A NOTE ON THE PROJECTIVE NORMALITY OF SPECIAL LINE BUNDLES ON ABELIAN VARIETIES

By
Akira Ohbuchi
Dedicated to Professor Yukihiro Kodama on his 60th birthday

Introduction.

Let L be an ample line bundle on an abelian variety A of dimension g defined over an algebraically closed field k. It is well known that $L^{\otimes 2}$ is base point free and $L^{\otimes 3}$ is very ample and projectively normal. Moreover we know that

$$
\Gamma\left(A, L^{\otimes a}\right) \otimes \Gamma\left(A, L^{\otimes b}\right) \longrightarrow \Gamma\left(A, L^{\otimes a+b}\right)
$$

is surjective if $a \geqq 2$ and $b \geqq 3$ (Koizumi [3], Sekiguchi [8], [9]). But in the case of $a=b=2$, this map is not surjective in general. In this paper we determine the condition of projective normality of $L^{\otimes 2}$ for some ample line bundle L. Our result is as follows.

Theorem. If L is a symmetric ample line bundle of separable type, $l(A, L)$ is odd and assume that $\operatorname{char}(k) \neq 2$, then $L^{\otimes 2}$ is projectively normal if and only if $B s|L| \cap A[2]=\phi$.

In § 1 we prove the above theorem for abelian varieties defined over \boldsymbol{C}. In $\S 2$ we give the Mumford's theory of a theta group (Mumford [4], [5]). In $\S 3$ we prove the above theorem in general by the theory in $\S 2$.

Notations.

$\operatorname{char}(k)$: The characteristic of a field k
f^{*} : The pull back defined by a morphism f
\underline{L} : The invertible sheaf associated to a line bundle L
\mathcal{O}_{A} : The invertible sheaf of a variety A
$\left(L^{g}\right)$: The self intersection number
$|L|$: The set of all effective Cartier divisors which define a line bundle L
$B s|L|$: The set defined by $\bigcap_{D \in|L|} D$
$\Gamma(A, L)$: The set of global sections of a line bundle L
$l(A, L)$: The dimension of $\Gamma(A, L)$ as a vector space
Received May 12, 1987.
T_{x} : The translation morphism on an abelian variety A defined by $T_{x}(y)=x+y$ where x and y are elemets of A
$K(L)$: The subgroup of an abelian variety A defined by $\left\{x \in A ; T_{x}^{*} L \cong L\right\}$ where L is a line bundle on A
$A[n]$: The set of all points of order n of an abelian variety A
\boldsymbol{Z} : The ring of integers
\boldsymbol{R} : The field of real numbers
C : The field of complex numbers

$\S 1$. The C case.

First we recall a definition of projective normality.

Definition. Let M be an ample line bundle on an abelian variety A. We call that M is projectively normal if

$$
\Gamma(A, M)^{\otimes n} \longrightarrow \Gamma\left(A, M^{\otimes n}\right)
$$

is surjective for every $n \geqq 1$.

Next we define a theta function defined on \boldsymbol{C}^{g}.

DEFINITION. Let $m^{\prime}, m^{\prime \prime}$ be elements of \boldsymbol{R}^{g} and let τ be an element of a Siegel upper half space H_{g}. We define $\theta\left[\begin{array}{l}m^{\prime} \\ m^{\prime \prime}\end{array}\right](\tau, z)$ by

$$
\theta\left[\begin{array}{l}
m^{\prime} \\
m^{\prime \prime}
\end{array}\right](\tau, z)=\sum_{\zeta \in Z} \boldsymbol{e}\left((1 / 2)^{t}\left(\zeta+m^{\prime}\right) \boldsymbol{\tau}\left(\zeta+m^{\prime}\right)+^{t}\left(\zeta+m^{\prime}\right)\left(z+m^{\prime \prime}\right)\right)
$$

where $\boldsymbol{e}(x)$ means $e^{2 \pi \sqrt{-1} x}$ and z is contained in \boldsymbol{C}^{g}.
Let d_{1}, \cdots, d_{g} be positive integers with $d_{1}|\cdots| d_{g}$. We define an integral matrix e by

$$
\left[\begin{array}{llll}
d_{1} & & & 0 \\
& \ddots & & \\
& & \ddots & \\
& 0 & & d_{g}
\end{array}\right]
$$

For an element τ of H_{g} we define an abelian variety A by $C^{g} /\langle\tau, e\rangle$ where $\langle\tau, e\rangle$ is a lattice subgroup of \boldsymbol{C}^{g} defined by $\tau \boldsymbol{Z}^{g}+e \boldsymbol{Z}^{g}$. Let \mathcal{A} be a Riemann form on $\langle\tau, e\rangle$ defined by

$$
\mathcal{A}\left(\tau x+e y, \tau x^{\prime}+e y^{\prime}\right)={ }^{t} x e y^{\prime}-{ }^{t} x^{\prime} e y
$$

where $x, x^{\prime}, y, y^{\prime}$ are elements of \boldsymbol{Z}^{g}. It is well known that this \mathcal{A} defines an
algebraic equivalence class of line bundles on A. Now we take a line bundle L on A satisfying that L is symmetric and the global sections of L are generated by $\theta\left[\begin{array}{l}\eta \\ 0\end{array}\right](\tau, z)$ where η runs over a complete system of representative of $\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z}$ $\oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$.

Lemma 1. The basis of $\Gamma\left(A, L^{\otimes 2 n}\right)$ is given by $\theta\left[\begin{array}{l}\eta \\ 0\end{array}\right]\left(2^{n} \tau, 2^{n} z\right)$ where η runs over a complete system of representative of $\left(1 / 2^{n} d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / 2^{n} d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ $(n=1,2, \cdots)$. Moreover $\Gamma\left(A, L^{\left.\otimes_{4}\right)}\right.$ is generated by $\theta\left[\begin{array}{l}\xi \\ \sigma\end{array}\right](\tau, 2 z)$ where ξ runs over a complete system of representative of $\left(1 / 2 d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / 2 d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ and σ runs over a complete system of representative of $((1 / 2) \boldsymbol{Z} / \boldsymbol{Z})^{g}$.

Proof. This is well known fact (cf. Igusa [2], p. 72, Theorem 4, and p. 84, Theorem 6).

Lemma 2 (Multiplication formula). If $\eta^{\prime}, \eta^{\prime \prime}, \xi^{\prime}, \xi^{\prime \prime}$ are contained in \boldsymbol{R}^{g} and τ is contained in H_{g}, then

$$
\begin{aligned}
& \theta\left[\begin{array}{l}
\eta^{\prime} \\
\eta^{\prime \prime}
\end{array}\right](\tau, z) \theta\left[\begin{array}{l}
\xi^{\prime} \\
\xi^{\prime \prime}
\end{array}\right](\tau, z)=\left(1 / 2^{g}\right) \sum_{a^{\prime \prime} \in((1 / 2) z / z) \xi} e\left(-2^{t} \eta^{\prime} a^{\prime \prime}\right) \\
& \cdot \theta\left[\begin{array}{c}
\eta^{\prime}+\xi^{\prime} \\
\left(\eta^{\prime \prime}+\xi^{\prime \prime}\right) / 2+a^{\prime \prime}
\end{array}\right]\left(\tau / 2,\left(z_{1}+z_{2}\right) / 2\right) \\
& \cdot \theta\left[\begin{array}{c}
\eta^{\prime}-\xi^{\prime} \\
\left(\eta^{\prime \prime}-\xi^{\prime \prime}\right) / 2+a^{\prime \prime}
\end{array}\right]\left(\tau / 2,\left(z_{1}-z_{2}\right) / 2\right)
\end{aligned}
$$

where z_{1} and z_{2} are contained in \boldsymbol{C}^{g}.
Proof. This is also well known fact (cf. Igusa [2], p. 139, Theorem 2).
Lemma 3. If η, η^{\prime} are elements of $\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}, d_{g}$ is odd and $\varepsilon, \varepsilon^{\prime}$ are contained in \boldsymbol{Z}^{g}, then

$$
\begin{aligned}
& \sum_{\sigma \in(Z / 2 Z) \delta}(-1)^{t} \sigma \varepsilon^{\prime} \theta\left[\begin{array}{c}
\eta+(\sigma / 2) \\
0
\end{array}\right](2 \tau, 2 z) \theta\left[\begin{array}{c}
\eta^{\prime}+(\sigma+\varepsilon) / 2 \\
0
\end{array}\right](2 \tau, 2 z) \\
& =\theta\left[\begin{array}{c}
\eta+\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta-\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 0) .
\end{aligned}
$$

Proof. By lemma 2, we obtain

$$
\begin{aligned}
& \theta\left[\begin{array}{c}
\eta+(\sigma / 2) \\
0
\end{array}\right](2 \tau, 2 z) \theta\left[\begin{array}{c}
\eta^{\prime}+(\sigma+\varepsilon) / 2 \\
0
\end{array}\right](2 \tau, 2 z) \\
& =\left(1 / 2^{g}\right){ }_{a^{r} \in((1 / 2) Z / Z) g^{\prime}} \boldsymbol{e}\left(-2^{t}(\eta+(\sigma / 2)) a^{\prime \prime}\right) \\
& \cdot \theta\left[\begin{array}{c}
\eta+\eta^{\prime}+(\varepsilon / 2) \\
a^{\prime \prime}
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta-\eta^{\prime}+(\varepsilon / 2) \\
a^{\prime \prime}
\end{array}\right](\tau, 0) .
\end{aligned}
$$

Hence

$$
\begin{gathered}
\sum_{\sigma \in(Z / 2 Z) g}(-1)^{t_{\sigma e \varepsilon^{\prime}}} \theta\left[\begin{array}{c}
\eta+(\sigma / 2) \\
0
\end{array}\right](2 \tau, 2 z) \theta\left[\begin{array}{c}
\eta^{\prime}+(\sigma+\varepsilon) / 2 \\
0
\end{array}\right](2 \tau, 2 z) \\
=\left(1 / 2^{g}\right)_{a^{\prime} \in((1 / 2) Z / Z) \varepsilon} \boldsymbol{e}\left(-2^{t} \eta a^{\prime \prime}\right) \sum_{\sigma \in\left(Z Z^{\prime} Z\right) g}(-1)^{t_{\sigma\left(e \varepsilon^{\prime}-2 a^{\prime \prime}\right)}} \\
\cdot \theta\left[\begin{array}{c}
\eta+\eta^{\prime}+(\varepsilon / 2) \\
a^{\prime \prime}
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta-\eta^{\prime}+(\varepsilon / 2) \\
a^{\prime \prime}
\end{array}\right](\tau, 0) \\
=\boldsymbol{e}\left({ }^{t} \eta \rho \varepsilon^{\prime}\right) \theta\left[\begin{array}{c}
\eta+\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta-\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 0) \\
=\theta\left[\begin{array}{c}
\eta+\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta-\eta^{\prime}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 0) .
\end{gathered}
$$

Therefore we obtain this lemma.
Lemma 4. If M is an ample line boundle on an abelian variety A, then

$$
\Gamma\left(A, M^{\otimes a}\right) \otimes \Gamma\left(A, M^{\otimes b}\right) \longrightarrow \Gamma\left(A, M^{\otimes a+b}\right)
$$

is surjective for $a \geqq 2$ and $b \geqq 3$.
Proof. See Koizumi [3] or Sekiguchi [8], [9].
Lemma 5. Under the notation of lemma 3, if there exists some $\eta_{0} \in$ $\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ with $\theta\left[\begin{array}{c}\eta_{0}+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 0) \neq 0$, then $\theta\left[\begin{array}{c}\eta+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 2 z)$ is in the image of $\Gamma\left(A, L^{\otimes 2}\right)^{\otimes 2} \rightarrow \Gamma\left(A, L^{\otimes t}\right)$ for every $\eta \in\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$.

Proof. Let η_{1} be an element of $\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$. In this case, we obtain that

$$
\theta\left[\begin{array}{c}
2 \\
\eta_{1}+\eta_{0}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 2 z) \theta\left[\begin{array}{c}
\eta_{0}+(\varepsilon / 2) \\
e \varepsilon^{\prime} / 2
\end{array}\right](\tau, 0)
$$

is contained in the image of $\Gamma\left(A, L^{82}\right)^{82} \rightarrow \Gamma\left(A, L^{84}\right)$ by lemma 3. Hence $\theta\left[\begin{array}{c}2 \eta_{1}+\eta_{0}+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 2 z)$ is contained in the image of $\Gamma\left(A, L^{\otimes 2}\right)^{\otimes 2} \rightarrow \Gamma\left(A, L^{\otimes 4}\right)$. As
d_{g} is odd, therefore the set $\left\{2 \eta_{1}+\eta_{0} ; \eta_{1} \in\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}\right\}$ is equal to

$$
\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}
$$

Therefore we obtain this lemma.
Lemma 6. Under the assumption of lemma 3, the following conditions are equivalent:
a) For every $\varepsilon, \varepsilon^{\prime} \in \boldsymbol{Z}^{g}$, there exists some $\eta \in\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ with $\theta\left[\begin{array}{c}\eta+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 0) \neq 0$;
b) $B s|L| \cap A[2]=\varnothing$.

Proof. As

$$
\theta\left[\begin{array}{l}
m^{\prime}+\xi^{\prime} \\
m^{\prime \prime}+\xi^{\prime \prime}
\end{array}\right](\tau, z)=\boldsymbol{e}\left((1 / 2)^{t \xi^{\prime}} \tau \xi^{\prime}+\xi^{t}\left(z+\xi^{\prime \prime}+m^{\prime \prime}\right)\right) \theta\left[\begin{array}{l}
m^{\prime} \\
m^{\prime \prime}
\end{array}\right]\left(\tau, z+\tau \xi^{\prime}+\xi_{\mu}\right)
$$

(cf. Igusa $[2]$, p. $50,(\theta .3)$), therefore the condition $\theta\left[\begin{array}{c}\eta+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 0) \neq 0$ is equivalent to $\theta\left[\begin{array}{l}\eta \\ 0\end{array}\right]\left(\tau,\left(\tau \varepsilon+e \varepsilon^{\prime}\right) / 2\right) \neq 0$. Hence this lemma is clear because $A=$ $\boldsymbol{C}^{g} /\langle\tau, e\rangle$.

Theorem. If $l(A, L)$ is odd, then $L^{\otimes 2}$ is projectively normal if and only if $B s|L| \cap A[2]=\phi$.

Proof. By lemma 1, a basis of $\Gamma\left(A, L^{\otimes 4}\right)$ consists of $\theta\left[\begin{array}{l}\eta \\ \sigma\end{array}\right](\tau, 2 z)$ where η runs over a complete system of representative of $\left(12 d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / 2 d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ and σ runs over a complete system of representative of $((1 / 2) \boldsymbol{Z} / \boldsymbol{Z})^{g}$. Hence $\Gamma\left(A, L^{\otimes 2}\right)^{\otimes 2} \rightarrow \Gamma\left(A, L^{\otimes 4}\right)$ is surjective if and only if for every $\varepsilon, \varepsilon^{\prime} \in \boldsymbol{Z}^{g}$, there exists some $\eta_{0} \in\left(1 / d_{1}\right) \boldsymbol{Z} / \boldsymbol{Z} \oplus \cdots \oplus\left(1 / d_{g}\right) \boldsymbol{Z} / \boldsymbol{Z}$ such that $\theta\left[\begin{array}{c}\eta_{0}+(\varepsilon / 2) \\ e \varepsilon^{\prime} / 2\end{array}\right](\tau, 0) \neq 0$ by lemma 5 . Hence we obtain this theorem by lemma 4 and lemma 6.

§ 2. Review of a theta group.

In this section we recall the Mumford's theory for a theta group (cf. Mumford [4], [5]). Let A be an abelian variety of dimension g defined over an algebraically closed field k with $\operatorname{char}(k) \neq 2$. We fix these notations.

Definition. Let M be an ample line bundle on A. We call that M is of separable type if $\operatorname{char}(k) \times l(A, M)$.

Definition. Let M be an ample line bundle on A and be of separable type. We define a theta group $G(M)$ by

$$
\left\{(x, \psi) ; x \in K(M) \text { and } \psi: M \xrightarrow{\sim} T_{x}^{*} M\right\} .
$$

This $G(M)$ is a group by the following way:

$$
(x, \phi) \cdot(y, \rho)=\left(x+y, T_{x}{ }^{*} \phi \cdot \rho\right)
$$

It is well known that $K(M)$ is isomorphic to the following abelian group via Weil pairing:

$$
K(M)=\boldsymbol{Z} / d_{1} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / d_{g} \boldsymbol{Z} \oplus\left(\widehat{\boldsymbol{Z} / d_{1} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / d_{g} \boldsymbol{Z}}\right)
$$

where $d_{1}|\cdots| d_{g}$ and \hat{G} means $\operatorname{Hom}\left(G, k^{*}\right)$ for a group G. Here we denote by $k^{*}=k-\{0\}$. In this situation, we set $\delta_{M}=\left(d_{1}, \cdots, d_{g}\right)$ and put $H\left(\delta_{M}\right)=$ $\boldsymbol{Z} / d_{1} \boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} / d_{g} \boldsymbol{Z}$. We define a Heisenberg group $G\left(\boldsymbol{\delta}_{M}\right)$.

Definition. In the above notations, we define a Heisenberg group $G\left(\delta_{M}\right)$ by

$$
G\left(\delta_{M}\right)=k^{*} \times H\left(\delta_{M}\right) \times H\left(\hat{\hat{\delta}}_{M}\right) .
$$

This $G\left(\delta_{M}\right)$ is a group by the following way:

$$
(t,(x, m)) \cdot\left(t^{\prime},\left(x^{\prime}, m^{\prime}\right)\right)=\left(t t^{\prime} m^{\prime}(x),\left(x+x^{\prime}, m+m^{\prime}\right)\right)
$$

where $\left.\left.x, x^{\prime} \in H\right) \delta_{M}\right), m, m^{\prime} \in H\left(\hat{\hat{o}}_{M}\right)$ and $t, t^{\prime} \in k^{*}$. The following theorem is foundamental.

Theorem. In the above notations, the following two horizontal sequences are exact and isomorphic:

Proof. See Mumford [4], p. 294, Corollary of Th. 1.
Definition. Let $z=(x, \phi)$ be an element of $G(M)$. We define a map U_{z} as follows:

$$
U_{2}: \Gamma(A, M) \xrightarrow{\Gamma(\psi)} \Gamma\left(A, T_{x}{ }^{*} M\right) \xrightarrow{T_{-x}{ }^{*}} \Gamma(A, M)
$$

It is clear that $\Gamma(A, M)$ is a $G(M)$-module by this way. Next we define a vector space $V\left(\boldsymbol{\delta}_{M}\right)$ and its $G\left(\delta_{M}\right)$-module structure.

Definition. The vector space $V\left(\delta_{M}\right)$ is defined as follows:

$$
V\left(\boldsymbol{\delta}_{M}\right)=\text { the set of all maps from } H\left(\boldsymbol{\delta}_{M}\right) \text { to } k .
$$

Let $(t,(x, m))$ be an element of $G\left(\delta_{M}\right)$. We define an automorphism $U_{(t,(x, m))}$ of $V\left(\delta_{M}\right)$ as follows:

$$
U_{(t,(x, m))}(f)(y)=\operatorname{tm}(y) f(x+y)
$$

where $f \in V\left(\delta_{M}\right)$ and $y \in H\left(\delta_{M}\right)$.
The following theorem is also foundamental.
THEOREM. If $\alpha: G(M) \leftrightharpoons G\left(\delta_{M}\right)$ is an isomorphism given in the above theorem, then we obtain an isomorphism

$$
\Gamma(A, M) \xrightarrow{\sim} V\left(\delta_{M}\right)
$$

as $G(M) \cong G\left(\boldsymbol{\delta}_{M}\right)$-modules.
Proof. See Mumford [4], p. 295, proposition 3, and p. 297, theorem 2.
Definition. Let x be an element of $H\left(\boldsymbol{\delta}_{M}\right)$. We define $\delta_{x} \in V\left(\delta_{M}\right)$ by $\delta_{x}(y)=1$ if $y=x$ and $\delta_{x}(y)=0$ if $y \neq x$.

It is clear that $U_{(t,(x, m))}\left(\delta_{u}\right)=\operatorname{tm}(u-x) \delta_{u-x}$.

§ 3. The general case.

Let L be an ample line bundle on an abelian variety A of dimension g. Throughout of this section, we assume that L is of separable type and $l(A, L)$ is odd and L is symmetric. We fix an isomorphism $G\left(L^{\otimes 4}\right) \cong G\left(4 \delta_{L}\right)$ and identify two vector spaces $\Gamma\left(A, L^{\otimes 4}\right)$ and $V\left(4 \delta_{L}\right)$ by the isomorphism in $\S 2$.

Lemma 1. Let f be an element of $V\left(4 \delta_{L}\right) \cong \Gamma\left(A, L^{\otimes 4}\right)$ defined by $f=$ $\operatorname{lid}_{u \in H\left(4 \delta_{L}\right) \text { and } 2 u=0} \delta_{u}$. Then f is in the image of $2_{A}{ }^{*}: \Gamma(A, L) \rightarrow \Gamma\left(A, L^{\otimes 4}\right)$ for some isomorphism $2_{A}{ }^{*} L \cong L^{\otimes 4}$ where $2_{A}(x)=2 x(x \in A)$.

Proof. This lemma is trivial.
By the above lemma, we obtain $\theta \in \Gamma(A, L)$ with $2_{A}{ }^{*} \theta=f$. We fix these notations through this section.

Definition. Let x be an element of $H\left(4 \delta_{L}\right)$ and σ be an element of $H\left(\hat{\delta}_{L}\right)$. We define an element of $\theta\left[\begin{array}{l}x \\ \sigma\end{array}\right]$ of $V\left(4 \delta_{L}\right)$ by

$$
\theta\left[\begin{array}{l}
x \\
\sigma
\end{array}\right]=U_{z}\left(2_{A} * \theta\right)
$$

where z is an element of $G\left(L^{\otimes 4}\right)$ corresponding to $(1,(x, \sigma))$ which is an element of $G\left(4 \delta_{L}\right)$.

Lemma 2. Let x, u be elements of $H\left(4 \delta_{L}\right)$ and σ, u^{*} be elements of $H\left(\hat{\delta}_{L}\right)$. If $2 u=0$ and $2 u^{*}=0$, then $\theta\left[\begin{array}{l}x+u \\ \sigma+u^{*}\end{array}\right]=u^{*}(x) \theta\left[\begin{array}{l}x \\ \sigma\end{array}\right]$.

Proof. By the definition, we obtain that

$$
\theta\left[\begin{array}{l}
x \\
\sigma
\end{array}\right]=\sum_{2 \zeta=0} \sigma(\zeta-x) \delta_{\zeta-x} .
$$

Therefore

$$
\begin{aligned}
\theta\left[\begin{array}{l}
x+u \\
\sigma+u^{*}
\end{array}\right] & =\sum_{2 \zeta=0}\left(\sigma+u^{*}\right)(\zeta-x-u) \delta_{\zeta-x-u} \\
& =\sum_{2 \zeta=0}\left(\sigma+u^{*}\right)(\zeta-x) \delta_{\zeta-x} \\
& =\sum_{2 \zeta=0} u^{*}(\zeta-x) \sigma(\zeta-x) \delta_{\zeta-x} .
\end{aligned}
$$

As $2 u^{*}=0$, hence $u^{*}(\zeta)=1$ for every $\zeta \in H\left(4 \delta_{L}\right)$ with $2 \zeta=0$. Therefore

$$
\begin{aligned}
\theta\left[\begin{array}{l}
x+u \\
\sigma+u^{*}
\end{array}\right] & =u^{*}(-x) \sum_{2 \zeta=0} \sigma(\zeta-x) \delta_{\zeta-x} \\
& =u^{*}(x) \theta\left[\begin{array}{l}
x \\
\sigma
\end{array}\right]
\end{aligned}
$$

So we obtain this lemma.
Lemma 3. The vector space $\Gamma\left(A, L^{\otimes_{4}}\right)$ is sppaned by the elements $\theta\left[\begin{array}{l}x \\ \sigma\end{array}\right]$ where $x \in H\left(4 \delta_{L}\right)$ and $\sigma \in(\hat{\boldsymbol{Z}} / 4 \boldsymbol{Z})^{\boldsymbol{g}}$ which is regarded the subgroup of order of $H\left(4 \hat{\hat{o}}_{L}\right)$.

Proof. We regard that $H\left(\delta_{L}\right)$ and $(\boldsymbol{Z} / 4 \boldsymbol{Z})^{g}$ are the subgroups of $H\left(4 \delta_{L}\right)$ in the canonical way. For every $\xi \in H\left(\boldsymbol{\delta}_{L}\right), \tau \in(\boldsymbol{Z} / 4 \boldsymbol{Z})^{g}$ and $\sigma \in(\hat{\boldsymbol{Z}} / 4 \boldsymbol{Z})^{g}$, we obtain

$$
\begin{aligned}
\theta\left[\begin{array}{c}
\xi+\tau \\
\sigma
\end{array}\right] & =\sum_{2 \zeta=0} \sigma(\zeta-\xi-\tau) \delta_{\zeta-\xi-\tau} \\
& =\sum_{2 \zeta=0} \sigma(\zeta-\tau) \delta_{\zeta-\xi-\tau}
\end{aligned}
$$

because as $l(A, L)$ is odd, $\sigma(\xi)=1$. Therefore

$$
\begin{aligned}
& =\sum_{2 \zeta=0}\left(\sum_{\sigma \in(\boldsymbol{Z} \hat{\mathcal{I}} \mathbf{Z}) \boldsymbol{g}} \sigma(\zeta)\right) \delta_{\zeta-\xi-\tau} \\
& =4^{8} \delta_{\zeta-\xi-\tau} .
\end{aligned}
$$

Therefore we obtain this lemma.
Let x be a closed point of A and M be an ample line bundle on A of separable type. We define $M(x)$ cy

$$
M(x)=\underline{M}_{x} \otimes_{O_{A, x}} k(x)
$$

where \underline{M}_{x} and $\mathcal{O}_{A, x}$ are the stalk of \underline{M} and \mathcal{O}_{A} at x respectively, and $k(x)$ is a residue field of $\mathcal{O}_{A, x}$. It is clear that $M(x) \cong k$. We choose an isomorphism $\lambda_{0}: M(0) \leftrightharpoons k$. We fix an isomorphism $G(M) \cong G\left(\delta_{M}\right)$. For every $w \in K(M)$, we take $\left(w, \psi_{w}\right) \in G(M)$ which is corresponding to an element of $G\left(\delta_{M}\right)$ with a type ($1,(x, m)$) by the above isomorphism.

Definition. We defined $\lambda_{w}: M(w) \rightarrow k$ by

$$
\lambda_{w}: M(w)=\left(T_{x} * M\right)(0) \underset{\psi_{w}(0)}{\underset{\psi_{0}}{\longrightarrow}} M(0) \underset{\lambda_{0}}{\longrightarrow}
$$

where $w \in K(M)$ and $\psi_{w}(0)$ is given by ψ_{w}.
Definition. Under the above notations, we define q_{w}^{M} by

$$
q_{w}^{M}: \Gamma(A, M) \xrightarrow[\text { canonical map }]{ } M(w) \underset{\lambda_{w}}{\longrightarrow} k .
$$

Remark. For any $z=(x, \psi) \in G(M)$ and any $s \in \Gamma(A, M)$, the conditions $q_{w}^{M}\left(U_{z}(s)\right)=0$ and $q_{w+x}^{M}(s)=0$ are eqivalent.

Remark. The condition that $q_{w}^{M}(s)=$ for every $s \in \Gamma(A, M)$ implies that w is contained in $B s|M|$.

Remark. If M is a symmetric ample line bundle on A, then the conditions $q_{w}^{M \otimes 4}\left(2_{A}{ }^{*} s\right)=0$ and $q_{2 w}^{M}(s)=0$ are equivalent for any $s \in \Gamma(A, M)$.

Definition. We define $q_{L^{\otimes 4}}(x)$ by

$$
q_{L^{\otimes^{4}}}(x)=q_{0}^{L_{0}{ }^{\otimes 4}}\left(\delta_{x}\right)
$$

where $x \in K\left(L^{\left.\otimes_{4}\right)}\right.$ and $\delta_{x} \in V\left(4 \delta_{L}\right) \cong \Gamma\left(A, L^{\otimes 4}\right)$. Moreover we define $q\left[\begin{array}{c}x \\ \sigma\end{array}\right]$ by

$$
q\left[\begin{array}{l}
x \\
\sigma
\end{array}\right]=q_{0}^{L_{0}^{\otimes 4}}\left(\theta\left[\begin{array}{l}
x \\
\sigma
\end{array}\right]\right)
$$

where $x \in H\left(4 \delta_{L}\right)$ and $\boldsymbol{\sigma} \in(\boldsymbol{Z} / 4 \boldsymbol{Z})^{g}$.
Now the isomorphism $G\left(L^{\otimes^{4}}\right) \cong G\left(4 \delta_{L}\right)$ induces an isomorphism $G\left(L^{\otimes 2}\right) \cong G\left(2 \delta_{L}\right)$; these isomorphisms define the symmetric theta structure for ($L^{\otimes^{2}}, L^{\otimes 4}$) (cf. Mumford [4], p. 317). We identify the two vector spaces $\Gamma\left(A, L^{\otimes 2}\right)$ and $V\left(2 \delta_{L}\right)$ by means of the isomorphism $G\left(L^{\otimes 2}\right) \cong G\left(2 \delta_{L}\right)$.

Lemma 4 (Multiplication formula). If δ_{x} and $\delta_{x^{\prime}}$ are elements of $\Gamma\left(A, L^{\otimes 2}\right)$, then

$$
\delta_{x} \cdot \delta_{x^{\prime}}=\sum_{\zeta \in H\left(4 \delta_{L}\right) \text { and } 2 \zeta=0} q_{L^{\otimes 4}}\left(\underline{x}-\underline{x}^{\prime}+\zeta\right) \delta_{x+x^{\prime}+\zeta}
$$

where \cdot is a canonical map $\Gamma\left(A, L^{\otimes 2}\right)^{\otimes 2} \rightarrow \Gamma\left(A, L^{\otimes 4}\right)$ and $\underline{x}, \underline{x}^{\prime} \in H\left(4 \delta_{L}\right)$ satisfying $2 \underline{x}=x, 2 \underline{x}^{\prime}=x^{\prime}$. Here we regard $H\left(2 \delta_{L}\right)$ as a subgroup of $H\left(4 \delta_{L}\right)$ in the canonical way.

Proof. See Mumford [4], p. 330.
Let x, x^{\prime} be elements of $H\left(\delta_{L}\right)$, and ξ, ξ^{\prime} be elements of $(\boldsymbol{Z} / 2 \boldsymbol{Z})^{g}$. We take $\underline{x}, \underline{x}^{\prime} \in H\left(\boldsymbol{\delta}_{L}\right)$ and $\underline{\xi}, \underline{\xi}^{\prime} \in(\boldsymbol{Z} / 4 \boldsymbol{Z})^{g}$ satisfying $2 \underline{x}=x, 2 \underline{x}^{\prime}=x^{\prime}, 2 \underline{\xi}=\xi$ and $2 \underline{\xi}^{\prime}=\hat{\xi}^{\prime}$.

Lemma 5. Under the above notations,

Proof. For $\delta_{x+\xi}$ and $\delta_{x^{\prime}+\xi^{\prime}} \in \Gamma\left(A, L^{\otimes 2}\right)$, we obtain that

$$
\begin{aligned}
& \delta_{x+\xi} \cdot \delta_{x^{\prime}+\xi^{\prime}}=\sum_{\zeta \in H\left(4 \delta_{L}\right) \text { and } 2 \zeta=0} q_{L^{\otimes 4}}\left(\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\xi}^{\prime}+\zeta\right) \delta_{\underline{x}+\underline{x}^{\prime}}+\underline{\xi}^{+}+\xi^{\prime}+\zeta \\
& =\sum_{2 \underline{\xi}=0} q_{L^{\otimes 4}}\left(\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\underline{\xi}}+\boldsymbol{\xi}\right)\left(1 / 4^{g}\right) \sum_{\sigma \in(\boldsymbol{Z} \hat{\prime} / \mathbf{Z}) g} \sigma\left(-\underline{\underline{\xi}}-\underline{\xi}^{\prime}-\zeta\right) \\
& \cdot \theta\left[\begin{array}{c}
-\underline{x}-\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime}-\zeta \\
\sigma
\end{array}\right] \\
& =\left(1 / 4^{g}\right) \sum_{\sigma} \sum_{2=0} \sigma\left(-\underline{\xi}-\underline{\xi}^{\prime}-\zeta\right) q_{L^{\otimes 4}}\left(\underline{x}-\underline{x}^{\prime}+\underline{\underline{\xi}}-\underline{\xi}^{\prime}+\zeta\right) \\
& \cdot \theta\left[\begin{array}{c}
-\underline{x}-\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime}-\zeta \\
\sigma
\end{array}\right] .
\end{aligned}
$$

On the other hand, $\theta\left[\begin{array}{c}x+u \\ \sigma+u^{*}\end{array}\right]=u^{*}(x) \theta\left[\begin{array}{c}x \\ \sigma\end{array}\right]$ for $2 u=0$ and $2 u^{*}=0$. Moreover in above situation, $\sigma(\underline{x})=\sigma\left(\underline{x}^{\prime}\right)=1$. Hence

$$
\begin{aligned}
\delta_{x+\xi} \cdot \delta_{x^{\prime}+\xi^{\prime}}= & \left(1 / 4^{g}\right) \sum_{\sigma} \sigma(-2 \underline{\xi}) \theta\left[\begin{array}{c}
-\underline{x}-\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime} \\
\sigma
\end{array}\right] \sum_{\zeta} \sigma\left(\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\xi}^{\prime}+\zeta\right) \\
& \cdot q_{L} \otimes 4\left(\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\xi}^{\prime}+\zeta\right) \\
= & \left(1 / 4^{g}\right) \sum_{\sigma} \sigma(\xi) \theta\left[\begin{array}{c}
-\underline{x}-\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime} \\
\sigma
\end{array}\right] \\
& \cdot q_{0}^{L \otimes 4}\left(\sum_{\zeta} \sigma\left(\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\xi},+\zeta\right) \delta_{\left.\underline{x}-\underline{x}^{\prime}+\underline{\xi}-\underline{\xi}^{\prime}+\xi\right)}\right. \\
= & \left(1 / 4^{g}\right) \sum_{\sigma} \sigma(\xi) \theta\left[\begin{array}{c}
-\underline{x}-\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime} \\
\sigma
\end{array}\right] q\left[\begin{array}{c}
-\underline{x}+\underline{x}^{\prime}-\underline{\xi}-\underline{\xi}^{\prime} \\
\sigma
\end{array}\right]
\end{aligned}
$$

Therefore we obtain this lemma.
Theorem. Under the above notations, $L^{\otimes 2}$ is projectively normal if and only if $B s|L| \cap A[2]=\phi$.

Proof. Replacing the lemmas for the theorem in $\S 1$ by the above lemmas, the proof of the theorem in $\S 1$ still works in general case.

Corollary. If M is an ample line bundle and is of sefarable type on an abelian variety A, then $B s|M|=\phi$ and $l(A, M)=0$ dd imply that $M^{\otimes 2}$ is projectively normal.

To conclude this section, we give an easy criterion for the base point freeness of a line bundle M on an abelian variety A. We assume that M is of separable type. Let $\alpha: G(M) \rightarrow G\left(\delta_{M}\right)$ be an isomorphism. As α induces $\bar{\alpha}: K(M)$ $\rightarrow H\left(\delta_{M}\right) \oplus H\left(\hat{\delta}_{M}\right)$, we put $H(M)$ by $\bar{\alpha}^{-1}\left(H\left(\delta_{M}\right)\right)$. Let B be an abelian variety defined by $A / H(M)$ and $\pi: A \rightarrow B$ the canonical morphism. In this situation, the line bundle M is given by $M \cong \pi^{*} N$ where N is a principal line bundle on B. In this notations, we obtain the following proposition.

$$
\text { Proposition. } \quad B s|M|=\pi^{-1}\left(_{x \in \pi(K(M))} T_{x}{ }^{*} \theta\right) \text { where } \theta \in|N| \text {. }
$$

Proof. As there exists a canonical isomorphism

$$
\Gamma(A, M) \cong \bigoplus_{x \in \pi(K(M))} \Gamma\left(B, T_{x}^{*} N\right)
$$

therefore this proposition is clear.
The following proposition is also clear.
Proposition. Let M be as in abovz. If $B s|M|$ is finite and $\left(M^{g}\right)>(g!)^{2}$, then $B s|M|=\phi$.

Proof. If $B s|M| \neq \phi$, then there is a point $q \in B s|M|$. By the definition of $K(M), q+K(M)$ is also contained in $B s|M|$. As
the cardinality of $B s|M| \leqq\left(M^{g}\right)$,
hence

$$
\text { the order of } K(M)=\left(\left(M^{g}\right) / g!\right)^{2} \leqq\left(M^{g}\right) .
$$

Therefore we obtain $\left(M^{g}\right) \leqq(g!)^{2}$.

References

[1] Geemen, B., Schottky-Jung relations and vector bundles on hyperelliptic curves. Thesis University of Utrecht (1985).
[2] Igusa, J., Theta functions. Springer-Verlag (1972).
[3] Koizumi, S., Theta relations and projective normality of abelian varieties. Amer. Amer. J. Math. 98, 865-889 (1976).
[4] Mumford, D., On the equation defining abelian varieties I. Invent. Math. 1, 289354 (1966).
[5] Mumford, D., Abelian varieties. Oxford University Press (1970).
[6] Ohbuchi, A., Some remarks on ample line bundles on abelian varieties. Manuscripta Math. 57, 225-238 (1987).
[7] Saint-Donat, B., Projective models of K3 surfaces. Amer. J. Math. 96, 602-632 (1974).
[8] Sekiguchi, T., On projective normality of abelian varieties. J. Math. Soc. Japan 28, 307-322 (1976).
[9] Sekiguchi, T., On projective normality of abelian varieties II. J. Math. Soc. Japan 29, 709-727 (1977).

Department of Mathematics
Faculity of Education
Yamaguchi University
16771-1, Oh-aza Yoshida
Yamaguchi-shi, Yamaguchi 753,
Japan

