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Introduction.

Let L be an ample line bundle on an abelian variety A of dimension g
defined over an algebraically closed field k. It is well known that L€* is base
point free and L®® is very ample and projectively normal. Moreover we know
that

I'(A, L*)RQI'(A, L®) — I'(A, L&)
is surjective if a=2 and b=3 (Koizumi [3], Sekiguchi [8], [9]). But in the
case of a=b=2, this map is not surjective in general. In this paper we deter-
mine the condition of projective normality of L% for some ample line bundle L.
Our result is as follows.

THEOREM. If L is a symmetric ample line bundle of separable type, (A, L)
is odd and assume that char (B)#2, then L®% is projectively normal if and only if
Bs| LINA[2]=¢.

In §1 we prove the above theorem for abelian varieties defined over C.
In §2 we give the Mumford’s theory of a theta group (Mumford 4], [(61). In
§3 we prove the above theorem in general by the theory in §2.

Notations.
char (k): The characteristic of a field %
f*: The pull back defined by a morphism f
L: The invertible sheaf associated to a line bundle L
©4: The invertible sheaf of a variety A
(L#): The self intersection number
|L|: The set of all effective Cartier divisors which define a line bundle L
Bs|L}: The set defined by DQ D

\L|

I'(A, L): The set of global sections of a line bundle L
I(A, L): The dimension of I'(4, L) as a vector space
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T,: The translation morphism on an abelian variety A defined by T.(y)=x+2y
where x and y are elemets of A

K(L): The subgroup of an abelian variety A defined by {x€A; T*¥L=L}

where L is a line bundle on A

A[n]: The set of all points of order n of an abelian variety A

Z: The ring of integers

R: The field of real numbers

C: The field of complex numbers

§1. The C case.
First we recall a definition of projective normality.

DEFINITION. Let M be an ample line bundle on an abelian variety A. We
call that M is projectively normal if

I'(A, My** — I'(A, M®")

is surjective for every n=1.
Next we define a theta function defined on Cé.

DEFINITION. Let m’, m” be elements of R and let v be an element of a
Siegel upper half space H,. We define 0[2”}(1, z) by
m'’
0[ J(T, 2)=%JZe((l/Z)‘(C+m’)T(C+m’)+”(C+M’)(z+m”))
m” 4
where e(x) means e*™ 1% and z is contained in C¥.

Let d,, ---, d, be positive integers with d,|---|d,. We define an integral
matrix e by

S
0 .'dg

For an element v of H, we define an abelian variety A by C4/{tr, ¢> where
{r, e> is a lattice subgroup of C# defined by tZ¢+eZ%. Let A be a Riemann
form on <z, ¢)> defined by

Altx+tey, tx'+ey )=txey' —tx’ey

where x, x', y, y’ are elements of Z¢. It is well known that this 4 defines an
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algebraic equivalence class of line bundles on A. Now we take a line bundle L
on A satisfying that L is symmetric and the global sections of L are generated
by 0[ g ](r, z) where 7 runs over a complete system of representative of (1/d,)Z/Z
D B/dHZ/Z.

LEMMA 1. The basis of T'(A, L®") is given by 0[3](2"1‘, 2"z) where 7 runs
over a complete system of representative of (1/2"d)Z/ZD --- B(/2"d)Z/Z
(n=1, 2, ---). Moreover I'(A, L®*) is generated by 0[5](7, 2z) where & runs over
a complete system of representative of (1/2d)Z/ZD --- P(1/2d )Z/Z and ¢ runs
over a complete system of representative of (1/2)Z/Z)%.

PrRoOOF. This is well known fact (cf. Igusa [2], p. 72, Theorem 4, and p. 84,
Theorem 6).

LEMMA 2 (Multiplication formula). If n’, p”, &, & are contained in R*® and

7 1S contained in H,, then

’ EI
0[0 ](f, 2)0[ ](f, z)=(1/25) 25 e(—=2'na”)

” ” a'c((1/2)Z1Z)8

7]’+$,
. 0[ (7/2, (z:+2,)/2)
(7]”+E”)/2+a”

0[ T J(r/z, (z1—22)/2)
<”//~_‘§//>/2_*_a//

where z, and z, are contained in C4,
ProoF. This is also well known fact (cf. Igusa [2], p. 139, Theorem 2).

LEMMA 3. If 9, p’ are elements of (1/d\)Z/ZD - D(1/d)Z/Z, d, is odd
and e, ¢’ are contained in Z*, then

, n+(a/2) 7' +(o+e)/2
(-1 "“'0[ J(ZT, 22)0[ ](27:, 2z)
ae(Z/2Z>8 0 0

+n'+(e/2) —9'+(e/2
[77 e ](7, 22)0[77 e >:l(7.', 0)
ee’/2

eg'/2

ProOOF. By lemma 2, we obtain
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T, 22) T, 22)

0{77+(0/2)] [v'+(a+e>/2]
0 0

=(1/2#) by e(—2(n+(a/2))a”)

a'e(1/2)Z]Z)E

+5'+(e/2) —n'+(e/2)
-0{77 e }(r, 22)0{7} e }(7, 0)
” a/l

a
Hence

(_l)taee' /]

oE(Z/2Z)8

(27, 22)

T, 22)

[77+(0/2)] |:77’+(0+8)/2}
0

=(1/2%) > e(—2‘7]a”) P (_1)‘0(85' -2a7)

are((1/2)Z]2)8 ge(Z[22)8

+5'+(e/2) —7'+(e/2)
.0|:77 7t }(‘r, 22)0[77 v ](T, 0)
a/’

all

+9'4-(e/2 —n'+(e/2

e )}(r, 22)0[7} T )}(1,0
ee’/2

479" +(e/2 —9'+(e/2

[77 n'+(e/ )](T) 22)0[0 7' +(e/ )](T, 0
eg’/2 ee’/2

=e(“/)ea’)0{

ee'/2

Therefore we obtain this lemma.

LEMMA 4. If M is an ample linz boundle on an abelian variety A, then
I'(A, M®QI'(A, M®") —> I'(4, M®**")

is surjective for a=2 and b=3.
ProOOF. See Koizumi [3] or Sekiguchi [8], [9].

LEMMA 5. Under the notation of lemma 3, if there exisis some %)<

(1/d)Z/ 2D - B/ d ) ZIZ with 0[770;;,(;2/2)](7, 0)0, then 0[’7:;(,%2)](7, 22) is

in the image of I'(A, L®)®*—I'(A, L®) for every n=(1/d)Z/ZD - D(1/d)Z/ Z.

PROOF. Let 7, be an element of (1/d)Z/ZE - D(1/d,)Z/Z. In this case,
we obtain that
2
N1+ 70+ (e/2) No+(e/2)
0[ e ](r, 22)0[ ’ ](r, 0
eg’/2 ee’/2
is contained in the image of I'(A, L®)®*—[(A, L®) by lemma 3. Hence

0[277’—:2?72(6/2)](7, 2z) is contained in the image of I'(4, L®*)®*—I"(A, L®*). As
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d . is odd, therefore the set {2%,+%,; 7.=(1/d)Z/ZD - B(1/d)Z/Z} is equal to
A/d)Z/ZD - D(1/d)Z/Z.

Therefore we obtain this lemma.

LEMMA 6. Under the assumption of lemma 3, the following conditions are

equivalent :
a) For every ¢, e’=Z%, there exists some n=(1/d)Z/ZD - DA/d)Z/Z
p 77+(e/2)] )
with 0[ Ry O
b) Bs|LINA[2]=@.

PrROOF. As

m’

ml_l_él
0[ }(T, Z)Ze((l/z)‘é’75’+‘E'(Z+E”+m”))0[ ](T, 218 +£,)

mll +EI/ "

m
n+(e/2)
es’/2
equivalent to 0[3](7, (re+ee’)/2)#0. Hence this lemma is clear because A=

(cf. Igusa [2], p.50, (0.3)), therefore the condition 6[ ](r, 0)=0 is

Ce /LT, e).

THEOREM. If I(A, L) ¢s odd, then L®* is projectively normal if and only if
Bs|LINA[2]=¢.

PROOF. By lemma 1, a basis of I'(A4, L®) consists of 0[2](-:, 2z) where 3

runs over a complete system of representative of (12d,)Z/Z& --- B(1/2d,)Z/Z
and ¢ runs over a complete system of representative of ((1/2)Z/Z)%. Hence
(A, L®)®*=]'(A, L®) is surjective if and only if for every ¢, e’ Z%, there
exists some 0,&(1/d)Z/ZD - D(1/dg)Z/Z such that 0[1]";,(/62/2)]&, 0)+0 by
lemma 5. Hence we obtain this theorem by lemma 4 and lemma 6.

§2. Review of a theta group.

In this section we recall the Mumford’s theory for a theta group (cf. Mumford
[4], [5]). Let A be an abelian variety of dimension g defined over an algebraic-
ally closed field £ with char(k)#2. We fix these notations.

DEFINITION. Let M be an ample line bundle on A. We call that M is of
separable type if char(k) ) [(A, M).
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DEFINITION. Let M be an ample line bundle on A and be of separable type.
We define a theta group G(M) by

{(x, ¢); x€KM) and ¢: M= T *M}.
This G(M) is a group by the following way:

(x, §)-(y, p)=(x+y, T:*)-p).

It is well known that K(M) is isomorphic to the following abelian group via
Weil pairing :

/\
KM)y=Z/dZD - DZ/d  ZD(Z/d\ ZD - DZ/d , Z)

where d,|--|d, and G means Hom (G, k*) for a group G. Here we denote by
k*=k—{0}. In this situation, we set dy=(d,, -+, d,) and put H(0y)=
Z/d.ZE - BZ/d,Z. We define a Heisenberg group G(dy).
DEFINITION. In the above notations, we define a Heisenberg group G(0x) by
G(Ou)=k* ¥ H(Ou) X H(8x).
This G(dy) is a group by the following way:
@, (x, m))-(t', (x', m"N=(t'm'(x), (x+x', m+m'))

where x, x’€H)dx), m, m'eH(Sy) and t, ' k*. The following theorem is
foundamental.

THEOREM. In the above notations, the following lwo horizontal sequences are
exact and isomorphic:

0 k¥ G(M) K(M) —0
| <« | G
0 k* G(8x) H@y)X Hx) — 0.

PROOF. See Mumford [4], p. 294, Corollary of Th. 1.

DEFINITION. Let z=(x, ¢) be an element of G(M). We define a map U, as
follows:

') T_*

U,: I'(4, M) I'(A, T;*M) I'(A, M).

It is clear that I'(4, M) is a G(M)-module by this way. Next we define a
vector space V(dy) and its G(dx)-module structure.
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DEFINITION. The vector space V{(dy) is defined as follows:
V(0y)=the set of all maps from H(dy) to k.

Let (t, (x, m)) be an element of G(8y). We define an automorphism U, cz.my Of
V(0u) as follows:

U, o, a{DP)=tm(y)f(x+)
where f&V(0y) and yE H(dy).

The following theorem is also foundamental.

THEOREM. [If a:G(M)=G(8y) is an isomorphism given in the above theorem,
then we obtain an isomorphism

T(A, M) =5 V(oy)
as GIM)=ZG(d,)-modules.

PROOF. See Mumford [4], p. 295, proposition 3, and p. 297, theorem 2.

DEFINITION. Let x be an element of H(8y). We define 6,V (8y) by 8.(y)=1
if y=x and 0,(3)=0if y+#=x.

It is clear that U(Mx,m>>(5u)=l‘m(u—x)5u_r.

§3. The general case.

Let L be an ample line bundle on an abelian variety A of dimension g.
Throughout of this section, we assume that L is of separable type and {(A, L)
is odd and L is symmetric. We fix an isomorphism G(L®)=G(45,) and identify
two vector spaces I'(A, L®) and V(46;) by the isomorphism in § 2.

LEMMA 1. Let f be an element of V(48,)=I"(A, L®) deﬁned by f=
. 0,. Then f is in the image of 2,*: I'(A, L)~I'(A, L®) for some
UEH(46)) and 2u=0

isomorphism 2,*%L = L®* where 2,(x)=2x (x& A).
Proor. This lemma is trivial.

By the above lemma, we obtain §=I'(A4, L) with 2,*6=f. We fix these
notations through this section.

DEFINITION. Let x be an element of H(46,) and & be an element of H(5.).

We define an element of 0[ } of V(40) by

X
g
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x
0[ ]-——Uz(ZA*(?)
g

where z is an element of G(L®*) corresponding to (1, (x, 6)) which is an element
of G(40y.).

LEMMA 2. Let x, u be elements of H(49y) and o, u* be elements of H(L).
If 2u=0 and 2u*=0, then 0[;12*]:11*(}6)0[::].
PrOOF. By the definition, we obtain that

x
0[ }z 252=0 a(C—x)0¢-=.

o
Therefore
x+u
0[ }——— S (e+u*)—x—u)dg-z-u
gtu*| =0
= 2 (e + -
= €00 C—c-s.

As 2u*=0, hence u*Q)=1 for every {= H(4d,) with 2{=0. Therefore
x-+u
0 =u*(—x)2§2:00(C~X)5c—z

o+u*
x
:u*(xw[ ]
o

LEMMA 3. The vector space I'(A, L®) is sppaned by the elemenis O[z] where

So we obtain this lemma.

x& H(4d,) and ¢ =(ZJAZ)* which is regarded the subgroup of order of H45,).

PrOOF. We regard that H(é;) and (Z/4Z)* are the subgroups of H(46;) in
the canonical way. For every ¢é€ H(d;.), t=(Z/4Z)* and ae(Z74Z)g, we obtain

&+
0[ ]= D o({—E—1)0z-¢-c
o 2=0

- Zczzog(c_‘r)aC—f—r

because as [(A, L) is odd, ¢(§)=1. Therefore



A note on the projective normality 349

&+t
> 0(7)0[ ]= > X o(m)el—1)0-e-

0E(ZI4Z)E g 0e(Z712)8 ¥L=0

=20 3 o@¢--

=0 se(zl42>8
2435§_5_7 .

Therefore we obtain this lemma.

Let x be a closed point of A and M be an ample line bundle on A of
separable type. We define M(x) cy

M(0)=M. & k)

A,z

where M, and 0,4, , are the stalk of M and ©, at x respectively, and %(x) is a
residue field of O, ,. It is clear that M(x)=k. We choose an isomorphism
At M(0)=k. We fix an isomorphism G(M)=G(dy). For every we K(M), we
take (w, ¢,,)=G(M) which is corresponding to an element of G(d,) with a type
(1, (x, m)) by the above isomorphism.

DEFINITION. We defined 2,,: M (w)—k by

Aw: M(W)=(T*M)0) «—— M) —> &
$w(0) Zo

where we K(M) and ¢,(0) is given by ¢,

DEFINITION. Under the above notations, we define g¥ by

g A, M) ———— M(w) —> k.
canonical map Aw

REMARK. For any z=(x, ))€GM) and any sI'(A, M), the conditions
gi(U (s)=0 and q¥, .(s)=0 are egivalent.

REMARK. The condition that q¥(s)= for every scI'(A, M) implies that w is
contained in Bs|M].

REMARK. [If M is a symmetric ample line bundle on A, then the conditions
g¥®*(24%s)=0 and ¢¥(s)=0 are equivalent for any s=I'(A, M).

DEFINITION. We define gie4(x) by

gro4(x)=¢5°"(3.)

where x€ K(L®') and 0,=V(4d)=T"(A, L®). Moreover we define q[;] by

el
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where x< H40;) and o =(Z/4Z)*.

Now the isomorphism G(L®*)=G(48,) induces an isomorphism G(L®*)=G(2d,);
these isomorphisms define the symmetric theta structure for (L®?, L®) (cf.
Mumford [4], p. 317). We identify the two vector spaces I'(4, L®)and V(28;)
by means of the isomorphism G(L®*)=G(20.).

LEMMA 4 (Multiplication formula). If 0, and 8. are elements of (A, L®%),
then
00, =

LeH o) and 25=0

where - is a canonical map I'(A, L®)®*—T(A, L®) and x, x’SH(46L) satisfying
2x=x, 2x'=x'. Here we regard H(20;) as a subgroup of H(4d.) in the canonical

QL®4($-“7_C,+C>5I+;’ +C

way.
PrOOF. See Mumford [4], p. 330.

Let x, x’ be elements of H(3;), and &, & be elements of (Z/2Z)¢. We take
x, x’€H(6.) and &, §'e(Z/4Z)® satisfying 2x=x, 2x'=x', 26=¢ and 2§'=¢'.

LEMMA 5. Under the above notations,
—z+z’—§+§’]0[—z‘z§’—5— "}

g

51‘+$'51’+E':(1/4g) 2 0(5)4[

oe(Z14 2> 8 I’

PrOOF. For 8., and 8,4 =I'(A, L®), we obtain that

6z+5'5x’+5’: 2 qL®4(&'_Z/+§"§,+C>65+g’+§+§’+C

{eH (4d) and 2{=0

= 2CZ:‘;Oqu(J_c~J_C’-l-§-—§’+C)(1/4‘Z) 3 o(—§-¢-0

0e(Z742)8

gl E B
-0
L g 1
=(1/493] 3, 0(—§—§ ~Dgrosla—r'+5-§+0)
—x—x'—E—§ (]
" 1—x'—§—&—C
L g |

x+u
¢+u*
above situation, g(x)=0c(x’)=1. Hence

On the other hand, 0[ ]:u*(x) ﬁ[j] for 2u=0 and 2u*=0. Moreover in
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—x—x'—§-¢ i
Og4s 0z e =(1/45) 2 0(—25)0[ ]? o{x—x'+&—64+0)
g g
-qret(x—x'+§—E+0)
[—x—x'—E—§]

=(1/4g)§a(é>t9L

ag
Do+ Dz st )

=(1/45Za(£)0

Therefore we obtain this lemma.

THEOREM. Under the above notations, L® is projectively normal if and only
if Bs|LINA[2]=¢.

PrROOF. Replacing the lemmas for the theorem in §1 by the above lemmas,
the proof of the theorem in §1 still works in general case.

COROLLARY. If M is an ample line bundle and is of sefarable type on an
abelian variety A, then Bs|M|=¢ and [(A, M)=odd imply that M®* is pro-
Jectively normal.

To conclude this section, we give an easy criterion for the base point fre-
eness of a line bundle M on an abelian variety A. We assume that M is of
separable type. Let a: G(M)—G(3y) be an isomorphism. As a induces @: K(M)
—H3)PDH (), we put HM) by & (H(by)). Let B be an abelian variety de-
fined by A/H(M) and =: A—B the canonical morphism. In this situation, the
line bundle M is given by M=z*N where N is a principal line bundle on B.
In this notations, we obtain the following proposition.

PROPOSITION. Bs|M|=z"Y [\ T,*0) where 6<|N]|.
zeEn (KM

PROOF. As there exists a canonical isomorphism
I'A, My= @ ['(B, T.*N)
rET(K (M)

therefore this proposition is clear.

The following proposition is also clear.

PROPOSITION. Let M be as in abovz. If Bs|M| is finite and (M*)>(g!)?,
then Bs|M|=¢.
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PROOF. If Bs|M|+#¢, then there is a point g=Bs|M|. By the definition

of K(M), q+K(M) is also contained in Bs|M|. As

the cardinality of Bs|M|<(M¥#),

hence

the order of K(M)=((M?2)/g!P<(M*).

Therefore we obtain (M#)=(g!).
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