NOTE ON A PAPER BY MAHLER

By
Numiko Nishioka

1. Introduction.

Let ω be a real quadratic irrational number with $0<\omega<1$, and put

$$
\begin{equation*}
F_{\omega}\left(z_{1}, z_{2}\right)=\sum_{h_{1}=1}^{\infty} \sum_{n_{2}=1}^{\left[n_{1} \omega\right]} z_{1}^{n_{1}} z_{2}^{n_{2}} . \tag{1}
\end{equation*}
$$

The series $F_{\omega}\left(z_{1}, z_{2}\right)$ converges in the domain

$$
\left\{\left|z_{1}\right|<1,\left|z_{1}\right|\left|z_{2}\right|^{\omega}<1\right\}
$$

Mahler [3] proves that $F_{\omega}\left(\alpha_{1}, \alpha_{2}\right)$ is transcendental for algebraic α_{1}, α_{2} with suitable properties. In the succeeding paper [4], he studies the algebraic independence of the values

$$
\begin{equation*}
\left.\frac{\partial^{k_{1}+k_{2}} F_{\omega}\left(z_{1}, z_{2}\right)}{\partial z_{1}{ }^{k_{1}} \partial z_{2}^{k_{2}}}\right|_{\left(\alpha_{1}, \alpha_{2}\right)}, \quad k_{1} \geqq 0, \quad k_{2} \geqq 0 \tag{2}
\end{equation*}
$$

To prove the algebraic independence of the values, he asserts the functions

$$
\begin{equation*}
\frac{\partial^{k_{1}+k_{2}} F_{\omega}\left(z_{1}, z_{2}\right)}{\partial z_{1}^{k_{1}} \partial z_{2}^{k_{2}}}, \quad k_{1} \geqq 0, \quad k_{2} \geqq 0 \tag{3}
\end{equation*}
$$

are algebraically independent over the rational function field $C\left(z_{1}, z_{2}\right)$. But it is pointed out in Kubota [1] and Loxton and van der Poorten [2] that Mahler's criterion for algebraic independence (Satz 1 in [4]) is not correct. Although the correct criterion is given in [1] and [2], it seems that there is no proof of the algebraic independence of the functions (3). Here we will prove the following theorems.

Theorem 1. The functions (3) are algebraically independent over $\boldsymbol{C}\left(z_{1}, z_{2}\right)$.
Let ω be expanded in the continued fraction

$$
\begin{equation*}
\omega=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}, \tag{4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{array}{lll}
p_{-1}=0, & p_{0}=1, & p_{1}=a_{1},
\end{array}
$$ p_{\mu+1}=a_{\mu+1} p_{\mu}+p_{\mu-1}, ~\left($$
\begin{array}{lll}
 \tag{5}\\
q_{-1}=1, & q_{0}=0, & q_{1}=1,
\end{array}
$$ q_{\mu+1}=a_{\mu+1} q_{\mu}+q_{\mu-1} .\right.
\]

From Theorem 1 and the main theorem in [4], we obtain the following theorem.
Theorem 2. Let α_{1}, α_{2} be algebraic numbers satisfying

$$
\begin{equation*}
0<\left|\alpha_{1}\right|<1, \quad 0<\left|\alpha_{1}\right|\left|\alpha_{2}\right|^{\omega}<1, \quad \alpha_{1}{ }^{p_{\mu}} \alpha_{2}{ }^{q_{\mu}} \neq 1 \quad(\mu \geqq 0) \tag{6}
\end{equation*}
$$

Then the values (2) are algebraically independent.
Corollary. Let $f(z)=\sum_{h=1}^{\infty}[h \omega] z^{h}$ and α an algebraic number with $0<|\alpha|$ <1. Then

$$
f^{(k)}(\boldsymbol{\alpha}), \quad k \geqq 0
$$

are algebraically independent.

2. Proof of the theorems.

Define $\omega_{1}, \omega_{2}, \cdots$ by

$$
\omega=\frac{1}{a_{1}+\omega_{1}}, \quad \omega_{1}=\frac{1}{a_{2}+\omega_{2}}, \cdots
$$

Because of the equality (see [3])

$$
\begin{align*}
& F_{w,}\left(z_{1}, z_{2}\right)=\sum_{\mu=0}^{\nu-1}(-1)^{\mu} \frac{z_{1}{ }^{p_{\mu+1+1} p_{\mu}} z_{2}{ }^{q}{ }_{\mu+1+q}{ }_{\mu}}{\left(1-z_{1}{ }^{\left.{ }_{\mu}{ }^{\mu+1} z_{2}{ }^{q_{\mu+1}}\right)\left(1-z_{1}{ }^{p_{\mu}} z_{2}^{q_{\mu}}\right)}\right.} \tag{7}\\
& +(-1)^{\nu} F_{\omega_{\nu}}\left(z_{1}^{p_{\nu}} z_{2}^{q_{\nu}}, z_{1}^{p_{\nu-1}} z_{2}^{q_{\nu-1}}\right),
\end{align*}
$$

we may assume that the continued fraction of ω is purely periodic. Therefore there exists a natural number ν such that $\omega=\boldsymbol{\omega}_{\nu}$. We may assume ν is even. Put

$$
\Omega=\left(\begin{array}{ll}
p_{\nu} & q_{\nu} \\
p_{\nu-1} & q_{\nu-1}
\end{array}\right) \text { and } \Omega\left(z_{1}, z_{2}\right)=\left(z_{1}^{p_{\nu}} z_{2}^{q_{\nu}}, z_{1}^{p_{\nu-1}} z_{2}^{q_{\nu-1}}\right)
$$

Then we have

$$
\begin{equation*}
F_{\omega}\left(z_{1}, z_{2}\right)=F_{\omega}\left(\Omega\left(z_{1}, z_{2}\right)\right)+b\left(z_{1}, z_{2}\right), \quad b\left(z_{1}, z_{2}\right) \in \boldsymbol{Q}\left(z_{1}, z_{2}\right) \tag{8}
\end{equation*}
$$

Let $\rho_{1}=p_{\nu}+p_{\nu-1} \omega, \rho_{2}=q_{\nu-1}-p_{\nu-1} \omega$. Then ρ_{1}, ρ_{2} are the eigen values of the matrix Ω and

$$
\binom{o_{1}^{(\lambda)}}{o_{2}^{(\lambda)}}=\binom{q_{\nu-1}-\rho_{\lambda}}{-p_{\nu-1}}
$$

is an eigenvector belonging to $\rho_{\lambda}(\lambda=1,2)$. Put

$$
D_{\lambda}=o_{1}{ }^{(\lambda)} z_{1} \frac{\partial}{\partial z_{1}}+o_{2}{ }^{(\lambda)} z_{2} \frac{\partial}{\partial z_{2}}, \quad \lambda=1,2 .
$$

Then we have ([4], §9),

$$
\begin{aligned}
& D_{1}{ }^{k_{1}} D_{2}{ }^{k_{2}} f\left(\Omega\left(z_{1}, z_{2}\right)\right) \\
& \quad=\rho_{1}{ }^{k_{1}} \rho_{2}{ }^{k_{2}} D_{1}{ }^{k_{1}} D_{2}{ }^{k_{2}} f\left(z_{1}, z_{2}\right) \mid \Omega_{\left(z_{1} \cdot z_{2}\right)}, k_{1}, k_{2} \geqq 0
\end{aligned}
$$

where $f\left(z_{1}, z_{2}\right)$ is any analytic function. By the equality (8), we have

$$
\begin{align*}
& D_{1}{ }^{k_{1}} D_{2}{ }^{k_{2}} F_{\omega}\left(z_{1}, z_{2}\right) \tag{9}\\
& \quad=\left.\rho_{1}^{k_{1}} \rho_{2}^{k_{2}} D_{1}^{k_{1}} D_{2}{ }^{k_{2}} F_{\omega}\left(z_{1}, z_{2}\right)\right|_{\left.\Omega_{1}, z_{2}\right)}+D_{1}^{k_{1}} D_{2}{ }^{k_{2}} b\left(z_{1}, z_{2}\right) .
\end{align*}
$$

We shall prove that the functions

$$
\begin{equation*}
D_{1}^{k_{1} D_{2}{ }_{2}{ }^{2} F_{\omega}\left(z_{1}, z_{2}\right), \quad k_{1}, k_{2} \geqq 0, ~} \tag{10}
\end{equation*}
$$

are algebraically independent over $\boldsymbol{C}\left(z_{1}, z_{2}\right)$, from which Theorem 1 and Theorem 2 follow, since $\operatorname{det}\left(\begin{array}{ll}O_{1}{ }^{(1)} & o_{1}{ }^{(2)} \\ o_{2}{ }^{(1)} & o_{2}{ }^{(2)}\end{array}\right) \neq 0$. The proof is by contradiction. We assume the functions (10) were algebraically dependent over $\boldsymbol{C}\left(z_{1}, z_{2}\right)$. Let $K=\boldsymbol{Q}(\omega)$. Since the Taylor coefficients of the functions (10) are in K, the functions are algebraically dependent over $K\left(z_{1}, z_{2}\right)$. By Corollary 9 in [1], the functions (10) are K-linearly dependent $\bmod K\left(z_{1}, z_{2}\right)$. (Kubota [1] states the corollary over the field C, but it is easily checked that the above statement is also valid.) Therefore the functions

$$
F^{\left(k_{1}, k_{2}\right)}\left(z_{1}, z_{2}\right)=\left(z_{1} \frac{\partial}{\partial z_{1}}\right)^{k_{1}}\left(z_{2} \frac{\partial}{\partial z_{2}}\right)^{k_{2}} F_{\omega \omega}\left(z_{1}, z_{2}\right), \quad k_{1}, k_{2} \geqq 0,
$$

are also K-linearly dependent $\bmod K\left(z_{1}, z_{2}\right)$. Hence the functions

$$
F^{\left(k_{1}, k_{2}\right)}(z, 1), \quad k_{1}, k_{2} \geqq 0
$$

are K-linearly dependent $\bmod K(z)$. We have

$$
F^{\left(k_{1} \cdot k_{2}\right)}(z, 1)=\sum_{h=1}^{\infty} h^{k_{1}}\left\{1+2^{k_{2}}+\cdots+[h \omega]^{k_{2}}\right\} z^{h} .
$$

Put

$$
\begin{equation*}
f_{i j}(z)=\sum_{n=1}^{\infty} h^{i}[h \omega]^{j} z^{h}, \quad i \geqq 0, j \geqq 1 \tag{11}
\end{equation*}
$$

Then $\left\{F^{\left(k_{1}, k_{2}\right)}(z, 1)\right\}_{0 \leq k_{1}, k_{2} \leq M}$ and $\left\{f_{i j}(z)\right\}_{0 \leq i \leq M, 1 \leq j \leq M+1}$ generate the same vector space over K, and so $\left\{f_{i j}(z)\right\}_{i z 0, j z 1}$ are K-linearly dependent $\bmod K(z)$. Since the coefficients of $f_{i j}(z)$ are all in $\boldsymbol{Q},\left\{f_{i j}(z)\right\}_{i z 0, j \geq 1}$ are \boldsymbol{Q}-linearly dependent $\bmod \boldsymbol{Q}(z)$. Then there are integers $e_{i j}$, not all zero, such that

$$
\begin{equation*}
g(z)=\sum_{i=0} \sum_{j=1} e_{i j} f_{i j}(z)=p(z) / q(z) \in \boldsymbol{Q}(z), \tag{12}
\end{equation*}
$$

where $p(z)$ and $q(z)$ are relatively prime polynomials with integer coefficients. Let ξ_{1}, \cdots, ξ_{n} be the distinct roots of $q(z)$ and $g(z)=\sum_{n=0}^{\infty} c_{n} z^{h}$. Then we have $c_{h} \in \boldsymbol{Z}$ and

$$
c_{h}=P_{1}(h) \xi_{1}{ }^{h}+\cdots+P_{n}(h) \xi_{n}{ }^{h}, \quad h \gg 0 .
$$

We choose a subset S of $\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ such that for every $i(1 \leqq i \leqq n)$, there exists an unique $\xi \in S$ with ξ_{i} / ξ is a root of unity. We may assume $S=$ $\left\{\xi_{1}, \cdots, \xi_{m}\right\}$. By the choice of $S, \xi_{i} / \xi_{j}$ is not a root of unity for any distinct i, j. For a suitable natunrnal number N, we have

$$
c_{h N}=Q_{1}(h) \xi_{1}{ }^{n N}+\cdots+Q_{m^{\prime}}(h) \xi_{m^{\prime}}{ }^{h N}, \quad h \geqq 1,
$$

where $Q_{i}(h)$ are nonzero polynomials of h and $m^{\prime} \leqq m$. By (11) and (12), c_{h} are rational integers and

$$
\left|c_{h}\right| \leqq c_{1} h^{c_{2}}, \quad h \geqq 1
$$

where c_{1} and c_{2} are positive constants. When $m^{\prime} \geqq 1$, by the lemma in [5], we have

$$
\left|\xi_{i}{ }^{\sigma}\right|_{p} \leqq 1, \quad i=1, \cdots, m^{\prime},
$$

where p is ∞ or a prime number and σ is any automorphism of $\overline{\boldsymbol{Q}}$. Therefore we conclude that ξ_{i} are roots of unity. Hence we have

$$
\begin{equation*}
c_{h N}=a_{s} h^{s}+a_{s-1} h^{s-1}+\cdots+a_{0}, \quad h \geqq 1, \tag{13}
\end{equation*}
$$

for a suitable natural number N. If $m^{\prime}=0$, then $c_{h N}=0$ for any $h \geqq 1$. In any case, we have the equality (13). On the other hand, by (12), we have

$$
\begin{align*}
c_{h N} & =\sum_{i=0} \sum_{j=1} e_{i j}(h N)^{i}(h N \omega-\{h N \omega\})^{j} \tag{14}\\
& =P_{t}(\{h N \omega\}) h^{t}+P_{t-1}(\{h N \omega\}) h^{t-1}+\cdots+P_{0}(\{h N \omega\}),
\end{align*}
$$

where $\{x\}$ denotes the fractional part of x, P_{i} are polynomials, $P_{t} \neq 0$ and at least one of P_{t}, \cdots, P_{0} is not constant. Let t_{0} be the largest integer such that $p_{t_{0}}$ is not constant. Comparing (13) and (14), we see that $s=t, a_{i}=P_{i}$ for $i=$ $t_{0}+1, \cdots, t$ and

$$
a_{t_{0}}=\lim _{h \rightarrow \infty} P_{t_{0}}(\{h N \omega\})
$$

This is a contradiction, since $\{\{h N \omega\}\}_{h=1}^{\infty}$ is dense in the interval $[0,1)$.

References

[1] Kubota, K. K., On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math Ann. 227 (1977), 9-50.
「2] Loxton, J. H. and van der Poorten, A. J., A class of hyper transendental functions, Aequationes Math. 16 (1977), 93-106.
[3] Mahler, K., Arithmetische Eigenschaften der Losungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
[4] Mahler, K., Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32 (1930), 545-585.
[5] Nishioka, K., Algebraic independence of certain power series, seminaire de Theorie des Nombres Paris (1987-1988), Progress in Math 81, Birkhäuser, 201-212.

Department of Mathematics
College of Humanities \& Sciences
Nihon University
Sakurajosui, 3-25-40, Setagaya-ku
Tokyo, 156 Japan

[^0]: Received June 10, 1992, Revised November 5, 1992.

