3.7 yield that R(Si; n) and R(S2; n) are uniquely

determined up to />-homotopy (n^3). Actually these types are represented by

W and WX[0, oo), where H'* is obtained by attaching one copy of W at each

natural coordinate of [0, oo) and W=Sn＼Jzen+1 is the n-sphere with an (n+1)-

cellattached by a map of degree 2. Thus, X=R(Si; n)＼/pR(S2; n) is a repre-

sentative of R(S; n) by Corollary 2.10.

A.2. Lemma. The natural map [X; X~]i-+(tow-J.l>,J.b){S;S) is onto.
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Proof. By Proposition 2.14 lR(Si; n); X~＼JP-> [tow-JlA, JH>X<Si',S) is onto.

On the other hand, (tow-jU, JH>)(S2; <Si)=Jim ^=0 and [R(S2; n); -£]£-≫

[i?(,S2; n); R(S2; n)J^.[W; W]J―*JlK^2; ^2) = (tow-jZ^, o44)(≪S≪;≪5≪).

where the first bijection is given by the Edwards-Hastings embedding Theorem

([10 ; 6.27]). Finally the natural bijection [X ; Xyp s ＼_R(S,; n); X]JP X

[R(S2; n); X~＼icompletes the proof.

Now we choose a non-trivialelement a<=Hn+2(X; Fn+1X)^Ext＼S; <S)=£0.

By Remark 2.7 we may assume X=Bn+z＼JhoXn+1. Now, the commutative dia-

gram

Cn+i(X)―iin+2(X, Xn+
h*
nn+z(Bn+＼ sn+1)

= I dn+2

allows us to identify the boundary operator dn+2 with the morphism /i0*(h is

the characteristicmap h: Bn+Z-^X).

The isomorphism dn+z^h^1 also gives the identification

(I) (tow-^i, M)(CnUX); IIn+1(Xn+l))

-(tow-jz/,,M){nn+l{sn+1); nn+1(xn+1))=tsn+i; xn+iyp

where the second isomorphism is given by Lemma 2.6. Thus, if a=＼_a], a can

be regarded as a p-map g: Sn+1^XnQXn+1. Let h0 be a representative of

[>o] + [g]e.[S"+1; JT]£and let Y be the proper cone of h0. Since lmg^Xn,

the complexes towers of cellular chains of X and Y are the same. But

A.3. Lemma.―The obstruction c(id)efl"n+2(Z;Fn+1Y) given in Theorem 3.2

for id: Hn(X)=S^S=Hn(Y) is non-trivial.

Proof. Since c(id) does not depend on the morphisms <pt:Ci(X)-*Ci{Y)

inducing id:<S―><S(see Lemma 3.3(1)),one can consider ^j=id for each i―n,

n+1, n+2. So, c(id)is represented by £(id)=dn+2―d'n+i,where dn+2 is given

in the above diagram for X. Similarly d'n+2 for Y. Bearing in mind the

identification(I) jS(id)is regarded as h*―h*―g*=― g*. Then ^(id) is actually

―a and c(id)=―a^O.

Finally we get,
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A.4. Proposition.―X and Y are not p-homotopicallyequivalent.

Proof. If h＼X-*Y is a />-homotopyequivalence,let h' be a ^-homotopic

inverse of h. The morphism h*: Hn(Y)―S―^Hn(X)=S can be realizedby a h-

map f: X-*X according to Lemma A.2. Then h°f:X―>Y is a />-map with

(h°f)*=id:Hn(X)=S―>S=HJY), and thiscannot happen by Lemma A.3.
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